]> git.uio.no Git - u/mrichter/AliRoot.git/blob - PWGLF/FORWARD/doc/landgaus.tex
Merge branch 'feature-movesplit'
[u/mrichter/AliRoot.git] / PWGLF / FORWARD / doc / landgaus.tex
1 \documentclass[11pt]{article}
2 \usepackage{geometry}
3 \usepackage{amsmath}
4 \usepackage{amstext}
5 \begin{document}
6
7
8 The Landau function $L$ is a function of $x$ with the parameters
9 $\Delta_p$ and $\xi$.  It can be written as 
10 \begin{align}
11   \phi(u) &= \frac1\pi\int_0^\infty dt\,\sin(\pi t) e^{-t\log{t}-ut}
12   \label{eq:phi}\\
13   L(x;\Delta_p,\xi) &= \frac1\xi
14   \phi\left(\frac{x-\Delta_p}{\xi}\right)\label{eq:land} 
15 \end{align}
16 %% 
17 A Landau convolved with a Gaussian is given by 
18 \begin{align}
19   L_{G}(x;\Delta_p,\xi,\sigma) &= \int_{-\infty}^{+\infty}
20   ds\, L(s;\Delta_p,\xi) \frac{1}{\sqrt{2\pi}\sigma}
21   e^{-\frac{(x-s)^2}{2\sigma^2}}\nonumber\\
22   &=
23   \frac{1}{\sqrt{2\pi}\sigma\pi\xi}\int_{-\infty}^{+\infty}ds\,\int_0^\infty
24   dt\,\sin(\pi t)e^{-t\log{t}-\frac{s-\Delta_p}{\xi}t}
25   e^{-\frac{(x-s)^2}{2\sigma^2}}\nonumber\\
26   &= \frac{1}{\sqrt{2\pi}\sigma\pi\xi}\int_0^\infty
27   dt\,\sin(\pi t) e^{-t\log{t}+\frac{\Delta_p}{\xi}t}\int_{-\infty}^{+\infty}
28   ds\,e^{-\frac{(x-s)^2}{2\sigma^2}}e^{-\frac{st}{\xi}}\label{eq:lg}
29 \end{align}
30 %%
31 Carrying out the inner integral of \eqref{eq:lg}, 
32 %%
33 \begin{align}
34   \int_{-\infty}^{+\infty}
35   ds\,e^{-\frac{(x-s)^2}{2\sigma^2}}e^{-\frac{st}{\xi}} &=
36   \int_{-\infty}^{+\infty}
37   ds\,e^{\frac{-s^2-x^2+2xs}{2\sigma^s}-\frac{st}{\xi}}\nonumber\\
38   &= \int_{-\infty}^{+\infty}
39   ds\,e^{-\frac{s^2}{2\sigma^2}+\left(\frac{2x}{2\sigma^2}-\frac{t}{\xi}\right)s-\frac{x^2}{2\sigma^2}}\nonumber\\
40   &= \int_{-\infty}^{+\infty}
41   ds\,e^{-\frac{1}{2\sigma^2}\left[s^2+\left(\frac{2\sigma^2t}{\xi}-2x\right)s\right]-\frac{x^2}{2\sigma^2}}\nonumber\\
42   \intertext{Completing the square} 
43   %%
44   &= \int_{-\infty}^{+\infty}
45   ds\,e^{-\frac{1}{2\sigma^2}\left[s^2+2\left(\frac{\sigma^2t}{\xi}-x\right)s
46       +\left(\frac{\sigma^2t}{\xi}-x\right)^2
47       -\left(\frac{\sigma^2t}{\xi}-x\right)^2\right]-\frac{x^2}{2\sigma^2}}\nonumber\\
48   &= \int_{-\infty}^{+\infty}
49   ds\,e^{-\frac{1}{2\sigma^2}\left[s + \left(\frac{\sigma^2t}{\xi}-x\right)\right]^2
50     +\frac{1}{2\sigma^2}\left(\frac{\sigma^2t}{\xi}-x\right)^2
51     -\frac{x^2}{2\sigma^2}}\nonumber\\
52   \intertext{Recognizing this as a Gaussian integral, we get}
53   %% Maxima:
54   %% integrate(%e^(-1/(2*sigma^2)*(s+sigma^2*t/xi-x)^2 + 
55   %%               1/(2*sigma^2)*(sigma^2*t/xi-x)^2-x^2/(2*sigma^2)),s,-inf,inf);
56   &= \sqrt{2\pi}\sigma
57    e^{-\frac{1}{2\xi^2}\left(2tx\xi-\sigma^2t^2\right)}\nonumber\\
58    &= \sqrt{2\pi}\sigma e^{\frac{t}{2\xi}\left(\frac{\sigma^2t}{\xi}-2x\right)}
59   \label{eq:inner}
60 \end{align}
61 %%
62 Substituting \eqref{eq:inner} back into \eqref{eq:lg} yields 
63 %%
64 \begin{align}
65   L_{G}(x;\Delta_p,\xi,\sigma) &= \frac{1}{\sqrt{2\pi}\sigma\pi\xi}
66    \int_0^{\infty}dt\,e^{-t\log{t} + \frac{\Delta_p t}{\xi}}\sin{\pi t}
67    \sqrt{2\pi}\sigma e^{\frac{t}{2\xi}\left(\frac{\sigma^2t}{\xi}-2x\right)}\nonumber\\
68    &= \frac{1}{\pi\xi}\int_o^{\infty}dt\,e^{-t\log{t} + \frac{\Delta_pt}{\xi}+
69      \frac{t}{2\xi}\left(\frac{\sigma^2t}{\xi}-2x\right)}\sin{\pi
70      t}\nonumber\\
71    &= \frac{1}{\pi\xi}\int_o^{\infty}dt\,e^{-t\log{t} - \frac{(x
72        -\Delta_p)t}{\xi} + \frac12\left(\frac{\sigma}{\xi}t\right)^2}\sin{\pi
73        t}\quad.
74 \end{align}
75 %%
76 Defining $v=\frac{\sigma}{\xi}$, and 
77 %%
78 \begin{align}
79   \Phi(u;v) &= \frac{1}{\pi}\int_0^{\infty}dt\,e^{-t\log{t} - ut +
80     \frac12v^2t^2}\sin{\pi t}\label{eq:Phi}\quad,
81 \end{align}
82 we can write \eqref{eq:lg} as 
83 \begin{align}
84   L_{G}(x;\Delta_p,\xi,\sigma) &=
85   \frac1\xi\Phi\left(\frac{x-\Delta_p}{\xi},\frac\sigma\xi\right)\label{eq:lg2}
86 \end{align}
87 The normalization follows from the fact that
88 $u=\frac{x-\Delta_p}{\xi}$ and $\frac{dv}{du}=f(u)$ so that 
89 \begin{align*}
90   du &= \frac{dx}{\xi}\quad\text{and}\\
91   \frac{dv}{dx/\xi} &= f\left(\frac{x-\Delta_p}{\xi}\right)\\
92   \intertext{so that}
93   \frac{dv}{dx} &= \frac1\xi f\left(\frac{x-\Delta_p}{\xi}\right)
94 \end{align*}
95
96 %% 
97 %% Maxima input:
98 %%  diff(integrate(1/%pi*%e^(-t * log(t)-u*t+1/2*v^2*t^2)*sin(%pi *
99 %%  t), t, 0, inf),u);
100 %% v is non-zero
101 %% u is positive 
102 Differentiating \eqref{eq:Phi} with respect to $u$ gives 
103 \begin{align}
104   \frac{d\Phi}{du} &= 
105   \frac{1}{\pi}
106   \int_0^{\infty}dt\,e^{-t\log{t}-tu+\frac12t^2v^2}t\sin{\pi t}
107 \end{align}
108
109 Now turning to the maximum of \eqref{eq:phi} which is known to be at
110 $u=u_p\neq0$ we get that the most probable value $x=x_p$ of
111 \eqref{eq:land} is given by
112 \begin{align}
113   \frac{x_p-\Delta_p}{\xi} &= u_p\nonumber\\
114   \intertext{so that}
115   x_p &= u_p\xi + \Delta_p\quad\text{and}\nonumber\\
116   \Delta_p &= x_p - \xi u_p
117 \end{align}
118
119 The maximum of \eqref{eq:Phi} must be a function solely of $v$, and we
120 have the most probable value $x=x'_p$ of \eqref{eq:lg2}
121 \begin{align}
122   f(v) &= \frac{x'_p-\Delta_p}{\xi} \nonumber\\
123   &= \frac{x'_p - x_p + \xi u_p}{\xi} \nonumber\\
124   f(v) - u_p &=  \frac{x'_p - x_p}{\xi}\nonumber\\
125   x_p'-x_p &= \xi\left(f(v)-u_p\right)\nonumber\\
126   x_p' &= \xi\left(f(v)-u_p\right)+x_p
127   \intertext{and it follows that}
128   x_p' &= \xi g(v)
129 \end{align}
130
131
132
133 \end{document}
134
135 %  LocalWords:  convolved