]> git.uio.no Git - u/mrichter/AliRoot.git/blob - MUON/AliMUONv1.cxx
Geometry transformed into new coordinate system (test version).
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpeateose. It is      *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 /////////////////////////////////////////////////////////
19 //  Manager and hits classes for set:MUON version 0    //
20 /////////////////////////////////////////////////////////
21 #include <TRandom.h>
22 #include <TF1.h>
23 #include <Riostream.h>
24 #include <TClonesArray.h>
25 #include <TLorentzVector.h> 
26 #include <TNode.h> 
27 #include <TRandom.h> 
28 #include <TTUBE.h>
29 #include <TVirtualMC.h>
30
31 #include "AliCallf77.h"
32 #include "AliConst.h" 
33 #include "AliMUONChamber.h"
34 #include "AliMUONConstants.h"
35 #include "AliMUONFactory.h"
36 #include "AliMUONHit.h"
37 #include "AliMUONPadHit.h"
38 #include "AliMUONTriggerCircuit.h"
39 #include "AliMUONv1.h"
40 #include "AliMagF.h"
41 #include "AliRun.h"
42
43 ClassImp(AliMUONv1)
44  
45 //___________________________________________
46 AliMUONv1::AliMUONv1() : AliMUON()
47 {
48 // Constructor
49     fChambers = 0;
50     fStations = 0;
51     fStepManagerVersionOld = kFALSE;
52     fStepManagerVersionNew = kFALSE;
53     fStepManagerVersionTest = kFALSE;
54
55     fStepMaxInActiveGas = 2.0;
56 }
57
58  
59 //___________________________________________
60 AliMUONv1::AliMUONv1(const char *name, const char *title)
61        : AliMUON(name,title)
62 {
63 // Constructor
64     // By default include all stations
65     fStations = new Int_t[5];
66     for (Int_t i=0; i<5; i++) fStations[i] = 1;
67
68     AliMUONFactory factory;
69     factory.Build(this, title);
70
71     fStepManagerVersionOld = kFALSE;
72     fStepManagerVersionNew = kFALSE;
73     fStepManagerVersionTest = kFALSE;
74
75     fStepMaxInActiveGas = 2.0;
76 }
77
78 //___________________________________________
79 void AliMUONv1::CreateGeometry()
80 {
81 //
82 //   Note: all chambers have the same structure, which could be 
83 //   easily parameterised. This was intentionally not done in order
84 //   to give a starting point for the implementation of the actual 
85 //   design of each station. 
86   Int_t *idtmed = fIdtmed->GetArray()-1099;
87
88 //   Distance between Stations
89 //
90      Float_t bpar[3];
91      Float_t tpar[3];
92 //      Float_t pgpar[10];
93      Float_t zpos1, zpos2, zfpos;
94      // Outer excess and inner recess for mother volume radius
95      // with respect to ROuter and RInner
96      Float_t dframep=.001; // Value for station 3 should be 6 ...
97      // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
98 //      Float_t dframep1=.001;
99      Float_t dframep1 = 11.0;
100 //      Bool_t frameCrosses=kFALSE;     
101      Bool_t frameCrosses=kTRUE;     
102      Float_t *dum=0;
103      
104 //      Float_t dframez=0.9;
105      // Half of the total thickness of frame crosses (including DAlu)
106      // for each chamber in stations 1 and 2:
107      // 3% of X0 of composite material,
108      // but taken as Aluminium here, with same thickness in number of X0
109      Float_t dframez = 3. * 8.9 / 100;
110 //      Float_t dr;
111      Float_t dstation;
112
113 //
114 //   Rotation matrices in the x-y plane  
115      Int_t idrotm[1199];
116 //   phi=   0 deg
117      AliMatrix(idrotm[1100],  90.,   0., 90.,  90., 0., 0.);
118 //   phi=  90 deg
119      AliMatrix(idrotm[1101],  90.,  90., 90., 180., 0., 0.);
120 //   phi= 180 deg
121      AliMatrix(idrotm[1102],  90., 180., 90., 270., 0., 0.);
122 //   phi= 270 deg
123      AliMatrix(idrotm[1103],  90., 270., 90.,   0., 0., 0.);
124 //
125      Float_t phi=2*TMath::Pi()/12/2;
126
127 //
128 //   pointer to the current chamber
129 //   pointer to the current chamber
130      Int_t idAlu1=idtmed[1103]; // medium 4
131      Int_t idAlu2=idtmed[1104]; // medium 5
132 //     Int_t idAlu1=idtmed[1100];
133 //     Int_t idAlu2=idtmed[1100];
134      Int_t idAir=idtmed[1100]; // medium 1
135 //      Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
136      Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
137      
138
139      AliMUONChamber *iChamber, *iChamber1, *iChamber2;
140
141      if (fStations[0]) {
142          
143 //********************************************************************
144 //                            Station 1                             **
145 //********************************************************************
146 //  CONCENTRIC
147      // indices 1 and 2 for first and second chambers in the station
148      // iChamber (first chamber) kept for other quanties than Z,
149      // assumed to be the same in both chambers
150      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
151      iChamber2 =(AliMUONChamber*) (*fChambers)[1];
152      zpos1=iChamber1->Z(); 
153      zpos2=iChamber2->Z();
154      dstation = TMath::Abs(zpos2 - zpos1);
155      // DGas decreased from standard one (0.5)
156      iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
157      // DAlu increased from standard one (3% of X0),
158      // because more electronics with smaller pads
159      iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
160      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
161      
162 //
163 //   Mother volume
164      tpar[0] = iChamber->RInner()-dframep; 
165      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
166      tpar[2] = dstation/5;
167
168      gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
169      gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
170      gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
171      gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");     
172 // // Aluminium frames
173 // // Outer frames
174 //      pgpar[0] = 360/12/2;
175 //      pgpar[1] = 360.;
176 //      pgpar[2] = 12.;
177 //      pgpar[3] =   2;
178 //      pgpar[4] = -dframez/2;
179 //      pgpar[5] = iChamber->ROuter();
180 //      pgpar[6] = pgpar[5]+dframep1;
181 //      pgpar[7] = +dframez/2;
182 //      pgpar[8] = pgpar[5];
183 //      pgpar[9] = pgpar[6];
184 //      gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
185 //      gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
186 //      gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
187 //      gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
188 //      gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
189 //      gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
190 // //
191 // // Inner frame
192 //      tpar[0]= iChamber->RInner()-dframep1;
193 //      tpar[1]= iChamber->RInner();
194 //      tpar[2]= dframez/2;
195 //      gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
196 //      gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
197
198 //      gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
199 //      gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
200 //      gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
201 //      gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
202 //
203 // Frame Crosses
204      if (frameCrosses) {
205          // outside gas
206          // security for inside mother volume
207          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
208            * TMath::Cos(TMath::ASin(dframep1 /
209                                    (iChamber->ROuter() - iChamber->RInner())))
210            / 2.0;
211          bpar[1] = dframep1/2;
212          // total thickness will be (4 * bpar[2]) for each chamber,
213          // which has to be equal to (2 * dframez) - DAlu
214          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
215          gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
216          gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
217          
218          gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
219                     idrotm[1100],"ONLY");
220          gMC->Gspos("S01B",2,"S01M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
221                     idrotm[1100],"ONLY");
222          gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
223                     idrotm[1101],"ONLY");
224          gMC->Gspos("S01B",4,"S01M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
225                     idrotm[1101],"ONLY");
226          gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
227                     idrotm[1100],"ONLY");
228          gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
229                     idrotm[1100],"ONLY");
230          gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
231                     idrotm[1101],"ONLY");
232          gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
233                     idrotm[1101],"ONLY");
234          
235          gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
236                     idrotm[1100],"ONLY");
237          gMC->Gspos("S02B",2,"S02M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
238                     idrotm[1100],"ONLY");
239          gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
240                     idrotm[1101],"ONLY");
241          gMC->Gspos("S02B",4,"S02M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
242                     idrotm[1101],"ONLY");
243          gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
244                     idrotm[1100],"ONLY");
245          gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
246                     idrotm[1100],"ONLY");
247          gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
248                     idrotm[1101],"ONLY");
249          gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
250                     idrotm[1101],"ONLY");
251      }
252 //
253 //   Chamber Material represented by Alu sheet
254      tpar[0]= iChamber->RInner();
255      tpar[1]= iChamber->ROuter();
256      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
257      gMC->Gsvolu("S01A", "TUBE",  idAlu2, tpar, 3);
258      gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
259      gMC->Gspos("S01A", 1, "S01M", 0., 0., 0.,  0, "ONLY");
260      gMC->Gspos("S02A", 1, "S02M", 0., 0., 0.,  0, "ONLY");
261 //     
262 //   Sensitive volumes
263      // tpar[2] = iChamber->DGas();
264      tpar[2] = iChamber->DGas()/2;
265      gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
266      gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
267      gMC->Gspos("S01G", 1, "S01A", 0., 0., 0.,  0, "ONLY");
268      gMC->Gspos("S02G", 1, "S02A", 0., 0., 0.,  0, "ONLY");
269 //
270 // Frame Crosses to be placed inside gas
271      // NONE: chambers are sensitive everywhere
272 //      if (frameCrosses) {
273
274 //       dr = (iChamber->ROuter() - iChamber->RInner());
275 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
276 //       bpar[1] = dframep1/2;
277 //       bpar[2] = iChamber->DGas()/2;
278 //       gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
279 //       gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
280          
281 //       gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, 
282 //                  idrotm[1100],"ONLY");
283 //       gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, 
284 //                  idrotm[1100],"ONLY");
285 //       gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, 
286 //                  idrotm[1101],"ONLY");
287 //       gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, 
288 //                  idrotm[1101],"ONLY");
289          
290 //       gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, 
291 //                  idrotm[1100],"ONLY");
292 //       gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, 
293 //                  idrotm[1100],"ONLY");
294 //       gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, 
295 //                  idrotm[1101],"ONLY");
296 //       gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, 
297 //                  idrotm[1101],"ONLY");
298 //      }
299      }
300      if (fStations[1]) {
301          
302 //********************************************************************
303 //                            Station 2                             **
304 //********************************************************************
305      // indices 1 and 2 for first and second chambers in the station
306      // iChamber (first chamber) kept for other quanties than Z,
307      // assumed to be the same in both chambers
308      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
309      iChamber2 =(AliMUONChamber*) (*fChambers)[3];
310      zpos1=iChamber1->Z(); 
311      zpos2=iChamber2->Z();
312      dstation = TMath::Abs(zpos2 - zpos1);
313      // DGas and DAlu not changed from standard values
314      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
315      
316 //
317 //   Mother volume
318      tpar[0] = iChamber->RInner()-dframep; 
319      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
320      tpar[2] = dstation/5;
321
322      gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
323      gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
324      gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
325      gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
326      gMC->Gsbool("S03M", "L3DO");
327      gMC->Gsbool("S03M", "L3O1");
328      gMC->Gsbool("S03M", "L3O2");
329      gMC->Gsbool("S04M", "L3DO");
330      gMC->Gsbool("S04M", "L3O1");
331      gMC->Gsbool("S04M", "L3O2");
332
333 // // Aluminium frames
334 // // Outer frames
335 //      pgpar[0] = 360/12/2;
336 //      pgpar[1] = 360.;
337 //      pgpar[2] = 12.;
338 //      pgpar[3] =   2;
339 //      pgpar[4] = -dframez/2;
340 //      pgpar[5] = iChamber->ROuter();
341 //      pgpar[6] = pgpar[5]+dframep;
342 //      pgpar[7] = +dframez/2;
343 //      pgpar[8] = pgpar[5];
344 //      pgpar[9] = pgpar[6];
345 //      gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
346 //      gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
347 //      gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
348 //      gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
349 //      gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
350 //      gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
351 // //
352 // // Inner frame
353 //      tpar[0]= iChamber->RInner()-dframep;
354 //      tpar[1]= iChamber->RInner();
355 //      tpar[2]= dframez/2;
356 //      gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
357 //      gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
358
359 //      gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
360 //      gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
361 //      gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
362 //      gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
363 //
364 // Frame Crosses
365      if (frameCrosses) {
366          // outside gas
367          // security for inside mother volume
368          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
369            * TMath::Cos(TMath::ASin(dframep1 /
370                                    (iChamber->ROuter() - iChamber->RInner())))
371            / 2.0;
372          bpar[1] = dframep1/2;
373          // total thickness will be (4 * bpar[2]) for each chamber,
374          // which has to be equal to (2 * dframez) - DAlu
375          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
376          gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
377          gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
378          
379          gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
380                     idrotm[1100],"ONLY");
381          gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
382                     idrotm[1100],"ONLY");
383          gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
384                     idrotm[1101],"ONLY");
385          gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
386                     idrotm[1101],"ONLY");
387          gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
388                     idrotm[1100],"ONLY");
389          gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
390                     idrotm[1100],"ONLY");
391          gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
392                     idrotm[1101],"ONLY");
393          gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
394                     idrotm[1101],"ONLY");
395          
396          gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
397                     idrotm[1100],"ONLY");
398          gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
399                     idrotm[1100],"ONLY");
400          gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
401                     idrotm[1101],"ONLY");
402          gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
403                     idrotm[1101],"ONLY");
404          gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
405                     idrotm[1100],"ONLY");
406          gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
407                     idrotm[1100],"ONLY");
408          gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
409                     idrotm[1101],"ONLY");
410          gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
411                     idrotm[1101],"ONLY");
412      }
413 //
414 //   Chamber Material represented by Alu sheet
415      tpar[0]= iChamber->RInner();
416      tpar[1]= iChamber->ROuter();
417      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
418      gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
419      gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
420      gMC->Gspos("S03A", 1, "S03M", 0., 0., 0.,  0, "ONLY");
421      gMC->Gspos("S04A", 1, "S04M", 0., 0., 0.,  0, "ONLY");
422 //     
423 //   Sensitive volumes
424      // tpar[2] = iChamber->DGas();
425      tpar[2] = iChamber->DGas()/2;
426      gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
427      gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
428      gMC->Gspos("S03G", 1, "S03A", 0., 0., 0.,  0, "ONLY");
429      gMC->Gspos("S04G", 1, "S04A", 0., 0., 0.,  0, "ONLY");
430 //
431 // Frame Crosses to be placed inside gas 
432      // NONE: chambers are sensitive everywhere
433 //      if (frameCrosses) {
434
435 //       dr = (iChamber->ROuter() - iChamber->RInner());
436 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
437 //       bpar[1] = dframep1/2;
438 //       bpar[2] = iChamber->DGas()/2;
439 //       gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
440 //       gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
441          
442 //       gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, 
443 //                  idrotm[1100],"ONLY");
444 //       gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, 
445 //                  idrotm[1100],"ONLY");
446 //       gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, 
447 //                  idrotm[1101],"ONLY");
448 //       gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, 
449 //                  idrotm[1101],"ONLY");
450          
451 //       gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, 
452 //                  idrotm[1100],"ONLY");
453 //       gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, 
454 //                  idrotm[1100],"ONLY");
455 //       gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, 
456 //                  idrotm[1101],"ONLY");
457 //       gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, 
458 //                  idrotm[1101],"ONLY");
459 //      }
460      }
461      // define the id of tracking media:
462      Int_t idCopper = idtmed[1110];
463      Int_t idGlass  = idtmed[1111];
464      Int_t idCarbon = idtmed[1112];
465      Int_t idRoha   = idtmed[1113];
466
467       // sensitive area: 40*40 cm**2
468      const Float_t sensLength = 40.; 
469      const Float_t sensHeight = 40.; 
470      const Float_t sensWidth  = 0.5; // according to TDR fig 2.120 
471      const Int_t sensMaterial = idGas;
472      const Float_t yOverlap   = 1.5; 
473
474      // PCB dimensions in cm; width: 30 mum copper   
475      const Float_t pcbLength  = sensLength; 
476      const Float_t pcbHeight  = 60.; 
477      const Float_t pcbWidth   = 0.003;   
478      const Int_t pcbMaterial  = idCopper;
479
480      // Insulating material: 200 mum glass fiber glued to pcb  
481      const Float_t insuLength = pcbLength; 
482      const Float_t insuHeight = pcbHeight; 
483      const Float_t insuWidth  = 0.020;   
484      const Int_t insuMaterial = idGlass;
485
486      // Carbon fiber panels: 200mum carbon/epoxy skin   
487      const Float_t panelLength = sensLength; 
488      const Float_t panelHeight = sensHeight; 
489      const Float_t panelWidth  = 0.020;      
490      const Int_t panelMaterial = idCarbon;
491
492      // rohacell between the two carbon panels   
493      const Float_t rohaLength = sensLength; 
494      const Float_t rohaHeight = sensHeight; 
495      const Float_t rohaWidth  = 0.5;
496      const Int_t rohaMaterial = idRoha;
497
498      // Frame around the slat: 2 sticks along length,2 along height  
499      // H: the horizontal ones 
500      const Float_t hFrameLength = pcbLength; 
501      const Float_t hFrameHeight = 1.5; 
502      const Float_t hFrameWidth  = sensWidth; 
503      const Int_t hFrameMaterial = idGlass;
504
505      // V: the vertical ones 
506      const Float_t vFrameLength = 4.0; 
507      const Float_t vFrameHeight = sensHeight + hFrameHeight; 
508      const Float_t vFrameWidth  = sensWidth;
509      const Int_t vFrameMaterial = idGlass;
510
511      // B: the horizontal border filled with rohacell 
512      const Float_t bFrameLength = hFrameLength; 
513      const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; 
514      const Float_t bFrameWidth  = hFrameWidth;
515      const Int_t bFrameMaterial = idRoha;
516
517      // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
518      const Float_t nulocLength = 2.5; 
519      const Float_t nulocHeight = 7.5; 
520      const Float_t nulocWidth  = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
521      const Int_t   nulocMaterial = idCopper;
522
523      const Float_t slatHeight = pcbHeight; 
524      const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + 
525                                                2.* panelWidth + rohaWidth);
526      const Int_t slatMaterial = idAir;
527      const Float_t dSlatLength = vFrameLength; // border on left and right 
528
529      Float_t spar[3];  
530      Int_t i, j;
531
532      // the panel volume contains the rohacell
533
534      Float_t twidth = 2 * panelWidth + rohaWidth; 
535      Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; 
536      Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; 
537
538      // insulating material contains PCB-> gas-> 2 borders filled with rohacell
539
540      twidth = 2*(insuWidth + pcbWidth) + sensWidth;  
541      Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; 
542      twidth -= 2 * insuWidth; 
543      Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; 
544      Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; 
545      Float_t theight = 2*hFrameHeight + sensHeight;
546      Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; 
547      Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; 
548      Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; 
549      Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; 
550      Float_t xx;
551      Float_t xxmax = (bFrameLength - nulocLength)/2.; 
552      Int_t index=0;
553      
554      if (fStations[2]) {
555          
556 //********************************************************************
557 //                            Station 3                             **
558 //********************************************************************
559      // indices 1 and 2 for first and second chambers in the station
560      // iChamber (first chamber) kept for other quanties than Z,
561      // assumed to be the same in both chambers
562      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
563      iChamber2 =(AliMUONChamber*) (*fChambers)[5];
564      zpos1=iChamber1->Z(); 
565      zpos2=iChamber2->Z();
566      dstation = TMath::Abs(zpos2 - zpos1);
567
568 //
569 //   Mother volume
570      tpar[0] = iChamber->RInner()-dframep; 
571      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
572      tpar[2] = dstation/5;
573
574      char *slats5Mother = "S05M";
575      char *slats6Mother = "S06M";
576      Float_t zoffs5 = 0;
577      Float_t zoffs6 = 0;
578
579      if (gAlice->GetModule("DIPO")) {
580        slats5Mother="DDIP";
581        slats6Mother="DDIP";
582
583        zoffs5 = TMath::Abs(zpos1);
584        zoffs6 = TMath::Abs(zpos2);
585      }
586      else {
587        gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
588        gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
589        gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
590        gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
591      }
592
593      // volumes for slat geometry (xx=5,..,10 chamber id): 
594      // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
595      // SxxG                          -->   Sensitive volume (gas)
596      // SxxP                          -->   PCB (copper) 
597      // SxxI                          -->   Insulator (vetronite) 
598      // SxxC                          -->   Carbon panel 
599      // SxxR                          -->   Rohacell
600      // SxxH, SxxV                    -->   Horizontal and Vertical frames (vetronite)
601      // SB5x                          -->   Volumes for the 35 cm long PCB
602      // slat dimensions: slat is a MOTHER volume!!! made of air
603
604      // only for chamber 5: slat 1 has a PCB shorter by 5cm!
605
606      Float_t tlength = 35.;
607      Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
608      Float_t rohapar2[3]   = { tlength/2., rohapar[1],   rohapar[2]}; 
609      Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
610      Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
611      Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
612      Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
613      Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
614
615      const Int_t nSlats3 = 5;  // number of slats per quadrant
616      const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
617      const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.};
618      Float_t slatLength3[nSlats3]; 
619
620      // create and position the slat (mother) volumes 
621
622      char volNam5[5];
623      char volNam6[5];
624      Float_t xSlat3;
625
626      Float_t spar2[3];
627      for (i = 0; i<nSlats3; i++){
628        slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; 
629        xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; 
630        if (i==1 || i==0) slatLength3[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
631        Float_t ySlat31 =  sensHeight * i - yOverlap * i; 
632        Float_t ySlat32 = -sensHeight * i + yOverlap * i; 
633        spar[0] = slatLength3[i]/2.; 
634        spar[1] = slatHeight/2.;
635        spar[2] = slatWidth/2. * 1.01; 
636        // take away 5 cm from the first slat in chamber 5
637        Float_t xSlat32 = 0;
638        if (i==1 || i==2) { // 1 pcb is shortened by 5cm
639          spar2[0] = spar[0]-5./2.;
640          xSlat32 = xSlat3 - 5/2.;
641        }
642        else {
643          spar2[0] = spar[0];
644          xSlat32 = xSlat3;
645        }
646        spar2[1] = spar[1];
647        spar2[2] = spar[2]; 
648        Float_t dzCh3=spar[2] * 1.01;
649        // zSlat to be checked (odd downstream or upstream?)
650        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
651        sprintf(volNam5,"S05%d",i);
652        gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3);
653        gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
654        gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
655        
656        if (i>0) { 
657          gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
658          gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
659        }
660        sprintf(volNam6,"S06%d",i);
661        gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
662        gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
663        gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
664        if (i>0) { 
665          gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
666          gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
667        }
668      }
669
670      // create the panel volume 
671  
672      gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
673      gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3);
674      gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
675
676      // create the rohacell volume 
677
678      gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
679      gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3);
680      gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
681
682      // create the insulating material volume 
683
684      gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
685      gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3);
686      gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
687
688      // create the PCB volume 
689
690      gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
691      gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3);
692      gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
693  
694      // create the sensitive volumes,
695      gMC->Gsvolu("S05G","BOX",sensMaterial,dum,0);
696      gMC->Gsvolu("S06G","BOX",sensMaterial,dum,0);
697
698
699      // create the vertical frame volume 
700
701      gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
702      gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
703
704      // create the horizontal frame volume 
705
706      gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
707      gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3);
708      gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
709
710      // create the horizontal border volume 
711
712      gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
713      gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3);
714      gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
715
716      index=0; 
717      for (i = 0; i<nSlats3; i++){
718        sprintf(volNam5,"S05%d",i);
719        sprintf(volNam6,"S06%d",i);
720        Float_t xvFrame  = (slatLength3[i] - vFrameLength)/2.;
721        Float_t xvFrame2  = xvFrame;
722        if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
723        // position the vertical frames 
724        if (i!=1 && i!=0) { 
725          gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
726          gMC->Gspos("S05V",2*i  ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
727          gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
728          gMC->Gspos("S06V",2*i  ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
729        }       
730        // position the panels and the insulating material 
731        for (j=0; j<nPCB3[i]; j++){
732          index++;
733          Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); 
734          Float_t xx2 = xx + 5/2.; 
735          
736          Float_t zPanel = spar[2] - panelpar[2]; 
737          if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm 
738            gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
739            gMC->Gspos("SB5C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
740            gMC->Gspos("SB5I",index    ,volNam5, xx, 0., 0      , 0, "ONLY");
741          }
742          else if ( (i==1 || i==2) && j < nPCB3[i]-1) {
743            gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
744            gMC->Gspos("S05C",2*index  ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
745            gMC->Gspos("S05I",index    ,volNam5, xx2, 0., 0 , 0, "ONLY");
746          }
747          else {
748            gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
749            gMC->Gspos("S05C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
750            gMC->Gspos("S05I",index    ,volNam5, xx, 0., 0 , 0, "ONLY");
751          }
752          gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
753          gMC->Gspos("S06C",2*index  ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
754          gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
755        } 
756      }
757      
758      // position the rohacell volume inside the panel volume
759      gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); 
760      gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); 
761      gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); 
762
763      // position the PCB volume inside the insulating material volume
764      gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
765      gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
766      gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
767      // position the horizontal frame volume inside the PCB volume
768      gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
769      gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
770      gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
771      // position the sensitive volume inside the horizontal frame volume
772      gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
773      gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
774      gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
775      // position the border volumes inside the PCB volume
776      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
777      gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
778      gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
779      gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
780      gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
781      gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
782      gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
783
784      // create the NULOC volume and position it in the horizontal frame
785
786      gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
787      gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
788      index = 0;
789      Float_t xxmax2 = xxmax - 5./2.;
790      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
791        index++; 
792        gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
793        gMC->Gspos("S05N",2*index  ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
794        if (xx > -xxmax2 && xx< xxmax2) {
795          gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
796          gMC->Gspos("S05N",2*index  ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY");
797        }
798        gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
799        gMC->Gspos("S06N",2*index  ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
800      }
801      
802      // position the volumes approximating the circular section of the pipe
803      Float_t yoffs = sensHeight/2. - yOverlap; 
804      Float_t epsilon = 0.001; 
805      Int_t ndiv=6;
806      Float_t divpar[3];
807      Double_t dydiv= sensHeight/ndiv;
808      Double_t ydiv = yoffs -dydiv;
809      Int_t imax=0; 
810      imax = 1; 
811      Float_t rmin = 33.; 
812      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
813      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
814        ydiv+= dydiv;
815        Float_t xdiv = 0.; 
816        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
817        divpar[0] = (pcbLength-xdiv)/2.; 
818        divpar[1] = dydiv/2. - epsilon;
819        divpar[2] = sensWidth/2.; 
820        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
821        Float_t yvol=ydiv + dydiv/2.; 
822        //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); 
823        gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
824        gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
825        gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
826        gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
827        gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
828        gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
829        gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
830        gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
831      }
832      }
833      
834  if (fStations[3]) {
835
836 //********************************************************************
837 //                            Station 4                             **
838 //********************************************************************
839      // indices 1 and 2 for first and second chambers in the station
840      // iChamber (first chamber) kept for other quanties than Z,
841      // assumed to be the same in both chambers
842      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
843      iChamber2 =(AliMUONChamber*) (*fChambers)[7];
844      zpos1=iChamber1->Z(); 
845      zpos2=iChamber2->Z();
846      dstation = TMath::Abs(zpos2 - zpos1);
847 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
848      
849 //
850 //   Mother volume
851      tpar[0] = iChamber->RInner()-dframep; 
852      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
853      tpar[2] = dstation/4;
854
855      gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
856      gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
857      gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
858      gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
859      
860
861      const Int_t nSlats4 = 6;  // number of slats per quadrant
862      const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
863      const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.};
864      Float_t slatLength4[nSlats4];     
865
866      // create and position the slat (mother) volumes 
867
868      char volNam7[5];
869      char volNam8[5];
870      Float_t xSlat4;
871      Float_t ySlat4;
872
873      for (i = 0; i<nSlats4; i++){
874        slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; 
875        xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; 
876        if (i==1) slatLength4[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
877        ySlat4 =  sensHeight * i - yOverlap *i;
878        
879        spar[0] = slatLength4[i]/2.; 
880        spar[1] = slatHeight/2.;
881        spar[2] = slatWidth/2.*1.01; 
882        Float_t dzCh4=spar[2]*1.01;
883        // zSlat to be checked (odd downstream or upstream?)
884        Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; 
885        sprintf(volNam7,"S07%d",i);
886        gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
887        gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
888        gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
889        if (i>0) { 
890          gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
891          gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
892        }
893        sprintf(volNam8,"S08%d",i);
894        gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
895        gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
896        gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
897        if (i>0) { 
898          gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
899          gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
900        }
901      }
902      
903
904      // create the panel volume 
905  
906      gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
907      gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
908
909      // create the rohacell volume 
910
911      gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
912      gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
913
914      // create the insulating material volume 
915
916      gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
917      gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
918
919      // create the PCB volume 
920
921      gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
922      gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
923  
924      // create the sensitive volumes,
925
926      gMC->Gsvolu("S07G","BOX",sensMaterial,dum,0);
927      gMC->Gsvolu("S08G","BOX",sensMaterial,dum,0);
928
929      // create the vertical frame volume 
930
931      gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
932      gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
933
934      // create the horizontal frame volume 
935
936      gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
937      gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
938
939      // create the horizontal border volume 
940
941      gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
942      gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
943
944      index=0; 
945      for (i = 0; i<nSlats4; i++){
946        sprintf(volNam7,"S07%d",i);
947        sprintf(volNam8,"S08%d",i);
948        Float_t xvFrame  = (slatLength4[i] - vFrameLength)/2.;
949        // position the vertical frames 
950        if (i!=1 && i!=0) { 
951          gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
952          gMC->Gspos("S07V",2*i  ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
953          gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
954          gMC->Gspos("S08V",2*i  ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
955        }
956        // position the panels and the insulating material 
957        for (j=0; j<nPCB4[i]; j++){
958          index++;
959          Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); 
960
961          Float_t zPanel = spar[2] - panelpar[2]; 
962          gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
963          gMC->Gspos("S07C",2*index  ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
964          gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
965          gMC->Gspos("S08C",2*index  ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
966
967          gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
968          gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
969        } 
970      }
971
972      // position the rohacell volume inside the panel volume
973      gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); 
974      gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); 
975
976      // position the PCB volume inside the insulating material volume
977      gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
978      gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
979      // position the horizontal frame volume inside the PCB volume
980      gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
981      gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
982      // position the sensitive volume inside the horizontal frame volume
983      gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
984      gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
985      // position the border volumes inside the PCB volume
986      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
987      gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
988      gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
989      gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
990      gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
991
992      // create the NULOC volume and position it in the horizontal frame
993
994      gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
995      gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
996      index = 0;
997      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
998        index++; 
999        gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1000        gMC->Gspos("S07N",2*index  ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1001        gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1002        gMC->Gspos("S08N",2*index  ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1003      }
1004
1005      // position the volumes approximating the circular section of the pipe
1006      Float_t yoffs = sensHeight/2. - yOverlap; 
1007      Float_t epsilon = 0.001; 
1008      Int_t ndiv=6;
1009      Float_t divpar[3];
1010      Double_t dydiv= sensHeight/ndiv;
1011      Double_t ydiv = yoffs -dydiv;
1012      Int_t imax=0; 
1013      imax = 1; 
1014      Float_t rmin = 40.; 
1015      Float_t z1 = -spar[2], z2=2*spar[2]*1.01; 
1016      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1017        ydiv+= dydiv;
1018        Float_t xdiv = 0.; 
1019        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1020        divpar[0] = (pcbLength-xdiv)/2.; 
1021        divpar[1] = dydiv/2. - epsilon;
1022        divpar[2] = sensWidth/2.; 
1023        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
1024        Float_t yvol=ydiv + dydiv/2.;
1025        gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1026        gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1027        gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1028        gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1029        gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1030        gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1031        gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1032        gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1033      }
1034
1035
1036
1037
1038
1039  }
1040
1041  if (fStations[4]) {
1042      
1043
1044 //********************************************************************
1045 //                            Station 5                             **
1046 //********************************************************************
1047      // indices 1 and 2 for first and second chambers in the station
1048      // iChamber (first chamber) kept for other quanties than Z,
1049      // assumed to be the same in both chambers
1050      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1051      iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1052      zpos1=iChamber1->Z(); 
1053      zpos2=iChamber2->Z();
1054      dstation = TMath::Abs(zpos2 - zpos1);
1055 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1056      
1057 //
1058 //   Mother volume
1059      tpar[0] = iChamber->RInner()-dframep; 
1060      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1061      tpar[2] = dstation/5.;
1062
1063      gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1064      gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1065      gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1066      gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1067
1068
1069      const Int_t nSlats5 = 7;  // number of slats per quadrant
1070      const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1071      const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1072      Float_t slatLength5[nSlats5]; 
1073      char volNam9[5];
1074      char volNam10[5];
1075      Float_t xSlat5;
1076      Float_t ySlat5;
1077
1078      for (i = 0; i<nSlats5; i++){
1079        slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; 
1080        xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; 
1081        if (i==1 || i==0) slatLength5[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
1082        ySlat5 = sensHeight * i - yOverlap * i; 
1083        spar[0] = slatLength5[i]/2.; 
1084        spar[1] = slatHeight/2.;
1085        spar[2] = slatWidth/2. * 1.01; 
1086        Float_t dzCh5=spar[2]*1.01;
1087        // zSlat to be checked (odd downstream or upstream?)
1088        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
1089        sprintf(volNam9,"S09%d",i);
1090        gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
1091        gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1092        gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1093        if (i>0) { 
1094            gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1095            gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1096        }
1097        sprintf(volNam10,"S10%d",i);
1098        gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
1099        gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1100        gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1101        if (i>0) { 
1102            gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1103            gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1104        }
1105      }
1106
1107      // create the panel volume 
1108  
1109      gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1110      gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
1111
1112      // create the rohacell volume 
1113
1114      gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1115      gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
1116
1117      // create the insulating material volume 
1118
1119      gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1120      gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1121
1122      // create the PCB volume 
1123
1124      gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1125      gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1126  
1127      // create the sensitive volumes,
1128
1129      gMC->Gsvolu("S09G","BOX",sensMaterial,dum,0);
1130      gMC->Gsvolu("S10G","BOX",sensMaterial,dum,0);
1131
1132      // create the vertical frame volume 
1133
1134      gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1135      gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1136
1137      // create the horizontal frame volume 
1138
1139      gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1140      gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1141
1142      // create the horizontal border volume 
1143
1144      gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1145      gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1146
1147      index=0; 
1148      for (i = 0; i<nSlats5; i++){
1149        sprintf(volNam9,"S09%d",i);
1150        sprintf(volNam10,"S10%d",i);
1151        Float_t xvFrame  = (slatLength5[i] - vFrameLength)/2.;
1152        // position the vertical frames 
1153        if (i!=1 && i!=0) { 
1154          gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1155          gMC->Gspos("S09V",2*i  ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1156          gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1157          gMC->Gspos("S10V",2*i  ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1158        }
1159        
1160        // position the panels and the insulating material 
1161        for (j=0; j<nPCB5[i]; j++){
1162          index++;
1163          Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); 
1164
1165          Float_t zPanel = spar[2] - panelpar[2]; 
1166          gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1167          gMC->Gspos("S09C",2*index  ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1168          gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1169          gMC->Gspos("S10C",2*index  ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1170
1171          gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1172          gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1173        } 
1174      }
1175
1176      // position the rohacell volume inside the panel volume
1177      gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); 
1178      gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); 
1179
1180      // position the PCB volume inside the insulating material volume
1181      gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1182      gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1183      // position the horizontal frame volume inside the PCB volume
1184      gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1185      gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1186      // position the sensitive volume inside the horizontal frame volume
1187      gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1188      gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1189      // position the border volumes inside the PCB volume
1190      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
1191      gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1192      gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1193      gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1194      gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1195
1196      // create the NULOC volume and position it in the horizontal frame
1197
1198      gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1199      gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
1200      index = 0;
1201      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
1202        index++; 
1203        gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1204        gMC->Gspos("S09N",2*index  ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1205        gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1206        gMC->Gspos("S10N",2*index  ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
1207      }
1208      // position the volumes approximating the circular section of the pipe
1209      Float_t yoffs = sensHeight/2. - yOverlap; 
1210      Float_t epsilon = 0.001; 
1211      Int_t ndiv=6;
1212      Float_t divpar[3];
1213      Double_t dydiv= sensHeight/ndiv;
1214      Double_t ydiv = yoffs -dydiv;
1215      Int_t imax=0; 
1216      //     for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; 
1217      imax = 1; 
1218      Float_t rmin = 40.; 
1219      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
1220      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1221        ydiv+= dydiv;
1222        Float_t xdiv = 0.; 
1223        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1224        divpar[0] = (pcbLength-xdiv)/2.; 
1225        divpar[1] = dydiv/2. - epsilon;
1226        divpar[2] = sensWidth/2.; 
1227        Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
1228        Float_t yvol=ydiv + dydiv/2.;
1229        gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1230        gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1231        gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1232        gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1233        gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1234        gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1235        gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1236        gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1237      }
1238
1239  }
1240  
1241 //********************************************************************
1242 //                            Trigger                               **
1243 //******************************************************************** 
1244  /* 
1245     zpos1 and zpos2 are the middle of the first and second
1246     planes of station 1 (+1m for second station):
1247     zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1248     zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1249     zposxm and zposxp= middles of gaz gaps within a detection plane
1250     rem: the total thickness accounts for 1 mm of al on both
1251     side of the RPCs (see zpos1 and zpos2)
1252  */
1253
1254 // vertical gap between right and left chambers (kDXZERO*2=4cm)
1255  const Float_t kDXZERO=2.; 
1256 // main distances for chamber definition in first plane/first station
1257  const Float_t kXMIN=34.;       
1258  const Float_t kXMED=51.;                                
1259  const Float_t kXMAX=272.; 
1260 // kXMAX will become 255. in real life. segmentation to be updated accordingly
1261 // (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1262  const Float_t kYMIN=34.;                              
1263  const Float_t kYMAX=51.;                              
1264 // inner/outer radius of flange between beam shield. and chambers (1/station)
1265  const Float_t kRMIN[2]={50.,50.};
1266  const Float_t kRMAX[2]={64.,68.};
1267 // z position of the middle of the gas gap in mother vol 
1268  const Float_t kZm=-3.6;
1269  const Float_t kZp=+3.6;     
1270  
1271  iChamber1 = (AliMUONChamber*) (*fChambers)[10];     
1272  zpos1 = iChamber1->Z();
1273
1274 // ratio of zpos1m/zpos1p and inverse for first plane
1275  Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
1276  Float_t zpm=1./zmp;
1277  
1278  Int_t icount=0; // chamber counter (0 1 2 3)
1279  
1280  for (Int_t istation=0; istation<2; istation++) { // loop on stations    
1281      for (Int_t iplane=0; iplane<2; iplane++) {   // loop on detection planes
1282          
1283          Int_t iVolNum=1; // counter Volume Number
1284          icount = Int_t(iplane*TMath::Power(2,0))+
1285              Int_t(istation*TMath::Power(2,1));
1286          
1287          char volPlane[5]; 
1288          sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1289          
1290          iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1291          Float_t zpos = iChamber->Z();       
1292          
1293 // mother volume 
1294          tpar[0] = iChamber->RInner(); 
1295          tpar[1] = iChamber->ROuter(); 
1296          tpar[2] = 4.0;    
1297          gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1298          
1299 // Flange between beam shielding and RPC 
1300          tpar[0]= kRMIN[istation];
1301          tpar[1]= kRMAX[istation];
1302          tpar[2]= 4.0;
1303          
1304          char volFlange[5];
1305          sprintf(volFlange,"SF%dA",icount+1);    
1306          gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3);     //Al
1307          gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1308          
1309 // scaling factor
1310          Float_t zRatio = zpos / zpos1;
1311          
1312 // chamber prototype
1313          tpar[0]= 0.;
1314          tpar[1]= 0.;
1315          tpar[2]= 0.;
1316          
1317          char volAlu[5]; // Alu
1318          char volBak[5]; // Bakelite
1319          char volGaz[5]; // Gas streamer
1320          
1321          sprintf(volAlu,"SC%dA",icount+1);
1322          sprintf(volBak,"SB%dA",icount+1);
1323          sprintf(volGaz,"SG%dA",icount+1);
1324          
1325          gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0);           // Al
1326          gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0);     // Bakelite
1327          gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0);     // Gas streamer
1328          
1329 // chamber type A
1330          tpar[0] = -1.;
1331          tpar[1] = -1.;
1332          
1333          Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1334          Float_t yAm=0.;
1335          Float_t yAp=0.;
1336          
1337          tpar[2] = 0.1;    
1338          gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1339          tpar[2] = 0.3;
1340          gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1341          
1342          tpar[2] = 0.4;
1343          tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1344          tpar[1] = kYMIN*zRatio;
1345          
1346          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1347          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xA,yAp,-kZp,0,"ONLY",tpar,3);
1348          gMC->Gsbool(volAlu,volFlange);
1349          
1350 // chamber type B    
1351          Float_t tpar1save=tpar[1];
1352          Float_t y1msave=yAm;
1353          Float_t y1psave=yAp;
1354          
1355          tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1356          tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1357          
1358          Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1359          Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1360          Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];    
1361
1362          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1363          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB, yBm,-kZm,0,"ONLY",tpar,3);
1364          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1365          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB,-yBm,-kZm,0,"ONLY",tpar,3);
1366          
1367 // chamber type C (note : same Z than type B)
1368          tpar1save=tpar[1];
1369          y1msave=yBm;
1370          y1psave=yBp;
1371          
1372          tpar[0] = (kXMAX/2)*zRatio;
1373          tpar[1] = (kYMAX/2)*zRatio;
1374          
1375          Float_t xC=kDXZERO*zRatio+tpar[0];
1376          Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1377          Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1378          
1379          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1380          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1381          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1382          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
1383                  
1384 // chamber type D, E and F (same size)        
1385          tpar1save=tpar[1];
1386          y1msave=yCm;
1387          y1psave=yCp;
1388          
1389          tpar[0] = (kXMAX/2.)*zRatio;
1390          tpar[1] =  kYMIN*zRatio;
1391          
1392          Float_t xD=kDXZERO*zRatio+tpar[0];
1393          Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1394          Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1395          
1396          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1397          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yDp,-kZp,0,"ONLY",tpar,3);
1398          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1399          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yDp,-kZp,0,"ONLY",tpar,3);
1400          
1401          tpar1save=tpar[1];
1402          y1msave=yDm;
1403          y1psave=yDp;
1404          Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1405          Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1406          
1407          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1408          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yEm,-kZm,0,"ONLY",tpar,3);
1409          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1410          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yEm,-kZm,0,"ONLY",tpar,3);
1411          
1412          tpar1save=tpar[1];
1413          y1msave=yEm;
1414          y1psave=yEp;
1415          Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1416          Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1417          
1418          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1419          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yFp,-kZp,0,"ONLY",tpar,3);
1420          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1421          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yFp,-kZp,0,"ONLY",tpar,3);
1422
1423 // Positioning plane in ALICE     
1424          gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1425          
1426      } // end loop on detection planes
1427  } // end loop on stations
1428
1429 }
1430
1431  
1432 //___________________________________________
1433 void AliMUONv1::CreateMaterials()
1434 {
1435   // *** DEFINITION OF AVAILABLE MUON MATERIALS *** 
1436   //
1437   //     Ar-CO2 gas (80%+20%)
1438     Float_t ag1[3]   = { 39.95,12.01,16. };
1439     Float_t zg1[3]   = { 18.,6.,8. };
1440     Float_t wg1[3]   = { .8,.0667,.13333 };
1441     Float_t dg1      = .001821;
1442     //
1443     //     Ar-buthane-freon gas -- trigger chambers 
1444     Float_t atr1[4]  = { 39.95,12.01,1.01,19. };
1445     Float_t ztr1[4]  = { 18.,6.,1.,9. };
1446     Float_t wtr1[4]  = { .56,.1262857,.2857143,.028 };
1447     Float_t dtr1     = .002599;
1448     //
1449     //     Ar-CO2 gas 
1450     Float_t agas[3]  = { 39.95,12.01,16. };
1451     Float_t zgas[3]  = { 18.,6.,8. };
1452     Float_t wgas[3]  = { .74,.086684,.173316 };
1453     Float_t dgas     = .0018327;
1454     //
1455     //     Ar-Isobutane gas (80%+20%) -- tracking 
1456     Float_t ag[3]    = { 39.95,12.01,1.01 };
1457     Float_t zg[3]    = { 18.,6.,1. };
1458     Float_t wg[3]    = { .8,.057,.143 };
1459     Float_t dg       = .0019596;
1460     //
1461     //     Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger 
1462     Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1463     Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1464     Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1465     Float_t dtrig    = .0031463;
1466     //
1467     //     bakelite 
1468
1469     Float_t abak[3] = {12.01 , 1.01 , 16.};
1470     Float_t zbak[3] = {6.     , 1.   , 8.};
1471     Float_t wbak[3] = {6.     , 6.   , 1.}; 
1472     Float_t dbak = 1.4;
1473
1474     Float_t epsil, stmin, deemax, tmaxfd, stemax;
1475
1476     Int_t iSXFLD   = gAlice->Field()->Integ();
1477     Float_t sXMGMX = gAlice->Field()->Max();
1478     //
1479     // --- Define the various materials for GEANT --- 
1480     AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1481     AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1482     AliMaterial(15, "AIR$      ", 14.61, 7.3, .001205, 30423.24, 67500);
1483     AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1484     AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1485     AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1486     AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1487     AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1488     AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1489     // materials for slat: 
1490     //     Sensitive area: gas (already defined) 
1491     //     PCB: copper 
1492     //     insulating material and frame: vetronite
1493     //     walls: carbon, rohacell, carbon 
1494   Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
1495   Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
1496   Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
1497   Float_t dglass=1.74;
1498
1499   // rohacell: C9 H13 N1 O2
1500   Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
1501   Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
1502   Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
1503   Float_t drohac    = 0.03;
1504
1505   AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
1506   AliMixture(32, "Vetronite$",aglass, zglass, dglass,    5, wglass);
1507   AliMaterial(33, "Carbon$",   12.01,     6.,  2.265, 18.8, 49.9);
1508   AliMixture(34, "Rohacell$", arohac, zrohac, drohac,   -4, wrohac); 
1509
1510
1511     epsil  = .001; // Tracking precision, 
1512     stemax = -1.;  // Maximum displacement for multiple scat 
1513     tmaxfd = -20.; // Maximum angle due to field deflection 
1514     deemax = -.3;  // Maximum fractional energy loss, DLS 
1515     stmin  = -.8;
1516     //
1517     //    Air 
1518     AliMedium(1, "AIR_CH_US         ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1519     //
1520     //    Aluminum 
1521
1522     AliMedium(4, "ALU_CH_US          ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1523             fMaxDestepAlu, epsil, stmin);
1524     AliMedium(5, "ALU_CH_US          ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1525             fMaxDestepAlu, epsil, stmin);
1526     //
1527     //    Ar-isoC4H10 gas 
1528
1529     AliMedium(6, "AR_CH_US          ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1530             fMaxDestepGas, epsil, stmin);
1531 //
1532     //    Ar-Isobuthane-Forane-SF6 gas 
1533
1534     AliMedium(7, "GAS_CH_TRIGGER    ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1535
1536     AliMedium(8, "BAKE_CH_TRIGGER   ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1537             fMaxDestepAlu, epsil, stmin);
1538
1539     AliMedium(9, "ARG_CO2   ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1540             fMaxDestepAlu, epsil, stmin);
1541     // tracking media for slats: check the parameters!! 
1542     AliMedium(11, "PCB_COPPER        ", 31, 0, iSXFLD, sXMGMX, tmaxfd, 
1543               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1544     AliMedium(12, "VETRONITE         ", 32, 0, iSXFLD, sXMGMX, tmaxfd, 
1545               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1546     AliMedium(13, "CARBON            ", 33, 0, iSXFLD, sXMGMX, tmaxfd, 
1547               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1548     AliMedium(14, "Rohacell          ", 34, 0, iSXFLD, sXMGMX, tmaxfd, 
1549               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1550 }
1551
1552 //___________________________________________
1553
1554 void AliMUONv1::Init()
1555 {
1556    // 
1557    // Initialize Tracking Chambers
1558    //
1559
1560    if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
1561    Int_t i;
1562    for (i=0; i<AliMUONConstants::NCh(); i++) {
1563        ( (AliMUONChamber*) (*fChambers)[i])->Init();
1564    }
1565    
1566    //
1567    // Set the chamber (sensitive region) GEANT identifier
1568    ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G"));
1569    ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G"));
1570
1571    ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
1572    ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
1573
1574    ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1575    ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
1576
1577    ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1578    ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
1579
1580    ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1581    ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
1582
1583    ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
1584    ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
1585    ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
1586    ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));
1587
1588    if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
1589
1590    //cp 
1591    if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
1592    for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1593      ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1594    }
1595    if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
1596    //cp
1597
1598 }
1599 //___________________________________________
1600 void AliMUONv1::StepManager()
1601 {
1602   if (fStepManagerVersionOld) {
1603     StepManagerOld();
1604     return;
1605   }
1606  if (fStepManagerVersionNew) {
1607     StepManagerNew();
1608     return;
1609   }
1610  
1611  if (fStepManagerVersionTest) {
1612     StepManagerTest();
1613     return;
1614   }
1615
1616
1617   // Volume id
1618   Int_t   copy, id;
1619   Int_t   idvol;
1620   Int_t   iChamber=0;
1621   // Particule id, pos and mom vectors, 
1622   // theta, phi angles with respect the normal of the chamber, 
1623   // spatial step, delta_energy and time of flight
1624   Int_t          ipart;
1625   TLorentzVector pos, mom;
1626   Float_t        theta, phi, tof;
1627   Float_t        destep, step;
1628   const  Float_t kBig = 1.e10;
1629
1630   // Only charged tracks
1631   if( !(gMC->TrackCharge()) ) return; 
1632
1633   // Only gas gap inside chamber
1634   // Tag chambers and record hits when track enters 
1635   idvol=-1;
1636   id=gMC->CurrentVolID(copy);
1637   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1638     if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1639       iChamber = i;
1640       idvol  = i-1;
1641     }
1642   }
1643   if (idvol == -1) return;
1644
1645   //   printf(">>>> This Chamber %d\n",iChamber);
1646
1647   // record hits when track enters ...
1648   if( gMC->IsTrackEntering()) gMC->SetMaxStep(fStepMaxInActiveGas);  
1649
1650   if (gMC->TrackStep() > 0.) {
1651     // Get current particle id (ipart), track position (pos)  and momentum (mom)
1652     gMC->TrackPosition(pos);
1653     gMC->TrackMomentum(mom);
1654     ipart    = gMC->TrackPid();
1655     theta    = mom.Theta()*kRaddeg;     // theta of track
1656     phi      = mom.Phi()  *kRaddeg;     // phi of the track
1657     tof      = gMC->TrackTime();        // Time of flight
1658     //
1659     // momentum loss and steplength in last step
1660     destep = gMC->Edep();
1661     step   = gMC->TrackStep();
1662
1663     //new hit
1664     GetMUONData()->AddHit(fIshunt, gAlice->GetCurrentTrackNumber(), iChamber, ipart, 
1665                           pos.X(), pos.Y(), pos.Z(), tof, mom.P(), 
1666                           theta, phi, step, destep);
1667   }
1668   // Track left chamber ...
1669   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1670     gMC->SetMaxStep(kBig);
1671   }
1672 }
1673
1674
1675 Int_t  AliMUONv1::GetChamberId(Int_t volId) const
1676 {
1677 // Check if the volume with specified  volId is a sensitive volume (gas) 
1678 // of some chamber and returns the chamber number;
1679 // if not sensitive volume - return 0.
1680 // ---
1681
1682   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1683     if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
1684
1685   return 0;
1686 }
1687 //__
1688
1689
1690
1691 void AliMUONv1::StepManagerTest()
1692 {
1693   return;
1694 }
1695 //________________________________________
1696 void AliMUONv1::StepManagerNew()
1697 {
1698
1699 //   // Volume id
1700 //   Int_t   copy, id;
1701 //   Int_t   idvol;
1702 //   Int_t   iChamber=0;
1703 //   // Particule id, pos and mom vectors, 
1704 //   // theta, phi angles with respect the normal of the chamber, 
1705 //   // spatial step, delta_energy and time of flight
1706 //   Int_t          ipart;
1707 //   TLorentzVector pos, mom;
1708 //   Float_t        theta, phi, tof;
1709 //   Float_t        destep, step;
1710 //   const  Float_t kBig = 1.e10;
1711
1712 //   // Only charged tracks
1713 //   if( !(gMC->TrackCharge()) ) return; 
1714
1715 //   // Only gas gap inside chamber
1716 //   // Tag chambers and record hits when track enters 
1717 //   idvol=-1;
1718 //   id=gMC->CurrentVolID(copy);
1719 //   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1720 //     if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1721 //       iChamber = i;
1722 //       idvol  = i-1;
1723 //     }
1724 //   }
1725 //   static Float_t Sstep[20]; // Sum of steps per chamber
1726 //   // static Float_t Sdestep[20]; // Sum of eloss per chamber
1727 //   Float_t GAP;
1728 //   Float_t TEST; 
1729
1730 //   if (idvol == -1) return;
1731
1732 //   //  printf(">>>> This Chamber %d\n",iChamber);
1733
1734 //   // record hits when track enters ...
1735 //   //if( gMC->IsTrackEntering()) gMC->SetMaxStep(fStepMaxInActiveGas);  
1736
1737 //   if (gMC->TrackStep() > 0.) {
1738 //     // Get current particle id (ipart), track position (pos)  and momentum (mom)
1739 //     gMC->TrackPosition(pos);
1740 //     gMC->TrackMomentum(mom);
1741 //     ipart    = gMC->TrackPid();         // Particle
1742 //     theta    = mom.Theta()*kRaddeg;     // theta of track
1743 //     phi      = mom.Phi()  *kRaddeg;     // phi of the track
1744 //     tof      = gMC->TrackTime();        // Time of flight
1745 //     //
1746 //     // momentum loss and steplength in last step
1747 //     destep = gMC->Edep();
1748 //     step   = gMC->TrackStep();
1749
1750 //     Sstep[iChamber]+=step;
1751 //     // Sdestep[iChamber]+=destep;
1752
1753 //   }
1754   
1755 //   step   =  Sstep[iChamber]; // Total step >= gap
1756 //   //  destep   =  Sdestep[iChamber]; // Total eloss
1757
1758
1759 //   // Track left chamber ...
1760 //   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1761 //     gMC->SetMaxStep(kBig);
1762
1763 //     Sstep[iChamber]=0; // Reset for the next event
1764 //     //Sdestep[iChamber]=0; // Reset for the next event
1765
1766 //     if (iChamber>=1 && iChamber<=2) GAP=0.4;
1767 //     if (iChamber>=11 && iChamber<=14) GAP=0.2;
1768 //     if (iChamber>=3 && iChamber<=10) GAP=0.5;
1769    
1770 //     TF1 *ELOSS1 = new TF1("Gauss1","exp(-((x-4.13727e+01)**2)/(2*1.42223e+01**2))",0,75);
1771 //     TF1 *ELOSS2 = new TF1("Gauss2","exp(-((x+6.83795e+02)**2)/(2*4.48415e+02**2))",75,350);
1772 //     TEST=gRandom->Rndm();
1773 //     if (TEST <=0.89) destep=ELOSS1->GetRandom();
1774 //     else destep=ELOSS2->GetRandom();
1775 //     destep*=pow(10,-6)*0.0274;
1776 //     destep*=GAP/0.5;
1777
1778 //     // One hit per chamber
1779 //     GetMUONData()->AddHit(fIshunt, gAlice->GetCurrentTrackNumber(), iChamber, ipart, 
1780 //         pos.X()-(step/2*sin(theta*kDegrad)*cos(phi*kDegrad)), pos.Y()-(step/2*sin(theta*kDegrad)*sin(phi*kDegrad)), pos.Z()-GAP/2, tof, mom.P(),theta, phi, step, destep);
1781
1782 //   }
1783 }
1784
1785 //___________________________________________
1786 void AliMUONv1::StepManagerOld()
1787 {
1788   Int_t          copy, id;
1789   static Int_t   idvol;
1790   static Int_t   vol[2];
1791   Int_t          ipart;
1792   TLorentzVector pos;
1793   TLorentzVector mom;
1794   Float_t        theta,phi;
1795   Float_t        destep, step;
1796   
1797   static Float_t Sstep;
1798   static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1799   const  Float_t kBig = 1.e10;
1800   static Float_t hits[15];
1801
1802   TClonesArray &lhits = *fHits;
1803
1804   //
1805   //
1806   // Only charged tracks
1807   if( !(gMC->TrackCharge()) ) return; 
1808   //
1809   // Only gas gap inside chamber
1810   // Tag chambers and record hits when track enters 
1811   id=gMC->CurrentVolID(copy);
1812   vol[0] = GetChamberId(id);
1813   idvol = vol[0] -1;
1814
1815   if (idvol == -1) return;
1816
1817   //
1818   // Get current particle id (ipart), track position (pos)  and momentum (mom) 
1819   gMC->TrackPosition(pos);
1820   gMC->TrackMomentum(mom);
1821
1822   ipart  = gMC->TrackPid();
1823
1824   //
1825   // momentum loss and steplength in last step
1826   destep = gMC->Edep();
1827   step   = gMC->TrackStep();
1828   // cout<<"------------"<<step<<endl;
1829   //
1830   // record hits when track enters ...
1831   if( gMC->IsTrackEntering()) {
1832
1833       gMC->SetMaxStep(fMaxStepGas);
1834       Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1835       Double_t rt = TMath::Sqrt(tc);
1836       Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1837       Double_t tx = mom[0]/pmom;
1838       Double_t ty = mom[1]/pmom;
1839       Double_t tz = mom[2]/pmom;
1840       Double_t s  = ((AliMUONChamber*)(*fChambers)[idvol])
1841           ->ResponseModel()
1842           ->Pitch()/tz;
1843       theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1844       phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1845       hits[0] = Float_t(ipart);         // Geant3 particle type
1846       hits[1] = pos[0]+s*tx;            // X-position for hit
1847       hits[2] = pos[1]+s*ty;            // Y-position for hit
1848       hits[3] = pos[2]+s*tz;            // Z-position for hit
1849       hits[4] = theta;                  // theta angle of incidence
1850       hits[5] = phi;                    // phi angle of incidence 
1851       hits[8] = 0;//PadHits does not exist anymore  (Float_t) fNPadHits;    // first padhit
1852       hits[9] = -1;                     // last pad hit
1853       hits[10] = mom[3];                // hit momentum P
1854       hits[11] = mom[0];                // Px
1855       hits[12] = mom[1];                // Py
1856       hits[13] = mom[2];                // Pz
1857       tof=gMC->TrackTime();
1858       hits[14] = tof;                   // Time of flight
1859       tlength  = 0;
1860       eloss    = 0;
1861       eloss2   = 0;
1862       Sstep=0;
1863       xhit     = pos[0];
1864       yhit     = pos[1];      
1865       zhit     = pos[2];      
1866       Chamber(idvol).ChargeCorrelationInit();
1867       // Only if not trigger chamber
1868
1869 //       printf("---------------------------\n");
1870 //       printf(">>>> Y =  %f \n",hits[2]);
1871 //       printf("---------------------------\n");
1872     
1873       
1874
1875      //  if(idvol < AliMUONConstants::NTrackingCh()) {
1876 //        //
1877 //        //  Initialize hit position (cursor) in the segmentation model 
1878 //        ((AliMUONChamber*) (*fChambers)[idvol])
1879 //            ->SigGenInit(pos[0], pos[1], pos[2]);
1880 //       } else {
1881 //        //geant3->Gpcxyz();
1882 //        //printf("In the Trigger Chamber #%d\n",idvol-9);
1883 //       }
1884   }
1885   eloss2+=destep;
1886   Sstep+=step;
1887
1888   // cout<<Sstep<<endl;
1889
1890   // 
1891   // Calculate the charge induced on a pad (disintegration) in case 
1892   //
1893   // Mip left chamber ...
1894   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1895       gMC->SetMaxStep(kBig);
1896       eloss   += destep;
1897       tlength += step;
1898       
1899       Float_t x0,y0,z0;
1900       Float_t localPos[3];
1901       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1902       gMC->Gmtod(globalPos,localPos,1); 
1903
1904       if(idvol < AliMUONConstants::NTrackingCh()) {
1905 // tracking chambers
1906           x0 = 0.5*(xhit+pos[0]);
1907           y0 = 0.5*(yhit+pos[1]);
1908           z0 = 0.5*(zhit+pos[2]);
1909       } else {
1910 // trigger chambers
1911           x0 = xhit;
1912           y0 = yhit;
1913           z0 = 0.;
1914       }
1915       
1916
1917       //      if (eloss >0)  MakePadHits(x0,y0,z0,eloss,tof,idvol);
1918       
1919           
1920       hits[6] = tlength;   // track length
1921       hits[7] = eloss2;    // de/dx energy loss
1922
1923
1924       //      if (fNPadHits > (Int_t)hits[8]) {
1925       //          hits[8] = hits[8]+1;
1926       //          hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1927       //}
1928 //
1929 //    new hit 
1930       
1931       new(lhits[fNhits++]) 
1932           AliMUONHit(fIshunt, gAlice->GetCurrentTrackNumber(), vol,hits);
1933       eloss = 0; 
1934       //
1935       // Check additional signal generation conditions 
1936       // defined by the segmentation
1937       // model (boundary crossing conditions)
1938       // only for tracking chambers
1939   } else if 
1940       ((idvol < AliMUONConstants::NTrackingCh()) &&
1941        ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1942   {
1943       ((AliMUONChamber*) (*fChambers)[idvol])
1944           ->SigGenInit(pos[0], pos[1], pos[2]);
1945       
1946       Float_t localPos[3];
1947       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1948       gMC->Gmtod(globalPos,localPos,1); 
1949
1950       eloss    += destep;
1951
1952       // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1953       //        MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1954       xhit     = pos[0];
1955       yhit     = pos[1]; 
1956       zhit     = pos[2];
1957       eloss = 0;
1958       tlength += step ;
1959       //
1960       // nothing special  happened, add up energy loss
1961   } else {        
1962       eloss   += destep;
1963       tlength += step ;
1964   }
1965 }
1966
1967