]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Introducing Riostream.h
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.27  2002/10/14 14:57:00  hristov
19   Merging the VirtualMC branch to the main development branch (HEAD)
20
21   Revision 1.23.4.2  2002/10/14 13:14:07  hristov
22   Updating VirtualMC to v3-09-02
23
24   Revision 1.26  2002/09/09 17:23:28  nilsen
25   Minor changes in support of changes to AliITSdigitS?D class'.
26
27   Revision 1.25  2002/05/10 22:29:40  nilsen
28   Change my Massimo Masera in the default constructor to bring things into
29   compliance.
30
31   Revision 1.24  2002/04/24 22:02:31  nilsen
32   New SDigits and Digits routines, and related changes,  (including new
33   noise values).
34
35  */
36
37 #include <Riostream.h>
38 #include <TFile.h>
39 #include <TMath.h>
40 #include <math.h>
41
42 #include "AliITSClusterFinderSDD.h"
43 #include "AliITSMapA1.h"
44 #include "AliITS.h"
45 #include "AliITSdigit.h"
46 #include "AliITSRawCluster.h"
47 #include "AliITSRecPoint.h"
48 #include "AliITSsegmentation.h"
49 #include "AliITSresponseSDD.h"
50 #include "AliRun.h"
51
52 ClassImp(AliITSClusterFinderSDD)
53
54 //______________________________________________________________________
55 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
56                                                AliITSresponse *response,
57                                                TClonesArray *digits,
58                                                TClonesArray *recp){
59     // standard constructor
60
61     fSegmentation = seg;
62     fResponse     = response;
63     fDigits       = digits;
64     fClusters     = recp;
65     fNclusters    = fClusters->GetEntriesFast();
66     SetCutAmplitude();
67     SetDAnode();
68     SetDTime();
69     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
70     //    SetMinPeak();
71     SetMinNCells();
72     SetMaxNCells();
73     SetTimeCorr();
74     SetMinCharge();
75     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
76 }
77 //______________________________________________________________________
78 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
79     // default constructor
80
81     fSegmentation = 0;
82     fResponse     = 0;
83     fDigits       = 0;
84     fClusters     = 0;
85     fNclusters    = 0;
86     fMap          = 0;
87     fCutAmplitude = 0;
88     fDAnode = 0;
89     fDTime = 0;
90     fMinPeak = 0;
91     fMinNCells = 0;
92     fMaxNCells = 0;
93     fTimeCorr = 0;
94     fMinCharge = 0;
95     /*
96     SetDAnode();
97     SetDTime();
98     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
99     SetMinNCells();
100     SetMaxNCells();
101     SetTimeCorr();
102     SetMinCharge();
103     */
104 }
105 //____________________________________________________________________________
106 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
107     // destructor
108
109     if(fMap) delete fMap;
110 }
111 //______________________________________________________________________
112 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
113     // set the signal threshold for cluster finder
114     Float_t baseline,noise,noise_after_el;
115
116     fResponse->GetNoiseParam(noise,baseline);
117     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
118     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
119 }
120 //______________________________________________________________________
121 void AliITSClusterFinderSDD::Find1DClusters(){
122     // find 1D clusters
123     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
124   
125     // retrieve the parameters 
126     Int_t fNofMaps       = fSegmentation->Npz();
127     Int_t fMaxNofSamples = fSegmentation->Npx();
128     Int_t fNofAnodes     = fNofMaps/2;
129     Int_t dummy          = 0;
130     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
131     Float_t fSddLength   = fSegmentation->Dx();
132     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
133     Float_t anodePitch   = fSegmentation->Dpz(dummy);
134
135     // map the signal
136     fMap->ClearMap();
137     fMap->SetThreshold(fCutAmplitude);
138     fMap->FillMap();
139   
140     Float_t noise;
141     Float_t baseline;
142     fResponse->GetNoiseParam(noise,baseline);
143   
144     Int_t nofFoundClusters = 0;
145     Int_t i;
146     Float_t **dfadc = new Float_t*[fNofAnodes];
147     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
148     Float_t fadc  = 0.;
149     Float_t fadc1 = 0.;
150     Float_t fadc2 = 0.;
151     Int_t j,k,idx,l,m;
152     for(j=0;j<2;j++) {
153         for(k=0;k<fNofAnodes;k++) {
154             idx = j*fNofAnodes+k;
155             // signal (fadc) & derivative (dfadc)
156             dfadc[k][255]=0.;
157             for(l=0; l<fMaxNofSamples; l++) {
158                 fadc2=(Float_t)fMap->GetSignal(idx,l);
159                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
160                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
161             } // samples
162         } // anodes
163
164         for(k=0;k<fNofAnodes;k++) {
165         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
166             idx = j*fNofAnodes+k;
167             Int_t imax  = 0;
168             Int_t imaxd = 0;
169             Int_t it    = 0;
170             while(it <= fMaxNofSamples-3) {
171                 imax  = it;
172                 imaxd = it;
173                 // maximum of signal          
174                 Float_t fadcmax  = 0.;
175                 Float_t dfadcmax = 0.;
176                 Int_t lthrmina   = 1;
177                 Int_t lthrmint   = 3;
178                 Int_t lthra      = 1;
179                 Int_t lthrt      = 0;
180                 for(m=0;m<20;m++) {
181                     Int_t id = it+m;
182                     if(id>=fMaxNofSamples) break;
183                     fadc=(float)fMap->GetSignal(idx,id);
184                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
185                     if(fadc > (float)fCutAmplitude) { 
186                         lthrt++; 
187                     } // end if
188                     if(dfadc[k][id] > dfadcmax) {
189                         dfadcmax = dfadc[k][id];
190                         imaxd    = id;
191                     } // end if
192                 } // end for m
193                 it = imaxd;
194                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
195                 // cluster charge
196                 Int_t tstart = it-2;
197                 if(tstart < 0) tstart = 0;
198                 Bool_t ilcl = 0;
199                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
200                 if(ilcl) {
201                     nofFoundClusters++;
202                     Int_t tstop      = tstart;
203                     Float_t dfadcmin = 10000.;
204                     Int_t ij;
205                     for(ij=0; ij<20; ij++) {
206                         if(tstart+ij > 255) { tstop = 255; break; }
207                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
208                         if((dfadc[k][tstart+ij] < dfadcmin) && 
209                            (fadc > fCutAmplitude)) {
210                             tstop = tstart+ij+5;
211                             if(tstop > 255) tstop = 255;
212                             dfadcmin = dfadc[k][it+ij];
213                         } // end if
214                     } // end for ij
215
216                     Float_t clusterCharge = 0.;
217                     Float_t clusterAnode  = k+0.5;
218                     Float_t clusterTime   = 0.;
219                     Int_t   clusterMult   = 0;
220                     Float_t clusterPeakAmplitude = 0.;
221                     Int_t its,peakpos     = -1;
222                     Float_t n, baseline;
223                     fResponse->GetNoiseParam(n,baseline);
224                     for(its=tstart; its<=tstop; its++) {
225                         fadc=(float)fMap->GetSignal(idx,its);
226                         if(fadc>baseline) fadc -= baseline;
227                         else fadc = 0.;
228                         clusterCharge += fadc;
229                         // as a matter of fact we should take the peak
230                         // pos before FFT
231                         // to get the list of tracks !!!
232                         if(fadc > clusterPeakAmplitude) {
233                             clusterPeakAmplitude = fadc;
234                             //peakpos=fMap->GetHitIndex(idx,its);
235                             Int_t shift = (int)(fTimeCorr/fTimeStep);
236                             if(its>shift && its<(fMaxNofSamples-shift))
237                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
238                             else peakpos = fMap->GetHitIndex(idx,its);
239                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
240                         } // end if
241                         clusterTime += fadc*its;
242                         if(fadc > 0) clusterMult++;
243                         if(its == tstop) {
244                             clusterTime /= (clusterCharge/fTimeStep);   // ns
245                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
246                             //ns
247                         } // end if
248                     } // end for its
249
250                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
251                                                anodePitch;
252                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
253                     clusterDriftPath = fSddLength-clusterDriftPath;
254                     if(clusterCharge <= 0.) break;
255                     AliITSRawClusterSDD clust(j+1,//i
256                                               clusterAnode,clusterTime,//ff
257                                               clusterCharge, //f
258                                               clusterPeakAmplitude, //f
259                                               peakpos, //i
260                                               0.,0.,clusterDriftPath,//fff
261                                               clusteranodePath, //f
262                                               clusterMult, //i
263                                               0,0,0,0,0,0,0);//7*i
264                     iTS->AddCluster(1,&clust);
265                     it = tstop;
266                 } // ilcl
267                 it++;
268             } // while (samples)
269         } // anodes
270     } // detectors (2)
271
272     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
273     delete [] dfadc;
274
275     return;
276 }
277
278
279
280 //______________________________________________________________________
281 void AliITSClusterFinderSDD::Find1DClustersE(){
282     // find 1D clusters
283     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
284     // retrieve the parameters 
285     Int_t fNofMaps = fSegmentation->Npz();
286     Int_t fMaxNofSamples = fSegmentation->Npx();
287     Int_t fNofAnodes = fNofMaps/2;
288     Int_t dummy=0;
289     Float_t fTimeStep = fSegmentation->Dpx( dummy );
290     Float_t fSddLength = fSegmentation->Dx();
291     Float_t fDriftSpeed = fResponse->DriftSpeed();
292     Float_t anodePitch = fSegmentation->Dpz( dummy );
293     Float_t n, baseline;
294     fResponse->GetNoiseParam( n, baseline );
295     // map the signal
296     fMap->ClearMap();
297     fMap->SetThreshold( fCutAmplitude );
298     fMap->FillMap();
299     
300     Int_t nClu = 0;
301     //        cout << "Search  cluster... "<< endl;
302     for( Int_t j=0; j<2; j++ ){
303         for( Int_t k=0; k<fNofAnodes; k++ ){
304             Int_t idx = j*fNofAnodes+k;
305             Bool_t on = kFALSE;
306             Int_t start = 0;
307             Int_t nTsteps = 0;
308             Float_t fmax = 0.;
309             Int_t lmax = 0;
310             Float_t charge = 0.;
311             Float_t time = 0.;
312             Float_t anode = k+0.5;
313             Int_t peakpos = -1;
314             for( Int_t l=0; l<fMaxNofSamples; l++ ){
315                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
316                 if( fadc > 0.0 ){
317                     if( on == kFALSE && l<fMaxNofSamples-4){
318                         // star RawCluster (reset var.)
319                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
320                         if( fadc1 < fadc ) continue;
321                         start = l;
322                         fmax = 0.;
323                         lmax = 0;
324                         time = 0.;
325                         charge = 0.; 
326                         on = kTRUE; 
327                         nTsteps = 0;
328                     } // end if on...
329                     nTsteps++ ;
330                     if( fadc > baseline ) fadc -= baseline;
331                     else fadc=0.;
332                     charge += fadc;
333                     time += fadc*l;
334                     if( fadc > fmax ){ 
335                         fmax = fadc; 
336                         lmax = l; 
337                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
338                         if( l > shift && l < (fMaxNofSamples-shift) )  
339                             peakpos = fMap->GetHitIndex( idx, l+shift );
340                         else
341                             peakpos = fMap->GetHitIndex( idx, l );
342                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
343                     } // end if fadc
344                 }else{ // end fadc>0
345                     if( on == kTRUE ){        
346                         if( nTsteps > 2 ){
347                             //  min # of timesteps for a RawCluster
348                             // Found a RawCluster...
349                             Int_t stop = l-1;
350                             time /= (charge/fTimeStep);   // ns
351                                 // time = lmax*fTimeStep;   // ns
352                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
353                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
354                             Float_t driftPath = time*fDriftSpeed;
355                             driftPath = fSddLength-driftPath;
356                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
357                                                       fmax, peakpos,0.,0.,
358                                                       driftPath,anodePath,
359                                                       nTsteps,start,stop,
360                                                       start, stop, 1, k, k );
361                             iTS->AddCluster( 1, &clust );
362                             //        clust.PrintInfo();
363                             nClu++;
364                         } // end if nTsteps
365                         on = kFALSE;
366                     } // end if on==kTRUE
367                 } // end if fadc>0
368             } // samples
369         } // anodes
370     } // wings
371     //        cout << "# Rawclusters " << nClu << endl;         
372     return; 
373 }
374 //_______________________________________________________________________
375 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
376                                          Int_t *peakX, Int_t *peakZ, 
377                                          Float_t *peakAmp, Float_t minpeak ){
378     // search peaks on a 2D cluster
379     Int_t npeak = 0;    // # peaks
380     Int_t i,j;
381     // search peaks
382     for( Int_t z=1; z<zdim-1; z++ ){
383         for( Int_t x=1; x<xdim-2; x++ ){
384             Float_t sxz = spect[x*zdim+z];
385             Float_t sxz1 = spect[(x+1)*zdim+z];
386             Float_t sxz2 = spect[(x-1)*zdim+z];
387             // search a local max. in s[x,z]
388             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
389             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
390                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
391                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
392                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
393                 // peak found
394                 peakX[npeak] = x;
395                 peakZ[npeak] = z;
396                 peakAmp[npeak] = sxz;
397                 npeak++;
398             } // end if ....
399         } // end for x
400     } // end for z
401     // search groups of peaks with same amplitude.
402     Int_t *flag = new Int_t[npeak];
403     for( i=0; i<npeak; i++ ) flag[i] = 0;
404     for( i=0; i<npeak; i++ ){
405         for( j=0; j<npeak; j++ ){
406             if( i==j) continue;
407             if( flag[j] > 0 ) continue;
408             if( peakAmp[i] == peakAmp[j] && 
409                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
410                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
411                 if( flag[i] == 0) flag[i] = i+1;
412                 flag[j] = flag[i];
413             } // end if ...
414         } // end for j
415     } // end for i
416     // make average of peak groups        
417     for( i=0; i<npeak; i++ ){
418         Int_t nFlag = 1;
419         if( flag[i] <= 0 ) continue;
420         for( j=0; j<npeak; j++ ){
421             if( i==j ) continue;
422             if( flag[j] != flag[i] ) continue;
423             peakX[i] += peakX[j];
424             peakZ[i] += peakZ[j];
425             nFlag++;
426             npeak--;
427             for( Int_t k=j; k<npeak; k++ ){
428                 peakX[k] = peakX[k+1];
429                 peakZ[k] = peakZ[k+1];
430                 peakAmp[k] = peakAmp[k+1];
431                 flag[k] = flag[k+1];
432             } // end for k        
433             j--;
434         } // end for j
435         if( nFlag > 1 ){
436             peakX[i] /= nFlag;
437             peakZ[i] /= nFlag;
438         } // end fi nFlag
439     } // end for i
440     delete [] flag;
441     return( npeak );
442 }
443 //______________________________________________________________________
444 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
445                                        Float_t *spe, Float_t *integral){
446     // function used to fit the clusters
447     // par -> parameters..
448     // par[0]  number of peaks.
449     // for each peak i=1, ..., par[0]
450     //                 par[i] = Ampl.
451     //                 par[i+1] = xpos
452     //                 par[i+2] = zpos
453     //                 par[i+3] = tau
454     //                 par[i+4] = sigma.
455     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
456     const Int_t knParam = 5;
457     Int_t npeak = (Int_t)par[0];
458
459     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
460
461     Int_t k = 1;
462     for( Int_t i=0; i<npeak; i++ ){
463         if( integral != 0 ) integral[i] = 0.;
464         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
465         Float_t T2 = par[k+3];   // PASCAL
466         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
467         for( Int_t z=0; z<zdim; z++ ){
468             for( Int_t x=0; x<xdim; x++ ){
469                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
470                 Float_t x2 = 0.;
471                 Float_t signal = 0.;
472                 if( electronics == 1 ){ // PASCAL
473                     x2 = (x-par[k+1]+T2)/T2;
474                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
475                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
476                 }else if( electronics == 2 ) { // OLA
477                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
478                     signal = par[k]  * exp( -x2 - z2 );
479                 } else {
480                     cout << "Wrong SDD Electronics =" << electronics << endl;
481                     // exit( 1 );
482                 } // end if electronicx
483                 spe[x*zdim+z] += signal;
484                 if( integral != 0 ) integral[i] += signal;
485             } // end for x
486         } // end for z
487         k += knParam;
488     } // end for i
489     return;
490 }
491 //__________________________________________________________________________
492 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
493                                         Float_t *speFit ){
494     // EVALUATES UNNORMALIZED CHI-SQUARED
495     Float_t chi2 = 0.;
496     for( Int_t z=0; z<zdim; z++ ){
497         for( Int_t x=1; x<xdim-1; x++ ){
498             Int_t index = x*zdim+z;
499             Float_t tmp = spe[index] - speFit[index];
500             chi2 += tmp*tmp;
501         } // end for x
502     } // end for z
503     return( chi2 );
504 }
505 //_______________________________________________________________________
506 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
507                                     Float_t *prm0,Float_t *steprm,
508                                     Float_t *chisqr,Float_t *spe,
509                                     Float_t *speFit ){
510     // 
511     Int_t   k, nnn, mmm, i;
512     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
513     const Int_t knParam = 5;
514     Int_t npeak = (Int_t)param[0];
515     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
516     for( k=1; k<(npeak*knParam+1); k++ ){
517         p1 = param[k];
518         delta = steprm[k];
519         d1 = delta;
520         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
521         if( fabs( p1 ) > 1.0E-6 ) 
522             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
523             else  delta = (Float_t)1.0E-4;
524         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
525         PeakFunc( xdim, zdim, param, speFit );
526         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
527         p2 = p1+delta;
528         param[k] = p2;
529         PeakFunc( xdim, zdim, param, speFit );
530         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
531         if( chisq1 < chisq2 ){
532             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
533             delta = -delta;
534             t = p1;
535             p1 = p2;
536             p2 = t;
537             t = chisq1;
538             chisq1 = chisq2;
539             chisq2 = t;
540         } // end if
541         i = 1; nnn = 0;
542         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
543             nnn++;
544             p3 = p2 + delta;
545             mmm = nnn - (nnn/5)*5;  // multiplo de 5
546             if( mmm == 0 ){
547                 d1 = delta;
548                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
549                 delta *= 5;
550             } // end if
551             param[k] = p3;
552             // Constrain paramiters
553             Int_t kpos = (k-1) % knParam;
554             switch( kpos ){
555             case 0 :
556                 if( param[k] <= 20 ) param[k] = fMinPeak;
557                 break;
558             case 1 :
559                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
560                 break;
561             case 2 :
562                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
563                 break;
564             case 3 :
565                 if( param[k] < .5 ) param[k] = .5;        
566                 break;
567             case 4 :
568                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
569                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
570                 break;
571             }; // end switch
572             PeakFunc( xdim, zdim, param, speFit );
573             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
574             if( chisq3 < chisq2 && nnn < 50 ){
575                 p1 = p2;
576                 p2 = p3;
577                 chisq1 = chisq2;
578                 chisq2 = chisq3;
579             }else i=0;
580         } while( i );
581         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
582         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
583         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
584         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
585         else p0 = 10000;
586         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
587         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
588         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
589         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
590         //if( fabs( p2-p0 ) > dp ) p0 = p2;
591         param[k] = p0;
592         // Constrain paramiters
593         Int_t kpos = (k-1) % knParam;
594         switch( kpos ){
595         case 0 :
596             if( param[k] <= 20 ) param[k] = fMinPeak;   
597             break;
598         case 1 :
599             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
600             break;
601         case 2 :
602             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
603             break;
604         case 3 :
605             if( param[k] < .5 ) param[k] = .5;        
606             break;
607         case 4 :
608             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
609             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
610             break;
611         }; // end switch
612         PeakFunc( xdim, zdim, param, speFit );
613         chisqt = ChiSqr( xdim, zdim, spe, speFit );
614         // DO NOT ALLOW ERRONEOUS INTERPOLATION
615         if( chisqt <= *chisqr ) *chisqr = chisqt;
616         else param[k] = prm0[k];
617         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
618         steprm[k] = (param[k]-prm0[k])/5;
619         if( steprm[k] >= d1 ) steprm[k] = d1/5;
620     } // end for k
621     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
622     PeakFunc( xdim, zdim, param, speFit );
623     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
624     return;
625 }
626 //_________________________________________________________________________
627 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
628                                            Float_t *param, Float_t *spe, 
629                                            Int_t *niter, Float_t *chir ){
630     // fit method from Comput. Phys. Commun 46(1987) 149
631     const Float_t kchilmt = 0.01;  //        relative accuracy           
632     const Int_t   knel = 3;        //        for parabolic minimization  
633     const Int_t   knstop = 50;     //        Max. iteration number          
634     const Int_t   knParam = 5;
635     Int_t npeak = (Int_t)param[0];
636     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
637     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
638     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
639     Int_t   n, k, iterNum = 0;
640     Float_t *prm0 = new Float_t[npeak*knParam+1];
641     Float_t *step = new Float_t[npeak*knParam+1];
642     Float_t *schi = new Float_t[npeak*knParam+1]; 
643     Float_t *sprm[3];
644     sprm[0] = new Float_t[npeak*knParam+1];
645     sprm[1] = new Float_t[npeak*knParam+1];
646     sprm[2] = new Float_t[npeak*knParam+1];
647     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
648     Float_t *speFit = new Float_t[ xdim*zdim ];
649     PeakFunc( xdim, zdim, param, speFit );
650     chi0 = ChiSqr( xdim, zdim, spe, speFit );
651     chi1 = chi0;
652     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
653         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
654             step[k] = param[k] / 20.0 ;
655             step[k+1] = param[k+1] / 50.0;
656             step[k+2] = param[k+2] / 50.0;                 
657             step[k+3] = param[k+3] / 20.0;                 
658             step[k+4] = param[k+4] / 20.0;                 
659         } // end for k
660     Int_t out = 0;
661     do{
662         iterNum++;
663             chi0 = chi1;
664             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
665             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
666         // EXIT conditions
667         if( reldif < (float) kchilmt ){
668             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
669             *niter = iterNum;
670             out = 0;
671             break;
672         } // end if
673         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
674             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
675             *niter = iterNum;
676             out = 0;
677             break;
678         } // end if
679         if( iterNum > 5*knstop ){
680             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
681             *niter = iterNum;
682             out = 1;
683             break;
684         } // end if
685         if( iterNum <= knel ) continue;
686         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
687         if( n > 3 || n == 0 ) continue;
688         schi[n-1] = chi1;
689         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
690         if( n != 3 ) continue;
691         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
692         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
693         for( k=1; k<(npeak*knParam+1); k++ ){
694             Float_t tmp0 = sprm[0][k];
695             Float_t tmp1 = sprm[1][k];
696             Float_t tmp2 = sprm[2][k];
697             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
698             a += (schi[2]*(tmp0-tmp1));
699             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
700             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
701                                              (tmp0*tmp0-tmp1*tmp1)));
702             if ((double)a < 1.0E-6) prmin = 0;
703             else prmin = (float) (0.5*b/a);
704             dp = 5*(tmp2-tmp0);
705             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
706             param[k] = prmin;
707             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
708         } // end for k
709     } while( kTRUE );
710     delete [] prm0;
711     delete [] step;
712     delete [] schi; 
713     delete [] sprm[0];
714     delete [] sprm[1];
715     delete [] sprm[2];
716     delete [] speFit;
717     return( out );
718 }
719
720 //______________________________________________________________________
721 void AliITSClusterFinderSDD::ResolveClustersE(){
722     // The function to resolve clusters if the clusters overlapping exists
723     Int_t i;
724     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
725     // get number of clusters for this module
726     Int_t nofClusters = fClusters->GetEntriesFast();
727     nofClusters -= fNclusters;
728     Int_t fNofMaps = fSegmentation->Npz();
729     Int_t fNofAnodes = fNofMaps/2;
730     Int_t fMaxNofSamples = fSegmentation->Npx();
731     Int_t dummy=0;
732     Double_t fTimeStep = fSegmentation->Dpx( dummy );
733     Double_t fSddLength = fSegmentation->Dx();
734     Double_t fDriftSpeed = fResponse->DriftSpeed();
735     Double_t anodePitch = fSegmentation->Dpz( dummy );
736     Float_t n, baseline;
737     fResponse->GetNoiseParam( n, baseline );
738     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
739
740     for( Int_t j=0; j<nofClusters; j++ ){ 
741         // get cluster information
742         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
743         Int_t astart = clusterJ->Astart();
744         Int_t astop = clusterJ->Astop();
745         Int_t tstart = clusterJ->Tstartf();
746         Int_t tstop = clusterJ->Tstopf();
747         Int_t wing = (Int_t)clusterJ->W();
748         if( wing == 2 ){
749             astart += fNofAnodes; 
750             astop  += fNofAnodes;
751         } // end if 
752         Int_t xdim = tstop-tstart+3;
753         Int_t zdim = astop-astart+3;
754         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
755         Float_t *sp = new Float_t[ xdim*zdim+1 ];
756         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
757         
758         // make a local map from cluster region
759         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
760             for( Int_t itime=tstart; itime<=tstop; itime++ ){
761                 Float_t fadc = fMap->GetSignal( ianode, itime );
762                 if( fadc > baseline ) fadc -= (Double_t)baseline;
763                 else fadc = 0.;
764                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
765                 sp[index] = fadc;
766             } // time loop
767         } // anode loop
768         
769         // search peaks on cluster
770         const Int_t kNp = 150;
771         Int_t peakX1[kNp];
772         Int_t peakZ1[kNp];
773         Float_t peakAmp1[kNp];
774         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
775
776         // if multiple peaks, split cluster
777         if( npeak >= 1 )
778         {
779             //        cout << "npeak " << npeak << endl;
780             //        clusterJ->PrintInfo();
781             Float_t *par = new Float_t[npeak*5+1];
782             par[0] = (Float_t)npeak;                
783             // Initial parameters in cell dimentions
784             Int_t k1 = 1;
785             for( i=0; i<npeak; i++ ){
786                 par[k1] = peakAmp1[i];
787                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
788                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
789                 if( electronics == 1 ) 
790                     par[k1+3] = 2.; // PASCAL
791                 else if( electronics == 2 ) 
792                     par[k1+3] = 0.7; // tau [timebin]  OLA 
793                 par[k1+4] = .4;    // sigma        [anodepich]
794                 k1+=5;
795             } // end for i                        
796             Int_t niter;
797             Float_t chir;                        
798             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
799             Float_t peakX[kNp];
800             Float_t peakZ[kNp];
801             Float_t sigma[kNp];
802             Float_t tau[kNp];
803             Float_t peakAmp[kNp];
804             Float_t integral[kNp];
805             //get integrals => charge for each peak
806             PeakFunc( xdim, zdim, par, sp, integral );
807             k1 = 1;
808             for( i=0; i<npeak; i++ ){
809                 peakAmp[i] = par[k1];
810                 peakX[i] = par[k1+1];
811                 peakZ[i] = par[k1+2];
812                 tau[i] = par[k1+3];
813                 sigma[i] = par[k1+4];
814                 k1+=5;
815             } // end for i
816             // calculate parameter for new clusters
817             for( i=0; i<npeak; i++ ){
818                 AliITSRawClusterSDD clusterI( *clusterJ );
819                 Int_t newAnode = peakZ1[i]-1 + astart;
820                 Int_t newiTime = peakX1[i]-1 + tstart;
821                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
822                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
823                     shift = 0;
824                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
825                 clusterI.SetPeakPos( peakpos );
826                 clusterI.SetPeakAmpl( peakAmp1[i] );
827                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
828                 Float_t newiTimef = peakX[i] - 1 + tstart;
829                 if( wing == 2 ) newAnodef -= fNofAnodes; 
830                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
831                 newiTimef *= fTimeStep;
832                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
833                 if( electronics == 1 ){
834                 //    newiTimef *= 0.999438;    // PASCAL
835                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
836                 }else if( electronics == 2 )
837                     newiTimef *= 0.99714;    // OLA
838                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
839                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
840                 clusterI.SetX( driftPath*sign * 0.0001 );        
841                 clusterI.SetZ( anodePath * 0.0001 );
842                 clusterI.SetAnode( newAnodef );
843                 clusterI.SetTime( newiTimef );
844                 clusterI.SetAsigma( sigma[i]*anodePitch );
845                 clusterI.SetTsigma( tau[i]*fTimeStep );
846                 clusterI.SetQ( integral[i] );
847                 //    clusterI.PrintInfo();
848                 iTS->AddCluster( 1, &clusterI );
849             } // end for i
850             fClusters->RemoveAt( j );
851             delete [] par;
852         } else {  // something odd
853             cout << " --- Peak not found!!!!  minpeak=" << fMinPeak<< 
854                     " cluster peak=" << clusterJ->PeakAmpl() << 
855                     " module=" << fModule << endl; 
856             clusterJ->PrintInfo(); 
857             cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
858         }
859         delete [] sp;
860     } // cluster loop
861     fClusters->Compress();
862 //    fMap->ClearMap(); 
863 }
864
865
866 //________________________________________________________________________
867 void  AliITSClusterFinderSDD::GroupClusters(){
868     // group clusters
869     Int_t dummy=0;
870     Float_t fTimeStep = fSegmentation->Dpx(dummy);
871     // get number of clusters for this module
872     Int_t nofClusters = fClusters->GetEntriesFast();
873     nofClusters -= fNclusters;
874     AliITSRawClusterSDD *clusterI;
875     AliITSRawClusterSDD *clusterJ;
876     Int_t *label = new Int_t [nofClusters];
877     Int_t i,j;
878     for(i=0; i<nofClusters; i++) label[i] = 0;
879     for(i=0; i<nofClusters; i++) { 
880         if(label[i] != 0) continue;
881         for(j=i+1; j<nofClusters; j++) { 
882             if(label[j] != 0) continue;
883             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
884             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
885             // 1.3 good
886             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
887             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
888             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
889             if(!pair) continue;
890             //      clusterI->PrintInfo();
891             //      clusterJ->PrintInfo();
892             clusterI->Add(clusterJ);
893             label[j] = 1;
894             fClusters->RemoveAt(j);
895             j=i; // <- Ernesto
896         } // J clusters  
897         label[i] = 1;
898     } // I clusters
899     fClusters->Compress();
900
901     delete [] label;
902     return;
903 }
904 //________________________________________________________________________
905 void AliITSClusterFinderSDD::SelectClusters(){
906     // get number of clusters for this module
907     Int_t nofClusters = fClusters->GetEntriesFast();
908
909     nofClusters -= fNclusters;
910     Int_t i;
911     for(i=0; i<nofClusters; i++) { 
912         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
913         Int_t rmflg = 0;
914         Float_t wy = 0.;
915         if(clusterI->Anodes() != 0.) {
916             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
917         } // end if
918         Int_t amp = (Int_t) clusterI->PeakAmpl();
919         Int_t cha = (Int_t) clusterI->Q();
920         if(amp < fMinPeak) rmflg = 1;  
921         if(cha < fMinCharge) rmflg = 1;
922         if(wy < fMinNCells) rmflg = 1;
923         //if(wy > fMaxNCells) rmflg = 1;
924         if(rmflg) fClusters->RemoveAt(i);
925     } // I clusters
926     fClusters->Compress();
927     return;
928 }
929 //__________________________________________________________________________
930 void AliITSClusterFinderSDD::ResolveClusters(){
931     // The function to resolve clusters if the clusters overlapping exists
932 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
933     // get number of clusters for this module
934     Int_t nofClusters = fClusters->GetEntriesFast();
935     nofClusters -= fNclusters;
936     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
937     // <<fNclusters<<endl;
938     Int_t fNofMaps = fSegmentation->Npz();
939     Int_t fNofAnodes = fNofMaps/2;
940     Int_t dummy=0;
941     Double_t fTimeStep = fSegmentation->Dpx(dummy);
942     Double_t fSddLength = fSegmentation->Dx();
943     Double_t fDriftSpeed = fResponse->DriftSpeed();
944     Double_t anodePitch = fSegmentation->Dpz(dummy);
945     Float_t n, baseline;
946     fResponse->GetNoiseParam(n,baseline);
947     Float_t dzz_1A = anodePitch * anodePitch / 12;
948     // fill Map of signals
949     fMap->FillMap(); 
950     Int_t j,i,ii,ianode,anode,itime;
951     Int_t wing,astart,astop,tstart,tstop,nanode;
952     Double_t fadc,ClusterTime;
953     Double_t q[400],x[400],z[400]; // digit charges and coordinates
954     for(j=0; j<nofClusters; j++) { 
955         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
956         Int_t ndigits = 0;
957         astart=clusterJ->Astart();
958         astop=clusterJ->Astop();
959         tstart=clusterJ->Tstartf();
960         tstop=clusterJ->Tstopf();
961         nanode=clusterJ->Anodes();  // <- Ernesto
962         wing=(Int_t)clusterJ->W();
963         if(wing == 2) {
964             astart += fNofAnodes; 
965             astop  += fNofAnodes;
966         }  // end if
967         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
968         //      <<tstart<<","<<tstop<<endl;
969         // clear the digit arrays
970         for(ii=0; ii<400; ii++) { 
971             q[ii] = 0.; 
972             x[ii] = 0.;
973             z[ii] = 0.;
974         } // end for ii
975
976         for(ianode=astart; ianode<=astop; ianode++) { 
977             for(itime=tstart; itime<=tstop; itime++) { 
978                 fadc=fMap->GetSignal(ianode,itime);
979                 if(fadc>baseline) {
980                     fadc-=(Double_t)baseline;
981                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
982                     anode = ianode;
983                     if(wing == 2) anode -= fNofAnodes;
984                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
985                     ClusterTime = itime*fTimeStep;
986                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
987                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
988                     if(wing == 1) x[ndigits] *= (-1);
989                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
990                     //     <<fadc<<endl;
991                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
992                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
993                     ndigits++;
994                     continue;
995                 } //  end if
996                 fadc=0;
997                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
998             } // time loop
999         } // anode loop
1000         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
1001         // Fit cluster to resolve for two separate ones --------------------
1002         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1003         Double_t dxx=0., dzz=0., dxz=0.;
1004         Double_t scl = 0., tmp, tga, elps = -1.;
1005         Double_t xfit[2], zfit[2], qfit[2];
1006         Double_t pitchz = anodePitch*1.e-4;             // cm
1007         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
1008         Double_t sigma2;
1009         Int_t nfhits;
1010         Int_t nbins = ndigits;
1011         Int_t separate = 0;
1012         // now, all lengths are in microns
1013         for (ii=0; ii<nbins; ii++) {
1014             qq += q[ii];
1015             xm += x[ii]*q[ii];
1016             zm += z[ii]*q[ii];
1017             xx += x[ii]*x[ii]*q[ii];
1018             zz += z[ii]*z[ii]*q[ii];
1019             xz += x[ii]*z[ii]*q[ii];
1020         } // end for ii
1021         xm /= qq;
1022         zm /= qq;
1023         xx /= qq;
1024         zz /= qq;
1025         xz /= qq;
1026         dxx = xx - xm*xm;
1027         dzz = zz - zm*zm;
1028         dxz = xz - xm*zm;
1029
1030         // shrink the cluster in the time direction proportionaly to the 
1031         // dxx/dzz, which lineary depends from the drift path
1032         // new  Ernesto........         
1033         if( nanode == 1 ){
1034             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1035             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1036         } // end if
1037         if( nanode == 2 ){
1038             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1039         } // end if
1040         if( nanode == 3 ){
1041             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1042         } // end if
1043         if( nanode > 3 ){
1044             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1045         } // end if
1046         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1047         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1048         //  old Boris.........
1049         //  tmp=29730. - 585.*fabs(xm/1000.); 
1050         //  scl=TMath::Sqrt(tmp/130000.);
1051    
1052         xm *= scl;
1053         xx *= scl*scl;
1054         xz *= scl;
1055
1056         dxx = xx - xm*xm;
1057         //   dzz = zz - zm*zm;
1058         dxz = xz - xm*zm;
1059         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1060         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1061         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1062   
1063         if (dxx < 0.) dxx=0.;
1064         // the data if no cluster overlapping (the coordunates are in cm) 
1065         nfhits = 1;
1066         xfit[0] = xm*1.e-4;
1067         zfit[0] = zm*1.e-4;
1068         qfit[0] = qq;
1069         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1070   
1071         if (nbins >= 7) {
1072             if (dxz==0.) tga=0.;
1073             else {
1074                 tmp=0.5*(dzz-dxx)/dxz;
1075                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1076                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1077             } // end if dxz
1078             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1079             // change from microns to cm
1080             xm *= 1.e-4; 
1081             zm *= 1.e-4; 
1082             zz *= 1.e-8;
1083             xx *= 1.e-8;
1084             xz *= 1.e-8;
1085             dxz *= 1.e-8;
1086             dxx *= 1.e-8;
1087             dzz *= 1.e-8;
1088             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1089             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1090             for (i=0; i<nbins; i++) {     
1091                 x[i] = x[i] *= scl;
1092                 x[i] = x[i] *= 1.e-4;
1093                 z[i] = z[i] *= 1.e-4;
1094             } // end for i
1095             //     cout<<"!!! elps ="<<elps<<endl;
1096             if (elps < 0.3) { // try to separate hits 
1097                 separate = 1;
1098                 tmp=atan(tga);
1099                 Double_t cosa=cos(tmp),sina=sin(tmp);
1100                 Double_t a1=0., x1=0., xxx=0.;
1101                 for (i=0; i<nbins; i++) {
1102                     tmp=x[i]*cosa + z[i]*sina;
1103                     if (q[i] > a1) {
1104                         a1=q[i];
1105                         x1=tmp;
1106                     } // end if
1107                     xxx += tmp*tmp*tmp*q[i];
1108                 } // end for i
1109                 xxx /= qq;
1110                 Double_t z12=-sina*xm + cosa*zm;
1111                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1112                 xm=cosa*xm + sina*zm;
1113                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1114                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1115                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1116                 for (i=0; i<33; i++) { // solve a system of equations
1117                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1118                     Double_t c11=x1-x2;
1119                     Double_t c12=r;
1120                     Double_t c13=1-r;
1121                     Double_t c21=x1*x1 - x2*x2;
1122                     Double_t c22=2*r*x1;
1123                     Double_t c23=2*(1-r)*x2;
1124                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1125                     Double_t c32=3*r*(sigma2 + x1*x1);
1126                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1127                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1128                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1129                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1130                                                          (3*sigma2+x2*x2)-xxx);
1131                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1132                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1133                     if (d==0.) {
1134                         cout<<"*********** d=0 ***********\n";
1135                         break;
1136                     } // end if
1137                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1138                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1139                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1140                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1141                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1142                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1143                     r  += dr/d;
1144                     x1 += d1/d;
1145                     x2 += d2/d;
1146                     if (fabs(x1-x1_old) > 0.0001) continue;
1147                     if (fabs(x2-x2_old) > 0.0001) continue;
1148                     if (fabs(r-r_old)/5 > 0.001) continue;
1149                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1150                     Double_t a2=a1*(1-r)/r;
1151                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1152                                                                 z12*cosa;
1153                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1154                                                                 z12*cosa;
1155                     nfhits=2;
1156                     break; // Ok !
1157                 } // end for i
1158                 if (i==33) cerr<<"No more iterations ! "<<endl;
1159             } // end of attempt to separate overlapped clusters
1160         } // end of nbins cut 
1161         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1162         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1163                                                      <<elps<<","<<nfhits<<endl;
1164         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1165         for (i=0; i<nfhits; i++) {
1166             xfit[i] *= (1.e+4/scl);
1167             if(wing == 1) xfit[i] *= (-1);
1168             zfit[i] *= 1.e+4;
1169             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1170             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1171         } // end for i
1172         Int_t ncl = nfhits;
1173         if(nfhits == 1 && separate == 1) {
1174             cout<<"!!!!! no separate"<<endl;
1175             ncl = -2;
1176         }  // end if
1177         if(nfhits == 2) {
1178             cout << "Split cluster: " << endl;
1179             clusterJ->PrintInfo();
1180             cout << " in: " << endl;
1181             for (i=0; i<nfhits; i++) {
1182                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1183                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1184                                                (Float_t)xfit[i],
1185                                                (Float_t)zfit[i],0,0,0,0,
1186                                                 tstart,tstop,astart,astop);
1187             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1188             //                                 -1,(Float_t)qfit[i],0,0,0,
1189             //                                  (Float_t)xfit[i],
1190             //                                  (Float_t)zfit[i],0,0,0,0,
1191             //                                  tstart,tstop,astart,astop,ncl);
1192             // ???????????
1193             // if(wing == 1) xfit[i] *= (-1);
1194             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1195             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1196             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1197             Float_t peakpos = clusterJ->PeakPos();
1198             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1199             Float_t clusterDriftPath = Time*fDriftSpeed;
1200             clusterDriftPath = fSddLength-clusterDriftPath;
1201             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1202                                                                  Time,qfit[i],
1203                                                clusterPeakAmplitude,peakpos,
1204                                                0.,0.,clusterDriftPath,
1205                                          clusteranodePath,clusterJ->Samples()/2
1206                                     ,tstart,tstop,0,0,0,astart,astop);
1207             clust->PrintInfo();
1208             iTS->AddCluster(1,clust);
1209             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1210             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1211             // <<","<<ncl<<endl;
1212             delete clust;
1213         }// nfhits loop
1214         fClusters->RemoveAt(j);
1215     } // if nfhits = 2
1216 } // cluster loop
1217 fClusters->Compress();
1218 fMap->ClearMap(); 
1219 */
1220     return;
1221 }
1222 //______________________________________________________________________
1223 void AliITSClusterFinderSDD::GetRecPoints(){
1224     // get rec points
1225     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1226     // get number of clusters for this module
1227     Int_t nofClusters = fClusters->GetEntriesFast();
1228     nofClusters -= fNclusters;
1229     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1230     const Float_t kconv = 1.0e-4; 
1231     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1232     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1233     Int_t i,j;
1234     Int_t ix, iz, idx=-1;
1235     AliITSdigitSDD *dig=0;
1236     Int_t ndigits=fDigits->GetEntriesFast();
1237     for(i=0; i<nofClusters; i++) { 
1238         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1239         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1240         if(clusterI) idx=clusterI->PeakPos();
1241         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1242         // try peak neighbours - to be done 
1243         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1244         if(!dig) {
1245             // try cog
1246             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1247             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1248             // if null try neighbours
1249             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1250             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1251             if (!dig) printf("SDD: cannot assign the track number!\n");
1252         } //  end if !dig
1253         AliITSRecPoint rnew;
1254         rnew.SetX(clusterI->X());
1255         rnew.SetZ(clusterI->Z());
1256         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1257         rnew.SetdEdX(kconvGeV*clusterI->Q());
1258         rnew.SetSigmaX2(kRMSx*kRMSx);
1259         rnew.SetSigmaZ2(kRMSz*kRMSz);
1260         if(dig){
1261             rnew.fTracks[0] = dig->fTracks[0];
1262             rnew.fTracks[1] = -3;
1263             rnew.fTracks[2] = -3;
1264             j=1;
1265             while(rnew.fTracks[0]==dig->fTracks[j] &&
1266                   j<dig->GetNTracks()) j++;
1267             if(j<dig->GetNTracks()){
1268                 rnew.fTracks[1] = dig->fTracks[j];
1269                 while(rnew.fTracks[1]==dig->fTracks[j] && 
1270                       j<dig->GetNTracks()) j++;
1271                 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1272             } // end if
1273         } // end if
1274         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1275         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1276         //         lusterI->X(),clusterI->Z());
1277         iTS->AddRecPoint(rnew);
1278     } // I clusters
1279 //    fMap->ClearMap();
1280 }
1281 //______________________________________________________________________
1282 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1283     // find raw clusters
1284     
1285     fModule = mod;
1286     
1287     Find1DClustersE();
1288     GroupClusters();
1289     SelectClusters();
1290     ResolveClustersE();
1291     GetRecPoints();
1292 }
1293 //_______________________________________________________________________
1294 void AliITSClusterFinderSDD::Print(){
1295     // Print SDD cluster finder Parameters
1296
1297     cout << "**************************************************" << endl;
1298     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1299     cout << "**************************************************" << endl;
1300     cout << "Number of Clusters: " << fNclusters << endl;
1301     cout << "Anode Tolerance: " << fDAnode << endl;
1302     cout << "Time  Tolerance: " << fDTime << endl;
1303     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1304     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1305     cout << "Minimum Amplitude: " << fMinPeak << endl;
1306     cout << "Minimum Charge: " << fMinCharge << endl;
1307     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1308     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1309     cout << "**************************************************" << endl;
1310 }