]> git.uio.no Git - u/mrichter/AliRoot.git/blob - MUON/AliMUONSlatGeometryBuilder.cxx
Reducing number of MUON volumes directly placed in ALIC: at 1st level, MUON consists...
[u/mrichter/AliRoot.git] / MUON / AliMUONSlatGeometryBuilder.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 // $Id$
17 //
18 // Class AliMUONSlatGeometryBuilder
19 // -------------------------------
20 // Abstract base class for geometry construction per chamber.
21 //
22 // Author: Eric Dumonteil (dumontei@cea.fr)
23
24
25 // This Builder is designed according to the enveloppe methode. The basic idea is to be able to allow moves 
26 // of the slats on the support panels. 
27 // Those moves can be described with a simple set of parameters. The next step should be now to describe all 
28 // the slats and their places by a unique 
29 // class, which would make the SlatBuilder far more compact since now only three parameters can define a slat 
30 // and its position, like:
31 //   * Bool_t rounded_shape_slat
32 //   * Float_t slat_length
33 //   * Float_t slat_number or Float_t slat_position
34
35 #include <TVirtualMC.h>
36 #include <TGeoMatrix.h>
37 #include <Riostream.h>
38
39 #include "AliRun.h"
40 #include "AliLog.h"
41
42 #include "AliMUONSlatGeometryBuilder.h"
43 #include "AliMUON.h"
44 #include "AliMUONChamber.h"
45 #include "AliMUONGeometryModule.h"
46 #include "AliMUONGeometryEnvelopeStore.h"
47 #include "AliMUONConstants.h"
48
49 ClassImp(AliMUONSlatGeometryBuilder)
50
51
52 //______________________________________________________________________________
53 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(AliMUON* muon)
54  : AliMUONVGeometryBuilder("slat.dat",
55                            muon->Chamber(4).GetGeometry(), 
56                            muon->Chamber(5).GetGeometry(), 
57                            muon->Chamber(6).GetGeometry(), 
58                            muon->Chamber(7).GetGeometry(), 
59                            muon->Chamber(8).GetGeometry(), 
60                            muon->Chamber(9).GetGeometry()),
61    fMUON(muon)
62 {
63 // Standard constructor
64
65 }
66
67 //______________________________________________________________________________
68 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder() 
69  : AliMUONVGeometryBuilder(),
70    fMUON(0)
71 {
72 // Default constructor
73 }
74
75
76 //______________________________________________________________________________
77 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(const AliMUONSlatGeometryBuilder& rhs)
78   : AliMUONVGeometryBuilder(rhs)
79 {
80   AliFatal("Copy constructor is not implemented.");
81 }
82
83 //______________________________________________________________________________
84 AliMUONSlatGeometryBuilder::~AliMUONSlatGeometryBuilder() {
85 //
86 }
87
88 //______________________________________________________________________________
89 AliMUONSlatGeometryBuilder& 
90 AliMUONSlatGeometryBuilder::operator = (const AliMUONSlatGeometryBuilder& rhs) 
91 {
92   // check assignement to self
93   if (this == &rhs) return *this;
94
95   AliFatal("Assignment operator is not implemented.");
96     
97   return *this;  
98 }
99
100 //
101 // public methods
102 //
103
104 //______________________________________________________________________________
105 void AliMUONSlatGeometryBuilder::CreateGeometry()
106 {
107   // CreateGeometry is the method containing all the informations concerning Stations 345 geometry.
108   // It includes description and placements of support panels and slats.
109   // The code comes directly from what was written in AliMUONv1.cxx before, with modifications concerning 
110   // the use of Enveloppe method to place the Geant volumes.
111   // Now, few changes would allow the creation of a Slat methode where slat could be described by few parameters, 
112   // and this builder would then be dedicated only to the
113   // placements of the slats. Those modifications could shorten the Station 345 geometry by a non-negligeable factor...
114  
115   Int_t *idtmed = fMUON->GetIdtmed()->GetArray()-1099;
116
117   Float_t angle;
118   Float_t *dum=0;
119
120   // define the id of tracking media:
121   Int_t idAir    = idtmed[1100]; // medium 1
122   Int_t idGas    = idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
123   Int_t idCopper = idtmed[1110];
124   Int_t idG10    = idtmed[1111];
125   Int_t idCarbon = idtmed[1112];
126   Int_t idRoha   = idtmed[1113];
127   Int_t idNomex  = idtmed[1114]; // honey comb
128   Int_t idNoryl  = idtmed[1115]; 
129   Int_t idNomexB = idtmed[1116]; // bulk material 
130
131   // sensitive area: 40*40 cm**2
132   const Float_t kSensLength = 40.; 
133   const Float_t kSensHeight = 40.; 
134   const Float_t kSensWidth  = AliMUONConstants::Pitch()*2;// 0.5 cm, according to TDR fig 2.120 
135   const Int_t kSensMaterial = idGas;
136   //     const Float_t kYoverlap   = 1.5; 
137
138   // PCB dimensions in cm; width: 30 mum copper   
139   const Float_t kPcbLength  = kSensLength; 
140   const Float_t kPcbHeight  = 58.; // updated Ch. Finck 
141   const Float_t kPcbWidth   = 0.003; 
142   const Int_t kPcbMaterial  = idCopper;
143
144   // Insulating material: 220 mum G10 fiber  glued to pcb  
145   const Float_t kInsuLength = kPcbLength; 
146   const Float_t kInsuHeight = kPcbHeight; 
147   const Float_t kInsuWidth  = 0.022;  // updated Ch. Finck 
148   const Int_t kInsuMaterial = idG10;
149
150   // Carbon fiber panels: 200mum carbon/epoxy skin   
151   const Float_t kCarbonWidth  = 0.020;      
152   const Int_t kCarbonMaterial = idCarbon;
153
154   // Nomex (honey comb) between the two panel carbon skins    
155   const Float_t kNomexLength = kSensLength; 
156   const Float_t kNomexHeight = kSensHeight; 
157   const Float_t kNomexWidth  = 0.8; // updated Ch. Finck 
158   const Int_t kNomexMaterial = idNomex;
159  
160   // Bulk Nomex under panel sandwich Ch. Finck    
161   const Float_t kNomexBWidth  = 0.025; 
162   const Int_t kNomexBMaterial = idNomexB;
163
164   // Panel sandwich 0.02 carbon*2 + 0.8 nomex     
165   const Float_t kPanelLength = kSensLength; 
166   const Float_t kPanelHeight = kSensHeight; 
167   const Float_t kPanelWidth  = 2 * kCarbonWidth + kNomexWidth;
168
169   // spacer around the slat: 2 sticks along length,2 along height  
170   // H: the horizontal ones 
171   const Float_t kHframeLength = kPcbLength; 
172   const Float_t kHframeHeight = 1.95; // updated Ch. Finck 
173   const Float_t kHframeWidth  = kSensWidth; 
174   const Int_t kHframeMaterial = idNoryl;
175
176   // V: the vertical ones; vertical spacers 
177   const Float_t kVframeLength = 2.5; 
178   const Float_t kVframeHeight = kSensHeight + kHframeHeight; 
179   const Float_t kVframeWidth  = kSensWidth;
180   const Int_t kVframeMaterial = idNoryl;
181
182   // B: the horizontal border filled with rohacell: ok Ch. Finck
183   const Float_t kBframeLength = kHframeLength; 
184   const Float_t kBframeHeight = (kPcbHeight - kSensHeight)/2. - kHframeHeight; 
185   const Float_t kBframeWidth  = kHframeWidth;
186   const Int_t kBframeMaterial = idRoha;
187
188   // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) for electronics
189   const Float_t kNulocLength   = 2.5; 
190   const Float_t kNulocHeight   = kBframeHeight;
191   const Float_t kNulocWidth    = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
192   const Int_t   kNulocMaterial = idCopper;
193
194   // Slat parameters
195   const Float_t kSlatHeight = kPcbHeight; 
196   const Float_t kSlatWidth  = kSensWidth + 2.*(kPcbWidth + kInsuWidth + kPanelWidth 
197                                                + kNomexBWidth); //replaced rohacell with Nomex Ch. Finck 
198   const Int_t   kSlatMaterial = idAir;
199   const Float_t kDslatLength  = -1.25; // position of the slat respect to the beam plane (half vertical spacer) Ch. Finck
200   Float_t zSlat               = AliMUONConstants::DzSlat();// implemented Ch. Finck
201   Float_t dzCh                = AliMUONConstants::DzCh();
202
203   Float_t spar[3];  
204   Int_t i, j;
205   Int_t detElemId;
206
207   // the panel volume contains the nomex
208   Float_t panelpar[3] = { kPanelLength/2., kPanelHeight/2., kPanelWidth/2. }; 
209   Float_t nomexpar[3] = { kNomexLength/2., kNomexHeight/2., kNomexWidth/2. }; 
210   Float_t twidth =  kPanelWidth +  kNomexBWidth; 
211   Float_t nomexbpar[3] = {kNomexLength/2., kNomexHeight/2.,twidth/2. };// bulk nomex 
212
213   // insulating material contains PCB-> gas   
214   twidth = 2*(kInsuWidth + kPcbWidth) + kSensWidth ; 
215   Float_t insupar[3] = {kInsuLength/2., kInsuHeight/2., twidth/2. }; 
216   twidth -= 2 * kInsuWidth; 
217   Float_t pcbpar[3]  = {kPcbLength/2., kPcbHeight/2., twidth/2. }; 
218   Float_t senspar[3] = {kSensLength/2., kSensHeight/2., kSensWidth/2. }; 
219   Float_t theight    = 2 * kHframeHeight + kSensHeight;
220   Float_t hFramepar[3] = {kHframeLength/2., theight/2., kHframeWidth/2.}; 
221   Float_t bFramepar[3] = {kBframeLength/2., kBframeHeight/2., kBframeWidth/2.}; 
222   Float_t vFramepar[3] = {kVframeLength/2., kVframeHeight/2., kVframeWidth/2.};
223   Float_t nulocpar[3]  = {kNulocLength/2.,  kNulocHeight/2.,  kNulocWidth/2.}; 
224
225   Float_t xx;
226   Float_t xxmax = (kBframeLength - kNulocLength)/2.; 
227   Int_t index=0;
228       
229   AliMUONChamber *iChamber, *iChamber1, *iChamber2;
230
231   Int_t* fStations = new Int_t[5];
232   for (Int_t i=0; i<5; i++) fStations[i] = 1;
233   fStations[2] = 1;
234      
235   if (fStations[2])
236     {
237       //********************************************************************
238       //                            Station 3                             **
239       //********************************************************************
240       // indices 1 and 2 for first and second chambers in the station
241       // iChamber (first chamber) kept for other quanties than Z,
242       // assumed to be the same in both chambers
243
244       iChamber = &fMUON->Chamber(4);
245       iChamber1 = iChamber;
246       iChamber2 = &fMUON->Chamber(5);
247      
248       //iChamber1->GetGeometry()->SetDebug(kTRUE);
249       //iChamber2->GetGeometry()->SetDebug(kTRUE);
250  
251       if (gAlice->GetModule("DIPO")) {
252         // if DIPO is preset, the whole station will be placed in DDIP volume
253         iChamber1->GetGeometry()->SetMotherVolume("DDIP");
254         iChamber2->GetGeometry()->SetMotherVolume("DDIP");
255       }
256
257       if (!gAlice->GetModule("DIPO")) {
258         // Mother volume for each chamber in st3 are only defined if Dipole volue is there.
259         // Outer excess and inner recess for mother volume radius
260         // with respect to ROuter and RInner
261         Float_t dframep_in = 0.006; 
262         Float_t dframep_out= 0.006; 
263         Float_t tpar[3];
264         Double_t dstation =  ( (-iChamber2->Z()) - (-iChamber1->Z()) ) /2.1;
265         tpar[0] = iChamber1->RInner()-dframep_in; 
266         tpar[1] = (iChamber1->ROuter()+dframep_out);
267         tpar[2] = dstation;
268         gMC->Gsvolu("CH05", "TUBE", idAir, tpar, 3);
269         gMC->Gsvolu("CH06", "TUBE", idAir, tpar, 3);
270         iChamber1->GetGeometry()->SetVolume("CH05");
271         iChamber2->GetGeometry()->SetVolume("CH06");
272       }
273       // volumes for slat geometry (xx=5,..,10 chamber id): 
274       // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
275       // SxxG                          -->   Sensitive volume (gas)
276       // SxxP                          -->   PCB (copper) 
277       // SxxI                          -->   Insulator (G10) 
278       // SxxC                          -->   Carbon panel 
279       // SxxN                          -->   Nomex comb
280       // SxxX                          -->   Nomex bulk
281       // SxxH, SxxV                    -->   Horizontal and Vertical frames (Noryl)
282       // SB5x                          -->   Volumes for the 35 cm long PCB
283       // slat dimensions: slat is a MOTHER volume!!! made of air
284
285       // only for chamber 5: slat 1 has a PCB shorter by 5cm!
286
287       Float_t tlength = 35.;
288       Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
289       Float_t nomexpar2[3]  = { tlength/2., nomexpar[1],  nomexpar[2]}; 
290       Float_t nomexbpar2[3] = { tlength/2., nomexbpar[1],  nomexbpar[2]}; 
291       Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
292       Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
293       Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
294       Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
295       Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
296       Float_t *dum=0;
297       Float_t pcbDLength3   = (kPcbLength - tlength);
298
299       const Int_t   kNslats3         = 5;  // number of slats per quadrant
300       const Int_t   kNPCB3[kNslats3] = {4, 4, 4, 3, 2}; // n PCB per slat
301       const Float_t kXpos3[kNslats3] = {0., 0., 0., 0., 0.};//{31., 0., 0., 0., 0.};
302       const Float_t kYpos3[kNslats3] = {0, 37.8, 37.7, 37.3, 33.7};
303       Float_t slatLength3[kNslats3]; 
304
305       // create and position the slat (mother) volumes 
306
307       char idSlatCh5[5];
308       char idSlatCh6[5];
309       Float_t xSlat3;
310       Float_t ySlat3 = 0;
311       Float_t angle = 0.;
312       Float_t spar2[3];
313       for (i = 0; i < kNslats3; i++){
314
315         slatLength3[i] = kPcbLength * kNPCB3[i] + 2.* kVframeLength; 
316         xSlat3 = slatLength3[i]/2. +  kDslatLength + kXpos3[i]; 
317         ySlat3 += kYpos3[i];
318
319         spar[0] = slatLength3[i]/2.; 
320         spar[1] = kSlatHeight/2.;
321         spar[2] = kSlatWidth/2.; 
322         // take away 5 cm from the first slat in chamber 5
323         if (i == 0 || i == 1 || i == 2) { // 1 pcb is shortened by 5cm
324           spar2[0] = spar[0] - pcbDLength3/2.;
325         } else {
326           spar2[0] = spar[0];
327         }
328         spar2[1] = spar[1];
329         spar2[2] = spar[2]; 
330         Float_t dzCh3 = dzCh; 
331         Float_t zSlat3 = (i%2 ==0)? -zSlat : zSlat; // seems not that zSlat3 = zSlat4 & 5 refering to plan PQ7EN345-6 ?
332
333         sprintf(idSlatCh5,"LA%d",kNslats3-1+i);
334         gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
335         detElemId = 500 + i + kNslats3-1;
336         GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
337                                      TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
338
339         sprintf(idSlatCh5,"LA%d",3*kNslats3-2+i);
340         gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
341         detElemId = 550 + i + kNslats3-1;
342         GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
343                                      TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
344
345         if (i > 0) { 
346           sprintf(idSlatCh5,"LA%d",kNslats3-1-i);
347           gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
348           detElemId = 500 - i + kNslats3-1;
349           GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3), 
350                                        TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
351
352           sprintf(idSlatCh5,"LA%d",3*kNslats3-2-i);
353           gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
354           detElemId = 550 - i + kNslats3-1;
355           GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
356                                        TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
357         }
358
359         sprintf(idSlatCh6,"LB%d",kNslats3-1+i);  
360         gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
361         detElemId = 600 + i  + kNslats3-1;
362         GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
363                                      TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
364         sprintf(idSlatCh6,"LB%d",3*kNslats3-2+i);
365         gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
366         detElemId = 650 + i + kNslats3-1;
367         GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
368                                      TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
369
370         if (i > 0) { 
371           sprintf(idSlatCh6,"LB%d",kNslats3-1-i);
372           gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
373           detElemId = 600 - i + kNslats3-1;
374           GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3),
375                                        TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
376
377           sprintf(idSlatCh6,"LB%d",3*kNslats3-2-i);
378           gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
379           detElemId = 650 - i + kNslats3-1;
380           GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
381                                        TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
382         }
383       }
384      
385       // create the panel volume 
386  
387       gMC->Gsvolu("S05C","BOX",kCarbonMaterial,panelpar,3);
388       gMC->Gsvolu("SB5C","BOX",kCarbonMaterial,panelpar2,3);
389       gMC->Gsvolu("S06C","BOX",kCarbonMaterial,panelpar,3);
390  
391       // create the nomex volume (honey comb)
392
393       gMC->Gsvolu("S05N","BOX",kNomexMaterial,nomexpar,3);
394       gMC->Gsvolu("SB5N","BOX",kNomexMaterial,nomexpar2,3);
395       gMC->Gsvolu("S06N","BOX",kNomexMaterial,nomexpar,3);
396  
397       // create the nomex volume (bulk)
398
399       gMC->Gsvolu("S05X","BOX",kNomexBMaterial,nomexbpar,3);
400       gMC->Gsvolu("SB5X","BOX",kNomexBMaterial,nomexbpar2,3);
401       gMC->Gsvolu("S06X","BOX",kNomexBMaterial,nomexbpar,3);
402
403       // create the insulating material volume 
404
405       gMC->Gsvolu("S05I","BOX",kInsuMaterial,insupar,3);
406       gMC->Gsvolu("SB5I","BOX",kInsuMaterial,insupar2,3);
407       gMC->Gsvolu("S06I","BOX",kInsuMaterial,insupar,3);
408  
409       // create the PCB volume 
410
411       gMC->Gsvolu("S05P","BOX",kPcbMaterial,pcbpar,3);
412       gMC->Gsvolu("SB5P","BOX",kPcbMaterial,pcbpar2,3);
413       gMC->Gsvolu("S06P","BOX",kPcbMaterial,pcbpar,3);
414  
415       // create the sensitive volumes,
416
417       gMC->Gsvolu("S05G","BOX",kSensMaterial,dum,0);
418       gMC->Gsvolu("S06G","BOX",kSensMaterial,dum,0);
419
420       // create the vertical frame volume 
421
422       gMC->Gsvolu("S05V","BOX",kVframeMaterial,vFramepar,3);
423       gMC->Gsvolu("S06V","BOX",kVframeMaterial,vFramepar,3);
424
425       // create the horizontal frame volume 
426
427       gMC->Gsvolu("S05H","BOX",kHframeMaterial,hFramepar,3);
428       gMC->Gsvolu("SB5H","BOX",kHframeMaterial,hFramepar2,3);
429       gMC->Gsvolu("S06H","BOX",kHframeMaterial,hFramepar,3);
430  
431       // create the horizontal border volume 
432
433       gMC->Gsvolu("S05B","BOX",kBframeMaterial,bFramepar,3);
434       gMC->Gsvolu("SB5B","BOX",kBframeMaterial,bFramepar2,3);
435       gMC->Gsvolu("S06B","BOX",kBframeMaterial,bFramepar,3);
436  
437       index = 0; 
438       for (i = 0; i<kNslats3; i++){
439         for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
440
441           if (i == 0 && quadrant == 2) continue;
442           if (i == 0 && quadrant == 4) continue;
443
444           sprintf(idSlatCh5,"LA%d",ConvertSlatNum(i,quadrant,kNslats3-1));
445           sprintf(idSlatCh6,"LB%d",ConvertSlatNum(i,quadrant,kNslats3-1));
446           Float_t xvFrame  = (slatLength3[i] - kVframeLength)/2.;
447           Float_t xvFrame2  = xvFrame;
448
449           if (i == 0 || i == 1 || i == 2) xvFrame2 -= pcbDLength3/2.;
450
451           // position the vertical frames 
452           if ( i > 2) { 
453             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
454                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
455             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
456                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
457             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
458                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
459             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
460                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));   
461           } 
462
463           if (i == 2) {
464             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
465                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
466             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
467                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
468             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
469                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
470             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
471                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
472           }
473
474           if (i == 0 || i == 1) { // no rounded spacer for the moment (Ch. Finck)
475             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
476                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
477             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
478                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
479           }
480
481           // position the panels and the insulating material 
482           for (j = 0; j < kNPCB3[i]; j++){
483             if (i == 1 && j == 0) continue;
484             if (i == 0 && j == 0) continue;
485             index++;
486             Float_t xx = kSensLength * (-kNPCB3[i]/2. + j + 0.5); 
487             Float_t xx2 = xx - pcbDLength3/2.; 
488          
489             Float_t zPanel = spar[2] - nomexbpar[2]; 
490
491             if ( (i == 0 || i == 1 || i == 2) && j == kNPCB3[i]-1) { // 1 pcb is shortened by 5cm 
492               GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index-1,TGeoTranslation(xx2,0.,zPanel));
493               GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index,TGeoTranslation(xx2,0.,-zPanel));
494               GetEnvelopes(4)->AddEnvelopeConstituent("SB5I", idSlatCh5, index,TGeoTranslation(xx2,0.,0.));
495             } else {
496               GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index-1,TGeoTranslation(xx,0.,zPanel));
497               GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index,TGeoTranslation(xx,0.,-zPanel));
498               GetEnvelopes(4)->AddEnvelopeConstituent("S05I", idSlatCh5, index,TGeoTranslation(xx,0.,0.));
499             }
500             GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index-1,TGeoTranslation(xx,0.,zPanel));
501             GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index,TGeoTranslation(xx,0.,-zPanel));
502             GetEnvelopes(5)->AddEnvelopeConstituent("S06I", idSlatCh6, index,TGeoTranslation(xx,0.,0.));
503  
504           } 
505         }
506       }
507
508       // position the nomex volume inside the panel volume
509       gMC->Gspos("S05N",1,"S05C",0.,0.,0.,0,"ONLY"); 
510       gMC->Gspos("SB5N",1,"SB5C",0.,0.,0.,0,"ONLY"); 
511       gMC->Gspos("S06N",1,"S06C",0.,0.,0.,0,"ONLY"); 
512   
513       // position panel volume inside the bulk nomex material volume
514       gMC->Gspos("S05C",1,"S05X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
515       gMC->Gspos("SB5C",1,"SB5X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
516       gMC->Gspos("S06C",1,"S06X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
517
518       // position the PCB volume inside the insulating material volume
519       gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
520       gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
521       gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
522   
523       // position the horizontal frame volume inside the PCB volume
524       gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
525       gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
526       gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
527   
528       // position the sensitive volume inside the horizontal frame volume
529       gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
530       gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
531       gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
532   
533  
534       // position the border volumes inside the PCB volume
535       Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
536       gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
537       gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
538       gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
539       gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
540
541       gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
542       gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
543   
544       // create the NULOC volume and position it in the horizontal frame
545       gMC->Gsvolu("S05E","BOX",kNulocMaterial,nulocpar,3);
546       gMC->Gsvolu("S06E","BOX",kNulocMaterial,nulocpar,3);
547       index = 0;
548       Float_t xxmax2 = xxmax - pcbDLength3/2.;
549       for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
550         index++; 
551         gMC->Gspos("S05E",2*index-1,"S05B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
552         gMC->Gspos("S05E",2*index  ,"S05B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
553         gMC->Gspos("S06E",2*index-1,"S06B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
554         gMC->Gspos("S06E",2*index  ,"S06B", xx, 0., kBframeWidth/2.-  kNulocWidth/2, 0, "ONLY");
555         if (xx > -xxmax2 && xx< xxmax2) {
556           gMC->Gspos("S05E",2*index-1,"SB5B", xx, 0.,-kBframeWidth/2.+ kNulocWidth/2, 0, "ONLY");
557           gMC->Gspos("S05E",2*index  ,"SB5B", xx, 0., kBframeWidth/2.- kNulocWidth/2, 0, "ONLY");
558         }
559       }
560
561       // position the volumes approximating the circular section of the pipe
562       Float_t epsilon = 0.001; 
563       Int_t ndiv = 6;
564       Int_t imax = 1;
565       Double_t divpar[3];
566       Double_t dydiv = kSensHeight/ndiv;
567       Double_t ydiv  = (kSensHeight - dydiv)/2.;
568       Double_t rmin  = 31.5;  // Corrected in sep04 from PQ-LAT-SR2 de CEA-DSM-DAPNIA-SIS/BE ph HARDY 19-Oct-2002 slat 
569       Double_t xdiv  = 0.;
570       Float_t xvol;
571       Float_t yvol;
572
573       for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
574         ydiv += dydiv;
575         xdiv = 0.; 
576         if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
577         divpar[0] = (kPcbLength - xdiv)/2.; 
578         divpar[1] = dydiv/2. - epsilon;
579         divpar[2] = kSensWidth/2.; 
580         xvol = (kPcbLength + xdiv)/2.;
581         yvol = ydiv; 
582
583         // Volumes close to the beam pipe for slat i=1 so 4 slats per chamber
584         for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
585           sprintf(idSlatCh5,"LA%d",ConvertSlatNum(1,quadrant,kNslats3-1));
586           sprintf(idSlatCh6,"LB%d",ConvertSlatNum(1,quadrant,kNslats3-1));
587
588           GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5, quadrant*100+imax+4*idiv+1,
589                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
590
591           GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6,  quadrant*100+imax+4*idiv+1,
592                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
593         }
594       }
595
596       // Volumes close to the beam pipe for slat i=0 so 2 slats per chamber (central slat for station 3)
597       //      Gines Martinez, Subatech sep 04
598       // 9 box volumes are used to define the PCB closed to the beam pipe of the slat 122000SR1 of chamber 5 and 6 of St3
599       // Accordingly to plan PQ-LAT-SR1 of CEA-DSM-DAPNIA-SIS/BE ph HARDY 8-Oct-2002
600       // Rmin = 31.5 cm
601       rmin = 31.5; //in cm  
602       ndiv  = 9; 
603       dydiv = kSensHeight/ndiv;           // Vertical size of the box volume approximating the rounded PCB
604       ydiv  = -kSensHeight/2 + dydiv/2.;   // Initializing vertical position of the volume from bottom
605       xdiv  = 0.;                         // Initializing horizontal position of the box volumes
606
607       for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
608         xdiv = TMath::Abs( rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ) );
609         divpar[0] = (kPcbLength - xdiv)/2.; // Dimension of the box volume
610         divpar[1] = dydiv/2. - epsilon;
611         divpar[2] = kSensWidth/2.; 
612         xvol = (kPcbLength + xdiv)/2.; //2D traslition for positionning of box volume
613         yvol =  ydiv;
614         Int_t side;
615         for (side = 1; side <= 2; side++) {
616           sprintf(idSlatCh5,"LA%d",4);     
617           sprintf(idSlatCh6,"LB%d",4);
618           if(side == 2) {
619             sprintf(idSlatCh5,"LA%d",13);          
620             sprintf(idSlatCh6,"LB%d",13);
621           }        
622           GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5,500+side*100+imax+4*idiv+1,
623                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
624
625           GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6,500+side*100+imax+4*idiv+1,
626                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
627         }
628         ydiv += dydiv; // Going from bottom to top
629       }
630       // cout << "Geometry for Station 3...... done" << endl;   
631     }
632     
633   if (fStations[3]) {
634
635
636     // //********************************************************************
637     // //                            Station 4                             **
638     // //********************************************************************
639     //      // indices 1 and 2 for first and second chambers in the station
640     //      // iChamber (first chamber) kept for other quanties than Z,
641     //      // assumed to be the same in both chambers
642     //      corrected geometry (JP. Cussonneau, Ch. Finck)
643  
644     iChamber = &fMUON->Chamber(6);
645     iChamber1 = iChamber;
646     iChamber2 = &fMUON->Chamber(7);
647
648     const Int_t   kNslats4          = 7;  // number of slats per quadrant
649     const Int_t   kNPCB4[kNslats4]  = {5, 6, 5, 5, 4, 3, 2}; // n PCB per slat
650     const Float_t kXpos4[kNslats4]  = {38.2, 0., 0., 0., 0., 0., 0.};
651     const Float_t kYpos41[kNslats4] = {0., 38.2, 34.40, 36.60, 29.3, 37.0, 28.6};
652     const Float_t kYpos42[kNslats4] = {0., 38.2, 37.85, 37.55, 29.4, 37.0, 28.6};
653
654     Float_t slatLength4[kNslats4];     
655
656
657     // Mother volume for each chamber
658     // Outer excess and inner recess for mother volume radius
659     // with respect to ROuter and RInner
660     Float_t dframep_in = 0.006; 
661     Float_t dframep_out= 0.006; 
662     Float_t tpar[3];
663     Double_t dstation =  ( (-iChamber2->Z()) - (-iChamber1->Z()) ) /2.1;
664     tpar[0] = iChamber1->RInner()-dframep_in; 
665     tpar[1] = (iChamber1->ROuter()+dframep_out);
666     tpar[2] = dstation;
667     gMC->Gsvolu("CH07", "TUBE", idAir, tpar, 3);
668     gMC->Gsvolu("CH08", "TUBE", idAir, tpar, 3);
669     iChamber1->GetGeometry()->SetVolume("CH07");
670     iChamber2->GetGeometry()->SetVolume("CH08");
671     
672     // create and position the slat (mother) volumes 
673
674     char idSlatCh7[5];
675     char idSlatCh8[5];
676     Float_t xSlat4;
677     Float_t ySlat41 = 0;
678     Float_t ySlat42 = 0;
679
680     angle = 0.;
681
682     for (i = 0; i<kNslats4; i++){
683       slatLength4[i] = kPcbLength * kNPCB4[i] + 2. * kVframeLength; 
684       xSlat4 = slatLength4[i]/2. + kDslatLength + kXpos4[i]; 
685       ySlat41 += kYpos41[i];
686       ySlat42 += kYpos42[i];
687
688       spar[0] = slatLength4[i]/2.; 
689       spar[1] = kSlatHeight/2.;
690       spar[2] = kSlatWidth/2.; 
691       Float_t dzCh4 = dzCh;
692       Float_t zSlat4 = (i%2 ==0)? -zSlat : zSlat; 
693
694       sprintf(idSlatCh7,"LC%d",kNslats4-1+i);
695       gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
696       detElemId = 700 + i + kNslats4-1;
697       GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, ySlat41, -zSlat4 + dzCh4),
698                                    TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
699
700       sprintf(idSlatCh7,"LC%d",3*kNslats4-2+i);
701       gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
702       detElemId = 750 + i + kNslats4-1;
703       GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(-xSlat4, ySlat41, zSlat4 - dzCh4),
704                                    TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
705  
706       if (i > 0) { 
707         sprintf(idSlatCh7,"LC%d",kNslats4-1-i);
708         gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
709         detElemId = 700 - i + kNslats4-1;
710         GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, -ySlat41, -zSlat4 + dzCh4),
711                                      TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
712
713         sprintf(idSlatCh7,"LC%d",3*kNslats4-2-i);
714         detElemId = 750 - i + kNslats4-1;
715         gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
716         GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, 
717                                      TGeoTranslation(-xSlat4, -ySlat41, zSlat4 - dzCh4),
718                                      TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
719       }
720
721       sprintf(idSlatCh8,"LD%d",kNslats4-1+i);
722       gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
723       detElemId = 800 + i + kNslats4-1;
724       GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, ySlat42, -zSlat4 + dzCh4),
725                                    TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
726
727       sprintf(idSlatCh8,"LD%d",3*kNslats4-2+i);
728       detElemId = 850 + i + kNslats4-1;
729       gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
730       GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, ySlat42, zSlat4 - dzCh4),
731                                    TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
732       if (i > 0) { 
733         sprintf(idSlatCh8,"LD%d",kNslats4-1-i);
734         detElemId = 800 - i + kNslats4-1;
735         gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
736         GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, -ySlat42, -zSlat4 + dzCh4),
737                                      TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
738         sprintf(idSlatCh8,"LD%d",3*kNslats4-2-i);
739         detElemId = 850 - i + kNslats4-1;
740         gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
741         GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, -ySlat42, zSlat4 - dzCh4),
742                                      TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
743       }
744     }
745      
746     // create the panel volume 
747  
748     gMC->Gsvolu("S07C","BOX",kCarbonMaterial,panelpar,3);
749     gMC->Gsvolu("S08C","BOX",kCarbonMaterial,panelpar,3);
750
751     // create the nomex volume 
752
753     gMC->Gsvolu("S07N","BOX",kNomexMaterial,nomexpar,3);
754     gMC->Gsvolu("S08N","BOX",kNomexMaterial,nomexpar,3);
755
756
757     // create the nomex volume (bulk)
758
759     gMC->Gsvolu("S07X","BOX",kNomexBMaterial,nomexbpar,3);
760     gMC->Gsvolu("S08X","BOX",kNomexBMaterial,nomexbpar,3);
761
762     // create the insulating material volume 
763
764     gMC->Gsvolu("S07I","BOX",kInsuMaterial,insupar,3);
765     gMC->Gsvolu("S08I","BOX",kInsuMaterial,insupar,3);
766
767     // create the PCB volume 
768
769     gMC->Gsvolu("S07P","BOX",kPcbMaterial,pcbpar,3);
770     gMC->Gsvolu("S08P","BOX",kPcbMaterial,pcbpar,3);
771  
772     // create the sensitive volumes,
773
774     gMC->Gsvolu("S07G","BOX",kSensMaterial,dum,0);
775     gMC->Gsvolu("S08G","BOX",kSensMaterial,dum,0);
776
777     // create the vertical frame volume 
778
779     gMC->Gsvolu("S07V","BOX",kVframeMaterial,vFramepar,3);
780     gMC->Gsvolu("S08V","BOX",kVframeMaterial,vFramepar,3);
781
782     // create the horizontal frame volume 
783
784     gMC->Gsvolu("S07H","BOX",kHframeMaterial,hFramepar,3);
785     gMC->Gsvolu("S08H","BOX",kHframeMaterial,hFramepar,3);
786
787     // create the horizontal border volume 
788
789     gMC->Gsvolu("S07B","BOX",kBframeMaterial,bFramepar,3);
790     gMC->Gsvolu("S08B","BOX",kBframeMaterial,bFramepar,3);
791
792     index = 0; 
793     for (i = 0; i < kNslats4; i++){
794       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
795
796         if (i == 0 && quadrant == 2) continue;
797         if (i == 0 && quadrant == 4) continue;
798
799         sprintf(idSlatCh7,"LC%d",ConvertSlatNum(i,quadrant,kNslats4-1));
800         sprintf(idSlatCh8,"LD%d",ConvertSlatNum(i,quadrant,kNslats4-1));
801         Float_t xvFrame  = (slatLength4[i] - kVframeLength)/2.;
802
803         // position the vertical frames 
804         if (i != 1) { 
805           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
806           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
807           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
808           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
809         } else { // no rounded spacer yet
810           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
811           // GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
812           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
813           // GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
814         }
815         // position the panels and the insulating material 
816         for (j = 0; j < kNPCB4[i]; j++){
817           if (i == 1 && j == 0) continue;
818           index++;
819           Float_t xx = kSensLength * (-kNPCB4[i]/2.+j+.5); 
820
821           Float_t zPanel = spar[2] - nomexbpar[2]; 
822           GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index-1,TGeoTranslation(xx,0.,zPanel));
823           GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index,TGeoTranslation(xx,0.,-zPanel));
824           GetEnvelopes(6)->AddEnvelopeConstituent("S07I", idSlatCh7, index,TGeoTranslation(xx,0.,0.));
825           GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index-1,TGeoTranslation(xx,0.,zPanel));
826           GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index,TGeoTranslation(xx,0.,-zPanel));
827           GetEnvelopes(7)->AddEnvelopeConstituent("S08I", idSlatCh8, index,TGeoTranslation(xx,0.,0.));
828         }
829       } 
830     }
831
832     // position the nomex volume inside the panel volume
833     gMC->Gspos("S07N",1,"S07C",0.,0.,0.,0,"ONLY"); 
834     gMC->Gspos("S08N",1,"S08C",0.,0.,0.,0,"ONLY"); 
835
836     // position panel volume inside the bulk nomex material volume
837     gMC->Gspos("S07C",1,"S07X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
838     gMC->Gspos("S08C",1,"S08X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
839
840     // position the PCB volume inside the insulating material volume
841     gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
842     gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
843
844     // position the horizontal frame volume inside the PCB volume
845     gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
846     gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
847
848     // position the sensitive volume inside the horizontal frame volume
849     gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
850     gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
851
852     // position the border volumes inside the PCB volume
853     Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
854     gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
855     gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
856     gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
857     gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
858
859     // create the NULOC volume and position it in the horizontal frame
860
861     gMC->Gsvolu("S07E","BOX",kNulocMaterial,nulocpar,3);
862     gMC->Gsvolu("S08E","BOX",kNulocMaterial,nulocpar,3);
863     index = 0;
864     for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
865       index++; 
866       gMC->Gspos("S07E",2*index-1,"S07B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
867       gMC->Gspos("S07E",2*index  ,"S07B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
868       gMC->Gspos("S08E",2*index-1,"S08B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
869       gMC->Gspos("S08E",2*index  ,"S08B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
870     }
871
872     // position the volumes approximating the circular section of the pipe
873
874     Float_t epsilon = 0.001; 
875     Int_t ndiv = 10;
876     Int_t imax = 1; 
877     Double_t divpar[3];
878     Double_t dydiv = kSensHeight/ndiv;
879     Double_t ydiv  = (kSensHeight - dydiv)/2.;
880     Float_t rmin   = 39.5;// Corrected in sep04 from PQ-LAT-NR3 de CEA-DSM-DAPNIA-SIS/BE ph HARDY 19-Oct-2002 slat 
881     Float_t xdiv   = 0.; 
882     Float_t xvol;
883     Float_t yvol;
884
885     for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
886       ydiv += dydiv;
887       xdiv = 0.; 
888       if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
889       divpar[0] = (kPcbLength - xdiv)/2.; 
890       divpar[1] = dydiv/2. - epsilon;
891       divpar[2] = kSensWidth/2.; 
892       xvol = (kPcbLength + xdiv)/2.;
893       yvol = ydiv ;
894        
895       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
896         sprintf(idSlatCh7,"LC%d",ConvertSlatNum(1,quadrant,kNslats4-1));
897         sprintf(idSlatCh8,"LD%d",ConvertSlatNum(1,quadrant,kNslats4-1));
898          
899         GetEnvelopes(6)->AddEnvelopeConstituentParam("S07G",idSlatCh7, quadrant*100+imax+4*idiv+1,
900                                                      TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
901          
902         GetEnvelopes(7)->AddEnvelopeConstituentParam("S08G", idSlatCh8, quadrant*100+imax+4*idiv+1,
903                                                      TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
904       }
905     }
906     // cout << "Geometry for Station 4...... done" << endl;
907
908   }
909     
910   if (fStations[4]) {
911       
912
913     // //********************************************************************
914     // //                            Station 5                             **
915     // //********************************************************************
916     //      // indices 1 and 2 for first and second chambers in the station
917     //      // iChamber (first chamber) kept for other quanties than Z,
918     //      // assumed to be the same in both chambers
919     //      corrected geometry (JP. Cussonneau, Ch. Finck)
920
921     iChamber = &fMUON->Chamber(8);
922     iChamber1 = iChamber;
923     iChamber2 = &fMUON->Chamber(9);
924  
925     const Int_t   kNslats5         = 7;  // number of slats per quadrant
926     const Int_t   kNPCB5[kNslats5] = {5, 6, 6, 6, 5, 4, 3}; // n PCB per slat
927     const Float_t kXpos5[kNslats5] = {38.2, 0., 0., 0., 0., 0., 0.};
928     const Float_t kYpos5[kNslats5] = {0., 38.2, 37.9, 37.6, 37.3, 37.05, 36.75};
929     Float_t slatLength5[kNslats5]; 
930
931     // Mother volume for each chamber
932     // Outer excess and inner recess for mother volume radius
933     // with respect to ROuter and RInner
934     Float_t dframep_in = 0.006; 
935     Float_t dframep_out= 0.006; 
936     Float_t tpar[3];
937     Double_t dstation =  ( (-iChamber2->Z()) - (-iChamber1->Z()) ) /2.3;
938     tpar[0] = iChamber1->RInner()-dframep_in; 
939     tpar[1] = (iChamber1->ROuter()+dframep_out);
940     tpar[2] = dstation;
941     gMC->Gsvolu("CH09", "TUBE", idAir, tpar, 3);
942     gMC->Gsvolu("CH10", "TUBE", idAir, tpar, 3);
943     iChamber1->GetGeometry()->SetVolume("CH09");
944     iChamber2->GetGeometry()->SetVolume("CH10");
945
946     // create and position the slat (mother) volumes 
947
948     char idSlatCh9[5];
949     char idSlatCh10[5];
950     Float_t xSlat5;
951     Float_t ySlat5 = 0;
952     angle = 0.;
953
954     for (i = 0; i < kNslats5; i++){
955
956       slatLength5[i] = kPcbLength * kNPCB5[i] + 2.* kVframeLength; 
957       xSlat5 = slatLength5[i]/2. + kDslatLength + kXpos5[i]; 
958       ySlat5 += kYpos5[i];
959
960       spar[0] = slatLength5[i]/2.; 
961       spar[1] = kSlatHeight/2.;
962       spar[2] = kSlatWidth/2.; 
963
964       Float_t dzCh5  = dzCh;
965       Float_t zSlat5 = (i%2 ==0)? -zSlat : zSlat; 
966
967       sprintf(idSlatCh9,"LE%d",kNslats5-1+i);
968       detElemId = 900 + i + kNslats5-1;
969       gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
970       GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
971                                    TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
972
973       sprintf(idSlatCh9,"LE%d",3*kNslats5-2+i);
974       detElemId = 950 + i + kNslats5-1;
975       gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
976       GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
977                                    TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
978  
979       if (i > 0) { 
980         sprintf(idSlatCh9,"LE%d",kNslats5-1-i);
981         detElemId = 900 - i + kNslats5-1;
982         gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
983         GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
984                                      TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
985
986         sprintf(idSlatCh9,"LE%d",3*kNslats5-2-i);
987         detElemId = 950 - i + kNslats5-1;
988         gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
989         GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
990                                      TGeoRotation("rot4",90,180+angle,90,270+angle,0,0)  );
991       }
992
993       sprintf(idSlatCh10,"LF%d",kNslats5-1+i);
994       detElemId = 1000 + i + kNslats5-1;
995       gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
996       GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
997                                    TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
998
999       sprintf(idSlatCh10,"LF%d",3*kNslats5-2+i);
1000       detElemId = 1050 + i + kNslats5-1;
1001       gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
1002       GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
1003                                    TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
1004
1005       if (i > 0) { 
1006         sprintf(idSlatCh10,"LF%d",kNslats5-1-i);
1007         detElemId = 1000 - i + kNslats5-1;
1008         gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
1009         GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
1010                                      TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
1011         sprintf(idSlatCh10,"LF%d",3*kNslats5-2-i);
1012         detElemId = 1050 - i + kNslats5-1;
1013         gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
1014         GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
1015                                      TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
1016       }
1017     }
1018
1019     // create the panel volume 
1020  
1021     gMC->Gsvolu("S09C","BOX",kCarbonMaterial,panelpar,3);
1022     gMC->Gsvolu("S10C","BOX",kCarbonMaterial,panelpar,3);
1023
1024     // create the nomex volume 
1025
1026     gMC->Gsvolu("S09N","BOX",kNomexMaterial,nomexpar,3);
1027     gMC->Gsvolu("S10N","BOX",kNomexMaterial,nomexpar,3);
1028
1029
1030     // create the nomex volume (bulk)
1031
1032     gMC->Gsvolu("S09X","BOX",kNomexBMaterial,nomexbpar,3);
1033     gMC->Gsvolu("S10X","BOX",kNomexBMaterial,nomexbpar,3);
1034
1035     // create the insulating material volume 
1036
1037     gMC->Gsvolu("S09I","BOX",kInsuMaterial,insupar,3);
1038     gMC->Gsvolu("S10I","BOX",kInsuMaterial,insupar,3);
1039
1040     // create the PCB volume 
1041
1042     gMC->Gsvolu("S09P","BOX",kPcbMaterial,pcbpar,3);
1043     gMC->Gsvolu("S10P","BOX",kPcbMaterial,pcbpar,3);
1044  
1045     // create the sensitive volumes,
1046
1047     gMC->Gsvolu("S09G","BOX",kSensMaterial,dum,0);
1048     gMC->Gsvolu("S10G","BOX",kSensMaterial,dum,0);
1049
1050     // create the vertical frame volume 
1051
1052     gMC->Gsvolu("S09V","BOX",kVframeMaterial,vFramepar,3);
1053     gMC->Gsvolu("S10V","BOX",kVframeMaterial,vFramepar,3);
1054
1055     // create the horizontal frame volume 
1056
1057     gMC->Gsvolu("S09H","BOX",kHframeMaterial,hFramepar,3);
1058     gMC->Gsvolu("S10H","BOX",kHframeMaterial,hFramepar,3);
1059
1060     // create the horizontal border volume 
1061
1062     gMC->Gsvolu("S09B","BOX",kBframeMaterial,bFramepar,3);
1063     gMC->Gsvolu("S10B","BOX",kBframeMaterial,bFramepar,3);
1064
1065     index = 0; 
1066     for (i = 0; i < kNslats5; i++){
1067       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1068
1069         if (i == 0 && quadrant == 2) continue;
1070         if (i == 0 && quadrant == 4) continue;
1071
1072         sprintf(idSlatCh9,"LE%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1073         sprintf(idSlatCh10,"LF%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1074         Float_t xvFrame  = (slatLength5[i] - kVframeLength)/2.; // ok
1075
1076         // position the vertical frames (spacers)
1077         if (i != 1) { 
1078           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1079           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1080           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1081           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1082         } else {  // no rounded spacer yet
1083           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1084           //       GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1085           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1086           //       GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1087         }
1088
1089         // position the panels and the insulating material 
1090         for (j = 0; j < kNPCB5[i]; j++){
1091           if (i == 1 && j == 0) continue;
1092           index++;
1093           Float_t xx = kSensLength * (-kNPCB5[i]/2.+j+.5); 
1094
1095           Float_t zPanel = spar[2] - nomexbpar[2]; 
1096           GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1097           GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index,TGeoTranslation(xx,0.,-zPanel));
1098           GetEnvelopes(8)->AddEnvelopeConstituent("S09I", idSlatCh9, index,TGeoTranslation(xx,0.,0.));
1099
1100           GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1101           GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index,TGeoTranslation(xx,0.,-zPanel));
1102           GetEnvelopes(9)->AddEnvelopeConstituent("S10I", idSlatCh10, index,TGeoTranslation(xx,0.,0.));
1103         }
1104       } 
1105     }
1106
1107     // position the nomex volume inside the panel volume
1108     gMC->Gspos("S09N",1,"S09C",0.,0.,0.,0,"ONLY"); 
1109     gMC->Gspos("S10N",1,"S10C",0.,0.,0.,0,"ONLY"); 
1110
1111     // position panel  volume inside the bulk nomex material volume
1112     gMC->Gspos("S09C",1,"S09X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
1113     gMC->Gspos("S10C",1,"S10X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
1114
1115     // position the PCB volume inside the insulating material volume
1116     gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1117     gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1118
1119     // position the horizontal frame volume inside the PCB volume
1120     gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1121     gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1122
1123     // position the sensitive volume inside the horizontal frame volume
1124     gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1125     gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1126
1127     // position the border volumes inside the PCB volume
1128     Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
1129     gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1130     gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1131     gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1132     gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1133
1134     //      // create the NULOC volume and position it in the horizontal frame
1135
1136     gMC->Gsvolu("S09E","BOX",kNulocMaterial,nulocpar,3);
1137     gMC->Gsvolu("S10E","BOX",kNulocMaterial,nulocpar,3);
1138     index = 0;
1139     for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
1140       index++; 
1141       gMC->Gspos("S09E",2*index-1,"S09B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1142       gMC->Gspos("S09E",2*index  ,"S09B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1143       gMC->Gspos("S10E",2*index-1,"S10B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1144       gMC->Gspos("S10E",2*index  ,"S10B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1145     }
1146
1147
1148     // position the volumes approximating the circular section of the pipe
1149     Float_t epsilon = 0.001; 
1150     Int_t ndiv = 10;
1151     Int_t imax = 1; 
1152     Double_t divpar[3];
1153     Double_t dydiv = kSensHeight/ndiv;
1154     Double_t ydiv  = (kSensHeight - dydiv)/2.;
1155     Float_t rmin   = 39.5;
1156     Float_t xdiv   = 0.; 
1157     Float_t xvol;
1158     Float_t yvol; 
1159
1160     for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
1161       ydiv += dydiv;
1162       xdiv = 0.; 
1163       if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
1164       divpar[0] = (kPcbLength - xdiv)/2.; 
1165       divpar[1] = dydiv/2. - epsilon;
1166       divpar[2] = kSensWidth/2.; 
1167       xvol = (kPcbLength + xdiv)/2.;
1168       yvol = ydiv;
1169
1170       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1171         sprintf(idSlatCh9,"LE%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1172         sprintf(idSlatCh10,"LF%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1173
1174         GetEnvelopes(8)->AddEnvelopeConstituentParam("S09G", idSlatCh9, quadrant*100+imax+4*idiv+1,
1175                                                      TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1176         GetEnvelopes(9)->AddEnvelopeConstituentParam("S10G", idSlatCh10,  quadrant*100+imax+4*idiv+1,
1177                                                      TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1178       }
1179     }
1180     // cout << "Geometry for Station 5...... done" << endl;
1181
1182   }
1183 }
1184
1185
1186 //______________________________________________________________________________
1187 void AliMUONSlatGeometryBuilder::SetTransformations()
1188 {
1189 // Defines the transformations for the station2 chambers.
1190 // ---
1191
1192   AliMUONChamber* iChamber1 = &fMUON->Chamber(4);
1193   Double_t zpos1 = - iChamber1->Z(); 
1194   iChamber1->GetGeometry()
1195     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1196
1197   AliMUONChamber* iChamber2 = &fMUON->Chamber(5);
1198   Double_t zpos2 = - iChamber2->Z(); 
1199   iChamber2->GetGeometry()
1200     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1201
1202  iChamber1 = &fMUON->Chamber(6);
1203   zpos1 = - iChamber1->Z(); 
1204   iChamber1->GetGeometry()
1205     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1206
1207   iChamber2 = &fMUON->Chamber(7);
1208   zpos2 = - iChamber2->Z(); 
1209   iChamber2->GetGeometry()
1210     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1211
1212  iChamber1 = &fMUON->Chamber(8);
1213   zpos1 = - iChamber1->Z(); 
1214   iChamber1->GetGeometry()
1215     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1216
1217   iChamber2 = &fMUON->Chamber(9);
1218   zpos2 = - iChamber2->Z(); 
1219   iChamber2->GetGeometry()
1220     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1221
1222 }
1223
1224 //______________________________________________________________________________
1225 void AliMUONSlatGeometryBuilder::SetSensitiveVolumes()
1226 {
1227 // Defines the sensitive volumes for slat stations chambers.
1228 // ---
1229
1230   GetGeometry(4)->SetSensitiveVolume("S05G");
1231   GetGeometry(5)->SetSensitiveVolume("S06G");
1232   GetGeometry(6)->SetSensitiveVolume("S07G");
1233   GetGeometry(7)->SetSensitiveVolume("S08G");
1234   GetGeometry(8)->SetSensitiveVolume("S09G");
1235   GetGeometry(9)->SetSensitiveVolume("S10G");
1236 }
1237
1238 //______________________________________________________________________________
1239 Int_t  AliMUONSlatGeometryBuilder::ConvertSlatNum(Int_t numslat, Int_t quadnum, Int_t fspq) const
1240 {
1241 // On-line function establishing the correspondance between numslat (the slat number on a particular quadrant (numslat->0....4 for St3))
1242 // and slatnum (the slat number on the whole panel (slatnum->1...18 for St3)
1243   numslat += 1;
1244   if (quadnum==2 || quadnum==3) 
1245     numslat += fspq;
1246   else
1247     numslat = fspq + 2-numslat;
1248   numslat -= 1;
1249               
1250   if (quadnum==3 || quadnum==4) numslat += 2*fspq+1;
1251
1252   return numslat;
1253 }