]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/SSDrecpointTest.C
to be substituted by the new version
[u/mrichter/AliRoot.git] / ITS / SSDrecpointTest.C
1 void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=0)
2   //void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=999)
3 {
4 /////////////////////////////////////////////////////////////////////////
5 //   This macro is a small example of a ROOT macro
6 //   illustrating how to read the output of GALICE
7 //   and fill some histograms.
8 //   
9 //     Root > .L anal.C   //this loads the macro in memory
10 //     Root > anal();     //by default process first event   
11 //     Root > anal(2);    //process third event
12 //Begin_Html
13 /*
14 <img src="gif/anal.gif">
15 */
16 //End_Html
17 /////////////////////////////////////////////////////////////////////////
18     
19 // Dynamically link some shared libs
20
21    if (gClassTable->GetID("AliRun") < 0) {
22       gROOT->LoadMacro("loadlibs.C");
23       loadlibs();
24    } else {
25       delete gAlice;
26       gAlice=0;
27    }
28
29 // Connect the Root Galice file containing Geometry, Kine and Hits
30    TString *str = new TString("galice.root");
31    TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject(str->Data());
32    if (!file) file = new TFile(str->Data(),"UPDATE");
33
34 // Get AliRun object from file or create it if not on file
35    //   if (!gAlice) {
36      gAlice = (AliRun*)file->Get("gAlice");
37      if (gAlice) printf("AliRun object found on file\n");
38      if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
39      //}
40
41
42      // -------------- Create ntuples --------------------
43
44      //  ntuple structures:
45
46
47           struct {
48             Int_t lay;
49             Int_t nxP;
50             Int_t nxN;
51             Int_t hitprim;
52             Int_t partcode;
53             Int_t ntrover;
54             Float_t x;
55             Float_t z;
56             Float_t dx;
57             Float_t dz;
58             Float_t pmod;
59           } ntuple_st;
60
61           struct {
62             Int_t lay;
63             Int_t lad;
64             Int_t det;
65             Int_t nxP;
66             Int_t nxN;
67             Int_t noverlaps;
68             Int_t noverprim;
69             Int_t ntrover;
70             Float_t qclP;
71             Float_t qclN;
72             Float_t qrec;
73             Float_t dx;
74             Float_t dz;
75           } ntuple1_st;
76
77           struct {
78             Int_t nxP;
79             Int_t nxN;
80             Float_t x;
81             Float_t z;
82           } ntuple2_st;
83
84           ntuple = new TTree("ntuple","Demo ntuple");
85           ntuple->Branch("lay",&ntuple_st.lay,"lay/I");
86           ntuple->Branch("nxP",&ntuple_st.nxP,"nxP/I");
87           ntuple->Branch("nxN",&ntuple_st.nxN,"nxN/I");
88           ntuple->Branch("hitprim",&ntuple_st.hitprim,"hitprim/I");
89           ntuple->Branch("partcode",&ntuple_st.partcode,"partcode/I");
90           ntuple->Branch("ntrover",&ntuple_st.ntrover,"ntrover/I");
91           ntuple->Branch("x",&ntuple_st.x,"x/F");
92           ntuple->Branch("z",&ntuple_st.z,"z/F");
93           ntuple->Branch("dx",&ntuple_st.dx,"dx/F");
94           ntuple->Branch("dz",&ntuple_st.dz,"dz/F");
95           ntuple->Branch("pmod",&ntuple_st.pmod,"pmod/F");
96
97           ntuple1 = new TTree("ntuple1","Demo ntuple1");
98           ntuple1->Branch("lay",&ntuple1_st.lay,"lay/I");
99           ntuple1->Branch("lad",&ntuple1_st.lad,"lad/I");
100           ntuple1->Branch("det",&ntuple1_st.det,"det/I");
101           ntuple1->Branch("nxP",&ntuple1_st.nxP,"nxP/I");
102           ntuple1->Branch("nxN",&ntuple1_st.nxN,"nxN/I");
103           ntuple1->Branch("qclP",&ntuple1_st.qclP,"qclP/F");
104           ntuple1->Branch("qclN",&ntuple1_st.qclN,"qclN/F");
105           ntuple1->Branch("qrec",&ntuple1_st.qrec,"qrec/F");
106           ntuple1->Branch("dx",&ntuple1_st.dx,"dx/F");
107           ntuple1->Branch("dz",&ntuple1_st.dz,"dz/F");
108           ntuple1->Branch("noverlaps",&ntuple1_st.noverlaps,"noverlaps/I");
109           ntuple1->Branch("noverprim",&ntuple1_st.noverprim,"noverprim/I");
110           ntuple1->Branch("ntrover",&ntuple1_st.ntrover,"ntrover/I");
111
112           ntuple2 = new TTree("ntuple2","Demo ntuple2");
113           ntuple2->Branch("nxP",&ntuple2_st.nxP,"nxP/I");
114           ntuple2->Branch("nxN",&ntuple2_st.nxN,"nxN/I");
115           ntuple2->Branch("x",&ntuple2_st.x,"x/F");
116           ntuple2->Branch("z",&ntuple2_st.z,"z/F");
117
118
119           // Create Histogramms
120
121           TH1F *NxP5 = new TH1F("NxP5","P cluster size for layer 5",20,0.,20.);
122           TH1F *NxN5 = new TH1F("NxN5","N cluster size for layer 5",20,0.,20.);
123           TH1F *NxP6 = new TH1F("NxP6","P cluster size for layer 6",20,0.,20.);
124           TH1F *NxN6 = new TH1F("NxN6","N cluster size for layer 6",20,0.,20.);
125
126           TH1F *Xres5 = new TH1F("Xres5","Xrec and Xgen difference (micr) for layers 5",100,-200.,200.);
127           TH1F *Xres6 = new TH1F("Xres6","Xrec and Xgen difference (micr) for layers 6",100,-200.,200.);
128           TH1F *Zres5 = new TH1F("Zres5","Zrec and Zgen difference (micr) for layers 5",100,-8000.,8000.);
129           TH1F *Zres6 = new TH1F("Zres6","Zrec and Zgen difference (micr) for layers 6",100,-8000.,8000.);
130           TH1F *Path5 = new TH1F("Path5","Path length in Si",100,0.,600.);
131           TH1F *Path6 = new TH1F("Path6","Path length in Si",100,0.,600.);
132           TH1F *dEdX = new TH1F("dEdX","dEdX  (KeV)",100,0.,500.);
133           TH2F *adcPadcN5all = new TH2F("adcPadcN5all","adcP/N correlation for lay5",100,0.,200.,100,0.,200.);
134           TH2F *adcPadcN6all = new TH2F("adcPadcN6all","adcP/N correlation for lay6",100,0.,200.,100,0.,200.);
135           TH2F *adcPadcN5cut = new TH2F("adcPadcN5cut","adcP/N correlation for lay5 and cut of P-N signas",100,0.,200.,100,0.,200.);
136           TH2F *adcPadcN6cut = new TH2F("adcPadcN6cut","adcP/N correlation for lay6 and cut of P-N signals",100,0.,200.,100,0.,200.);
137
138
139    AliITS *ITS  = (AliITS*) gAlice->GetModule("ITS");
140    if (!ITS) { cout << "no ITS" << endl; return; }
141    
142    //AliITSgeom *aliitsgeo = ITS->GetITSgeom();
143    AliITSgeom *geom = ITS->GetITSgeom();
144
145
146    //Int_t cp[8]={0,0,0,0,0,0,0,0};
147
148    //cout << "SSD" << endl;
149
150    AliITSDetType *iDetType=ITS->DetType(2);
151    AliITSsegmentationSSD *seg2=(AliITSsegmentationSSD*)iDetType->GetSegmentationModel();
152    AliITSresponseSSD *res2 = (AliITSresponseSSD*)iDetType->GetResponseModel();
153    //res2->SetSigmaSpread(3.,2.);
154    AliITSsimulationSSD *sim2=new AliITSsimulationSSD(seg2,res2);
155    ITS->SetSimulationModel(2,sim2);
156
157    TClonesArray *dig2  = ITS->DigitsAddress(2);
158    TClonesArray *recp2  = ITS->ClustersAddress(2);
159    AliITSClusterFinderSSD *rec2=new AliITSClusterFinderSSD(seg2,dig2);
160    ITS->SetReconstructionModel(2,rec2);
161
162    // test
163    printf("SSD dimensions %f %f %f \n",seg2->Dx(),seg2->Dz(),seg2->Dy());
164    printf("SSD nstrips %d %d \n",seg2->Npz(),seg2->Npx());
165    Float_t ylim = seg2->Dy()/2 - 12;
166    
167 //
168 //   Loop over events
169 //
170
171
172    Int_t Nh=0;
173    Int_t Nh1=0;
174    for (int nev=0; nev<= evNumber2; nev++) {
175      Int_t nparticles = 0;
176      nparticles = gAlice->GetEvent(nev);
177      cout << "nev         " << nev <<endl;
178      cout << "nparticles  " << nparticles <<endl;
179      if (nev < evNumber1) continue;
180      if (nparticles <= 0) return;
181      
182      AliITShit *itsHit;
183      AliITSRecPoint *itsPnt = 0;
184      AliITSRawClusterSSD *itsClu = 0;
185      
186      // Get Hit, Cluster & Recpoints Tree Pointers
187
188      TTree *TH = gAlice->TreeH();
189      Int_t nenthit=TH->GetEntries();
190      printf("Found %d entries in the Hit tree (must be one per track per event!)\n",nenthit);
191
192      ITS->GetTreeC(nev);
193      TTree *TC=ITS->TreeC();
194      Int_t nentclu=TC->GetEntries();
195      printf("Found %d entries in the Cluster tree (must be one per module per event!)\n",nentclu);
196
197      TTree *TR = gAlice->TreeR();
198      Int_t nentrec=TR->GetEntries();
199      printf("Found %d entries in the RecPoints tree\n",nentrec);
200
201      // Get Pointers to Clusters & Recpoints TClonesArrays
202
203      TClonesArray *ITSclu  = ITS->ClustersAddress(2); 
204      printf ("ITSclu %p \n",ITSclu);
205      TClonesArray *ITSrec  = ITS->RecPoints(); 
206      printf ("ITSrec %p \n",ITSrec);
207
208      // check recpoints
209
210      //Int_t nbytes = 0;
211      Int_t totpoints = 0;
212      Int_t totclust = 0;
213
214      // check hits
215      
216      Int_t nmodules=0;
217      Int_t mod;
218      
219      ITS->InitModules(-1,nmodules); 
220      ITS->FillModules(nev,0,nmodules,"","");
221      
222      TObjArray *fITSmodules = ITS->GetModules();
223      
224      Int_t first0 = geom->GetStartDet(0);  // SPD
225      Int_t last0 = geom->GetLastDet(0);    // SPD
226      Int_t first1 = geom->GetStartDet(1);  // SDD
227      Int_t last1 = geom->GetLastDet(1);    // SDD
228      Int_t first2 = geom->GetStartDet(2);  // SSD
229      Int_t last2 = geom->GetLastDet(2);    // SSD
230
231      //  For the SPD: first0 = 0, last0 = 239     (240 modules);  
232      //  for the SDD: first1 = 240, last1 = 499   (260 modules);  
233      //  for the SSD: first2 = 500, last2 = 2269  (1770 modules).  
234
235      printf("det type %d first0, last0 %d %d \n",0,first0,last0);
236      printf("det type %d first1, last1 %d %d \n",1,first1,last1);
237      printf("det type %d first2, last2 %d %d \n",2,first2,last2);
238
239      // module loop for the SSD
240      for (mod=first2; mod<last2+1; mod++) {  // for the "ALL" option
241        //for (mod=0; mod<last2-first2+1; mod++) { //for the "SSD" option
242
243        TTree *TR = gAlice->TreeR();
244        Int_t nentrec=TR->GetEntries();
245        //printf("Found %d entries in the RecPoints tree\n",nentrec);
246       
247               //cout << "CLUSTERS: reset" << endl;
248        ITS->ResetClusters();
249        //cout << "CLUSTERS: get" << endl;
250        TC->GetEvent(mod);
251        //cout << "RECPOINTS: reset" << endl;
252        ITS->ResetRecPoints();
253        //cout << "RECPOINTS: get" << endl;
254        //TR->GetEvent(mod+1);   // for the V3.04 AliRoot
255        TR->GetEvent(mod);       // for the V3.05 AliRoot
256
257        Int_t nrecp = ITSrec->GetEntries();
258        totpoints += nrecp;
259        //if (nrecp) printf("Found %d rec points for module %d\n",nrecp,mod);
260        if (!nrecp) continue;
261        Int_t nclusters = ITSclu->GetEntries();
262        totclust += nclusters;
263        //if (nclusters) printf("Found %d clusters for module %d\n",nrecc,mod);
264        
265        //AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod+first2);
266        // for the "SSD" option
267
268        AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod);
269        // for the "ALL" option
270
271        //       printf("Mod: %X\n",Mod);
272        Int_t nhits = Mod->GetNhits();
273        Float_t epart = 0;
274        cout <<" module,nrecp,nclusters,nhits ="<<mod<<","<<nrecp<<","<<nclusters<<","<<nhits<< endl;
275
276        // ---------------- cluster/hit analysis ---------------------
277
278
279      Float_t pathInSSD = 300.;
280
281        // ---- Recpoint loop
282        for (Int_t pnt=0;pnt<nrecp;pnt++) {
283          itsPnt  = (AliITSRecPoint*)ITSrec->At(pnt);
284          if(!itsPnt) continue;
285          itsClu  = (AliITSRawClusterSSD*)ITSclu->At(pnt);
286          if(!itsClu) continue;
287
288          Int_t nxP = itsClu->fMultiplicity;
289          Int_t nxN = itsClu->fMultiplicityN;
290          Int_t ntrover = itsClu->fNtracks;
291          Float_t qclP = itsClu->fSignalP;     // in ADC
292          Float_t qclN = itsClu->fSignalN;     // in ADC
293          //Float_t dq = qclP - qclN;
294          Float_t qcut = itsClu->fQErr;        // abs(dq)/signal,
295                                               // where signal is
296                                               // max of qclP,qclN        
297          Float_t xrec = 10000*itsPnt->GetX();
298          Float_t zrec = 10000*itsPnt->GetZ();
299          Float_t qrec = itsPnt->GetQ();      // in ADC, maximum from fSignalP/N
300          //Float_t dedx = itsPnt->GetdEdX();   // in KeV (ADC * 2.16)
301          Float_t dedx = itsPnt->fdEdX;   // in KeV (ADC * 2.16)
302          Int_t ii = 0;
303          Int_t tr1 = itsPnt->GetLabel(ii);
304          Int_t ii = 1;
305          Int_t tr2 = itsPnt->GetLabel(ii);
306          Int_t ii = 2;
307          Int_t tr3 = itsPnt->GetLabel(ii);
308          // fill ntuple2
309              ntuple2_st.nxP = nxP;
310              ntuple2_st.nxN = nxN;
311              ntuple2_st.x = xrec/1000;
312              ntuple2_st.z = zrec/1000;
313
314              if(qcut < 0.18) ntuple2->Fill();
315
316
317           Int_t noverlaps = 0;
318           Int_t noverprim = 0;
319           Int_t flaghit = 0;
320           Float_t xhit0 = 1e+7;
321           Float_t yhit0 = 1e+7;
322           Float_t zhit0 = 1e+7;
323
324        // Hit loop
325         for (Int_t hit=0;hit<nhits;hit++) {
326
327          itsHit   = (AliITShit*)Mod->GetHit(hit);
328
329          Int_t flagtrack = 0;
330          Int_t hitlayer = itsHit->GetLayer();
331          Int_t hitladder= itsHit->GetLadder();
332          Int_t hitdet= itsHit->GetDetector();
333
334          Int_t track = itsHit->GetTrack();
335          Int_t dray = 0;
336          Int_t hitstat = itsHit->GetTrackStatus();
337
338           Float_t zhit = 10000*itsHit->GetZL();
339           Float_t xhit = 10000*itsHit->GetXL();
340           Float_t yhit = 10000*itsHit->GetYL();
341           Float_t ehit = 1.0e+6*itsHit->GetIonization(); // hit energy, KeV 
342
343            Int_t parent = itsHit->GetParticle()->GetFirstMother();
344            Int_t partcode = itsHit->GetParticle()->GetPdgCode();
345
346    //  partcode (pdgCode): 11 - e-, 13 - mu-, 22 - gamma, 111 - pi0, 211 - i+
347    //  310 - K0s, 321 - K+, 2112 - n, 2212 - p, 3122 - lambda
348
349            Float_t pmod = itsHit->GetParticle()->P(); // the momentum at the
350                                                       // vertex
351            pmod *= 1.0e+3;
352
353           if(hitstat == 66 && yhit < -ylim) {  // entering hit
354             xhit0 = xhit;
355             yhit0 = yhit;
356             zhit0 = zhit;
357           }
358
359           if(hitstat == 66) continue; // Take the not entering hits only 
360
361           if(xhit0 > 9e+6 || zhit0 > 9e+6 || yhit0 > 9e+6) {
362             //cout<<"default xhit0,zhit0,yhit0 ="<<xhit0<<","<<zhit0<<","<<yhit0<<endl;
363             continue;
364           }
365
366
367
368           // Consider the hits only with the track number equaled to one
369           // of the recpoint
370           if((track == tr1) || (track == tr2) || (track == tr3)) flagtrack = 1;
371
372          if(flagtrack == 1) {     // the hit corresponds to the recpoint
373
374            flaghit = 1;
375
376            //Float_t px = itsHit->GetPXL(); // the momenta at this GEANT point
377            //Float_t py = itsHit->GetPYL();
378            //Float_t pz = itsHit->GetPZL();
379
380          Int_t hitprim = 0;
381
382          if(partcode == 11 && pmod < 6) dray = 1; // delta ray is e-
383                                                   // at p < 6 MeV/c
384
385          if((hitstat == 68 || hitstat == 33) && dray == 0)  noverlaps=noverlaps + 1;
386                                                   // overlapps for all hits but
387                                                   // not for delta ray which
388                                                   // also went out from the
389                                                   // detector and returned
390                                                   // again
391
392
393           // x,z resolution colculation
394           if((hitstat == 68 || hitsat == 33) && dray == 0) {
395              Float_t xmed = (xhit + xhit0)/2;
396              Float_t zmed = (zhit + zhit0)/2;
397              Float_t xdif = xmed - xrec;
398              Float_t zdif = zmed - zrec;
399
400             if(parent < 0)  {
401               hitprim = 1; // hitprim=1 for the primery particles
402               noverprim += 1;
403             }
404              pathInSSD = TMath::Sqrt((xhit0-xhit)*(xhit0-xhit)+(yhit0-yhit)*(yhit0-yhit)+(zhit0-zhit)*(zhit0-zhit));
405
406              // fill ntuple
407              ntuple_st.lay = hitlayer;
408              ntuple_st.nxP = nxP;
409              ntuple_st.nxN = nxN;
410              ntuple_st.hitprim = hitprim;
411              ntuple_st.partcode = partcode;
412              ntuple_st.ntrover = ntrover;
413              ntuple_st.x = xrec/1000;
414              ntuple_st.z = zrec/1000;
415              ntuple_st.dx = xdif;
416              ntuple_st.dz = zdif;
417              ntuple_st.pmod = pmod;
418
419              //if(qcut < 0.18) ntuple->Fill();
420              ntuple->Fill();
421
422              //if(hitlayer == 5 && qcut < 0.18) {
423              
424             if(hitlayer == 5 ) {
425              Xres5->Fill(xdif);
426              Zres5->Fill(zdif);
427              Path5->Fill(pathInSSD);
428             }
429             //if(hitlayer == 6 && qcut < 0.18) {
430             if(hitlayer == 6) {
431              Xres6->Fill(xdif);
432              Zres6->Fill(zdif);
433              Path6->Fill(pathInSSD);
434             }
435           } // hitstat 68/33
436          } else {       // non correspondent hit
437           xhit0 = 1e+7;
438           zhit0 = 1e+7;
439          } // end of hit-recpoint correspondence
440         } // hit loop       
441
442         if(flaghit == 1) {
443
444           if(noverlaps == 0) noverlaps = 1; // cluster contains one or more
445           // delta rays only
446
447           // fill ntuple1
448           ntuple1_st.lay = hitlayer;
449           ntuple1_st.lad = hitladder;
450           ntuple1_st.det = hitdet;
451           ntuple1_st.nxP = nxP;
452           ntuple1_st.nxN = nxN;
453           ntuple1_st.qclP = qclP*300/pathInSSD; 
454           ntuple1_st.qclN = qclN*300/pathInSSD; 
455           ntuple1_st.qrec = qrec*300/pathInSSD; 
456           ntuple1_st.dx = xdif;
457           ntuple1_st.dz = zdif;
458           noverlaps -= 1;
459           noverprim -= 1;
460           ntuple1_st.noverlaps = noverlaps;
461           ntuple1_st.noverprim = noverprim;
462           ntuple1_st.ntrover = ntrover;
463
464           //if(qcut < 0.18) ntuple1->Fill();
465           ntuple1->Fill();
466
467           Float_t de = dedx*300./pathInSSD;
468           dEdX->Fill(de);
469             if(hitlayer == 5 ) {
470              adcPadcN5all->Fill(qclP,qclN);
471             }
472             if(hitlayer == 6 ) {
473              adcPadcN6all->Fill(qclP,qclN);
474             }
475             if(hitlayer == 5 && qcut < 0.18) {
476              adcPadcN5cut->Fill(qclP,qclN);
477              NxP5->Fill(nxP);
478              NxN5->Fill(nxN);
479             }
480             if(hitlayer == 6 && qcut < 0.18) {
481              adcPadcN6cut->Fill(qclP,qclN);
482              NxP6->Fill(nxP);
483              NxN6->Fill(nxN);
484             }
485         } // flaghit = 1
486        } //b.b. recpoint loop
487      } //b.b. module loop
488    } //b.b. evnt loop
489
490    TFile fhistos("SSD_his.root","RECREATE");
491
492    ntuple->Write();
493    ntuple1->Write();
494    ntuple2->Write();
495    NxP5->Write();
496    NxN5->Write();
497    NxP6->Write();
498    NxN6->Write();
499    Xres5->Write();
500    Zres5->Write();
501    Xres6->Write();
502    Zres6->Write();
503    Path5->Write();
504    Path6->Write();
505    adcPadcN5all->Write();
506    adcPadcN6all->Write();
507    adcPadcN5cut->Write();
508    adcPadcN6cut->Write();
509    dEdX->Write();
510
511    fhistos.Close();
512
513    cout<<"!!! Histogramms and ntuples were written"<<endl;
514
515    TCanvas *c1 = new TCanvas("c1","ITS clusters",400,10,600,700);
516    c1->Divide(2,2);
517    c1->cd(1);
518    gPad->SetFillColor(33);
519          Xres5->SetFillColor(42);
520          Xres5->Draw();
521    c1->cd(2);
522    gPad->SetFillColor(33);
523          Zres5->SetFillColor(46);
524          Zres5->Draw();
525    c1->cd(3);
526    gPad->SetFillColor(33);
527          Xres6->SetFillColor(42);
528          Xres6->Draw();
529    c1->cd(4);
530    gPad->SetFillColor(33);
531          Zres6->SetFillColor(46);
532          Zres6->Draw();
533
534    cout<<"END  test for clusters and hits "<<endl;
535
536 }
537
538
539
540
541
542