1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 // Authors: David Guez, Ivana Hrivnacova, Marion MacCormick; IPN Orsay
20 // Class AliMUONSt1GeometryBuilderV2
21 // ---------------------------------
22 // MUON Station1 detailed geometry construction class.
23 // (Originally defined in AliMUONv2.cxx - now removed.)
24 // Included in AliRoot 2004/01/23
36 #include <TGeoMatrix.h>
37 #include <TClonesArray.h>
38 #include <Riostream.h>
40 #include <TVirtualMC.h>
42 #include "AliMpFiles.h"
43 #include "AliMpReader.h"
44 #include "AliMpSector.h"
46 #include "AliMpVRowSegment.h"
47 #include "AliMpMotifMap.h"
48 #include "AliMpMotifPosition.h"
54 #include "AliMUONSt1GeometryBuilderV2.h"
55 #include "AliMUONSt1SpecialMotif.h"
57 #include "AliMUONChamber.h"
58 #include "AliMUONGeometryModule.h"
59 #include "AliMUONGeometryEnvelopeStore.h"
61 ClassImp(AliMUONSt1GeometryBuilderV2)
63 // Thickness Constants
64 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzPadPlane=0.0148/2.; //Pad plane
65 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFoam = 2.083/2.; //Foam of mechanicalplane
66 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFR4 = 0.0031/2.; //FR4 of mechanical plane
67 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzSnPb = 0.0091/2.; //Pad/Kapton connection (66 pt)
68 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzKapton = 0.0122/2.; //Kapton
69 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergPlastic = 0.3062/2.;//Berg connector
70 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergCopper = 0.1882/2.; //Berg connector
71 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzDaughter = 0.0156/2.; //Daughter board
72 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzGas = 0.2/2.; //Gas thickness
74 // Quadrant Mother volume - TUBS1 - Middle layer of model
75 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR1 = 18.3;
76 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR1 = 105.673;
77 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick1 = 6.5/2;
78 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL1 = 0.;
79 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU1 = 90.;
81 // Quadrant Mother volume - TUBS2 - near and far layers of model
82 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR2 = 20.7;
83 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR2 = 100.073;
84 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick2 = 3.0/2;
85 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL2 = 0.;
86 const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU2 = 90.;
88 // Sensitive copper pads, foam layer, PCB and electronics model parameters
89 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxHole=1.5/2.;
90 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyHole=6./2.;
91 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergPlastic=0.74/2.;
92 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergPlastic=5.09/2.;
93 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergCopper=0.25/2.;
94 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergCopper=3.6/2.;
95 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxKapton=0.8/2.;
96 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyKapton=5.7/2.;
97 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxDaughter=2.3/2.;
98 const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyDaughter=6.3/2.;
99 const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetX=1.46;
100 const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetY=0.71;
101 const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamX=1.46;
102 const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamY=0.051;
104 const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaQuadLHC=2.6; // LHC Origin wrt Quadrant Origin
105 const GReal_t AliMUONSt1GeometryBuilderV2::fgkFrameOffset=5.0;
107 const char* AliMUONSt1GeometryBuilderV2::fgkHoleName="MCHL";
108 const char* AliMUONSt1GeometryBuilderV2::fgkDaughterName="MCDB";
109 const char AliMUONSt1GeometryBuilderV2::fgkFoamLayerSuffix='F'; // prefix for automatic volume naming
110 const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMLayerName="SQM";
111 const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantNLayerName="SQN";
112 const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantFLayerName="SQF";
114 //______________________________________________________________________________
115 AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2(AliMUON* muon)
116 : AliMUONVGeometryBuilder("st1V2.dat",
117 muon->Chamber(0).GetGeometry(),
118 muon->Chamber(1).GetGeometry()),
121 // set path to mapping data files
122 if (! gSystem->Getenv("MINSTALL")) {
123 TString dirPath = gSystem->Getenv("ALICE_ROOT");
124 dirPath += "/MUON/mapping";
125 AliMpFiles::Instance()->SetTopPath(dirPath);
126 gSystem->Setenv("MINSTALL", dirPath.Data());
127 //cout << "AliMpFiles top path set to " << dirPath << endl;
130 // cout << gSystem->Getenv("MINSTALL") << endl;
133 //______________________________________________________________________________
134 AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2()
135 : AliMUONVGeometryBuilder(),
138 // Default Constructor
142 //______________________________________________________________________________
143 AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2(const AliMUONSt1GeometryBuilderV2& rhs)
144 : AliMUONVGeometryBuilder(rhs)
146 // Dummy copy constructor
148 AliFatal("Copy constructor is not implemented.");
151 //______________________________________________________________________________
152 AliMUONSt1GeometryBuilderV2::~AliMUONSt1GeometryBuilderV2()
158 //______________________________________________________________________________
159 AliMUONSt1GeometryBuilderV2&
160 AliMUONSt1GeometryBuilderV2::operator = (const AliMUONSt1GeometryBuilderV2& rhs)
162 // check assignement to self
163 if (this == &rhs) return *this;
165 AliFatal("Assignment operator is not implemented.");
174 //______________________________________________________________________________
175 void AliMUONSt1GeometryBuilderV2::CreateHole()
177 // Create all the elements found inside a foam hole
179 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
180 Int_t idAir = idtmed[1100]; // medium 1
181 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
182 Int_t idCopper = idtmed[1121]; // medium 22 = copper
185 GReal_t posX,posY,posZ;
190 gMC->Gsvolu(fgkHoleName,"BOX",idAir,par,3);
192 par[0] = fgkHxKapton;
193 par[1] = fgkHyKapton;
195 gMC->Gsvolu("SNPB", "BOX", idCopper, par, 3);
198 posZ = -fgkHzFoam+fgkHzSnPb;
199 gMC->Gspos("SNPB",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
202 par[1] = fgkHyBergPlastic;
203 par[2] = fgkHzKapton;
204 gMC->Gsvolu("KAPT", "BOX", idCopper, par, 3);
208 gMC->Gspos("KAPT",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
211 //______________________________________________________________________________
212 void AliMUONSt1GeometryBuilderV2::CreateDaughterBoard()
214 // Create all the elements in a daughter board
216 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
217 Int_t idAir = idtmed[1100]; // medium 1
218 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
219 //Int_t idPlastic =idtmed[1116]; // medium 17 = Plastic
220 Int_t idCopper = idtmed[1121]; // medium 22 = copper
221 Int_t idPlastic =idtmed[1127]; // medium 28 = Plastic
224 GReal_t posX,posY,posZ;
226 par[0]=fgkHxDaughter;
227 par[1]=fgkHyDaughter;
228 par[2]=TotalHzDaughter();
229 gMC->Gsvolu(fgkDaughterName,"BOX",idAir,par,3);
231 par[0]=fgkHxBergPlastic;
232 par[1]=fgkHyBergPlastic;
233 par[2]=fgkHzBergPlastic;
234 gMC->Gsvolu("BRGP","BOX",idPlastic,par,3);
237 posZ = -TotalHzDaughter() + fgkHzBergPlastic;
238 gMC->Gspos("BRGP",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
240 par[0]=fgkHxBergCopper;
241 par[1]=fgkHyBergCopper;
242 par[2]=fgkHzBergCopper;
243 gMC->Gsvolu("BRGC","BOX",idCopper,par,3);
247 gMC->Gspos("BRGC",1,"BRGP",posX,posY,posZ,0,"ONLY");
249 par[0]=fgkHxDaughter;
250 par[1]=fgkHyDaughter;
251 par[2]=fgkHzDaughter;
252 gMC->Gsvolu("DGHT","BOX",idCopper,par,3);
255 posZ = -TotalHzDaughter() + 2.*fgkHzBergPlastic + fgkHzDaughter;
256 gMC->Gspos("DGHT",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
259 //______________________________________________________________________________
260 void AliMUONSt1GeometryBuilderV2::CreateInnerLayers()
262 // Create the layer of sensitive volumes with gas
263 // and the copper layer.
267 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
268 //Int_t idArCO2 = idtmed[1108]; // medium 9 (ArCO2 80%)
269 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
270 Int_t idArCO2 = idtmed[1124]; // medium 25 (ArCO2 80%)
271 Int_t idCopper = idtmed[1121]; // medium 22 = copper
275 //Make gas volume - composed of 11 trapezoids
289 gMC->Gsvolu("SA1G", "TRAP", idArCO2, par, 11);
290 gMC->Gsvolu("SA2G", "TRAP", idArCO2, par, 11);
292 par[0] = fgkHzPadPlane;
293 gMC->Gsvolu("SA1C", "TRAP", idCopper,par, 11);
307 gMC->Gsvolu("SB1G", "TRAP", idArCO2, par, 11);
308 gMC->Gsvolu("SB2G", "TRAP", idArCO2, par, 11);
310 par[0] = fgkHzPadPlane;
311 gMC->Gsvolu("SB1C", "TRAP", idCopper,par, 11);
326 gMC->Gsvolu("SC1G", "TRAP", idArCO2, par, 11);
327 gMC->Gsvolu("SC2G", "TRAP", idArCO2, par, 11);
329 par[0] = fgkHzPadPlane;
330 gMC->Gsvolu("SC1C", "TRAP", idCopper,par, 11);
344 gMC->Gsvolu("SD1G", "TRAP", idArCO2, par, 11);
345 gMC->Gsvolu("SD2G", "TRAP", idArCO2, par, 11);
347 par[0] = fgkHzPadPlane;
348 gMC->Gsvolu("SD1C", "TRAP", idCopper,par, 11);
362 gMC->Gsvolu("SE1G", "TRAP", idArCO2, par, 11);
363 gMC->Gsvolu("SE2G", "TRAP", idArCO2, par, 11);
365 par[0] = fgkHzPadPlane;
366 gMC->Gsvolu("SE1C", "TRAP", idCopper,par, 11);
380 gMC->Gsvolu("SF1G", "TRAP", idArCO2, par, 11);
381 gMC->Gsvolu("SF2G", "TRAP", idArCO2, par, 11);
383 par[0] = fgkHzPadPlane;
384 gMC->Gsvolu("SF1C", "TRAP", idCopper,par, 11);
398 gMC->Gsvolu("SG1G", "TRAP", idArCO2, par, 11);
399 gMC->Gsvolu("SG2G", "TRAP", idArCO2, par, 11);
401 par[0] = fgkHzPadPlane;
402 gMC->Gsvolu("SG1C", "TRAP", idCopper,par, 11);
416 gMC->Gsvolu("SH1G", "TRAP", idArCO2, par, 11);
417 gMC->Gsvolu("SH2G", "TRAP", idArCO2, par, 11);
419 par[0] = fgkHzPadPlane;
420 gMC->Gsvolu("SH1C", "TRAP", idCopper,par, 11);
434 gMC->Gsvolu("SI1G", "TRAP", idArCO2, par, 11);
435 gMC->Gsvolu("SI2G", "TRAP", idArCO2, par, 11);
437 par[0] = fgkHzPadPlane;
438 gMC->Gsvolu("SI1C", "TRAP", idCopper,par, 11);
452 gMC->Gsvolu("SJ1G", "TRAP", idArCO2, par, 11);
453 gMC->Gsvolu("SJ2G", "TRAP", idArCO2, par, 11);
455 par[0] = fgkHzPadPlane;
456 gMC->Gsvolu("SJ1C", "TRAP", idCopper,par, 11);
470 gMC->Gsvolu("SK1G", "TRAP", idArCO2, par, 11);
471 gMC->Gsvolu("SK2G", "TRAP", idArCO2, par, 11);
473 par[0] = fgkHzPadPlane;
474 gMC->Gsvolu("SK1C", "TRAP", idCopper,par, 11);
477 //______________________________________________________________________________
478 void AliMUONSt1GeometryBuilderV2::CreateQuadrant(Int_t chamber)
480 // create the quadrant (bending and non-bending planes)
481 // for the given chamber
484 CreateFrame(chamber);
487 SpecialMap specialMap;
488 specialMap[1001] = AliMUONSt1SpecialMotif(TVector2( 0.1, 0.84), 90.);
489 specialMap[1002] = AliMUONSt1SpecialMotif(TVector2( 0.5, 0.36));
490 specialMap[1003] = AliMUONSt1SpecialMotif(TVector2(1.01, 0.36));
494 SpecialMap specialMap;
495 specialMap.Add(1001, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.1, 0.84), 90.));
496 specialMap.Add(1002, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.5, 0.36)));
497 specialMap.Add(1003, (Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01, 0.36)));
500 AliMpReader reader1(kStation1, kBendingPlane);
501 AliMpSector* sector1 = reader1.BuildSector();
503 Bool_t reflectZ = true;
504 TVector3 where = TVector3(2.5+0.1+0.56+0.001, 2.5+0.1+0.001, 0.);
505 PlaceSector(sector1, specialMap, where, reflectZ, chamber);
509 specialMap[4001] = AliMUONSt1SpecialMotif(TVector2(1.01,0.59),90.);
510 specialMap[4002] = AliMUONSt1SpecialMotif(TVector2(1.96, 0.17));
511 specialMap[4003] = AliMUONSt1SpecialMotif(TVector2(1.61,-1.18));
512 specialMap[4004] = AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08));
513 specialMap[4005] = AliMUONSt1SpecialMotif(TVector2(0.2 , 0.25));
514 specialMap[4006] = AliMUONSt1SpecialMotif(TVector2(0.28, 0.21));
519 specialMap.Add(4001,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01,0.59),90.));
520 specialMap.Add(4002,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.96, 0.17)));
521 specialMap.Add(4003,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.61,-1.18)));
522 specialMap.Add(4004,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08)));
523 specialMap.Add(4005,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.2 , 0.25)));
524 specialMap.Add(4006,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.28, 0.21)));
527 AliMpReader reader2(kStation1, kNonBendingPlane);
528 AliMpSector* sector2 = reader2.BuildSector();
531 where = TVector3(where.X()+0.63/2.,where.Y()+0.42/2., 0.); //add a half pad shift
532 PlaceSector(sector2, specialMap, where, reflectZ, chamber);
539 //______________________________________________________________________________
540 void AliMUONSt1GeometryBuilderV2::CreateFoamBox(const char* name,const TVector2& dimensions)
542 // create all the elements in the copper plane
545 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
546 Int_t idAir = idtmed[1100]; // medium 1
547 //Int_t idFoam = idtmed[1115]; // medium 16 = Foam
548 //Int_t idFR4 = idtmed[1114]; // medium 15 = FR4
549 Int_t idFoam = idtmed[1125]; // medium 26 = Foam
550 Int_t idFR4 = idtmed[1122]; // medium 23 = FR4
554 par[0] = dimensions.X();
555 par[1] = dimensions.Y();
556 par[2] = TotalHzPlane();
557 gMC->Gsvolu(name,"BOX",idAir,par,3);
560 GReal_t posX,posY,posZ;
563 eName[3]=fgkFoamLayerSuffix;
564 par[0] = dimensions.X();
565 par[1] = dimensions.Y();
567 gMC->Gsvolu(eName,"BOX",idFoam,par,3);
570 posZ = -TotalHzPlane() + fgkHzFoam;
571 gMC->Gspos(eName,1,name,posX,posY,posZ,0,"ONLY");
573 // mechanical plane FR4 layer
575 par[0] = dimensions.X();
576 par[1] = dimensions.Y();
578 gMC->Gsvolu(eName,"BOX",idFR4,par,3);
581 posZ = -TotalHzPlane()+ 2.*fgkHzFoam + fgkHzFR4;
582 gMC->Gspos(eName,1,name,posX,posY,posZ,0,"ONLY");
585 //______________________________________________________________________________
586 void AliMUONSt1GeometryBuilderV2::CreatePlaneSegment(const char* name,const TVector2& dimensions,
589 // Create a segment of a plane (this includes a foam layer,
590 // holes in the foam to feed the kaptons through, kapton connectors
591 // and the mother board.)
594 CreateFoamBox(name,dimensions);
598 eName[3]=fgkFoamLayerSuffix;
600 for (Int_t holeNum=0;holeNum<nofHoles;holeNum++) {
601 GReal_t posX = ((2.*holeNum+1.)/nofHoles-1.)*dimensions.X();
605 gMC->Gspos(fgkHoleName,holeNum+1,eName,posX,posY,posZ,0,"ONLY");
609 //______________________________________________________________________________
610 void AliMUONSt1GeometryBuilderV2::CreateFrame(Int_t chamber)
612 // Create the non-sensitive elements of the frame for the <chamber>
615 // Model and notation:
617 // The Quadrant volume name starts with SQ
618 // The volume segments are numbered 00 to XX.
624 // (SQ17-24) / | InVFrame (SQ00-01)
628 // (SQ25-39) | | InArcFrame (SQ42-45)
631 // InHFrame (SQ40-41)
634 // 06 February 2003 - Overlapping volumes resolved.
635 // One quarter chamber is comprised of three TUBS volumes: SQMx, SQNx, and SQFx,
636 // where SQMx is the Quadrant Middle layer for chamber <x> ( posZ in [-3.25,3.25]),
637 // SQNx is the Quadrant Near side layer for chamber <x> ( posZ in [-6.25,3-.25) ), and
638 // SQFx is the Quadrant Far side layer for chamber <x> ( posZ in (3.25,6.25] ).
641 const Float_t kNearFarLHC=2.4; // Near and Far TUBS Origin wrt LHC Origin
644 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
646 Int_t idAir = idtmed[1100]; // medium 1
647 //Int_t idFrameEpoxy = idtmed[1115]; // medium 16 = Frame Epoxy ME730
648 //Int_t idInox = idtmed[1116]; // medium 17 Stainless Steel (18%Cr,9%Ni,Fe)
649 //Int_t idFR4 = idtmed[1110]; // medium 11 FR4
650 //Int_t idCopper = idtmed[1109]; // medium 10 Copper
651 //Int_t idAlu = idtmed[1103]; // medium 4 Aluminium
652 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
653 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
654 Int_t idFR4 = idtmed[1122]; // medium 23 FR4 // was 15 not 11
655 Int_t idCopper = idtmed[1121]; // medium 22 Copper
656 Int_t idAlu = idtmed[1120]; // medium 21 Aluminium
660 Int_t rot1, rot2, rot3;
663 fMUON->AliMatrix(rot1, 90., 90., 90., 180., 0., 0.); // +90 deg in x-y plane
664 fMUON->AliMatrix(rot2, 90., 45., 90., 135., 0., 0.); // +45 deg in x-y plane
665 fMUON->AliMatrix(rot3, 90., 45., 90., 315.,180., 0.); // +45 deg in x-y + rotation 180° around y
667 // Translation matrices ... NOT USED
668 // fMUON->AliMatrix(trans1, 90., 0., 90., 90., 0., 0.); // X-> X; Y -> Y; Z -> Z
669 // fMUON->AliMatrix(trans2, 90., 180., 90., 90., 180., 0.); // X->-X; Y -> Y; Z ->-Z
670 // fMUON->AliMatrix(trans3, 90., 180., 90., 270., 0., 0.); // X->-X; Y ->-Y; Z -> Z
671 // fMUON->AliMatrix(trans4, 90., 0., 90., 270., 180., 0.); // X-> X; Y ->-Y; Z ->-Z
673 // ___________________Volume thicknesses________________________
675 const Float_t kHzFrameThickness = 1.59/2.; //equivalent thickness
676 const Float_t kHzOuterFrameEpoxy = 1.19/2.; //equivalent thickness
677 const Float_t kHzOuterFrameInox = 0.1/2.; //equivalent thickness
678 const Float_t kHzFoam = 2.083/2.; //evaluated elsewhere
679 // CHECK with fgkHzFoam
681 // Pertaining to the top outer area
682 const Float_t kHzTopAnodeSteel1 = 0.185/2.; //equivalent thickness
683 const Float_t kHzTopAnodeSteel2 = 0.51/2.; //equivalent thickness
684 const Float_t kHzAnodeFR4 = 0.08/2.; //equivalent thickness
685 const Float_t kHzTopEarthFaceCu = 0.364/2.; //equivalent thickness
686 const Float_t kHzTopEarthProfileCu = 1.1/2.; //equivalent thickness
687 const Float_t kHzTopPositionerSteel = 1.45/2.; //should really be 2.125/2.;
688 const Float_t kHzTopGasSupportAl = 0.85/2.; //equivalent thickness
690 // Pertaining to the vertical outer area
691 const Float_t kHzVerticalCradleAl = 0.8/2.; //equivalent thickness
692 const Float_t kHzLateralSightAl = 0.975/2.; //equivalent thickness
693 const Float_t kHzLateralPosnInoxFace = 2.125/2.;//equivalent thickness
694 const Float_t kHzLatPosInoxProfM = 6.4/2.; //equivalent thickness
695 const Float_t kHzLatPosInoxProfNF = 1.45/2.; //equivalent thickness
696 const Float_t kHzLateralPosnAl = 0.5/2.; //equivalent thickness
697 const Float_t kHzVertEarthFaceCu = 0.367/2.; //equivalent thickness
698 const Float_t kHzVertBarSteel = 0.198/2.; //equivalent thickness
699 const Float_t kHzVertEarthProfCu = 1.1/2.; //equivalent thickness
701 //_______________Parameter definitions in sequence _________
703 // InVFrame parameters
704 const Float_t kHxInVFrame = 1.85/2.;
705 const Float_t kHyInVFrame = 73.95/2.;
706 const Float_t kHzInVFrame = kHzFrameThickness;
708 //Flat 7.5mm vertical section
709 const Float_t kHxV1mm = 0.75/2.;
710 const Float_t kHyV1mm = 1.85/2.;
711 const Float_t kHzV1mm = kHzFrameThickness;
713 // OuterTopFrame Structure
716 // The frame is composed of a cuboid and two trapezoids
717 // (TopFrameAnode, TopFrameAnodeA, TopFrameAnodeB).
718 // Each shape is composed of two layers (Epoxy and Inox) and
719 // takes the frame's inner anode circuitry into account in the material budget.
722 // The overhanging anode part is composed froma cuboid and two trapezoids
723 // (TopAnode, TopAnode1, and TopAnode2). These surfaces neglect implanted
724 // resistors, but accounts for the major Cu, Pb/Sn, and FR4 material
726 // The stainless steel anode supports have been included.
728 // EARTHING (TopEarthFace, TopEarthProfile)
729 // Al GAS SUPPORT (TopGasSupport)
731 // ALIGNMENT (TopPositioner) - Alignment system, three sights per quarter
732 // chamber. This sight is forseen for the alignment of the horizontal level
733 // (parallel to the OY axis of LHC). Its position will be evaluated relative
734 // to a system of sights places on the cradles;
738 //TopFrameAnode parameters - cuboid, 2 layers
739 const Float_t kHxTFA = 34.1433/2.;
740 const Float_t kHyTFA = 7.75/2.;
741 const Float_t kHzTFAE = kHzOuterFrameEpoxy; // layer 1 thickness
742 const Float_t kHzTFAI = kHzOuterFrameInox; // layer 3 thickness
744 // TopFrameAnodeA parameters - trapezoid, 2 layers
745 const Float_t kHzFAAE = kHzOuterFrameEpoxy; // layer 1 thickness
746 const Float_t kHzFAAI = kHzOuterFrameInox; // layer 3 thickness
747 const Float_t kTetFAA = 0.;
748 const Float_t kPhiFAA = 0.;
749 const Float_t kH1FAA = 8.7/2.;
750 const Float_t kBl1FAA = 4.35/2.;
751 const Float_t kTl1FAA = 7.75/2.;
752 const Float_t kAlp1FAA = 11.06;
753 const Float_t kH2FAA = 8.7/2.;
754 const Float_t kBl2FAA = 4.35/2.;
755 const Float_t kTl2FAA = 7.75/2.;
756 const Float_t kAlp2FAA = 11.06;
758 // TopFrameAnodeB parameters - trapezoid, 2 layers
759 const Float_t kHzFABE = kHzOuterFrameEpoxy; // layer 1 thickness
760 const Float_t kHzFABI = kHzOuterFrameInox; // layer 3 thickness
761 const Float_t kTetFAB = 0.;
762 const Float_t kPhiFAB = 0.;
763 const Float_t kH1FAB = 8.70/2.;
764 const Float_t kBl1FAB = 0.;
765 const Float_t kTl1FAB = 4.35/2.;
766 const Float_t kAlp1FAB = 14.03;
767 const Float_t kH2FAB = 8.70/2.;
768 const Float_t kBl2FAB = 0.;
769 const Float_t kTl2FAB = 4.35/2.;
770 const Float_t kAlp2FAB = 14.03;
772 // TopAnode parameters - cuboid (part 1 of 3 parts)
773 const Float_t kHxTA1 = 16.2/2.;
774 const Float_t kHyTA1 = 3.5/2.;
775 const Float_t kHzTA11 = kHzTopAnodeSteel1; // layer 1
776 const Float_t kHzTA12 = kHzAnodeFR4; // layer 2
778 // TopAnode parameters - trapezoid 1 (part 2 of 3 parts)
779 const Float_t kHzTA21 = kHzTopAnodeSteel2; // layer 1
780 const Float_t kHzTA22 = kHzAnodeFR4; // layer 2
781 const Float_t kTetTA2 = 0.;
782 const Float_t kPhiTA2= 0.;
783 const Float_t kH1TA2 = 7.268/2.;
784 const Float_t kBl1TA2 = 2.03/2.;
785 const Float_t kTl1TA2 = 3.5/2.;
786 const Float_t kAlp1TA2 = 5.78;
787 const Float_t kH2TA2 = 7.268/2.;
788 const Float_t kBl2TA2 = 2.03/2.;
789 const Float_t kTl2TA2 = 3.5/2.;
790 const Float_t kAlp2TA2 = 5.78;
792 // TopAnode parameters - trapezoid 2 (part 3 of 3 parts)
793 const Float_t kHzTA3 = kHzAnodeFR4; // layer 1
794 const Float_t kTetTA3 = 0.;
795 const Float_t kPhiTA3 = 0.;
796 const Float_t kH1TA3 = 7.268/2.;
797 const Float_t kBl1TA3 = 0.;
798 const Float_t kTl1TA3 = 2.03/2.;
799 const Float_t kAlp1TA3 = 7.95;
800 const Float_t kH2TA3 = 7.268/2.;
801 const Float_t kBl2TA3 = 0.;
802 const Float_t kTl2TA3 = 2.03/2.;
803 const Float_t kAlp2TA3 = 7.95;
805 // TopEarthFace parameters - single trapezoid
806 const Float_t kHzTEF = kHzTopEarthFaceCu;
807 const Float_t kTetTEF = 0.;
808 const Float_t kPhiTEF = 0.;
809 const Float_t kH1TEF = 1.200/2.;
810 const Float_t kBl1TEF = 21.323/2.;
811 const Float_t kTl1TEF = 17.963/2.;
812 const Float_t kAlp1TEF = -54.46;
813 const Float_t kH2TEF = 1.200/2.;
814 const Float_t kBl2TEF = 21.323/2.;
815 const Float_t kTl2TEF = 17.963/2.;
816 const Float_t kAlp2TEF = -54.46;
818 // TopEarthProfile parameters - single trapezoid
819 const Float_t kHzTEP = kHzTopEarthProfileCu;
820 const Float_t kTetTEP = 0.;
821 const Float_t kPhiTEP = 0.;
822 const Float_t kH1TEP = 0.40/2.;
823 const Float_t kBl1TEP = 31.766/2.;
824 const Float_t kTl1TEP = 30.535/2.;
825 const Float_t kAlp1TEP = -56.98;
826 const Float_t kH2TEP = 0.40/2.;
827 const Float_t kBl2TEP = 31.766/2.;
828 const Float_t kTl2TEP = 30.535/2.;
829 const Float_t kAlp2TEP = -56.98;
831 // TopPositioner parameters - single Stainless Steel trapezoid
832 const Float_t kHzTP = kHzTopPositionerSteel;
833 const Float_t kTetTP = 0.;
834 const Float_t kPhiTP = 0.;
835 const Float_t kH1TP = 3.00/2.;
836 const Float_t kBl1TP = 7.023/2.;
837 const Float_t kTl1TP = 7.314/2.;
838 const Float_t kAlp1TP = 2.78;
839 const Float_t kH2TP = 3.00/2.;
840 const Float_t kBl2TP = 7.023/2.;
841 const Float_t kTl2TP = 7.314/2.;
842 const Float_t kAlp2TP = 2.78;
844 // TopGasSupport parameters - single cuboid
845 const Float_t kHxTGS = 8.50/2.;
846 const Float_t kHyTGS = 3.00/2.;
847 const Float_t kHzTGS = kHzTopGasSupportAl;
849 // OutEdgeFrame parameters - 4 trapezoidal sections, 2 layers of material
854 const Float_t kHzOETFE = kHzOuterFrameEpoxy; // layer 1
855 const Float_t kHzOETFI = kHzOuterFrameInox; // layer 3
857 const Float_t kTetOETF = 0.; // common to all 4 trapezoids
858 const Float_t kPhiOETF = 0.; // common to all 4 trapezoids
860 const Float_t kH1OETF = 7.196/2.; // common to all 4 trapezoids
861 const Float_t kH2OETF = 7.196/2.; // common to all 4 trapezoids
863 const Float_t kBl1OETF1 = 3.75/2;
864 const Float_t kTl1OETF1 = 3.996/2.;
865 const Float_t kAlp1OETF1 = 0.98;
867 const Float_t kBl2OETF1 = 3.75/2;
868 const Float_t kTl2OETF1 = 3.996/2.;
869 const Float_t kAlp2OETF1 = 0.98;
872 const Float_t kBl1OETF2 = 3.01/2.;
873 const Float_t kTl1OETF2 = 3.75/2;
874 const Float_t kAlp1OETF2 = 2.94;
876 const Float_t kBl2OETF2 = 3.01/2.;
877 const Float_t kTl2OETF2 = 3.75/2;
878 const Float_t kAlp2OETF2 = 2.94;
881 const Float_t kBl1OETF3 = 1.767/2.;
882 const Float_t kTl1OETF3 = 3.01/2.;
883 const Float_t kAlp1OETF3 = 4.94;
885 const Float_t kBl2OETF3 = 1.767/2.;
886 const Float_t kTl2OETF3 = 3.01/2.;
887 const Float_t kAlp2OETF3 = 4.94;
890 const Float_t kBl1OETF4 = 0.;
891 const Float_t kTl1OETF4 = 1.77/2.;
892 const Float_t kAlp1OETF4 = 7.01;
894 const Float_t kBl2OETF4 = 0.;
895 const Float_t kTl2OETF4 = 1.77/2.;
896 const Float_t kAlp2OETF4 = 7.01;
898 // Frame Structure (OutVFrame):
900 // OutVFrame and corner (OutVFrame cuboid, OutVFrame trapezoid)
901 // EARTHING (VertEarthFaceCu,VertEarthSteel,VertEarthProfCu),
902 // DETECTOR POSITIONNING (SuppLateralPositionner, LateralPositionner),
903 // CRADLE (VertCradle), and
904 // ALIGNMENT (LateralSightSupport, LateralSight)
908 // OutVFrame parameters - cuboid
909 const Float_t kHxOutVFrame = 1.85/2.;
910 const Float_t kHyOutVFrame = 46.23/2.;
911 const Float_t kHzOutVFrame = kHzFrameThickness;
913 // OutVFrame corner parameters - trapezoid
914 const Float_t kHzOCTF = kHzFrameThickness;
915 const Float_t kTetOCTF = 0.;
916 const Float_t kPhiOCTF = 0.;
917 const Float_t kH1OCTF = 1.85/2.;
918 const Float_t kBl1OCTF = 0.;
919 const Float_t kTl1OCTF = 3.66/2.;
920 const Float_t kAlp1OCTF = 44.67;
921 const Float_t kH2OCTF = 1.85/2.;
922 const Float_t kBl2OCTF = 0.;
923 const Float_t kTl2OCTF = 3.66/2.;
924 const Float_t kAlp2OCTF = 44.67;
926 // VertEarthFaceCu parameters - single trapezoid
927 const Float_t kHzVFC = kHzVertEarthFaceCu;
928 const Float_t kTetVFC = 0.;
929 const Float_t kPhiVFC = 0.;
930 const Float_t kH1VFC = 1.200/2.;
931 const Float_t kBl1VFC = 46.11/2.;
932 const Float_t kTl1VFC = 48.236/2.;
933 const Float_t kAlp1VFC = 41.54;
934 const Float_t kH2VFC = 1.200/2.;
935 const Float_t kBl2VFC = 46.11/2.;
936 const Float_t kTl2VFC = 48.236/2.;
937 const Float_t kAlp2VFC = 41.54;
939 // VertEarthSteel parameters - single trapezoid
940 const Float_t kHzVES = kHzVertBarSteel;
941 const Float_t kTetVES = 0.;
942 const Float_t kPhiVES = 0.;
943 const Float_t kH1VES = 1.200/2.;
944 const Float_t kBl1VES = 30.486/2.;
945 const Float_t kTl1VES = 32.777/2.;
946 const Float_t kAlp1VES = 43.67;
947 const Float_t kH2VES = 1.200/2.;
948 const Float_t kBl2VES = 30.486/2.;
949 const Float_t kTl2VES = 32.777/2.;
950 const Float_t kAlp2VES = 43.67;
952 // VertEarthProfCu parameters - single trapezoid
953 const Float_t kHzVPC = kHzVertEarthProfCu;
954 const Float_t kTetVPC = 0.;
955 const Float_t kPhiVPC = 0.;
956 const Float_t kH1VPC = 0.400/2.;
957 const Float_t kBl1VPC = 29.287/2.;
958 const Float_t kTl1VPC = 30.091/2.;
959 const Float_t kAlp1VPC = 45.14;
960 const Float_t kH2VPC = 0.400/2.;
961 const Float_t kBl2VPC = 29.287/2.;
962 const Float_t kTl2VPC = 30.091/2.;
963 const Float_t kAlp2VPC = 45.14;
965 // SuppLateralPositionner - single cuboid
966 const Float_t kHxSLP = 2.80/2.;
967 const Float_t kHySLP = 5.00/2.;
968 const Float_t kHzSLP = kHzLateralPosnAl;
970 // LateralPositionner - squared off U bend, face view
971 const Float_t kHxLPF = 5.2/2.;
972 const Float_t kHyLPF = 3.0/2.;
973 const Float_t kHzLPF = kHzLateralPosnInoxFace;
975 // LateralPositionner - squared off U bend, profile view
976 const Float_t kHxLPP = 0.425/2.;
977 const Float_t kHyLPP = 3.0/2.;
978 const Float_t kHzLPP = kHzLatPosInoxProfM; // middle layer
979 const Float_t kHzLPNF = kHzLatPosInoxProfNF; // near and far layers
981 // VertCradle, 3 layers (copies), each composed of 4 trapezoids
983 const Float_t kHzVC1 = kHzVerticalCradleAl;
984 const Float_t kTetVC1 = 0.;
985 const Float_t kPhiVC1 = 0.;
986 const Float_t kH1VC1 = 10.25/2.;
987 const Float_t kBl1VC1 = 3.70/2.;
988 const Float_t kTl1VC1 = 0.;
989 const Float_t kAlp1VC1 = -10.23;
990 const Float_t kH2VC1 = 10.25/2.;
991 const Float_t kBl2VC1 = 3.70/2.;
992 const Float_t kTl2VC1 = 0.;
993 const Float_t kAlp2VC1 = -10.23;
996 const Float_t kHzVC2 = kHzVerticalCradleAl;
997 const Float_t kTetVC2 = 0.;
998 const Float_t kPhiVC2 = 0.;
999 const Float_t kH1VC2 = 10.25/2.;
1000 const Float_t kBl1VC2 = 6.266/2.;
1001 const Float_t kTl1VC2 = 3.70/2.;
1002 const Float_t kAlp1VC2 = -7.13;
1003 const Float_t kH2VC2 = 10.25/2.;
1004 const Float_t kBl2VC2 = 6.266/2.;
1005 const Float_t kTl2VC2 = 3.70/2.;
1006 const Float_t kAlp2VC2 = -7.13;
1009 const Float_t kHzVC3 = kHzVerticalCradleAl;
1010 const Float_t kTetVC3 = 0.;
1011 const Float_t kPhiVC3 = 0.;
1012 const Float_t kH1VC3 = 10.25/2.;
1013 const Float_t kBl1VC3 = 7.75/2.;
1014 const Float_t kTl1VC3 = 6.266/2.;
1015 const Float_t kAlp1VC3 = -4.14;
1016 const Float_t kH2VC3 = 10.25/2.;
1017 const Float_t kBl2VC3 = 7.75/2.;
1018 const Float_t kTl2VC3 = 6.266/2.;
1019 const Float_t kAlp2VC3 = -4.14;
1022 const Float_t kHzVC4 = kHzVerticalCradleAl;
1023 const Float_t kTetVC4 = 0.;
1024 const Float_t kPhiVC4 = 0.;
1025 const Float_t kH1VC4 = 10.27/2.;
1026 const Float_t kBl1VC4 = 8.273/2.;
1027 const Float_t kTl1VC4 = 7.75/2.;
1028 const Float_t kAlp1VC4 = -1.46;
1029 const Float_t kH2VC4 = 10.27/2.;
1030 const Float_t kBl2VC4 = 8.273/2.;
1031 const Float_t kTl2VC4 = 7.75/2.;
1032 const Float_t kAlp2VC4 = -1.46;
1034 // LateralSightSupport - single trapezoid
1035 const Float_t kHzVSS = kHzLateralSightAl;
1036 const Float_t kTetVSS = 0.;
1037 const Float_t kPhiVSS = 0.;
1038 const Float_t kH1VSS = 5.00/2.;
1039 const Float_t kBl1VSS = 7.747/2;
1040 const Float_t kTl1VSS = 7.188/2.;
1041 const Float_t kAlp1VSS = -3.20;
1042 const Float_t kH2VSS = 5.00/2.;
1043 const Float_t kBl2VSS = 7.747/2.;
1044 const Float_t kTl2VSS = 7.188/2.;
1045 const Float_t kAlp2VSS = -3.20;
1047 // LateralSight (reference point) - 3 per quadrant, only 1 programmed for now
1048 const Float_t kVSInRad = 0.6;
1049 const Float_t kVSOutRad = 1.3;
1050 const Float_t kVSLen = kHzFrameThickness;
1054 // InHFrame parameters
1055 const Float_t kHxInHFrame = 75.8/2.;
1056 const Float_t kHyInHFrame = 1.85/2.;
1057 const Float_t kHzInHFrame = kHzFrameThickness;
1059 //Flat 7.5mm horizontal section
1060 const Float_t kHxH1mm = 1.85/2.;
1061 const Float_t kHyH1mm = 0.75/2.;
1062 const Float_t kHzH1mm = kHzFrameThickness;
1066 // InArcFrame parameters
1067 const Float_t kIAF = 15.70;
1068 const Float_t kOAF = 17.55;
1069 const Float_t kHzAF = kHzFrameThickness;
1070 const Float_t kAFphi1 = 0.0;
1071 const Float_t kAFphi2 = 90.0;
1075 // ScrewsInFrame parameters HEAD
1076 const Float_t kSCRUHMI = 0.;
1077 const Float_t kSCRUHMA = 0.690/2.;
1078 const Float_t kSCRUHLE = 0.4/2.;
1079 // ScrewsInFrame parameters MIDDLE
1080 const Float_t kSCRUMMI = 0.;
1081 const Float_t kSCRUMMA = 0.39/2.;
1082 const Float_t kSCRUMLE = kHzFrameThickness;
1083 // ScrewsInFrame parameters NUT
1084 const Float_t kSCRUNMI = 0.;
1085 const Float_t kSCRUNMA = 0.78/2.;
1086 const Float_t kSCRUNLE = 0.8/2.;
1088 // ___________________Make volumes________________________
1091 Float_t posX,posY,posZ;
1093 // Quadrant volume TUBS1, positioned at the end
1094 par[0] = fgkMotherIR1;
1095 par[1] = fgkMotherOR1;
1096 par[2] = fgkMotherThick1;
1097 par[3] = fgkMotherPhiL1;
1098 par[4] = fgkMotherPhiU1;
1099 gMC->Gsvolu(QuadrantMLayerName(chamber),"TUBS",idAir,par,5);
1101 // Quadrant volume TUBS2, positioned at the end
1102 par[0] = fgkMotherIR2;
1103 par[1] = fgkMotherOR2;
1104 par[2] = fgkMotherThick2;
1105 par[3] = fgkMotherPhiL2;
1106 par[4] = fgkMotherPhiU2;
1108 gMC->Gsvolu(QuadrantNLayerName(chamber),"TUBS",idAir,par,5);
1109 gMC->Gsvolu(QuadrantFLayerName(chamber),"TUBS",idAir,par,5);
1113 par[0] = kHxInVFrame;
1114 par[1] = kHyInVFrame;
1115 par[2] = kHzInVFrame;
1116 gMC->Gsvolu("SQ00","BOX",idFrameEpoxy,par,3);
1118 //Flat 1mm vertical section
1122 gMC->Gsvolu("SQ01","BOX",idFrameEpoxy,par,3);
1126 // - 3 components (a cuboid and 2 trapezes) and 2 layers (Epoxy/Inox)
1130 // TopFrameAnode - layer 1 of 2
1134 gMC->Gsvolu("SQ02","BOX",idFrameEpoxy,par,3);
1136 // TopFrameAnode - layer 2 of 2
1138 gMC->Gsvolu("SQ03","BOX",idInox,par,3);
1140 // TopFrameAnodeA - layer 1 of 2
1152 gMC->Gsvolu("SQ04","TRAP",idFrameEpoxy,par,11);
1154 // TopFrameAnodeA - layer 2 of 2
1156 gMC->Gsvolu("SQ05","TRAP",idInox,par,11);
1158 // TopFrameAnodeB - layer 1 of 2
1170 gMC->Gsvolu("SQ06","TRAP",idFrameEpoxy,par,11);
1172 // OutTopTrapFrameB - layer 2 of 2
1174 gMC->Gsvolu("SQ07","TRAP",idInox,par,11);
1176 // TopAnode1 - layer 1 of 2
1180 gMC->Gsvolu("SQ08","BOX",idInox,par,3);
1182 // TopAnode1 - layer 2 of 2
1184 gMC->Gsvolu("SQ09","BOX",idFR4,par,11);
1186 // TopAnode2 - layer 1 of 2
1198 gMC->Gsvolu("SQ10","TRAP",idInox,par,11);
1200 // TopAnode2 - layer 2 of 2
1202 gMC->Gsvolu("SQ11","TRAP",idFR4,par,11);
1204 // TopAnode3 - layer 1 of 1
1216 gMC->Gsvolu("SQ12","TRAP",idFR4,par,11);
1230 gMC->Gsvolu("SQ13","TRAP",idCopper,par,11);
1244 gMC->Gsvolu("SQ14","TRAP",idCopper,par,11);
1250 gMC->Gsvolu("SQ15","BOX",idAlu,par,3);
1252 // TopPositioner parameters - single Stainless Steel trapezoid
1264 gMC->Gsvolu("SQ16","TRAP",idInox,par,11);
1267 // OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
1270 // Trapezoid 1 - 2 layers
1276 par[6] = kAlp1OETF1;
1280 par[10] = kAlp2OETF1;
1283 gMC->Gsvolu("SQ17","TRAP",idFrameEpoxy,par,11);
1285 gMC->Gsvolu("SQ18","TRAP",idInox,par,11);
1287 // Trapezoid 2 - 2 layers
1290 par[6] = kAlp1OETF2;
1294 par[10] = kAlp2OETF2;
1297 gMC->Gsvolu("SQ19","TRAP",idFrameEpoxy,par,11);
1299 gMC->Gsvolu("SQ20","TRAP",idInox,par,11);
1301 // Trapezoid 3 - 2 layers
1304 par[6] = kAlp1OETF3;
1308 par[10] = kAlp2OETF3;
1311 gMC->Gsvolu("SQ21","TRAP",idFrameEpoxy,par,11);
1313 gMC->Gsvolu("SQ22","TRAP",idInox,par,11);
1315 // Trapezoid 4 - 2 layers
1319 par[6] = kAlp1OETF4;
1323 par[10] = kAlp2OETF4;
1326 gMC->Gsvolu("SQ23","TRAP",idFrameEpoxy,par,11);
1328 gMC->Gsvolu("SQ24","TRAP",idInox,par,11);
1332 par[0] = kHxOutVFrame;
1333 par[1] = kHyOutVFrame;
1334 par[2] = kHzOutVFrame;
1335 gMC->Gsvolu("SQ25","BOX",idFrameEpoxy,par,3);
1348 par[10] = kAlp2OCTF;
1349 gMC->Gsvolu("SQ26","TRAP",idFrameEpoxy,par,11);
1351 // EarthFaceCu trapezoid
1363 gMC->Gsvolu("SQ27","TRAP",idCopper,par,11);
1365 // VertEarthSteel trapezoid
1377 gMC->Gsvolu("SQ28","TRAP",idInox,par,11);
1379 // VertEarthProfCu trapezoid
1391 gMC->Gsvolu("SQ29","TRAP",idCopper,par,11);
1393 // SuppLateralPositionner cuboid
1397 gMC->Gsvolu("SQ30","BOX",idAlu,par,3);
1399 // LateralPositionerFace
1403 gMC->Gsvolu("SQ31","BOX",idInox,par,3);
1405 // LateralPositionerProfile
1409 gMC->Gsvolu("SQ32","BOX",idInox,par,3); // middle layer
1414 gMC->Gsvolu("SQ33","BOX",idInox,par,3); // near and far layers
1416 // VertCradleA - 1st trapezoid
1428 gMC->Gsvolu("SQ34","TRAP",idAlu,par,11);
1430 // VertCradleB - 2nd trapezoid
1442 gMC->Gsvolu("SQ35","TRAP",idAlu,par,11);
1444 // VertCradleC - 3rd trapezoid
1456 gMC->Gsvolu("SQ36","TRAP",idAlu,par,11);
1458 // VertCradleD - 4th trapezoid
1470 gMC->Gsvolu("SQ37","TRAP",idAlu,par,11);
1472 // LateralSightSupport trapezoid
1484 gMC->Gsvolu("SQ38","TRAP",idAlu,par,11);
1490 gMC->Gsvolu("SQ39","TUBE",idFrameEpoxy,par,3);
1494 par[0] = kHxInHFrame;
1495 par[1] = kHyInHFrame;
1496 par[2] = kHzInHFrame;
1497 gMC->Gsvolu("SQ40","BOX",idFrameEpoxy,par,3);
1499 //Flat 7.5mm horizontal section
1503 gMC->Gsvolu("SQ41","BOX",idFrameEpoxy,par,3);
1512 gMC->Gsvolu("SQ42","TUBS",idFrameEpoxy,par,5);
1515 // ScrewsInFrame - 3 sections in order to avoid overlapping volumes
1516 // Screw Head, in air
1521 gMC->Gsvolu("SQ43","TUBE",idInox,par,3);
1523 // Middle part, in the Epoxy
1527 gMC->Gsvolu("SQ44","TUBE",idInox,par,3);
1529 // Screw nut, in air
1533 gMC->Gsvolu("SQ45","TUBE",idInox,par,3);
1536 // __________________Place volumes in the quadrant ____________
1540 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyInVFrame;
1542 gMC->Gspos("SQ00",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1544 // keep memory of the mid position. Used for placing screws
1545 const GReal_t kMidVposX = posX;
1546 const GReal_t kMidVposY = posY;
1547 const GReal_t kMidVposZ = posZ;
1549 //Flat 7.5mm vertical section
1550 posX = 2.0*kHxInVFrame+kHxV1mm;
1551 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyV1mm;
1553 gMC->Gspos("SQ01",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1555 // TopFrameAnode place 2 layers of TopFrameAnode cuboids
1557 posY = 2.*kHyInHFrame+2.*kHyH1mm+kIAF+2.*kHyInVFrame+kHyTFA;
1558 posZ = kHzOuterFrameInox;
1559 gMC->Gspos("SQ02",1,QuadrantMLayerName(chamber),posX, posY, posZ,0,"ONLY");
1560 posZ = posZ+kHzOuterFrameInox;
1561 gMC->Gspos("SQ03",1,QuadrantMLayerName(chamber),posX, posY, posZ,0,"ONLY");
1563 // place 2 layers of TopFrameAnodeA trapezoids
1564 posX = 35.8932+fgkDeltaQuadLHC;
1565 posY = 92.6745+fgkDeltaQuadLHC;
1566 posZ = kHzOuterFrameInox;
1567 gMC->Gspos("SQ04",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1568 posZ = posZ+kHzOuterFrameInox;
1569 gMC->Gspos("SQ05",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1571 // place 2 layers of TopFrameAnodeB trapezoids
1572 posX = 44.593+fgkDeltaQuadLHC;
1573 posY = 90.737+fgkDeltaQuadLHC;
1574 posZ = kHzOuterFrameInox;
1575 gMC->Gspos("SQ06",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1576 posZ = posZ+kHzOuterFrameInox;
1577 gMC->Gspos("SQ07",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1579 // TopAnode1 place 2 layers
1580 posX = 6.8+fgkDeltaQuadLHC;
1581 posY = 99.85+fgkDeltaQuadLHC;
1582 posZ = -1.*kHzAnodeFR4;
1583 gMC->Gspos("SQ08",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1584 posZ = posZ+kHzTopAnodeSteel1;
1585 gMC->Gspos("SQ09",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1587 // TopAnode2 place 2 layers
1588 posX = 18.534+fgkDeltaQuadLHC;
1589 posY = 99.482+fgkDeltaQuadLHC;
1590 posZ = -1.*kHzAnodeFR4;
1591 gMC->Gspos("SQ10",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1592 posZ = posZ+kHzTopAnodeSteel2;
1593 gMC->Gspos("SQ11",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1595 // TopAnode3 place 1 layer
1596 posX = 25.80+fgkDeltaQuadLHC;
1597 posY = 98.61+fgkDeltaQuadLHC;
1599 gMC->Gspos("SQ12",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1601 // TopEarthFace - 2 copies
1602 posX = 23.122+fgkDeltaQuadLHC;
1603 posY = 96.90+fgkDeltaQuadLHC;
1604 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopEarthFaceCu;
1605 gMC->Gspos("SQ13",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1607 gMC->Gspos("SQ13",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1610 posX = 14.475+fgkDeltaQuadLHC;
1611 posY = 97.900+fgkDeltaQuadLHC;
1612 posZ = kHzTopEarthProfileCu;
1613 gMC->Gspos("SQ14",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1615 gMC->Gspos("SQ14",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1617 // TopGasSupport - 2 copies
1618 posX = 4.9500+fgkDeltaQuadLHC;
1619 posY = 96.200+fgkDeltaQuadLHC;
1620 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopGasSupportAl;
1621 gMC->Gspos("SQ15",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1623 gMC->Gspos("SQ15",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1625 // TopPositioner parameters - single Stainless Steel trapezoid - 2 copies
1626 posX = 7.60+fgkDeltaQuadLHC;
1627 posY = 98.98+fgkDeltaQuadLHC;
1628 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+2.*kHzTopGasSupportAl+kHzTopPositionerSteel;
1629 gMC->Gspos("SQ16",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1631 gMC->Gspos("SQ16",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1637 xCenter[0] = 73.201 + fgkDeltaQuadLHC;
1638 xCenter[1] = 78.124 + fgkDeltaQuadLHC;
1639 xCenter[2] = 82.862 + fgkDeltaQuadLHC;
1640 xCenter[3] = 87.418 + fgkDeltaQuadLHC;
1642 yCenter[0] = 68.122 + fgkDeltaQuadLHC;
1643 yCenter[1] = 62.860 + fgkDeltaQuadLHC;
1644 yCenter[2] = 57.420 + fgkDeltaQuadLHC;
1645 yCenter[3] = 51.800 + fgkDeltaQuadLHC;
1647 xCenter[4] = 68.122 + fgkDeltaQuadLHC;
1648 xCenter[5] = 62.860 + fgkDeltaQuadLHC;
1649 xCenter[6] = 57.420 + fgkDeltaQuadLHC;
1650 xCenter[7] = 51.800 + fgkDeltaQuadLHC;
1652 yCenter[4] = 73.210 + fgkDeltaQuadLHC;
1653 yCenter[5] = 78.124 + fgkDeltaQuadLHC;
1654 yCenter[6] = 82.862 + fgkDeltaQuadLHC;
1655 yCenter[7] = 87.418 + fgkDeltaQuadLHC;
1657 posZ = -1.0*kHzOuterFrameInox;
1658 gMC->Gspos("SQ17",1,QuadrantMLayerName(chamber), xCenter[0], yCenter[0], posZ, rot2,"ONLY");
1659 gMC->Gspos("SQ17",2,QuadrantMLayerName(chamber), xCenter[4], yCenter[4], posZ, rot3,"ONLY");
1661 gMC->Gspos("SQ19",1,QuadrantMLayerName(chamber), xCenter[1], yCenter[1], posZ, rot2,"ONLY");
1662 gMC->Gspos("SQ19",2,QuadrantMLayerName(chamber), xCenter[5], yCenter[5], posZ, rot3,"ONLY");
1664 gMC->Gspos("SQ21",1,QuadrantMLayerName(chamber), xCenter[2], yCenter[2], posZ, rot2,"ONLY");
1665 gMC->Gspos("SQ21",2,QuadrantMLayerName(chamber), xCenter[6], yCenter[6], posZ, rot3,"ONLY");
1667 gMC->Gspos("SQ23",1,QuadrantMLayerName(chamber), xCenter[3], yCenter[3], posZ, rot2,"ONLY");
1668 gMC->Gspos("SQ23",2,QuadrantMLayerName(chamber), xCenter[7], yCenter[7], posZ, rot3,"ONLY");
1670 posZ = posZ+kHzOuterFrameEpoxy;
1672 gMC->Gspos("SQ18",1,QuadrantMLayerName(chamber), xCenter[0], yCenter[0], posZ, rot2,"ONLY");
1673 gMC->Gspos("SQ18",2,QuadrantMLayerName(chamber), xCenter[4], yCenter[4], posZ, rot3,"ONLY");
1675 gMC->Gspos("SQ20",1,QuadrantMLayerName(chamber), xCenter[1], yCenter[1], posZ, rot2,"ONLY");
1676 gMC->Gspos("SQ20",2,QuadrantMLayerName(chamber), xCenter[5], yCenter[5], posZ, rot3,"ONLY");
1678 gMC->Gspos("SQ22",1,QuadrantMLayerName(chamber), xCenter[2], yCenter[2], posZ, rot2,"ONLY");
1679 gMC->Gspos("SQ22",2,QuadrantMLayerName(chamber), xCenter[6], yCenter[6], posZ, rot3,"ONLY");
1681 gMC->Gspos("SQ24",1,QuadrantMLayerName(chamber), xCenter[3], yCenter[3], posZ, rot2,"ONLY");
1682 gMC->Gspos("SQ24",2,QuadrantMLayerName(chamber), xCenter[7], yCenter[7], posZ, rot3,"ONLY");
1687 posX = 2.*kHxInVFrame+kIAF+2.*kHxInHFrame-kHxOutVFrame+2.*kHxV1mm;
1688 posY = 2.*kHyInHFrame+kHyOutVFrame;
1690 gMC->Gspos("SQ25",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1692 // keep memory of the mid position. Used for placing screws
1693 const GReal_t kMidOVposX = posX;
1694 const GReal_t kMidOVposY = posY;
1695 const GReal_t kMidOVposZ = posZ;
1697 const Float_t kTOPY = posY+kHyOutVFrame;
1698 const Float_t kOUTX = posX;
1702 posY = kTOPY+((kBl1OCTF+kTl1OCTF)/2.);
1704 gMC->Gspos("SQ26",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1706 // VertEarthFaceCu - 2 copies
1707 posX = 89.4000+fgkDeltaQuadLHC;
1708 posY = 25.79+fgkDeltaQuadLHC;
1709 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertEarthFaceCu;
1710 gMC->Gspos("SQ27",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1712 gMC->Gspos("SQ27",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1714 // VertEarthSteel - 2 copies
1715 posX = 91.00+fgkDeltaQuadLHC;
1716 posY = 30.616+fgkDeltaQuadLHC;
1717 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertBarSteel;
1718 gMC->Gspos("SQ28",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1720 gMC->Gspos("SQ28",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1722 // VertEarthProfCu - 2 copies
1723 posX = 92.000+fgkDeltaQuadLHC;
1724 posY = 29.64+fgkDeltaQuadLHC;
1725 posZ = kHzFrameThickness;
1726 gMC->Gspos("SQ29",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1728 gMC->Gspos("SQ29",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1730 // SuppLateralPositionner - 2 copies
1731 posX = 90.2-kNearFarLHC;
1732 posY = 5.00-kNearFarLHC;
1733 posZ = kHzLateralPosnAl-fgkMotherThick2;
1734 gMC->Gspos("SQ30",1,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1736 gMC->Gspos("SQ30",2,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1738 // LateralPositionner - 2 copies - Face view
1739 posX = 92.175-kNearFarLHC-2.*kHxLPP;
1740 posY = 5.00-kNearFarLHC;
1741 posZ =2.0*kHzLateralPosnAl+kHzLateralPosnInoxFace-fgkMotherThick2;
1742 gMC->Gspos("SQ31",1,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1744 gMC->Gspos("SQ31",2,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1746 // LateralPositionner - Profile view
1747 posX = 92.175+fgkDeltaQuadLHC+kHxLPF-kHxLPP;
1748 posY = 5.00+fgkDeltaQuadLHC;
1750 gMC->Gspos("SQ32",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // middle layer
1752 posX = 92.175-kNearFarLHC+kHxLPF-kHxLPP;
1753 posY = 5.0000-kNearFarLHC;
1754 posZ = fgkMotherThick2-kHzLPNF;
1755 gMC->Gspos("SQ33",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // near layer
1757 gMC->Gspos("SQ33",2,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // far layer
1759 // VertCradleA 1st Trapezoid - 3 copies
1760 posX = 95.73+fgkDeltaQuadLHC;
1761 posY = 33.26+fgkDeltaQuadLHC;
1763 gMC->Gspos("SQ34",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1765 posX = 95.73-kNearFarLHC;
1766 posY = 33.26-kNearFarLHC;
1767 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
1768 gMC->Gspos("SQ34",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1770 gMC->Gspos("SQ34",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1772 // VertCradleB 2nd Trapezoid - 3 copies
1773 posX = 97.29+fgkDeltaQuadLHC;
1774 posY = 23.02+fgkDeltaQuadLHC;
1776 gMC->Gspos("SQ35",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1778 posX = 97.29-kNearFarLHC;
1779 posY = 23.02-kNearFarLHC;
1780 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
1781 gMC->Gspos("SQ35",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1783 gMC->Gspos("SQ35",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1785 // OutVertCradleC 3rd Trapeze - 3 copies
1786 posX = 98.31+fgkDeltaQuadLHC;
1787 posY = 12.77+fgkDeltaQuadLHC;
1789 gMC->Gspos("SQ36",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1791 posX = 98.31-kNearFarLHC;
1792 posY = 12.77-kNearFarLHC;
1794 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
1795 gMC->Gspos("SQ36",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1797 gMC->Gspos("SQ36",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1799 // OutVertCradleD 4th Trapeze - 3 copies
1800 posX = 98.81+fgkDeltaQuadLHC;
1801 posY = 2.52+fgkDeltaQuadLHC;
1803 gMC->Gspos("SQ37",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1805 posZ = fgkMotherThick1-kHzVerticalCradleAl;
1806 gMC->Gspos("SQ37",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1808 gMC->Gspos("SQ37",3,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1810 // LateralSightSupport - 2 copies
1811 posX = 98.53-kNearFarLHC;
1812 posY = 10.00-kNearFarLHC;
1813 posZ = kHzLateralSightAl-fgkMotherThick2;
1814 gMC->Gspos("SQ38",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1816 gMC->Gspos("SQ38",2,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1819 posX = 92.84+fgkDeltaQuadLHC;
1820 posY = 8.13+fgkDeltaQuadLHC;
1822 gMC->Gspos("SQ39",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1827 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxInHFrame;
1830 gMC->Gspos("SQ40",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1832 // keep memory of the mid position. Used for placing screws
1833 const GReal_t kMidHposX = posX;
1834 const GReal_t kMidHposY = posY;
1835 const GReal_t kMidHposZ = posZ;
1837 // Flat 7.5mm horizontal section
1838 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxH1mm;
1839 posY = 2.0*kHyInHFrame+kHyH1mm;
1841 gMC->Gspos("SQ41",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1844 posX = 2.0*kHxInVFrame+2.*kHxV1mm;
1845 posY = 2.0*kHyInHFrame+2.*kHyH1mm;
1847 gMC->Gspos("SQ42",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1849 // keep memory of the mid position. Used for placing screws
1850 const GReal_t kMidArcposX = posX;
1851 const GReal_t kMidArcposY = posY;
1852 const GReal_t kMidArcposZ = posZ;
1854 // ScrewsInFrame - in sensitive volume
1859 // Screws on IHEpoxyFrame
1861 const Int_t kNumberOfScrewsIH = 14; // no. of screws on the IHEpoxyFrame
1862 const Float_t kOffX = 5.; // inter-screw distance
1864 // first screw coordinates
1867 // other screw coordinates
1868 for (Int_t i = 1;i<kNumberOfScrewsIH;i++){
1869 scruX[i] = scruX[i-1]+kOffX;
1870 scruY[i] = scruY[0];
1872 // Position the volumes on the frames
1873 for (Int_t i = 0;i<kNumberOfScrewsIH;i++){
1874 posX = fgkDeltaQuadLHC + scruX[i];
1875 posY = fgkDeltaQuadLHC + scruY[i];
1877 gMC->Gspos("SQ43",i+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
1879 gMC->Gspos("SQ44",i+1,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
1880 gMC->Gspos("SQ45",i+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
1882 // special screw coordinates
1885 posX = fgkDeltaQuadLHC + scruX[63];
1886 posY = fgkDeltaQuadLHC + scruY[63];
1888 gMC->Gspos("SQ43",64,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
1890 gMC->Gspos("SQ44",64,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
1891 gMC->Gspos("SQ45",64,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
1893 // Screws on the IVEpoxyFrame
1895 const Int_t kNumberOfScrewsIV = 15; // no. of screws on the IVEpoxyFrame
1896 const Float_t kOffY = 5.; // inter-screw distance
1897 Int_t firstScrew = 58;
1898 Int_t lastScrew = 44;
1900 // first (special) screw coordinates
1901 scruX[firstScrew-1] = -2.23;
1902 scruY[firstScrew-1] = 16.3;
1903 // second (repetitive) screw coordinates
1904 scruX[firstScrew-2] = -2.23;
1905 scruY[firstScrew-2] = 21.07;
1906 // other screw coordinates
1907 for (Int_t i = firstScrew-3;i>lastScrew-2;i--){
1908 scruX[i] = scruX[firstScrew-2];
1909 scruY[i] = scruY[i+1]+kOffY;
1912 for (Int_t i = 0;i<kNumberOfScrewsIV;i++){
1913 posX = fgkDeltaQuadLHC + scruX[i+lastScrew-1];
1914 posY = fgkDeltaQuadLHC + scruY[i+lastScrew-1];
1916 gMC->Gspos("SQ43",i+lastScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
1918 gMC->Gspos("SQ44",i+lastScrew,"SQ00",posX+0.1-kMidVposX, posY+0.1-kMidVposY, posZ-kMidVposZ, 0, "ONLY");
1919 gMC->Gspos("SQ45",i+lastScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
1922 // Screws on the OVEpoxyFrame
1924 const Int_t kNumberOfScrewsOV = 10; // no. of screws on the OVEpoxyFrame
1929 // first (repetitive) screw coordinates
1930 // notes: 1st screw should be placed in volume 40 (InnerHorizFrame)
1931 scruX[firstScrew-1] = 90.9;
1932 scruY[firstScrew-1] = -2.23; // true value
1934 // other screw coordinates
1935 for (Int_t i = firstScrew; i<lastScrew; i++ ){
1936 scruX[i] = scruX[firstScrew-1];
1937 scruY[i] = scruY[i-1]+kOffY;
1939 for (Int_t i = 1;i<kNumberOfScrewsOV;i++){
1940 posX = fgkDeltaQuadLHC + scruX[i+firstScrew-1];
1941 posY = fgkDeltaQuadLHC + scruY[i+firstScrew-1];
1943 gMC->Gspos("SQ43",i+firstScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
1946 gMC->Gspos("SQ44",i+firstScrew,"SQ25",posX+0.1-kMidOVposX, posY+0.1-kMidOVposY, posZ-kMidOVposZ, 0, "ONLY");
1947 gMC->Gspos("SQ45",i+firstScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
1949 // special case for 1st screw, inside the horizontal frame (volume 40)
1950 posX = fgkDeltaQuadLHC + scruX[firstScrew-1];
1951 posY = fgkDeltaQuadLHC + scruY[firstScrew-1];
1954 gMC->Gspos("SQ44",firstScrew,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
1956 // Inner Arc of Frame, screw positions and numbers-1
1957 scruX[62] = 16.009; scruY[62] = 1.401;
1958 scruX[61] = 14.564; scruY[61] = 6.791;
1959 scruX[60] = 11.363; scruY[60] = 11.363;
1960 scruX[59] = 6.791 ; scruY[59] = 14.564;
1961 scruX[58] = 1.401 ; scruY[58] = 16.009;
1963 for (Int_t i = 0;i<5;i++){
1964 posX = fgkDeltaQuadLHC + scruX[i+58];
1965 posY = fgkDeltaQuadLHC + scruY[i+58];
1967 gMC->Gspos("SQ43",i+58+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
1969 gMC->Gspos("SQ44",i+58+1,"SQ42",posX+0.1-kMidArcposX, posY+0.1-kMidArcposY, posZ-kMidArcposZ, 0, "ONLY");
1970 gMC->Gspos("SQ45",i+58+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
1974 //______________________________________________________________________________
1975 void AliMUONSt1GeometryBuilderV2::PlaceInnerLayers(Int_t chamber)
1977 // Place the gas and copper layers for the specified chamber.
1980 // Rotation Matrices
1981 Int_t rot1, rot2, rot3, rot4;
1983 fMUON->AliMatrix(rot1, 90., 315., 90., 45., 0., 0.); // -45 deg
1984 fMUON->AliMatrix(rot2, 90., 90., 90., 180., 0., 0.); // 90 deg
1985 fMUON->AliMatrix(rot3, 90., 270., 90., 0., 0., 0.); // -90 deg
1986 fMUON->AliMatrix(rot4, 90., 45., 90., 135., 0., 0.); // deg
1991 GReal_t zc = fgkHzGas + fgkHzPadPlane;
1992 Int_t dpos = (chamber-1)*2;
1995 x = 14.53 + fgkDeltaQuadLHC;
1996 y = 53.34 + fgkDeltaQuadLHC;
1997 name = GasVolumeName("SAG", chamber);
1998 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1999 gMC->Gspos("SA1C", 1+dpos, QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2000 gMC->Gspos("SA1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
2002 x = 40.67 + fgkDeltaQuadLHC;
2003 y = 40.66 + fgkDeltaQuadLHC;
2004 name = GasVolumeName("SBG", chamber);
2005 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot1,"ONLY");
2006 gMC->Gspos("SB1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot1,"ONLY");
2007 gMC->Gspos("SB1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,rot1,"ONLY");
2009 x = 53.34 + fgkDeltaQuadLHC;
2010 y = 14.52 + fgkDeltaQuadLHC;
2011 name = GasVolumeName("SCG", chamber);
2012 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot2,"ONLY");
2013 gMC->Gspos("SC1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot2,"ONLY");
2014 gMC->Gspos("SC1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot2,"ONLY");
2016 x = 5.83 + fgkDeltaQuadLHC;
2017 y = 17.29 + fgkDeltaQuadLHC;
2018 name = GasVolumeName("SDG", chamber);
2019 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
2020 gMC->Gspos("SD1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
2021 gMC->Gspos("SD1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
2023 x = 9.04 + fgkDeltaQuadLHC;
2024 y = 16.91 + fgkDeltaQuadLHC;
2025 name = GasVolumeName("SEG", chamber);
2026 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
2027 gMC->Gspos("SE1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2028 gMC->Gspos("SE1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
2030 x = 10.12 + fgkDeltaQuadLHC;
2031 y = 14.67 + fgkDeltaQuadLHC;
2032 name = GasVolumeName("SFG", chamber);
2033 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2034 gMC->Gspos("SF1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2035 gMC->Gspos("SF1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2037 x = 8.2042 + fgkDeltaQuadLHC;
2038 y = 16.19 + fgkDeltaQuadLHC;
2039 name = GasVolumeName("SGG", chamber);
2040 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2041 gMC->Gspos("SG1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2042 gMC->Gspos("SG1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2044 x = 14.68 + fgkDeltaQuadLHC;
2045 y = 10.10 + fgkDeltaQuadLHC;
2046 name = GasVolumeName("SHG", chamber);
2047 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2048 gMC->Gspos("SH1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2049 gMC->Gspos("SH1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2051 x = 16.21 + fgkDeltaQuadLHC;
2052 y = 8.17 + fgkDeltaQuadLHC;
2053 name = GasVolumeName("SIG", chamber);
2054 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2055 gMC->Gspos("SI1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2056 gMC->Gspos("SI1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2058 x = 16.92 + fgkDeltaQuadLHC;
2059 y = 9.02 + fgkDeltaQuadLHC;
2060 name = GasVolumeName("SJG", chamber);
2061 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
2062 gMC->Gspos("SJ1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
2063 gMC->Gspos("SJ1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
2065 x = 17.30 + fgkDeltaQuadLHC;
2066 y = 5.85 + fgkDeltaQuadLHC;
2067 name = GasVolumeName("SKG", chamber);
2068 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
2069 gMC->Gspos("SK1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2070 gMC->Gspos("SK1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
2073 //______________________________________________________________________________
2074 void AliMUONSt1GeometryBuilderV2::PlaceSector(AliMpSector* sector,SpecialMap specialMap,
2075 const TVector3& where, Bool_t reflectZ, Int_t chamber)
2077 // Place all the segments in the mother volume, at the position defined
2078 // by the sector's data.
2081 static Int_t segNum=1;
2088 reflZ=0; // no reflection along z... nothing
2089 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,0.,0.); // 90° rotation around z, NO reflection along z
2092 fMUON->AliMatrix(reflZ, 90.,0.,90,90.,180.,0.); // reflection along z
2093 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,180.,0.); // 90° rotation around z AND reflection along z
2096 GReal_t posX,posY,posZ;
2099 vector<Int_t> alreadyDone;
2102 #ifdef ST1_WITH_ROOT
2103 TArrayI alreadyDone(20);
2104 Int_t nofAlreadyDone = 0;
2107 for (Int_t irow=0;irow<sector->GetNofRows();irow++){ // for each row
2108 AliMpRow* row = sector->GetRow(irow);
2111 for (Int_t iseg=0;iseg<row->GetNofRowSegments();iseg++){ // for each row segment
2112 AliMpVRowSegment* seg = row->GetRowSegment(iseg);
2116 SpecialMap::iterator iter
2117 = specialMap.find(seg->GetMotifPositionId(0));
2119 if ( iter == specialMap.end()){ //if this is a normal segment (ie. not part of <specialMap>)
2122 #ifdef ST1_WITH_ROOT
2123 Long_t value = specialMap.GetValue(seg->GetMotifPositionId(0));
2125 if ( value == 0 ){ //if this is a normal segment (ie. not part of <specialMap>)
2128 // create the cathode part
2129 sprintf(segName,"%.3dM", segNum);
2130 CreatePlaneSegment(segName, seg->Dimensions()/10., seg->GetNofMotifs());
2132 posX = where.X() + seg->Position().X()/10.;
2133 posY = where.Y() + seg->Position().Y()/10.;
2134 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
2135 gMC->Gspos(segName, 1, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
2137 // and place all the daughter boards of this segment
2138 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {
2139 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2140 AliMpMotifPosition* motifPos =
2141 sector->GetMotifMap()->FindMotifPosition(motifPosId);
2143 posX = where.X() + motifPos->Position().X()/10.+fgkOffsetX;
2144 posY = where.Y() + motifPos->Position().Y()/10.+fgkOffsetY;
2145 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
2146 gMC->Gspos(fgkDaughterName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
2152 // if this is a special segment
2153 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {// for each motif
2155 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2158 if (find(alreadyDone.begin(),alreadyDone.end(),motifPosId)
2159 != alreadyDone.end()) continue; // don't treat the same motif twice
2161 AliMUONSt1SpecialMotif spMot = specialMap[motifPosId];
2163 #ifdef ST1_WITH_ROOT
2164 Bool_t isDone = false;
2166 while (i<nofAlreadyDone && !isDone) {
2167 if (alreadyDone.At(i) == motifPosId) isDone=true;
2170 if (isDone) continue; // don't treat the same motif twice
2172 AliMUONSt1SpecialMotif spMot = *((AliMUONSt1SpecialMotif*)specialMap.GetValue(motifPosId));
2175 // cout << chamber << " processing special motif: " << motifPosId << endl;
2177 AliMpMotifPosition* motifPos = sector->GetMotifMap()->FindMotifPosition(motifPosId);
2179 // place the hole for the motif, wrt the requested rotation angle
2180 Int_t rot = ( spMot.GetRotAngle()<0.1 ) ? reflZ:rotMat;
2182 posX = where.X() + motifPos->Position().X()/10.+spMot.GetDelta().X();
2183 posY = where.Y() + motifPos->Position().Y()/10.+spMot.GetDelta().Y();
2184 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
2185 gMC->Gspos(fgkHoleName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
2187 // then place the daughter board for the motif, wrt the requested rotation angle
2188 posX = posX+fgkDeltaFilleEtamX;
2189 posY = posY+fgkDeltaFilleEtamY;
2190 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
2191 gMC->Gspos(fgkDaughterName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
2194 alreadyDone.push_back(motifPosId);// mark this motif as done
2196 #ifdef ST1_WITH_ROOT
2197 if (nofAlreadyDone == alreadyDone.GetSize())
2198 alreadyDone.Set(2*nofAlreadyDone);
2199 alreadyDone.AddAt(motifPosId, nofAlreadyDone++);
2202 // cout << chamber << " processed motifPosId: " << motifPosId << endl;
2204 }// end of special motif case
2209 //______________________________________________________________________________
2210 TString AliMUONSt1GeometryBuilderV2::GasVolumeName(const TString& name, Int_t chamber) const
2212 // Inserts the chamber number into the name.
2215 TString newString(name);
2220 newString.Insert(2, number);
2226 //______________________________________________________________________________
2227 Bool_t AliMUONSt1GeometryBuilderV2::IsInChamber(Int_t ich, Int_t volGid) const
2229 // True if volume <volGid> is part of the sensitive
2230 // volumes of chamber <ich>
2232 for (Int_t i = 0; i < fChamberV2[ich]->GetSize(); i++) {
2233 if (fChamberV2[ich]->At(i) == volGid) return kTRUE;
2240 // protected methods
2244 //______________________________________________________________________________
2245 Int_t AliMUONSt1GeometryBuilderV2::GetChamberId(Int_t volId) const
2247 // Check if the volume with specified volId is a sensitive volume (gas)
2248 // of some chamber and returns the chamber number;
2249 // if not sensitive volume - return 0.
2252 for (Int_t i = 1; i <=2; i++)
2253 if (IsInChamber(i-1,volId)) return i;
2255 for (Int_t i = 3; i <= AliMUONConstants::NCh(); i++)
2256 if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
2266 //______________________________________________________________________________
2267 void AliMUONSt1GeometryBuilderV2::CreateMaterials()
2269 // Materials and medias defined in MUONv1:
2271 // AliMaterial( 9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2272 // AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2273 // AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
2274 // AliMixture( 19, "Bakelite$", abak, zbak, dbak, -3, wbak);
2275 // AliMixture( 20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
2276 // AliMixture( 21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
2277 // AliMixture( 22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
2278 // AliMixture( 23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
2279 // AliMixture( 24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
2280 // AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
2281 // AliMixture( 32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
2282 // AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
2283 // AliMixture( 34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
2285 // AliMedium( 1, "AIR_CH_US ", 15, 1, iSXFLD, ...
2286 // AliMedium( 4, "ALU_CH_US ", 9, 0, iSXFLD, ...
2287 // AliMedium( 5, "ALU_CH_US ", 10, 0, iSXFLD, ...
2288 // AliMedium( 6, "AR_CH_US ", 20, 1, iSXFLD, ...
2289 // AliMedium( 7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, ...
2290 // AliMedium( 8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, ...
2291 // AliMedium( 9, "ARG_CO2 ", 22, 1, iSXFLD, ...
2292 // AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, ...
2293 // AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, ...
2294 // AliMedium(13, "CARBON ", 33, 0, iSXFLD, ...
2295 // AliMedium(14, "Rohacell ", 34, 0, iSXFLD, ...
2298 // --- Define materials for GEANT ---
2301 fMUON->AliMaterial(41, "Aluminium II$", 26.98, 13., 2.7, -8.9, 26.1);
2303 // from PDG and "The Particle Detector BriefBook", Bock and Vasilescu, P.18
2304 // ??? same but the last but one argument < 0
2306 // --- Define mixtures for GEANT ---
2309 // Ar-CO2 gas II (80%+20%)
2310 Float_t ag1[2] = { 39.95, 44.01};
2311 Float_t zg1[2] = { 18., 22.};
2312 Float_t wg1[2] = { .8, 0.2};
2313 Float_t dg1 = .001821;
2314 fMUON->AliMixture(45, "ArCO2 II 80%$", ag1, zg1, dg1, 2, wg1);
2316 // use wg1 weighting factors (6th arg > 0)
2318 // Rohacell 51 II - imide methacrylique
2319 Float_t aRohacell51[4] = { 12.01, 1.01, 16.00, 14.01};
2320 Float_t zRohacell51[4] = { 6., 1., 8., 7.};
2321 Float_t wRohacell51[4] = { 9., 13., 2., 1.};
2322 Float_t dRohacell51 = 0.052;
2323 fMUON->AliMixture(46, "FOAM$",aRohacell51,zRohacell51,dRohacell51,-4,wRohacell51);
2325 // use relative A (molecular) values (6th arg < 0)
2327 Float_t aSnPb[2] = { 118.69, 207.19};
2328 Float_t zSnPb[2] = { 50, 82};
2329 Float_t wSnPb[2] = { 0.6, 0.4} ;
2330 Float_t dSnPb = 8.926;
2331 fMUON->AliMixture(47, "SnPb$", aSnPb,zSnPb,dSnPb,2,wSnPb);
2333 // use wSnPb weighting factors (6th arg > 0)
2335 // plastic definition from K5, Freiburg (found on web)
2336 Float_t aPlastic[2]={ 1.01, 12.01};
2337 Float_t zPlastic[2]={ 1, 6};
2338 Float_t wPlastic[2]={ 1, 1};
2339 Float_t denPlastic=1.107;
2340 fMUON->AliMixture(48, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
2342 // use relative A (molecular) values (6th arg < 0)...no other info...
2344 // Not used, to be removed
2348 // Inox/Stainless Steel (18%Cr, 9%Ni)
2349 Float_t aInox[3] = {55.847, 51.9961, 58.6934};
2350 Float_t zInox[3] = {26., 24., 28.};
2351 Float_t wInox[3] = {0.73, 0.18, 0.09};
2352 Float_t denInox = 7.930;
2353 fMUON->AliMixture(50, "StainlessSteel$",aInox,zInox,denInox,3,wInox);
2355 // use wInox weighting factors (6th arg > 0)
2356 // from CERN note NUFACT Note023, Oct.2000
2358 // End - Not used, to be removed
2361 // --- Define the tracking medias for GEANT ---
2364 GReal_t epsil = .001; // Tracking precision,
2365 //GReal_t stemax = -1.; // Maximum displacement for multiple scat
2366 GReal_t tmaxfd = -20.; // Maximum angle due to field deflection
2367 //GReal_t deemax = -.3; // Maximum fractional energy loss, DLS
2368 GReal_t stmin = -.8;
2369 GReal_t maxStepAlu = fMUON->GetMaxStepAlu();
2370 GReal_t maxDestepAlu = fMUON->GetMaxDestepAlu();
2371 GReal_t maxStepGas = fMUON->GetMaxStepGas();
2372 Int_t iSXFLD = gAlice->Field()->Integ();
2373 Float_t sXMGMX = gAlice->Field()->Max();
2375 fMUON->AliMedium(21, "ALU_II$", 41, 0, iSXFLD, sXMGMX,
2376 tmaxfd, maxStepAlu, maxDestepAlu, epsil, stmin);
2378 // was med: 15 mat: 31
2379 fMUON->AliMedium(24, "FrameCH$", 44, 1, iSXFLD, sXMGMX,
2380 10.0, 0.001, 0.001, 0.001, 0.001);
2381 // was med: 20 mat: 36
2382 fMUON->AliMedium(25, "ARG_CO2_II", 45, 1, iSXFLD, sXMGMX,
2383 tmaxfd, maxStepGas, maxDestepAlu, epsil, stmin);
2384 // was med: 9 mat: 22
2385 fMUON->AliMedium(26, "FOAM_CH$", 46, 0, iSXFLD, sXMGMX,
2386 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ;
2387 // was med: 16 mat: 32
2388 fMUON->AliMedium(27, "SnPb$", 47, 0, iSXFLD, sXMGMX,
2389 10.0, 0.01, 1.0, 0.003, 0.003);
2390 // was med: 19 mat: 35
2391 fMUON->AliMedium(28, "Plastic$", 48, 0, iSXFLD, sXMGMX,
2392 10.0, 0.01, 1.0, 0.003, 0.003);
2393 // was med: 17 mat: 33
2395 // Not used, to be romoved
2398 fMUON->AliMedium(30, "InoxBolts$", 50, 1, iSXFLD, sXMGMX,
2399 10.0, 0.01, 1.0, 0.003, 0.003);
2400 // was med: 21 mat: 37
2402 // End - Not used, to be removed
2405 //______________________________________________________________________________
2406 void AliMUONSt1GeometryBuilderV2::CreateGeometry()
2408 // Create the detailed GEANT geometry for the dimuon arm station1
2410 cout << "AliMUONSt1GeometryBuilderV2::CreateGeometry()" << endl;
2411 cout << "_________________________________________" << endl;
2413 // Create basic volumes
2416 CreateDaughterBoard();
2417 CreateInnerLayers();
2419 // Create reflexion matrices
2422 Int_t reflXZ, reflYZ, reflXY;
2423 fMUON->AliMatrix(reflXZ, 90., 180., 90., 90., 180., 0.);
2424 fMUON->AliMatrix(reflYZ, 90., 0., 90.,-90., 180., 0.);
2425 fMUON->AliMatrix(reflXY, 90., 180., 90., 270., 0., 0.);
2427 // Define transformations for each quadrant
2428 // In old coordinate system: In new coordinate system:
2431 // II. | I. I. | II.
2433 // _____ | ____ _____ | ____
2435 // III. | IV. IV. | III.
2440 rotm[0]=0; // quadrant I
2441 rotm[1]=reflXZ; // quadrant II
2442 rotm[2]=reflXY; // quadrant III
2443 rotm[3]=reflYZ; // quadrant IV
2445 TGeoRotation rotm[4];
2446 rotm[0] = TGeoRotation("identity");
2447 rotm[1] = TGeoRotation("reflXZ", 90., 180., 90., 90., 180., 0.);
2448 rotm[2] = TGeoRotation("reflXY", 90., 180., 90., 270., 0., 0.);
2449 rotm[3] = TGeoRotation("reflYZ", 90., 0., 90.,-90., 180., 0.);
2452 scale[0] = TVector3( 1, 1, 1); // quadrant I
2453 scale[1] = TVector3(-1, 1, -1); // quadrant II
2454 scale[2] = TVector3(-1, -1, 1); // quadrant III
2455 scale[3] = TVector3( 1, -1, -1); // quadrant IV
2458 detElemId[0] = 51; // quadrant I
2459 detElemId[1] = 0; // quadrant II
2460 detElemId[2] = 1; // quadrant III
2461 detElemId[3] = 50; // quadrant IV
2463 // Shift in Z of the middle layer
2464 Double_t deltaZ = 6.5/2.;
2466 // Position of quadrant I wrt to the chamber position
2467 TVector3 pos0(-fgkDeltaQuadLHC, -fgkDeltaQuadLHC, deltaZ);
2469 // Shift for near/far layers
2470 GReal_t shiftXY = fgkFrameOffset;
2471 GReal_t shiftZ = fgkMotherThick1+fgkMotherThick2;
2473 // Build two chambers
2475 for (Int_t ich=1; ich<3; ich++) {
2477 // Create quadrant volume
2478 CreateQuadrant(ich);
2480 // Place gas volumes
2481 PlaceInnerLayers(ich);
2483 // Place the quadrant
2484 for (Int_t i=0; i<4; i++) {
2487 GReal_t posx, posy, posz;
2488 posx = pos0.X() * scale[i].X();
2489 posy = pos0.Y() * scale[i].Y();
2490 //posz = pos0.Z() * scale[i].Z() + AliMUONConstants::DefaultChamberZ(ich-1);
2491 //gMC->Gspos(QuadrantMLayerName(ich), i+1, "ALIC", posx, posy, posz, rotm[i], "ONLY");
2492 posz = pos0.Z() * scale[i].Z();
2494 ->AddEnvelope(QuadrantMLayerName(ich), detElemId[i] + ich*100, i+1,
2495 TGeoTranslation(posx, posy, posz), rotm[i]);
2498 Real_t posx2 = posx + shiftXY * scale[i].X();
2499 Real_t posy2 = posy + shiftXY * scale[i].Y();
2500 Real_t posz2 = posz - scale[i].Z()*shiftZ;
2501 //gMC->Gspos(QuadrantNLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
2503 ->AddEnvelope(QuadrantNLayerName(ich), 0, i+1, TGeoTranslation(posx2, posy2, posz2), rotm[i]);
2505 posz2 = posz + scale[i].Z()*shiftZ;
2506 //gMC->Gspos(QuadrantFLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
2508 ->AddEnvelope(QuadrantFLayerName(ich), 0, i+1, TGeoTranslation(posx2, posy2, posz2), rotm[i]);
2513 //______________________________________________________________________________
2514 void AliMUONSt1GeometryBuilderV2::SetTransformations()
2516 // Defines the transformations for the station2 chambers.
2519 AliMUONChamber* iChamber1 = &fMUON->Chamber(0);
2520 Double_t zpos1 = - iChamber1->Z();
2521 iChamber1->GetGeometry()
2522 ->SetTranslation(TGeoTranslation(0., 0., zpos1));
2524 AliMUONChamber* iChamber2 = &fMUON->Chamber(1);
2525 Double_t zpos2 = - iChamber2->Z();
2526 iChamber2->GetGeometry()
2527 ->SetTranslation(TGeoTranslation(0., 0., zpos2));
2530 //______________________________________________________________________________
2531 void AliMUONSt1GeometryBuilderV2::SetSensitiveVolumes()
2533 // Defines the sensitive volumes for station2 chambers.
2536 GetGeometry(0)->SetSensitiveVolume("SA1G");
2537 GetGeometry(0)->SetSensitiveVolume("SB1G");
2538 GetGeometry(0)->SetSensitiveVolume("SC1G");
2539 GetGeometry(0)->SetSensitiveVolume("SD1G");
2540 GetGeometry(0)->SetSensitiveVolume("SE1G");
2541 GetGeometry(0)->SetSensitiveVolume("SF1G");
2542 GetGeometry(0)->SetSensitiveVolume("SG1G");
2543 GetGeometry(0)->SetSensitiveVolume("SH1G");
2544 GetGeometry(0)->SetSensitiveVolume("SI1G");
2545 GetGeometry(0)->SetSensitiveVolume("SJ1G");
2546 GetGeometry(0)->SetSensitiveVolume("SK1G");
2548 GetGeometry(1)->SetSensitiveVolume("SA2G");
2549 GetGeometry(1)->SetSensitiveVolume("SB2G");
2550 GetGeometry(1)->SetSensitiveVolume("SC2G");
2551 GetGeometry(1)->SetSensitiveVolume("SD2G");
2552 GetGeometry(1)->SetSensitiveVolume("SE2G");
2553 GetGeometry(1)->SetSensitiveVolume("SF2G");
2554 GetGeometry(1)->SetSensitiveVolume("SG2G");
2555 GetGeometry(1)->SetSensitiveVolume("SH2G");
2556 GetGeometry(1)->SetSensitiveVolume("SI2G");
2557 GetGeometry(1)->SetSensitiveVolume("SJ2G");
2558 GetGeometry(1)->SetSensitiveVolume("SK2G");