]> git.uio.no Git - u/mrichter/AliRoot.git/blob - MUON/AliMUONv1.cxx
Bug on max theta (Jean Pierre)
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpeateose. It is      *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 /////////////////////////////////////////////////////////
19 //  Manager and hits classes for set:MUON version 0    //
20 /////////////////////////////////////////////////////////
21 #include <TRandom.h>
22 #include <TF1.h>
23 #include <Riostream.h>
24 #include <TClonesArray.h>
25 #include <TLorentzVector.h> 
26 #include <TNode.h> 
27 #include <TRandom.h> 
28 #include <TTUBE.h>
29 #include <TVirtualMC.h>
30 #include <TParticle.h>
31
32 #include "AliCallf77.h"
33 #include "AliConst.h" 
34 #include "AliMUONChamber.h"
35 #include "AliMUONConstants.h"
36 #include "AliMUONFactory.h"
37 #include "AliMUONHit.h"
38 #include "AliMUONPadHit.h"
39 #include "AliMUONTriggerCircuit.h"
40 #include "AliMUONv1.h"
41 #include "AliMagF.h"
42 #include "AliRun.h"
43
44 ClassImp(AliMUONv1)
45  
46 //___________________________________________
47 AliMUONv1::AliMUONv1() : AliMUON()
48   ,fTrackMomentum(), fTrackPosition()
49 {
50 // Constructor
51     fChambers   = 0;
52     fStations   = 0;
53     fStepManagerVersionOld  = kFALSE;
54     fStepMaxInActiveGas     = 0.6;
55     fStepSum    =  0x0;
56     fDestepSum  =  0x0;
57     fElossRatio =  0x0;
58     fAngleEffect10   = 0x0;
59     fAngleEffectNorma= 0x0;
60
61 //___________________________________________
62 AliMUONv1::AliMUONv1(const char *name, const char *title)
63   : AliMUON(name,title), fTrackMomentum(), fTrackPosition()
64 {
65 // Constructor
66     // By default include all stations
67     fStations = new Int_t[5];
68     for (Int_t i=0; i<5; i++) fStations[i] = 1;
69
70     AliMUONFactory factory;
71     factory.Build(this, title);
72
73     fStepManagerVersionOld = kFALSE;
74
75     fStepMaxInActiveGas = 0.6;
76
77     fStepSum   = new Float_t [AliMUONConstants::NCh()];
78     fDestepSum = new Float_t [AliMUONConstants::NCh()];
79     for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
80       fStepSum[i] =0.0;
81       fDestepSum[i]=0.0;
82     }
83     // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
84     fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.); 
85     fElossRatio->SetParameter(0,1.02138);
86     fElossRatio->SetParameter(1,-9.54149e-02);
87     fElossRatio->SetParameter(2,+7.83433e-02); 
88     fElossRatio->SetParameter(3,-9.98208e-03);
89     fElossRatio->SetParameter(4,+3.83279e-04);
90
91     // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
92     fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
93     fAngleEffect10->SetParameter(0, 1.90691e+02);
94     fAngleEffect10->SetParameter(1,-6.62258e+01);
95     fAngleEffect10->SetParameter(2,+1.28247e+01);
96     // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)  
97     // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
98     fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
99     fAngleEffectNorma->SetParameter(0,4.148);
100     fAngleEffectNorma->SetParameter(1,-6.809e-01);
101     fAngleEffectNorma->SetParameter(2,5.151e-02);
102     fAngleEffectNorma->SetParameter(3,-1.490e-03);
103 }
104
105 //___________________________________________
106 void AliMUONv1::CreateGeometry()
107 {
108 //
109 //   Note: all chambers have the same structure, which could be 
110 //   easily parameterised. This was intentionally not done in order
111 //   to give a starting point for the implementation of the actual 
112 //   design of each station. 
113   Int_t *idtmed = fIdtmed->GetArray()-1099;
114
115 //   Distance between Stations
116 //
117      Float_t bpar[3];
118      Float_t tpar[3];
119 //      Float_t pgpar[10];
120      Float_t zpos1, zpos2, zfpos;
121      // Outer excess and inner recess for mother volume radius
122      // with respect to ROuter and RInner
123      Float_t dframep=.001; // Value for station 3 should be 6 ...
124      // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
125 //      Float_t dframep1=.001;
126      Float_t dframep1 = 11.0;
127 //      Bool_t frameCrosses=kFALSE;     
128      Bool_t frameCrosses=kTRUE;     
129      Float_t *dum=0;
130      
131 //      Float_t dframez=0.9;
132      // Half of the total thickness of frame crosses (including DAlu)
133      // for each chamber in stations 1 and 2:
134      // 3% of X0 of composite material,
135      // but taken as Aluminium here, with same thickness in number of X0
136      Float_t dframez = 3. * 8.9 / 100;
137 //      Float_t dr;
138      Float_t dstation;
139
140 //
141 //   Rotation matrices in the x-y plane  
142      Int_t idrotm[1199];
143 //   phi=   0 deg
144      AliMatrix(idrotm[1100],  90.,   0., 90.,  90., 0., 0.);
145 //   phi=  90 deg
146      AliMatrix(idrotm[1101],  90.,  90., 90., 180., 0., 0.);
147 //   phi= 180 deg
148      AliMatrix(idrotm[1102],  90., 180., 90., 270., 0., 0.);
149 //   phi= 270 deg
150      AliMatrix(idrotm[1103],  90., 270., 90.,   0., 0., 0.);
151 //
152      Float_t phi=2*TMath::Pi()/12/2;
153
154 //
155 //   pointer to the current chamber
156 //   pointer to the current chamber
157      Int_t idAlu1=idtmed[1103]; // medium 4
158      Int_t idAlu2=idtmed[1104]; // medium 5
159 //     Int_t idAlu1=idtmed[1100];
160 //     Int_t idAlu2=idtmed[1100];
161      Int_t idAir=idtmed[1100]; // medium 1
162 //      Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
163      Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
164      
165
166      AliMUONChamber *iChamber, *iChamber1, *iChamber2;
167
168      if (fStations[0]) {
169          
170 //********************************************************************
171 //                            Station 1                             **
172 //********************************************************************
173 //  CONCENTRIC
174      // indices 1 and 2 for first and second chambers in the station
175      // iChamber (first chamber) kept for other quanties than Z,
176      // assumed to be the same in both chambers
177      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
178      iChamber2 =(AliMUONChamber*) (*fChambers)[1];
179      zpos1=iChamber1->Z(); 
180      zpos2=iChamber2->Z();
181      dstation = TMath::Abs(zpos2 - zpos1);
182      // DGas decreased from standard one (0.5)
183      iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
184      // DAlu increased from standard one (3% of X0),
185      // because more electronics with smaller pads
186      iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
187      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
188      
189 //
190 //   Mother volume
191      tpar[0] = iChamber->RInner()-dframep; 
192      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
193      tpar[2] = dstation/5;
194
195      gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
196      gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
197      gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
198      gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");     
199 // // Aluminium frames
200 // // Outer frames
201 //      pgpar[0] = 360/12/2;
202 //      pgpar[1] = 360.;
203 //      pgpar[2] = 12.;
204 //      pgpar[3] =   2;
205 //      pgpar[4] = -dframez/2;
206 //      pgpar[5] = iChamber->ROuter();
207 //      pgpar[6] = pgpar[5]+dframep1;
208 //      pgpar[7] = +dframez/2;
209 //      pgpar[8] = pgpar[5];
210 //      pgpar[9] = pgpar[6];
211 //      gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
212 //      gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
213 //      gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
214 //      gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
215 //      gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
216 //      gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
217 // //
218 // // Inner frame
219 //      tpar[0]= iChamber->RInner()-dframep1;
220 //      tpar[1]= iChamber->RInner();
221 //      tpar[2]= dframez/2;
222 //      gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
223 //      gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
224
225 //      gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos,  0,"ONLY");
226 //      gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos,  0,"ONLY");
227 //      gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos,  0,"ONLY");
228 //      gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos,  0,"ONLY");
229 //
230 // Frame Crosses
231      if (frameCrosses) {
232          // outside gas
233          // security for inside mother volume
234          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
235            * TMath::Cos(TMath::ASin(dframep1 /
236                                    (iChamber->ROuter() - iChamber->RInner())))
237            / 2.0;
238          bpar[1] = dframep1/2;
239          // total thickness will be (4 * bpar[2]) for each chamber,
240          // which has to be equal to (2 * dframez) - DAlu
241          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
242          gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
243          gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
244          
245          gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
246                     idrotm[1100],"ONLY");
247          gMC->Gspos("S01B",2,"S01M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
248                     idrotm[1100],"ONLY");
249          gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
250                     idrotm[1101],"ONLY");
251          gMC->Gspos("S01B",4,"S01M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
252                     idrotm[1101],"ONLY");
253          gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
254                     idrotm[1100],"ONLY");
255          gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
256                     idrotm[1100],"ONLY");
257          gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
258                     idrotm[1101],"ONLY");
259          gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
260                     idrotm[1101],"ONLY");
261          
262          gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
263                     idrotm[1100],"ONLY");
264          gMC->Gspos("S02B",2,"S02M",  iChamber->RInner()+bpar[0] , 0, zfpos, 
265                     idrotm[1100],"ONLY");
266          gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
267                     idrotm[1101],"ONLY");
268          gMC->Gspos("S02B",4,"S02M", 0,  iChamber->RInner()+bpar[0] , zfpos, 
269                     idrotm[1101],"ONLY");
270          gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
271                     idrotm[1100],"ONLY");
272          gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
273                     idrotm[1100],"ONLY");
274          gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
275                     idrotm[1101],"ONLY");
276          gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
277                     idrotm[1101],"ONLY");
278      }
279 //
280 //   Chamber Material represented by Alu sheet
281      tpar[0]= iChamber->RInner();
282      tpar[1]= iChamber->ROuter();
283      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
284      gMC->Gsvolu("S01A", "TUBE",  idAlu2, tpar, 3);
285      gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
286      gMC->Gspos("S01A", 1, "S01M", 0., 0., 0.,  0, "ONLY");
287      gMC->Gspos("S02A", 1, "S02M", 0., 0., 0.,  0, "ONLY");
288 //     
289 //   Sensitive volumes
290      // tpar[2] = iChamber->DGas();
291      tpar[2] = iChamber->DGas()/2;
292      gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
293      gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
294      gMC->Gspos("S01G", 1, "S01A", 0., 0., 0.,  0, "ONLY");
295      gMC->Gspos("S02G", 1, "S02A", 0., 0., 0.,  0, "ONLY");
296 //
297 // Frame Crosses to be placed inside gas
298      // NONE: chambers are sensitive everywhere
299 //      if (frameCrosses) {
300
301 //       dr = (iChamber->ROuter() - iChamber->RInner());
302 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
303 //       bpar[1] = dframep1/2;
304 //       bpar[2] = iChamber->DGas()/2;
305 //       gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
306 //       gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
307          
308 //       gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, 
309 //                  idrotm[1100],"ONLY");
310 //       gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, 
311 //                  idrotm[1100],"ONLY");
312 //       gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, 
313 //                  idrotm[1101],"ONLY");
314 //       gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, 
315 //                  idrotm[1101],"ONLY");
316          
317 //       gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, 
318 //                  idrotm[1100],"ONLY");
319 //       gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, 
320 //                  idrotm[1100],"ONLY");
321 //       gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, 
322 //                  idrotm[1101],"ONLY");
323 //       gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, 
324 //                  idrotm[1101],"ONLY");
325 //      }
326      }
327      if (fStations[1]) {
328          
329 //********************************************************************
330 //                            Station 2                             **
331 //********************************************************************
332      // indices 1 and 2 for first and second chambers in the station
333      // iChamber (first chamber) kept for other quanties than Z,
334      // assumed to be the same in both chambers
335      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
336      iChamber2 =(AliMUONChamber*) (*fChambers)[3];
337      zpos1=iChamber1->Z(); 
338      zpos2=iChamber2->Z();
339      dstation = TMath::Abs(zpos2 - zpos1);
340      // DGas and DAlu not changed from standard values
341      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
342      
343 //
344 //   Mother volume
345      tpar[0] = iChamber->RInner()-dframep; 
346      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
347      tpar[2] = dstation/5;
348
349      gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
350      gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
351      gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
352      gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
353      gMC->Gsbool("S03M", "L3DO");
354      gMC->Gsbool("S03M", "L3O1");
355      gMC->Gsbool("S03M", "L3O2");
356      gMC->Gsbool("S04M", "L3DO");
357      gMC->Gsbool("S04M", "L3O1");
358      gMC->Gsbool("S04M", "L3O2");
359
360 // // Aluminium frames
361 // // Outer frames
362 //      pgpar[0] = 360/12/2;
363 //      pgpar[1] = 360.;
364 //      pgpar[2] = 12.;
365 //      pgpar[3] =   2;
366 //      pgpar[4] = -dframez/2;
367 //      pgpar[5] = iChamber->ROuter();
368 //      pgpar[6] = pgpar[5]+dframep;
369 //      pgpar[7] = +dframez/2;
370 //      pgpar[8] = pgpar[5];
371 //      pgpar[9] = pgpar[6];
372 //      gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
373 //      gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
374 //      gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
375 //      gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
376 //      gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
377 //      gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
378 // //
379 // // Inner frame
380 //      tpar[0]= iChamber->RInner()-dframep;
381 //      tpar[1]= iChamber->RInner();
382 //      tpar[2]= dframez/2;
383 //      gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
384 //      gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
385
386 //      gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos,  0,"ONLY");
387 //      gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos,  0,"ONLY");
388 //      gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos,  0,"ONLY");
389 //      gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos,  0,"ONLY");
390 //
391 // Frame Crosses
392      if (frameCrosses) {
393          // outside gas
394          // security for inside mother volume
395          bpar[0] = (iChamber->ROuter() - iChamber->RInner())
396            * TMath::Cos(TMath::ASin(dframep1 /
397                                    (iChamber->ROuter() - iChamber->RInner())))
398            / 2.0;
399          bpar[1] = dframep1/2;
400          // total thickness will be (4 * bpar[2]) for each chamber,
401          // which has to be equal to (2 * dframez) - DAlu
402          bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
403          gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
404          gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
405          
406          gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
407                     idrotm[1100],"ONLY");
408          gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
409                     idrotm[1100],"ONLY");
410          gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
411                     idrotm[1101],"ONLY");
412          gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
413                     idrotm[1101],"ONLY");
414          gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
415                     idrotm[1100],"ONLY");
416          gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
417                     idrotm[1100],"ONLY");
418          gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
419                     idrotm[1101],"ONLY");
420          gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
421                     idrotm[1101],"ONLY");
422          
423          gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos, 
424                     idrotm[1100],"ONLY");
425          gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos, 
426                     idrotm[1100],"ONLY");
427          gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos, 
428                     idrotm[1101],"ONLY");
429          gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos, 
430                     idrotm[1101],"ONLY");
431          gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, 
432                     idrotm[1100],"ONLY");
433          gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, 
434                     idrotm[1100],"ONLY");
435          gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, 
436                     idrotm[1101],"ONLY");
437          gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, 
438                     idrotm[1101],"ONLY");
439      }
440 //
441 //   Chamber Material represented by Alu sheet
442      tpar[0]= iChamber->RInner();
443      tpar[1]= iChamber->ROuter();
444      tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
445      gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
446      gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
447      gMC->Gspos("S03A", 1, "S03M", 0., 0., 0.,  0, "ONLY");
448      gMC->Gspos("S04A", 1, "S04M", 0., 0., 0.,  0, "ONLY");
449 //     
450 //   Sensitive volumes
451      // tpar[2] = iChamber->DGas();
452      tpar[2] = iChamber->DGas()/2;
453      gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
454      gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
455      gMC->Gspos("S03G", 1, "S03A", 0., 0., 0.,  0, "ONLY");
456      gMC->Gspos("S04G", 1, "S04A", 0., 0., 0.,  0, "ONLY");
457 //
458 // Frame Crosses to be placed inside gas 
459      // NONE: chambers are sensitive everywhere
460 //      if (frameCrosses) {
461
462 //       dr = (iChamber->ROuter() - iChamber->RInner());
463 //       bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
464 //       bpar[1] = dframep1/2;
465 //       bpar[2] = iChamber->DGas()/2;
466 //       gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
467 //       gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
468          
469 //       gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, 
470 //                  idrotm[1100],"ONLY");
471 //       gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, 
472 //                  idrotm[1100],"ONLY");
473 //       gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, 
474 //                  idrotm[1101],"ONLY");
475 //       gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, 
476 //                  idrotm[1101],"ONLY");
477          
478 //       gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, 
479 //                  idrotm[1100],"ONLY");
480 //       gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, 
481 //                  idrotm[1100],"ONLY");
482 //       gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, 
483 //                  idrotm[1101],"ONLY");
484 //       gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, 
485 //                  idrotm[1101],"ONLY");
486 //      }
487      }
488      // define the id of tracking media:
489      Int_t idCopper = idtmed[1110];
490      Int_t idGlass  = idtmed[1111];
491      Int_t idCarbon = idtmed[1112];
492      Int_t idRoha   = idtmed[1113];
493
494       // sensitive area: 40*40 cm**2
495      const Float_t sensLength = 40.; 
496      const Float_t sensHeight = 40.; 
497      const Float_t sensWidth  = 0.5; // according to TDR fig 2.120 
498      const Int_t sensMaterial = idGas;
499      const Float_t yOverlap   = 1.5; 
500
501      // PCB dimensions in cm; width: 30 mum copper   
502      const Float_t pcbLength  = sensLength; 
503      const Float_t pcbHeight  = 60.; 
504      const Float_t pcbWidth   = 0.003;   
505      const Int_t pcbMaterial  = idCopper;
506
507      // Insulating material: 200 mum glass fiber glued to pcb  
508      const Float_t insuLength = pcbLength; 
509      const Float_t insuHeight = pcbHeight; 
510      const Float_t insuWidth  = 0.020;   
511      const Int_t insuMaterial = idGlass;
512
513      // Carbon fiber panels: 200mum carbon/epoxy skin   
514      const Float_t panelLength = sensLength; 
515      const Float_t panelHeight = sensHeight; 
516      const Float_t panelWidth  = 0.020;      
517      const Int_t panelMaterial = idCarbon;
518
519      // rohacell between the two carbon panels   
520      const Float_t rohaLength = sensLength; 
521      const Float_t rohaHeight = sensHeight; 
522      const Float_t rohaWidth  = 0.5;
523      const Int_t rohaMaterial = idRoha;
524
525      // Frame around the slat: 2 sticks along length,2 along height  
526      // H: the horizontal ones 
527      const Float_t hFrameLength = pcbLength; 
528      const Float_t hFrameHeight = 1.5; 
529      const Float_t hFrameWidth  = sensWidth; 
530      const Int_t hFrameMaterial = idGlass;
531
532      // V: the vertical ones 
533      const Float_t vFrameLength = 4.0; 
534      const Float_t vFrameHeight = sensHeight + hFrameHeight; 
535      const Float_t vFrameWidth  = sensWidth;
536      const Int_t vFrameMaterial = idGlass;
537
538      // B: the horizontal border filled with rohacell 
539      const Float_t bFrameLength = hFrameLength; 
540      const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; 
541      const Float_t bFrameWidth  = hFrameWidth;
542      const Int_t bFrameMaterial = idRoha;
543
544      // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
545      const Float_t nulocLength = 2.5; 
546      const Float_t nulocHeight = 7.5; 
547      const Float_t nulocWidth  = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
548      const Int_t   nulocMaterial = idCopper;
549
550      const Float_t slatHeight = pcbHeight; 
551      const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + 
552                                                2.* panelWidth + rohaWidth);
553      const Int_t slatMaterial = idAir;
554      const Float_t dSlatLength = vFrameLength; // border on left and right 
555
556      Float_t spar[3];  
557      Int_t i, j;
558
559      // the panel volume contains the rohacell
560
561      Float_t twidth = 2 * panelWidth + rohaWidth; 
562      Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; 
563      Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; 
564
565      // insulating material contains PCB-> gas-> 2 borders filled with rohacell
566
567      twidth = 2*(insuWidth + pcbWidth) + sensWidth;  
568      Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; 
569      twidth -= 2 * insuWidth; 
570      Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; 
571      Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; 
572      Float_t theight = 2*hFrameHeight + sensHeight;
573      Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; 
574      Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; 
575      Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; 
576      Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; 
577      Float_t xx;
578      Float_t xxmax = (bFrameLength - nulocLength)/2.; 
579      Int_t index=0;
580      
581      if (fStations[2]) {
582          
583 //********************************************************************
584 //                            Station 3                             **
585 //********************************************************************
586      // indices 1 and 2 for first and second chambers in the station
587      // iChamber (first chamber) kept for other quanties than Z,
588      // assumed to be the same in both chambers
589      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
590      iChamber2 =(AliMUONChamber*) (*fChambers)[5];
591      zpos1=iChamber1->Z(); 
592      zpos2=iChamber2->Z();
593      dstation = TMath::Abs(zpos2 - zpos1);
594
595 //
596 //   Mother volume
597      tpar[0] = iChamber->RInner()-dframep; 
598      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
599      tpar[2] = dstation/5;
600
601      char *slats5Mother = "S05M";
602      char *slats6Mother = "S06M";
603      Float_t zoffs5 = 0;
604      Float_t zoffs6 = 0;
605
606      if (gAlice->GetModule("DIPO")) {
607        slats5Mother="DDIP";
608        slats6Mother="DDIP";
609
610        zoffs5 = TMath::Abs(zpos1);
611        zoffs6 = TMath::Abs(zpos2);
612      }
613      else {
614        gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
615        gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
616        gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
617        gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
618      }
619
620      // volumes for slat geometry (xx=5,..,10 chamber id): 
621      // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
622      // SxxG                          -->   Sensitive volume (gas)
623      // SxxP                          -->   PCB (copper) 
624      // SxxI                          -->   Insulator (vetronite) 
625      // SxxC                          -->   Carbon panel 
626      // SxxR                          -->   Rohacell
627      // SxxH, SxxV                    -->   Horizontal and Vertical frames (vetronite)
628      // SB5x                          -->   Volumes for the 35 cm long PCB
629      // slat dimensions: slat is a MOTHER volume!!! made of air
630
631      // only for chamber 5: slat 1 has a PCB shorter by 5cm!
632
633      Float_t tlength = 35.;
634      Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
635      Float_t rohapar2[3]   = { tlength/2., rohapar[1],   rohapar[2]}; 
636      Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
637      Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
638      Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
639      Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
640      Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
641
642      const Int_t nSlats3 = 5;  // number of slats per quadrant
643      const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
644      const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.};
645      Float_t slatLength3[nSlats3]; 
646
647      // create and position the slat (mother) volumes 
648
649      char volNam5[5];
650      char volNam6[5];
651      Float_t xSlat3;
652
653      Float_t spar2[3];
654      for (i = 0; i<nSlats3; i++){
655        slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; 
656        xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; 
657        if (i==1 || i==0) slatLength3[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
658        Float_t ySlat31 =  sensHeight * i - yOverlap * i; 
659        Float_t ySlat32 = -sensHeight * i + yOverlap * i; 
660        spar[0] = slatLength3[i]/2.; 
661        spar[1] = slatHeight/2.;
662        spar[2] = slatWidth/2. * 1.01; 
663        // take away 5 cm from the first slat in chamber 5
664        Float_t xSlat32 = 0;
665        if (i==1 || i==2) { // 1 pcb is shortened by 5cm
666          spar2[0] = spar[0]-5./2.;
667          xSlat32 = xSlat3 - 5/2.;
668        }
669        else {
670          spar2[0] = spar[0];
671          xSlat32 = xSlat3;
672        }
673        spar2[1] = spar[1];
674        spar2[2] = spar[2]; 
675        Float_t dzCh3=spar[2] * 1.01;
676        // zSlat to be checked (odd downstream or upstream?)
677        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
678        sprintf(volNam5,"S05%d",i);
679        gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3);
680        gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
681        gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
682        
683        if (i>0) { 
684          gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
685          gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
686        }
687        sprintf(volNam6,"S06%d",i);
688        gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
689        gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
690        gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
691        if (i>0) { 
692          gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
693          gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
694        }
695      }
696
697      // create the panel volume 
698  
699      gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
700      gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3);
701      gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
702
703      // create the rohacell volume 
704
705      gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
706      gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3);
707      gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
708
709      // create the insulating material volume 
710
711      gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
712      gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3);
713      gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
714
715      // create the PCB volume 
716
717      gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
718      gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3);
719      gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
720  
721      // create the sensitive volumes,
722      gMC->Gsvolu("S05G","BOX",sensMaterial,dum,0);
723      gMC->Gsvolu("S06G","BOX",sensMaterial,dum,0);
724
725
726      // create the vertical frame volume 
727
728      gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
729      gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
730
731      // create the horizontal frame volume 
732
733      gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
734      gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3);
735      gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
736
737      // create the horizontal border volume 
738
739      gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
740      gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3);
741      gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
742
743      index=0; 
744      for (i = 0; i<nSlats3; i++){
745        sprintf(volNam5,"S05%d",i);
746        sprintf(volNam6,"S06%d",i);
747        Float_t xvFrame  = (slatLength3[i] - vFrameLength)/2.;
748        Float_t xvFrame2  = xvFrame;
749        if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
750        // position the vertical frames 
751        if (i!=1 && i!=0) { 
752          gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
753          gMC->Gspos("S05V",2*i  ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
754          gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
755          gMC->Gspos("S06V",2*i  ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
756        }       
757        // position the panels and the insulating material 
758        for (j=0; j<nPCB3[i]; j++){
759          index++;
760          Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); 
761          Float_t xx2 = xx + 5/2.; 
762          
763          Float_t zPanel = spar[2] - panelpar[2]; 
764          if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm 
765            gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
766            gMC->Gspos("SB5C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
767            gMC->Gspos("SB5I",index    ,volNam5, xx, 0., 0      , 0, "ONLY");
768          }
769          else if ( (i==1 || i==2) && j < nPCB3[i]-1) {
770            gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
771            gMC->Gspos("S05C",2*index  ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
772            gMC->Gspos("S05I",index    ,volNam5, xx2, 0., 0 , 0, "ONLY");
773          }
774          else {
775            gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
776            gMC->Gspos("S05C",2*index  ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
777            gMC->Gspos("S05I",index    ,volNam5, xx, 0., 0 , 0, "ONLY");
778          }
779          gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
780          gMC->Gspos("S06C",2*index  ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
781          gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
782        } 
783      }
784      
785      // position the rohacell volume inside the panel volume
786      gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); 
787      gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); 
788      gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); 
789
790      // position the PCB volume inside the insulating material volume
791      gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
792      gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
793      gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
794      // position the horizontal frame volume inside the PCB volume
795      gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
796      gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
797      gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
798      // position the sensitive volume inside the horizontal frame volume
799      gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
800      gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
801      gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
802      // position the border volumes inside the PCB volume
803      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
804      gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
805      gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
806      gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
807      gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
808      gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
809      gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
810
811      // create the NULOC volume and position it in the horizontal frame
812
813      gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
814      gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
815      index = 0;
816      Float_t xxmax2 = xxmax - 5./2.;
817      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
818        index++; 
819        gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
820        gMC->Gspos("S05N",2*index  ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
821        if (xx > -xxmax2 && xx< xxmax2) {
822          gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
823          gMC->Gspos("S05N",2*index  ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY");
824        }
825        gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
826        gMC->Gspos("S06N",2*index  ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
827      }
828      
829      // position the volumes approximating the circular section of the pipe
830      Float_t yoffs = sensHeight/2. - yOverlap; 
831      Float_t epsilon = 0.001; 
832      Int_t ndiv=6;
833      Float_t divpar[3];
834      Double_t dydiv= sensHeight/ndiv;
835      Double_t ydiv = yoffs -dydiv;
836      Int_t imax=0; 
837      imax = 1; 
838      Float_t rmin = 33.; 
839      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
840      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
841        ydiv+= dydiv;
842        Float_t xdiv = 0.; 
843        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
844        divpar[0] = (pcbLength-xdiv)/2.; 
845        divpar[1] = dydiv/2. - epsilon;
846        divpar[2] = sensWidth/2.; 
847        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
848        Float_t yvol=ydiv + dydiv/2.; 
849        //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); 
850        gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
851        gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
852        gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
853        gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
854        gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
855        gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
856        gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
857        gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
858      }
859      }
860      
861  if (fStations[3]) {
862
863 //********************************************************************
864 //                            Station 4                             **
865 //********************************************************************
866      // indices 1 and 2 for first and second chambers in the station
867      // iChamber (first chamber) kept for other quanties than Z,
868      // assumed to be the same in both chambers
869      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
870      iChamber2 =(AliMUONChamber*) (*fChambers)[7];
871      zpos1=iChamber1->Z(); 
872      zpos2=iChamber2->Z();
873      dstation = TMath::Abs(zpos2 - zpos1);
874 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
875      
876 //
877 //   Mother volume
878      tpar[0] = iChamber->RInner()-dframep; 
879      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
880      tpar[2] = dstation/4;
881
882      gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
883      gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
884      gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
885      gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
886      
887
888      const Int_t nSlats4 = 6;  // number of slats per quadrant
889      const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
890      const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.};
891      Float_t slatLength4[nSlats4];     
892
893      // create and position the slat (mother) volumes 
894
895      char volNam7[5];
896      char volNam8[5];
897      Float_t xSlat4;
898      Float_t ySlat4;
899
900      for (i = 0; i<nSlats4; i++){
901        slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; 
902        xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; 
903        if (i==1) slatLength4[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
904        ySlat4 =  sensHeight * i - yOverlap *i;
905        
906        spar[0] = slatLength4[i]/2.; 
907        spar[1] = slatHeight/2.;
908        spar[2] = slatWidth/2.*1.01; 
909        Float_t dzCh4=spar[2]*1.01;
910        // zSlat to be checked (odd downstream or upstream?)
911        Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; 
912        sprintf(volNam7,"S07%d",i);
913        gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
914        gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
915        gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
916        if (i>0) { 
917          gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
918          gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
919        }
920        sprintf(volNam8,"S08%d",i);
921        gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
922        gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
923        gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
924        if (i>0) { 
925          gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
926          gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
927        }
928      }
929      
930
931      // create the panel volume 
932  
933      gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
934      gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
935
936      // create the rohacell volume 
937
938      gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
939      gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
940
941      // create the insulating material volume 
942
943      gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
944      gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
945
946      // create the PCB volume 
947
948      gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
949      gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
950  
951      // create the sensitive volumes,
952
953      gMC->Gsvolu("S07G","BOX",sensMaterial,dum,0);
954      gMC->Gsvolu("S08G","BOX",sensMaterial,dum,0);
955
956      // create the vertical frame volume 
957
958      gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
959      gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
960
961      // create the horizontal frame volume 
962
963      gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
964      gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
965
966      // create the horizontal border volume 
967
968      gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
969      gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
970
971      index=0; 
972      for (i = 0; i<nSlats4; i++){
973        sprintf(volNam7,"S07%d",i);
974        sprintf(volNam8,"S08%d",i);
975        Float_t xvFrame  = (slatLength4[i] - vFrameLength)/2.;
976        // position the vertical frames 
977        if (i!=1 && i!=0) { 
978          gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
979          gMC->Gspos("S07V",2*i  ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
980          gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
981          gMC->Gspos("S08V",2*i  ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
982        }
983        // position the panels and the insulating material 
984        for (j=0; j<nPCB4[i]; j++){
985          index++;
986          Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); 
987
988          Float_t zPanel = spar[2] - panelpar[2]; 
989          gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
990          gMC->Gspos("S07C",2*index  ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
991          gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
992          gMC->Gspos("S08C",2*index  ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
993
994          gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
995          gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
996        } 
997      }
998
999      // position the rohacell volume inside the panel volume
1000      gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); 
1001      gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); 
1002
1003      // position the PCB volume inside the insulating material volume
1004      gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
1005      gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
1006      // position the horizontal frame volume inside the PCB volume
1007      gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
1008      gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
1009      // position the sensitive volume inside the horizontal frame volume
1010      gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
1011      gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
1012      // position the border volumes inside the PCB volume
1013      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
1014      gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
1015      gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
1016      gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
1017      gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
1018
1019      // create the NULOC volume and position it in the horizontal frame
1020
1021      gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
1022      gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
1023      index = 0;
1024      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
1025        index++; 
1026        gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1027        gMC->Gspos("S07N",2*index  ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1028        gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1029        gMC->Gspos("S08N",2*index  ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1030      }
1031
1032      // position the volumes approximating the circular section of the pipe
1033      Float_t yoffs = sensHeight/2. - yOverlap; 
1034      Float_t epsilon = 0.001; 
1035      Int_t ndiv=6;
1036      Float_t divpar[3];
1037      Double_t dydiv= sensHeight/ndiv;
1038      Double_t ydiv = yoffs -dydiv;
1039      Int_t imax=0; 
1040      imax = 1; 
1041      Float_t rmin = 40.; 
1042      Float_t z1 = -spar[2], z2=2*spar[2]*1.01; 
1043      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1044        ydiv+= dydiv;
1045        Float_t xdiv = 0.; 
1046        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1047        divpar[0] = (pcbLength-xdiv)/2.; 
1048        divpar[1] = dydiv/2. - epsilon;
1049        divpar[2] = sensWidth/2.; 
1050        Float_t xvol=(pcbLength+xdiv)/2.+1.999;
1051        Float_t yvol=ydiv + dydiv/2.;
1052        gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1053        gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1054        gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1055        gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1056        gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1057        gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1058        gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1059        gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1060      }
1061
1062
1063
1064
1065
1066  }
1067
1068  if (fStations[4]) {
1069      
1070
1071 //********************************************************************
1072 //                            Station 5                             **
1073 //********************************************************************
1074      // indices 1 and 2 for first and second chambers in the station
1075      // iChamber (first chamber) kept for other quanties than Z,
1076      // assumed to be the same in both chambers
1077      iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1078      iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1079      zpos1=iChamber1->Z(); 
1080      zpos2=iChamber2->Z();
1081      dstation = TMath::Abs(zpos2 - zpos1);
1082 //      zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1083      
1084 //
1085 //   Mother volume
1086      tpar[0] = iChamber->RInner()-dframep; 
1087      tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1088      tpar[2] = dstation/5.;
1089
1090      gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1091      gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1092      gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1093      gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1094
1095
1096      const Int_t nSlats5 = 7;  // number of slats per quadrant
1097      const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1098      const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1099      Float_t slatLength5[nSlats5]; 
1100      char volNam9[5];
1101      char volNam10[5];
1102      Float_t xSlat5;
1103      Float_t ySlat5;
1104
1105      for (i = 0; i<nSlats5; i++){
1106        slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; 
1107        xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; 
1108        if (i==1 || i==0) slatLength5[i] -=  2. *dSlatLength; // frame out in PCB with circular border 
1109        ySlat5 = sensHeight * i - yOverlap * i; 
1110        spar[0] = slatLength5[i]/2.; 
1111        spar[1] = slatHeight/2.;
1112        spar[2] = slatWidth/2. * 1.01; 
1113        Float_t dzCh5=spar[2]*1.01;
1114        // zSlat to be checked (odd downstream or upstream?)
1115        Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; 
1116        sprintf(volNam9,"S09%d",i);
1117        gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
1118        gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1119        gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1120        if (i>0) { 
1121            gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1122            gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1123        }
1124        sprintf(volNam10,"S10%d",i);
1125        gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
1126        gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1127        gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1128        if (i>0) { 
1129            gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1130            gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1131        }
1132      }
1133
1134      // create the panel volume 
1135  
1136      gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1137      gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
1138
1139      // create the rohacell volume 
1140
1141      gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1142      gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
1143
1144      // create the insulating material volume 
1145
1146      gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1147      gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1148
1149      // create the PCB volume 
1150
1151      gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1152      gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1153  
1154      // create the sensitive volumes,
1155
1156      gMC->Gsvolu("S09G","BOX",sensMaterial,dum,0);
1157      gMC->Gsvolu("S10G","BOX",sensMaterial,dum,0);
1158
1159      // create the vertical frame volume 
1160
1161      gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1162      gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1163
1164      // create the horizontal frame volume 
1165
1166      gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1167      gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1168
1169      // create the horizontal border volume 
1170
1171      gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1172      gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1173
1174      index=0; 
1175      for (i = 0; i<nSlats5; i++){
1176        sprintf(volNam9,"S09%d",i);
1177        sprintf(volNam10,"S10%d",i);
1178        Float_t xvFrame  = (slatLength5[i] - vFrameLength)/2.;
1179        // position the vertical frames 
1180        if (i!=1 && i!=0) { 
1181          gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1182          gMC->Gspos("S09V",2*i  ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1183          gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1184          gMC->Gspos("S10V",2*i  ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1185        }
1186        
1187        // position the panels and the insulating material 
1188        for (j=0; j<nPCB5[i]; j++){
1189          index++;
1190          Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); 
1191
1192          Float_t zPanel = spar[2] - panelpar[2]; 
1193          gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1194          gMC->Gspos("S09C",2*index  ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1195          gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1196          gMC->Gspos("S10C",2*index  ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1197
1198          gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1199          gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1200        } 
1201      }
1202
1203      // position the rohacell volume inside the panel volume
1204      gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); 
1205      gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); 
1206
1207      // position the PCB volume inside the insulating material volume
1208      gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1209      gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1210      // position the horizontal frame volume inside the PCB volume
1211      gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1212      gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1213      // position the sensitive volume inside the horizontal frame volume
1214      gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1215      gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1216      // position the border volumes inside the PCB volume
1217      Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; 
1218      gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1219      gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1220      gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1221      gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1222
1223      // create the NULOC volume and position it in the horizontal frame
1224
1225      gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1226      gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
1227      index = 0;
1228      for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { 
1229        index++; 
1230        gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1231        gMC->Gspos("S09N",2*index  ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1232        gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1233        gMC->Gspos("S10N",2*index  ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
1234      }
1235      // position the volumes approximating the circular section of the pipe
1236      Float_t yoffs = sensHeight/2. - yOverlap; 
1237      Float_t epsilon = 0.001; 
1238      Int_t ndiv=6;
1239      Float_t divpar[3];
1240      Double_t dydiv= sensHeight/ndiv;
1241      Double_t ydiv = yoffs -dydiv;
1242      Int_t imax=0; 
1243      //     for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; 
1244      imax = 1; 
1245      Float_t rmin = 40.; 
1246      Float_t z1 = spar[2], z2=2*spar[2]*1.01; 
1247      for (Int_t idiv=0;idiv<ndiv; idiv++){ 
1248        ydiv+= dydiv;
1249        Float_t xdiv = 0.; 
1250        if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1251        divpar[0] = (pcbLength-xdiv)/2.; 
1252        divpar[1] = dydiv/2. - epsilon;
1253        divpar[2] = sensWidth/2.; 
1254        Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
1255        Float_t yvol=ydiv + dydiv/2.;
1256        gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1257        gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1258        gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1259        gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1260        gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1261        gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1262        gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1263        gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1264      }
1265
1266  }
1267  
1268 //********************************************************************
1269 //                            Trigger                               **
1270 //******************************************************************** 
1271  /* 
1272     zpos1 and zpos2 are the middle of the first and second
1273     planes of station 1 (+1m for second station):
1274     zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1275     zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1276     zposxm and zposxp= middles of gaz gaps within a detection plane
1277     rem: the total thickness accounts for 1 mm of al on both
1278     side of the RPCs (see zpos1 and zpos2)
1279  */
1280
1281 // vertical gap between right and left chambers (kDXZERO*2=4cm)
1282  const Float_t kDXZERO=2.; 
1283 // main distances for chamber definition in first plane/first station
1284  const Float_t kXMIN=34.;       
1285  const Float_t kXMED=51.;                                
1286  const Float_t kXMAX=272.; 
1287 // kXMAX will become 255. in real life. segmentation to be updated accordingly
1288 // (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1289  const Float_t kYMIN=34.;                              
1290  const Float_t kYMAX=51.;                              
1291 // inner/outer radius of flange between beam shield. and chambers (1/station)
1292  const Float_t kRMIN[2]={50.,50.};
1293  const Float_t kRMAX[2]={64.,68.};
1294 // z position of the middle of the gas gap in mother vol 
1295  const Float_t kZm=-3.6;
1296  const Float_t kZp=+3.6;     
1297  
1298  iChamber1 = (AliMUONChamber*) (*fChambers)[10];     
1299  zpos1 = iChamber1->Z();
1300
1301 // ratio of zpos1m/zpos1p and inverse for first plane
1302  Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
1303  Float_t zpm=1./zmp;
1304  
1305  Int_t icount=0; // chamber counter (0 1 2 3)
1306  
1307  for (Int_t istation=0; istation<2; istation++) { // loop on stations    
1308      for (Int_t iplane=0; iplane<2; iplane++) {   // loop on detection planes
1309          
1310          Int_t iVolNum=1; // counter Volume Number
1311          icount = Int_t(iplane*TMath::Power(2,0))+
1312              Int_t(istation*TMath::Power(2,1));
1313          
1314          char volPlane[5]; 
1315          sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1316          
1317          iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1318          Float_t zpos = iChamber->Z();       
1319          
1320 // mother volume 
1321          tpar[0] = iChamber->RInner(); 
1322          tpar[1] = iChamber->ROuter(); 
1323          tpar[2] = 4.0;    
1324          gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1325          
1326 // Flange between beam shielding and RPC 
1327          tpar[0]= kRMIN[istation];
1328          tpar[1]= kRMAX[istation];
1329          tpar[2]= 4.0;
1330          
1331          char volFlange[5];
1332          sprintf(volFlange,"SF%dA",icount+1);    
1333          gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3);     //Al
1334          gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1335          
1336 // scaling factor
1337          Float_t zRatio = zpos / zpos1;
1338          
1339 // chamber prototype
1340          tpar[0]= 0.;
1341          tpar[1]= 0.;
1342          tpar[2]= 0.;
1343          
1344          char volAlu[5]; // Alu
1345          char volBak[5]; // Bakelite
1346          char volGaz[5]; // Gas streamer
1347          
1348          sprintf(volAlu,"SC%dA",icount+1);
1349          sprintf(volBak,"SB%dA",icount+1);
1350          sprintf(volGaz,"SG%dA",icount+1);
1351          
1352          gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0);           // Al
1353          gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0);     // Bakelite
1354          gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0);     // Gas streamer
1355          
1356 // chamber type A
1357          tpar[0] = -1.;
1358          tpar[1] = -1.;
1359          
1360          Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1361          Float_t yAm=0.;
1362          Float_t yAp=0.;
1363          
1364          tpar[2] = 0.1;    
1365          gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1366          tpar[2] = 0.3;
1367          gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1368          
1369          tpar[2] = 0.4;
1370          tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1371          tpar[1] = kYMIN*zRatio;
1372          
1373          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1374          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xA,yAp,-kZp,0,"ONLY",tpar,3);
1375          gMC->Gsbool(volAlu,volFlange);
1376          
1377 // chamber type B    
1378          Float_t tpar1save=tpar[1];
1379          Float_t y1msave=yAm;
1380          Float_t y1psave=yAp;
1381          
1382          tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1383          tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1384          
1385          Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1386          Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1387          Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];    
1388
1389          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1390          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB, yBm,-kZm,0,"ONLY",tpar,3);
1391          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1392          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xB,-yBm,-kZm,0,"ONLY",tpar,3);
1393          
1394 // chamber type C (note : same Z than type B)
1395          tpar1save=tpar[1];
1396          y1msave=yBm;
1397          y1psave=yBp;
1398          
1399          tpar[0] = (kXMAX/2)*zRatio;
1400          tpar[1] = (kYMAX/2)*zRatio;
1401          
1402          Float_t xC=kDXZERO*zRatio+tpar[0];
1403          Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1404          Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1405          
1406          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1407          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1408          gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1409          gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
1410                  
1411 // chamber type D, E and F (same size)        
1412          tpar1save=tpar[1];
1413          y1msave=yCm;
1414          y1psave=yCp;
1415          
1416          tpar[0] = (kXMAX/2.)*zRatio;
1417          tpar[1] =  kYMIN*zRatio;
1418          
1419          Float_t xD=kDXZERO*zRatio+tpar[0];
1420          Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1421          Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1422          
1423          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1424          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yDp,-kZp,0,"ONLY",tpar,3);
1425          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1426          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yDp,-kZp,0,"ONLY",tpar,3);
1427          
1428          tpar1save=tpar[1];
1429          y1msave=yDm;
1430          y1psave=yDp;
1431          Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1432          Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1433          
1434          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1435          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yEm,-kZm,0,"ONLY",tpar,3);
1436          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1437          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yEm,-kZm,0,"ONLY",tpar,3);
1438          
1439          tpar1save=tpar[1];
1440          y1msave=yEm;
1441          y1psave=yEp;
1442          Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1443          Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1444          
1445          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1446          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD, yFp,-kZp,0,"ONLY",tpar,3);
1447          gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1448          gMC->Gsposp(volAlu,iVolNum++,volPlane,  xD,-yFp,-kZp,0,"ONLY",tpar,3);
1449
1450 // Positioning plane in ALICE     
1451          gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1452          
1453      } // end loop on detection planes
1454  } // end loop on stations
1455
1456 }
1457
1458  
1459 //___________________________________________
1460 void AliMUONv1::CreateMaterials()
1461 {
1462   // *** DEFINITION OF AVAILABLE MUON MATERIALS *** 
1463   //
1464   //     Ar-CO2 gas (80%+20%)
1465     Float_t ag1[3]   = { 39.95,12.01,16. };
1466     Float_t zg1[3]   = { 18.,6.,8. };
1467     Float_t wg1[3]   = { .8,.0667,.13333 };
1468     Float_t dg1      = .001821;
1469     //
1470     //     Ar-buthane-freon gas -- trigger chambers 
1471     Float_t atr1[4]  = { 39.95,12.01,1.01,19. };
1472     Float_t ztr1[4]  = { 18.,6.,1.,9. };
1473     Float_t wtr1[4]  = { .56,.1262857,.2857143,.028 };
1474     Float_t dtr1     = .002599;
1475     //
1476     //     Ar-CO2 gas 
1477     Float_t agas[3]  = { 39.95,12.01,16. };
1478     Float_t zgas[3]  = { 18.,6.,8. };
1479     Float_t wgas[3]  = { .74,.086684,.173316 };
1480     Float_t dgas     = .0018327;
1481     //
1482     //     Ar-Isobutane gas (80%+20%) -- tracking 
1483     Float_t ag[3]    = { 39.95,12.01,1.01 };
1484     Float_t zg[3]    = { 18.,6.,1. };
1485     Float_t wg[3]    = { .8,.057,.143 };
1486     Float_t dg       = .0019596;
1487     //
1488     //     Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger 
1489     Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1490     Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1491     Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1492     Float_t dtrig    = .0031463;
1493     //
1494     //     bakelite 
1495
1496     Float_t abak[3] = {12.01 , 1.01 , 16.};
1497     Float_t zbak[3] = {6.     , 1.   , 8.};
1498     Float_t wbak[3] = {6.     , 6.   , 1.}; 
1499     Float_t dbak = 1.4;
1500
1501     Float_t epsil, stmin, deemax, tmaxfd, stemax;
1502
1503     Int_t iSXFLD   = gAlice->Field()->Integ();
1504     Float_t sXMGMX = gAlice->Field()->Max();
1505     //
1506     // --- Define the various materials for GEANT --- 
1507     AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1508     AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1509     AliMaterial(15, "AIR$      ", 14.61, 7.3, .001205, 30423.24, 67500);
1510     AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1511     AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1512     AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1513     AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1514     AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1515     AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1516     // materials for slat: 
1517     //     Sensitive area: gas (already defined) 
1518     //     PCB: copper 
1519     //     insulating material and frame: vetronite
1520     //     walls: carbon, rohacell, carbon 
1521   Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
1522   Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
1523   Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
1524   Float_t dglass=1.74;
1525
1526   // rohacell: C9 H13 N1 O2
1527   Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
1528   Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
1529   Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
1530   Float_t drohac    = 0.03;
1531
1532   AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
1533   AliMixture(32, "Vetronite$",aglass, zglass, dglass,    5, wglass);
1534   AliMaterial(33, "Carbon$",   12.01,     6.,  2.265, 18.8, 49.9);
1535   AliMixture(34, "Rohacell$", arohac, zrohac, drohac,   -4, wrohac); 
1536
1537
1538     epsil  = .001; // Tracking precision, 
1539     stemax = -1.;  // Maximum displacement for multiple scat 
1540     tmaxfd = -20.; // Maximum angle due to field deflection 
1541     deemax = -.3;  // Maximum fractional energy loss, DLS 
1542     stmin  = -.8;
1543     //
1544     //    Air 
1545     AliMedium(1, "AIR_CH_US         ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1546     //
1547     //    Aluminum 
1548
1549     AliMedium(4, "ALU_CH_US          ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1550             fMaxDestepAlu, epsil, stmin);
1551     AliMedium(5, "ALU_CH_US          ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1552             fMaxDestepAlu, epsil, stmin);
1553     //
1554     //    Ar-isoC4H10 gas 
1555
1556     AliMedium(6, "AR_CH_US          ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1557             fMaxDestepGas, epsil, stmin);
1558 //
1559     //    Ar-Isobuthane-Forane-SF6 gas 
1560
1561     AliMedium(7, "GAS_CH_TRIGGER    ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1562
1563     AliMedium(8, "BAKE_CH_TRIGGER   ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, 
1564             fMaxDestepAlu, epsil, stmin);
1565
1566     AliMedium(9, "ARG_CO2   ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, 
1567             fMaxDestepAlu, epsil, stmin);
1568     // tracking media for slats: check the parameters!! 
1569     AliMedium(11, "PCB_COPPER        ", 31, 0, iSXFLD, sXMGMX, tmaxfd, 
1570               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1571     AliMedium(12, "VETRONITE         ", 32, 0, iSXFLD, sXMGMX, tmaxfd, 
1572               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1573     AliMedium(13, "CARBON            ", 33, 0, iSXFLD, sXMGMX, tmaxfd, 
1574               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1575     AliMedium(14, "Rohacell          ", 34, 0, iSXFLD, sXMGMX, tmaxfd, 
1576               fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1577 }
1578
1579 //___________________________________________
1580
1581 void AliMUONv1::Init()
1582 {
1583    // 
1584    // Initialize Tracking Chambers
1585    //
1586
1587    if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
1588    Int_t i;
1589    for (i=0; i<AliMUONConstants::NCh(); i++) {
1590        ( (AliMUONChamber*) (*fChambers)[i])->Init();
1591    }
1592    
1593    //
1594    // Set the chamber (sensitive region) GEANT identifier
1595    ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G"));
1596    ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G"));
1597
1598    ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
1599    ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
1600
1601    ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1602    ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
1603
1604    ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1605    ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
1606
1607    ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1608    ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
1609
1610    ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
1611    ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
1612    ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
1613    ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));
1614
1615    if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
1616
1617    //cp 
1618    if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
1619    for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1620      ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1621    }
1622    if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
1623    //cp
1624
1625 }
1626
1627 //_______________________________________________________________________________
1628 Int_t  AliMUONv1::GetChamberId(Int_t volId) const
1629 {
1630 // Check if the volume with specified  volId is a sensitive volume (gas) 
1631 // of some chamber and returns the chamber number;
1632 // if not sensitive volume - return 0.
1633 // ---
1634
1635   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1636     if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
1637
1638   return 0;
1639 }
1640 //_______________________________________________________________________________
1641 void AliMUONv1::StepManager()
1642 {
1643  if (fStepManagerVersionOld) {
1644     StepManagerOld();
1645     return;
1646   }
1647
1648   // Only charged tracks
1649   if( !(gMC->TrackCharge()) ) return; 
1650   // Only charged tracks
1651   
1652   // Only gas gap inside chamber
1653   // Tag chambers and record hits when track enters 
1654   Int_t   idvol=-1;
1655   Int_t   iChamber=0;
1656   Int_t   id=0;
1657   Int_t   copy;
1658   const  Float_t kBig = 1.e10;
1659
1660   id=gMC->CurrentVolID(copy);
1661   // printf("id == %d \n",id);
1662   for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1663     if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1664       iChamber = i;
1665       idvol  = i-1;
1666     }
1667   }
1668   if (idvol == -1) {
1669     return;
1670   }
1671
1672    if( gMC->IsTrackEntering() ) {
1673      Float_t theta = fTrackMomentum.Theta();
1674      if ( (theta>=10) ) gMC->SetMaxStep(fStepMaxInActiveGas);
1675    }
1676
1677 //  if (GetDebug()) {
1678 //     Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ;
1679 //      Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z);
1680 //   }  
1681   // Particule id and mass, 
1682   Int_t     ipart = gMC->TrackPid();
1683   Float_t   mass  = gMC->TrackMass();
1684
1685   fDestepSum[idvol]+=gMC->Edep();
1686   // Get current particle id (ipart), track position (pos)  and momentum (mom)
1687   if ( fStepSum[idvol]==0.0 )  gMC->TrackMomentum(fTrackMomentum);
1688   fStepSum[idvol]+=gMC->TrackStep();
1689   
1690 //   if (GetDebug()) {
1691 //     Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
1692 //       iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep());
1693 //     Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ;
1694 //     gMC->TrackPosition(fTrackPosition);
1695 //     Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1696 //   }
1697
1698   // Track left chamber or StepSum larger than fStepMaxInActiveGas
1699   if ( gMC->IsTrackExiting() || 
1700        gMC->IsTrackStop() || 
1701        gMC->IsTrackDisappeared()||
1702        (fStepSum[idvol]>fStepMaxInActiveGas) ) {
1703     
1704     if   ( gMC->IsTrackExiting() || 
1705            gMC->IsTrackStop() || 
1706            gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig);
1707
1708     gMC->TrackPosition(fTrackPosition);
1709     Float_t theta = fTrackMomentum.Theta();
1710     Float_t phi   = fTrackMomentum.Phi();
1711     
1712     TLorentzVector BackToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
1713                                fStepSum[idvol]/2.*sin(theta)*sin(phi),
1714                                fStepSum[idvol]/2.*cos(theta),0.0       );
1715     //     if (GetDebug()) 
1716     //       Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1717     //     if (GetDebug()) 
1718     //        Info("StepManager Exit ","Track BackToWire %f %f %f",BackToWire.X(),BackToWire.Y(),BackToWire.Z()) ;
1719     fTrackPosition-=BackToWire;
1720     
1721     //-------------- Angle effect 
1722     // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
1723     
1724     Float_t Beta_x_Gamma    = fTrackMomentum.P()/mass;//  pc/mc2
1725     Float_t SigmaEffect_10degrees;
1726     Float_t SigmaEffect_thetadegrees;
1727     Float_t ELossParticle_ELossMip;
1728     Float_t YAngleEffect=0.;
1729     Float_t theta_wires      =  TMath::Abs( TMath::ASin( TMath::Sin(theta) * TMath::Sin(phi) ) );
1730     
1731     if ( (Beta_x_Gamma >3.2)   &&  (theta_wires*kRaddeg<=10) ) {
1732       Beta_x_Gamma=TMath::Log(Beta_x_Gamma);
1733       ELossParticle_ELossMip = fElossRatio->Eval(Beta_x_Gamma);
1734       // 10 degrees is a reference for a model (arbitrary)
1735       SigmaEffect_10degrees=fAngleEffect10->Eval(ELossParticle_ELossMip);// in micrometers
1736       // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
1737       SigmaEffect_thetadegrees =  SigmaEffect_10degrees/fAngleEffectNorma->Eval(theta_wires*kRaddeg);  // For 5mm gap  
1738       if ( (iChamber==1)  ||  (iChamber==2) )  
1739         SigmaEffect_thetadegrees/=(1.09833e+00+1.70000e-02*theta_wires*kRaddeg); // The gap is different (4mm)
1740       YAngleEffect=1.e-04*gRandom->Gaus(0,SigmaEffect_thetadegrees); // Error due to the angle effect in cm
1741     }
1742     
1743     
1744     // One hit per chamber
1745     GetMUONData()->AddHit(fIshunt, gAlice->GetCurrentTrackNumber(), iChamber, ipart, 
1746                           fTrackPosition.X(), fTrackPosition.Y()+YAngleEffect, fTrackPosition.Z(), 0.0, 
1747                           fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol],
1748                           fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z());
1749 //     if (GetDebug()){
1750 //       Info("StepManager Exit","Particle exiting from chamber %d",iChamber);
1751 //       Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]);
1752 //       Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1753 //     }
1754     fStepSum[idvol]  =0; // Reset for the next event
1755     fDestepSum[idvol]=0; // Reset for the next event
1756   }
1757 }
1758
1759 //___________________________________________
1760 void AliMUONv1::StepManagerOld()
1761 {
1762   Int_t          copy, id;
1763   static Int_t   idvol;
1764   static Int_t   vol[2];
1765   Int_t          ipart;
1766   TLorentzVector pos;
1767   TLorentzVector mom;
1768   Float_t        theta,phi;
1769   Float_t        destep, step;
1770   
1771   static Float_t Sstep;
1772   static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1773   const  Float_t kBig = 1.e10;
1774   static Float_t hits[15];
1775
1776   TClonesArray &lhits = *fHits;
1777
1778   //
1779   //
1780   // Only charged tracks
1781   if( !(gMC->TrackCharge()) ) return; 
1782   //
1783   // Only gas gap inside chamber
1784   // Tag chambers and record hits when track enters 
1785   id=gMC->CurrentVolID(copy);
1786   vol[0] = GetChamberId(id);
1787   idvol = vol[0] -1;
1788
1789   if (idvol == -1) return;
1790
1791   //
1792   // Get current particle id (ipart), track position (pos)  and momentum (mom) 
1793   gMC->TrackPosition(pos);
1794   gMC->TrackMomentum(mom);
1795
1796   ipart  = gMC->TrackPid();
1797
1798   //
1799   // momentum loss and steplength in last step
1800   destep = gMC->Edep();
1801   step   = gMC->TrackStep();
1802   // cout<<"------------"<<step<<endl;
1803   //
1804   // record hits when track enters ...
1805   if( gMC->IsTrackEntering()) {
1806
1807       gMC->SetMaxStep(fMaxStepGas);
1808       Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1809       Double_t rt = TMath::Sqrt(tc);
1810       Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1811       Double_t tx = mom[0]/pmom;
1812       Double_t ty = mom[1]/pmom;
1813       Double_t tz = mom[2]/pmom;
1814       Double_t s  = ((AliMUONChamber*)(*fChambers)[idvol])
1815           ->ResponseModel()
1816           ->Pitch()/tz;
1817       theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1818       phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1819       hits[0] = Float_t(ipart);         // Geant3 particle type
1820       hits[1] = pos[0]+s*tx;            // X-position for hit
1821       hits[2] = pos[1]+s*ty;            // Y-position for hit
1822       hits[3] = pos[2]+s*tz;            // Z-position for hit
1823       hits[4] = theta;                  // theta angle of incidence
1824       hits[5] = phi;                    // phi angle of incidence 
1825       hits[8] = 0;//PadHits does not exist anymore  (Float_t) fNPadHits;    // first padhit
1826       hits[9] = -1;                     // last pad hit
1827       hits[10] = mom[3];                // hit momentum P
1828       hits[11] = mom[0];                // Px
1829       hits[12] = mom[1];                // Py
1830       hits[13] = mom[2];                // Pz
1831       tof=gMC->TrackTime();
1832       hits[14] = tof;                   // Time of flight
1833       tlength  = 0;
1834       eloss    = 0;
1835       eloss2   = 0;
1836       Sstep=0;
1837       xhit     = pos[0];
1838       yhit     = pos[1];      
1839       zhit     = pos[2];      
1840       Chamber(idvol).ChargeCorrelationInit();
1841       // Only if not trigger chamber
1842
1843 //       printf("---------------------------\n");
1844 //       printf(">>>> Y =  %f \n",hits[2]);
1845 //       printf("---------------------------\n");
1846     
1847       
1848
1849      //  if(idvol < AliMUONConstants::NTrackingCh()) {
1850 //        //
1851 //        //  Initialize hit position (cursor) in the segmentation model 
1852 //        ((AliMUONChamber*) (*fChambers)[idvol])
1853 //            ->SigGenInit(pos[0], pos[1], pos[2]);
1854 //       } else {
1855 //        //geant3->Gpcxyz();
1856 //        //printf("In the Trigger Chamber #%d\n",idvol-9);
1857 //       }
1858   }
1859   eloss2+=destep;
1860   Sstep+=step;
1861
1862   // cout<<Sstep<<endl;
1863
1864   // 
1865   // Calculate the charge induced on a pad (disintegration) in case 
1866   //
1867   // Mip left chamber ...
1868   if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1869       gMC->SetMaxStep(kBig);
1870       eloss   += destep;
1871       tlength += step;
1872       
1873       Float_t x0,y0,z0;
1874       Float_t localPos[3];
1875       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1876       gMC->Gmtod(globalPos,localPos,1); 
1877
1878       if(idvol < AliMUONConstants::NTrackingCh()) {
1879 // tracking chambers
1880           x0 = 0.5*(xhit+pos[0]);
1881           y0 = 0.5*(yhit+pos[1]);
1882           z0 = 0.5*(zhit+pos[2]);
1883       } else {
1884 // trigger chambers
1885           x0 = xhit;
1886           y0 = yhit;
1887           z0 = 0.;
1888       }
1889       
1890
1891       //      if (eloss >0)  MakePadHits(x0,y0,z0,eloss,tof,idvol);
1892       
1893           
1894       hits[6] = tlength;   // track length
1895       hits[7] = eloss2;    // de/dx energy loss
1896
1897
1898       //      if (fNPadHits > (Int_t)hits[8]) {
1899       //          hits[8] = hits[8]+1;
1900       //          hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1901       //}
1902 //
1903 //    new hit 
1904       
1905       new(lhits[fNhits++]) 
1906           AliMUONHit(fIshunt, gAlice->GetCurrentTrackNumber(), vol,hits);
1907       eloss = 0; 
1908       //
1909       // Check additional signal generation conditions 
1910       // defined by the segmentation
1911       // model (boundary crossing conditions)
1912       // only for tracking chambers
1913   } else if 
1914       ((idvol < AliMUONConstants::NTrackingCh()) &&
1915        ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1916   {
1917       ((AliMUONChamber*) (*fChambers)[idvol])
1918           ->SigGenInit(pos[0], pos[1], pos[2]);
1919       
1920       Float_t localPos[3];
1921       Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1922       gMC->Gmtod(globalPos,localPos,1); 
1923
1924       eloss    += destep;
1925
1926       // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1927       //        MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1928       xhit     = pos[0];
1929       yhit     = pos[1]; 
1930       zhit     = pos[2];
1931       eloss = 0;
1932       tlength += step ;
1933       //
1934       // nothing special  happened, add up energy loss
1935   } else {        
1936       eloss   += destep;
1937       tlength += step ;
1938   }
1939 }
1940
1941