1 #ifndef ALIPHOSTrigger_H
2 #define ALIPHOSTrigger_H
3 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
8 //____________________________________________________________
9 // Class for trigger analysis.
11 // -- Author: Gustavo Conesa & Yves Schutz (IFIC, SUBATECH, CERN)
12 // Digits are grouped in TRU's (Trigger Units). A TRU consist of 16x28
13 // crystals ordered fNTRUPhi x fNTRUZ matrix. The algorithm searches all possible
14 // 2x2 and nxn (n multiple of 4) crystal combinations per each TRU, adding the
15 // digits amplitude and finding the maximum. Iti is found is maximum is isolated.
16 // Maxima are transformed in ADC time samples. Each time bin is compared to the trigger
17 // threshold until it is larger and then, triggers are set. Thresholds need to be fixed.
20 // //Inside the event loop
21 // AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger
22 // tr->SetL0Threshold(100);
23 // tr->SetL1JetLowPtThreshold(1000);
24 // tr->SetL1JetMediumPtThreshold(10000);
25 // tr->SetL1JetHighPtThreshold(20000);
27 // tr->Trigger(); //Execute Trigger
28 // tr->Print(""); //Print data members after calculation.
30 // --- ROOT system ---
35 // --- AliRoot header files ---
36 #include "AliTriggerDetector.h"
38 class AliPHOSGeometry ;
40 class AliPHOSTrigger : public AliTriggerDetector {
44 AliPHOSTrigger() ; // ctor
45 AliPHOSTrigger(const AliPHOSTrigger & trig) ; // cpy ctor
46 virtual ~AliPHOSTrigger();
48 virtual void CreateInputs(); //Define trigger inputs for Central Trigger Processor
49 void Print(const Option_t * opt ="") const ;
50 virtual void Trigger() {} //Make PHOS trigger
51 void Trigger(TClonesArray *digits); //Make PHOS trigger
54 Float_t Get2x2MaxAmplitude() const {return f2x2MaxAmp ; }
55 Float_t GetnxnMaxAmplitude() const {return fnxnMaxAmp ; }
56 Int_t Get2x2CrystalPhi() const {return f2x2CrystalPhi ; }
57 Int_t GetnxnCrystalPhi() const {return fnxnCrystalPhi ; }
58 Int_t Get2x2CrystalEta() const {return f2x2CrystalEta ; }
59 Int_t GetnxnCrystalEta() const {return fnxnCrystalEta ; }
60 Int_t Get2x2SuperModule() const {return f2x2SM ; }
61 Int_t GetnxnSuperModule() const {return fnxnSM ; }
63 Int_t * GetADCValuesLowGainMax2x2Sum() {return fADCValuesLow2x2; }
64 Int_t * GetADCValuesHighGainMax2x2Sum() {return fADCValuesHigh2x2; }
65 Int_t * GetADCValuesLowGainMaxnxnSum() {return fADCValuesLownxn; }
66 Int_t * GetADCValuesHighGainMaxnxnSum() {return fADCValuesHighnxn; }
68 void GetCrystalPhiEtaIndexInModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru,Int_t &ietaMod,Int_t &iphiMod) const ;
70 Float_t GetL0Threshold() const {return fL0Threshold ; }
71 Float_t GetL1JetLowPtThreshold() const {return fL1JetLowPtThreshold ; }
72 Float_t GetL1JetMediumPtThreshold() const {return fL1JetMediumPtThreshold ; }
73 Float_t GetL1JetHighPtThreshold() const {return fL1JetHighPtThreshold ; }
75 Int_t GetNTRU() const {return fNTRU ; }
76 Int_t GetNTRUZ() const {return fNTRUZ ; }
77 Int_t GetNTRUPhi() const {return fNTRUPhi ; }
79 Int_t GetPatchSize() const {return fPatchSize ; }
80 Int_t GetIsolPatchSize() const {return fIsolPatchSize ; }
82 Float_t Get2x2AmpOutOfPatch() const {return f2x2AmpOutOfPatch; }
83 Float_t GetnxnAmpOutOfPatch() const {return fnxnAmpOutOfPatch; }
84 Float_t Get2x2AmpOutOfPatchThres() const {return f2x2AmpOutOfPatchThres; }
85 Float_t GetnxnAmpOutOfPatchThres() const {return fnxnAmpOutOfPatchThres; }
87 Bool_t Is2x2Isol() const {return fIs2x2Isol; }
88 Bool_t IsnxnIsol() const {return fIsnxnIsol; }
90 Bool_t IsSimulation() const {return fSimulation ; }
91 Bool_t IsIsolatedInModule() const {return fIsolateInModule ; }
94 void SetDigitsList(TClonesArray * digits)
95 {fDigitsList = digits ; }
97 void SetNTRU(Int_t ntru) {fNTRU = ntru ; }
98 void SetNTRUZ(Int_t ntru) {fNTRUZ = ntru ; }
99 void SetNTRUPhi(Int_t ntru) {fNTRUPhi = ntru ; }
101 void SetL0Threshold(Int_t amp)
102 {fL0Threshold = amp ; }
103 void SetL1JetLowPtThreshold(Int_t amp)
104 {fL1JetLowPtThreshold = amp ; }
105 void SetL1JetMediumPtThreshold(Int_t amp)
106 {fL1JetMediumPtThreshold = amp; }
107 void SetL1JetHighPtThreshold(Int_t amp)
108 {fL1JetHighPtThreshold = amp ; }
110 void SetPatchSize(Int_t ps) { fPatchSize = ps ; }
111 void SetIsolPatchSize(Int_t ps) { fIsolPatchSize = ps ; }
112 void Set2x2AmpOutOfPatchThres(Float_t th) { f2x2AmpOutOfPatchThres = th; }
113 void SetnxnAmpOutOfPatchThres(Float_t th) { fnxnAmpOutOfPatchThres = th; }
114 void SetSimulation(Bool_t sim ) { fSimulation = sim ; }
115 void SetIsolateInModule(Bool_t isol ) { fIsolateInModule = isol ; }
119 AliPHOSTrigger & operator = (const AliPHOSTrigger & trig) ;//cpy assignment
121 void FillTRU(const TClonesArray * digits, const AliPHOSGeometry * geom) const ;
123 Bool_t IsPatchIsolated(Int_t iPatchType, const Int_t imod, const Int_t mtru, const Float_t maxamp, const Int_t maxphi, const Int_t maxeta) ;
125 void MakeSlidingCell(Int_t mod, TMatrixD &max2, TMatrixD &maxn) ;
127 void SetTriggers(Int_t iMod, const TMatrixD &max2,const TMatrixD &maxn) ;
133 Float_t f2x2MaxAmp ; //! Maximum 2x2 added amplitude (not overlapped)
134 Int_t f2x2CrystalPhi ; //! upper right cell, row(phi)
135 Int_t f2x2CrystalEta ; //! and column(eta)
136 Int_t f2x2SM ; //! Module where maximum is found
137 Float_t fnxnMaxAmp ; //! Maximum nxn added amplitude (overlapped)
138 Int_t fnxnCrystalPhi ; //! upper right cell, row(phi)
139 Int_t fnxnCrystalEta ; //! and column(eta)
140 Int_t fnxnSM ; //! Module where maximum is found
142 Int_t* fADCValuesHighnxn ; //! Sampled ADC high gain values for the nxn crystals amplitude sum
143 Int_t* fADCValuesLownxn ; //! " low gain "
144 Int_t* fADCValuesHigh2x2 ; //! " high gain " 2x2 "
145 Int_t* fADCValuesLow2x2 ; //! " low gaing " "
147 TClonesArray* fDigitsList ; // Array of digits
148 TClonesArray* fAmptrus ; //! Array of matrices with amplitudes per TRU
149 TClonesArray* fAmpmods ; //! Array of matrices with amplitudes per module
150 TClonesArray* fTimeRtrus ; //! Array of matrices with time
153 Float_t fL0Threshold ; //! L0 trigger energy threshold
154 Float_t fL1JetLowPtThreshold ; //! L1 Low pT trigger threshold
155 Float_t fL1JetMediumPtThreshold ; //! L1 Medium pT trigger threshold
156 Float_t fL1JetHighPtThreshold ; //! L1 High pT trigger threshold
158 Int_t fNTRU ; //! Number of TRUs per module
159 Int_t fNTRUZ ; //! Number of crystal rows per Z in one TRU
160 Int_t fNTRUPhi ; //! Number of crystal rows per Phi in one TRU
161 Int_t fNCrystalsPhi; //! Number of rows in a TRU
162 Int_t fNCrystalsZ; //! Number of columns in a TRU
164 Int_t fPatchSize; //! Trigger patch factor, to be multiplied to 2x2 cells
165 // 0 means 2x2, 1 means 4x4, 2 means 6x6 ...
166 Int_t fIsolPatchSize ; // Isolation patch size, number of rows or columns to add to
167 // the 2x2 or nxn maximum amplitude patch.
168 // 1 means a patch around max amplitude of 2x2 of 4x4 and around
169 // max ampl patch of 4x4 of 8x8
171 Float_t f2x2AmpOutOfPatch; // Amplitude in isolation cone minus maximum amplitude of the reference patch
172 Float_t fnxnAmpOutOfPatch;
173 Float_t f2x2AmpOutOfPatchThres; // Threshold to select a trigger as isolated on f2x2AmpOutOfPatch value
174 Float_t fnxnAmpOutOfPatchThres;
175 Float_t fIs2x2Isol; //Patch is isolated if f2x2AmpOutOfPatchThres threshold is passed
178 Bool_t fSimulation ; //! Flag to do the trigger during simulation or reconstruction
179 Bool_t fIsolateInModule; //! Flag to isolate trigger patch in Module or in TRU acceptance
181 ClassDef(AliPHOSTrigger,5)
185 #endif //ALIPHOSTrigger_H