]> git.uio.no Git - u/mrichter/AliRoot.git/blob - PYTHIA8/pythia8145/phpdoc/NewGaugeBosonProcesses.php
New pythia8 version
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8145 / phpdoc / NewGaugeBosonProcesses.php
1 <html>
2 <head>
3 <title>New-Gauge-Boson Processes</title>
4 <link rel="stylesheet" type="text/css" href="pythia.css"/>
5 <link rel="shortcut icon" href="pythia32.gif"/>
6 </head>
7 <body>
8
9 <script language=javascript type=text/javascript>
10 function stopRKey(evt) {
11 var evt = (evt) ? evt : ((event) ? event : null);
12 var node = (evt.target) ? evt.target :((evt.srcElement) ? evt.srcElement : null);
13 if ((evt.keyCode == 13) && (node.type=="text"))
14 {return false;}
15 }
16
17 document.onkeypress = stopRKey;
18 </script>
19 <?php
20 if($_POST['saved'] == 1) {
21 if($_POST['filepath'] != "files/") {
22 echo "<font color='red'>SETTINGS SAVED TO FILE</font><br/><br/>"; }
23 else {
24 echo "<font color='red'>NO FILE SELECTED YET.. PLEASE DO SO </font><a href='SaveSettings.php'>HERE</a><br/><br/>"; }
25 }
26 ?>
27
28 <form method='post' action='NewGaugeBosonProcesses.php'>
29
30 <h2>New-Gauge-Boson Processes</h2>
31
32 This page contains the production of new <i>Z'^0</i> and 
33 <i>W'^+-</i> gauge bosons, e.g. within the context of a new
34 <i>U(1)</i> or <i>SU(2)</i> gauge group, and also a
35 (rather speculative) horizontal gauge boson <i>R^0</i>.
36 Left-right-symmetry scenarios also contain new gauge bosons,
37 but are described 
38 <?php $filepath = $_GET["filepath"];
39 echo "<a href='LeftRightSymmetryProcesses.php?filepath=".$filepath."' target='page'>";?>separately</a>. 
40  
41 <h3><i>Z'^0</i></h3>
42   
43 This group only contains one subprocess, with the full 
44 <i>gamma^*/Z^0/Z'^0</i> interference structure for couplings 
45 to fermion pairs. It is possible to pick only a subset, e.g, only 
46 the pure <i>Z'^0</i> piece. No higher-order processes are 
47 available explicitly, but the ISR showers contain automatic 
48 matching to the <i>Z'^0</i> + 1 jet matrix elements, as for
49 the corresponding <i>gamma^*/Z^0</i> process.
50   
51 <br/><br/><strong>NewGaugeBoson:ffbar2gmZZprime</strong>  <input type="radio" name="1" value="on"><strong>On</strong>
52 <input type="radio" name="1" value="off" checked="checked"><strong>Off</strong>
53  &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
54 Scattering <i>f fbar ->Z'^0</i>.
55 Code 3001.
56   
57
58 <br/><br/><table><tr><td><strong>Zprime:gmZmode  </td><td>  &nbsp;&nbsp;(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 6</code>)</td></tr></table>
59 Choice of full <ei>gamma^*/Z^0/Z'^0</ei> structure or not in 
60 the above process. Note that, with the <ei>Z'^0</ei> part switched
61 off, this process is reduced to what already exists among 
62 <aloc href="ElectroweakProcesses">electroweak processes</aloc>, 
63 so those options are here only for crosschecks.
64 <br/>
65 <input type="radio" name="2" value="0" checked="checked"><strong>0 </strong>: full <ei>gamma^*/Z^0/Z'^0</ei> structure, with interference included.<br/>
66 <input type="radio" name="2" value="1"><strong>1 </strong>: only pure <ei>gamma^*</ei> contribution.<br/>
67 <input type="radio" name="2" value="2"><strong>2 </strong>: only pure <ei>Z^0</ei> contribution.<br/>
68 <input type="radio" name="2" value="3"><strong>3 </strong>: only pure <ei>Z'^0</ei> contribution.<br/>
69 <input type="radio" name="2" value="4"><strong>4 </strong>: only the <ei>gamma^*/Z^0</ei> contribution, including interference.<br/>
70 <input type="radio" name="2" value="5"><strong>5 </strong>: only the <ei>gamma^*/Z'^0</ei> contribution, including interference.<br/>
71 <input type="radio" name="2" value="6"><strong>6 </strong>: only the <ei>Z^0/Z'^0</ei> contribution, including interference.<br/>
72 <br/><b>Note</b>: irrespective of the option used, the particle produced 
73 will always be assigned code 32 for <ei>Z'^0</ei>, and open decay channels
74 is purely dictated by what is set for the <ei>Z'^0</ei>. 
75
76 <p/>
77 The couplings of the <i>Z'^0</i> to quarks and leptons can
78 either be assumed universal, i.e. generation-independent, or not.
79 In the former case eight numbers parametrize the vector and axial 
80 couplings of down-type quarks, up-type quarks, leptons and neutrinos, 
81 respectively. Depending on your assumed neutrino nature you may
82 want to restrict your freedom in that sector, but no limitations 
83 are enforced by the program. The default corresponds to the same 
84 couplings as that of the Standard Model <i>Z^0</i>, with axial 
85 couplings <i>a_f = +-1</i> and vector couplings
86 <i>v_f = a_f - 4 e_f sin^2(theta_W)</i>, with
87 <i>sin^2(theta_W) = 0.23</i>. Without universality 
88 the same eight numbers have to be set separately also for the 
89 second and the third generation. The choice of fixed axial and 
90 vector couplings implies a resonance width that increases linearly 
91 with the <i>Z'^0</i> mass. 
92
93 <p/>
94 By a suitable choice of the parameters, it is possible to simulate 
95 just about any imaginable <i>Z'^0</i> scenario, with full 
96 interference effects in cross sections and decay angular 
97 distributions and generation-dependent couplings; the default values
98 should mainly be viewed as placeholders. The conversion 
99 from the coupling conventions in a set of different <i>Z'^0</i> 
100 models in the literature to those used in PYTHIA is described by 
101 <a href="http://www.hep.uiuc.edu/home/catutza/nota12.ps">C. 
102 Ciobanu et al.</a>
103
104 <br/><br/><strong>Zprime:universality</strong>  <input type="radio" name="3" value="on" checked="checked"><strong>On</strong>
105 <input type="radio" name="3" value="off"><strong>Off</strong>
106  &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
107 If on then you need only set the first-generation couplings
108 below, and these are automatically also used for the second and
109 third generation. If off, then couplings can be chosen separately
110 for each generation.
111   
112
113 <p/>
114 Here are the couplings always valid for the first generation, 
115 and normally also for the second and third by trivial analogy:
116
117 <br/><br/><table><tr><td><strong>Zprime:vd </td><td></td><td> <input type="text" name="4" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
118 vector coupling of <i>d</i> quarks.
119   
120
121 <br/><br/><table><tr><td><strong>Zprime:ad </td><td></td><td> <input type="text" name="5" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
122 axial coupling of <i>d</i> quarks.
123   
124
125 <br/><br/><table><tr><td><strong>Zprime:vu </td><td></td><td> <input type="text" name="6" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
126 vector coupling of <i>u</i> quarks.
127   
128
129 <br/><br/><table><tr><td><strong>Zprime:au </td><td></td><td> <input type="text" name="7" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
130 axial coupling of <i>u</i> quarks.
131   
132
133 <br/><br/><table><tr><td><strong>Zprime:ve </td><td></td><td> <input type="text" name="8" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
134 vector coupling of <i>e</i> leptons.
135   
136
137 <br/><br/><table><tr><td><strong>Zprime:ae </td><td></td><td> <input type="text" name="9" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
138 axial coupling of <i>e</i> leptons.
139   
140
141 <br/><br/><table><tr><td><strong>Zprime:vnue </td><td></td><td> <input type="text" name="10" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
142 vector coupling of <i>nu_e</i> neutrinos.
143   
144
145 <br/><br/><table><tr><td><strong>Zprime:anue </td><td></td><td> <input type="text" name="11" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
146 axial coupling of <i>nu_e</i> neutrinos.
147   
148
149 <p/>
150 Here are the further couplings that are specific for 
151 a scenario with <code>Zprime:universality</code> swiched off:
152
153 <br/><br/><table><tr><td><strong>Zprime:vs </td><td></td><td> <input type="text" name="12" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
154 vector coupling of <i>s</i> quarks.
155   
156
157 <br/><br/><table><tr><td><strong>Zprime:as </td><td></td><td> <input type="text" name="13" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
158 axial coupling of <i>s</i> quarks.
159   
160
161 <br/><br/><table><tr><td><strong>Zprime:vc </td><td></td><td> <input type="text" name="14" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
162 vector coupling of <i>c</i> quarks.
163   
164
165 <br/><br/><table><tr><td><strong>Zprime:ac </td><td></td><td> <input type="text" name="15" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
166 axial coupling of <i>c</i> quarks.
167   
168
169 <br/><br/><table><tr><td><strong>Zprime:vmu </td><td></td><td> <input type="text" name="16" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
170 vector coupling of <i>mu</i> leptons.
171   
172
173 <br/><br/><table><tr><td><strong>Zprime:amu </td><td></td><td> <input type="text" name="17" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
174 axial coupling of <i>mu</i> leptons.
175   
176
177 <br/><br/><table><tr><td><strong>Zprime:vnumu </td><td></td><td> <input type="text" name="18" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
178 vector coupling of <i>nu_mu</i> neutrinos.
179   
180
181 <br/><br/><table><tr><td><strong>Zprime:anumu </td><td></td><td> <input type="text" name="19" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
182 axial coupling of <i>nu_mu</i> neutrinos.
183   
184
185 <br/><br/><table><tr><td><strong>Zprime:vb </td><td></td><td> <input type="text" name="20" value="-0.693" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.693</strong></code>)</td></tr></table>
186 vector coupling of <i>b</i> quarks.
187   
188
189 <br/><br/><table><tr><td><strong>Zprime:ab </td><td></td><td> <input type="text" name="21" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
190 axial coupling of <i>b</i> quarks.
191   
192
193 <br/><br/><table><tr><td><strong>Zprime:vt </td><td></td><td> <input type="text" name="22" value="0.387" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.387</strong></code>)</td></tr></table>
194 vector coupling of <i>t</i> quarks.
195   
196
197 <br/><br/><table><tr><td><strong>Zprime:at </td><td></td><td> <input type="text" name="23" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
198 axial coupling of <i>t</i> quarks.
199   
200
201 <br/><br/><table><tr><td><strong>Zprime:vtau </td><td></td><td> <input type="text" name="24" value="-0.08" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-0.08</strong></code>)</td></tr></table>
202 vector coupling of <i>tau</i> leptons.
203   
204
205 <br/><br/><table><tr><td><strong>Zprime:atau </td><td></td><td> <input type="text" name="25" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
206 axial coupling of <i>tau</i> leptons.
207   
208
209 <br/><br/><table><tr><td><strong>Zprime:vnutau </td><td></td><td> <input type="text" name="26" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
210 vector coupling of <i>nu_tau</i> neutrinos.
211   
212
213 <br/><br/><table><tr><td><strong>Zprime:anutau </td><td></td><td> <input type="text" name="27" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
214 axial coupling of <i>nu_tau</i> neutrinos.
215   
216
217 <p/>
218 The coupling to the decay channel <i>Z'^0 -> W^+ W^-</i> is 
219 more model-dependent. By default it is therefore off, but can be
220 switched on as follows. Furthermore, we have left some amount of 
221 freedom in the choice of decay angular correlations in this 
222 channel, but obviously alternative shapes could be imagined.
223
224 <br/><br/><table><tr><td><strong>Zprime:coup2WW </td><td></td><td> <input type="text" name="28" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
225 the coupling <i>Z'^0 -> W^+ W^-</i> is taken to be this number 
226 times <i>m_W^2 / m_Z'^2</i> times the <i>Z^0 -> W^+ W^-</i> 
227 coupling. Thus a unit value corresponds to the 
228 <i>Z^0 -> W^+ W^-</i> coupling, scaled down by a factor
229 <i>m_W^2 / m_Z'^2</i>, and gives a <i>Z'^0</i> partial 
230 width into this channel that again increases linearly. If you
231 cancel this behaviour, by letting <code>Zprime:coup2WW</code> be
232 proportional to <i>m_Z'^2 / m_W^2</i>, you instead obtain a
233 partial width that goes like the fifth power of the <i>Z'^0</i> 
234 mass. These two extremes correspond to the "extended gauge model"
235 and the "reference model", respectively, of [<a href="Bibliography.php" target="page">Alt89</a>]. 
236 Note that this channel only includes the pure <i>Z'</i> part, 
237 while <i>f fbar -> gamma^*/Z^*0 -> W^+ W^-</i> is available 
238 as a separate electroweak process. 
239   
240
241 <br/><br/><table><tr><td><strong>Zprime:anglesWW </td><td></td><td> <input type="text" name="29" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)</td></tr></table>
242 in the decay chain <i>Z'^0 -> W^+ W^- ->f_1 fbar_2 f_3 fbar_4</i>
243 the decay angular distributions is taken to be a mixture of two
244 possible shapes. This parameter gives the fraction that is distributed
245 as in Higgs <i>h^0 -> W^+ W^-</i> (longitudinal bosons), 
246 with the remainder (by default all) is taken to be the same as for 
247 <i>Z^0 -> W^+ W^-</i> (a mixture of transverse and longitudinal
248 bosons).   
249   
250
251 <p/>
252 A massive <i>Z'^0</i> is also likely to decay into Higgses
253 and potentially into other now unknown particles. Such possibilities
254 clearly are quite model-dependent, and have not been included 
255 for now.
256
257 <h3><i>W'^+-</i></h3>
258   
259 The <i>W'^+-</i> implementation is less ambitious than the 
260 <i>Z'^0</i>. Specifically, while indirect detection of a 
261 <i>Z'^0</i> through its interference contribution is 
262 a possible discovery channel in lepton colliders, there is no
263 equally compelling case for <i>W^+-/W'^+-</i> interference 
264 effects being of importance for discovery, and such interference
265 has therefore not been implemented for now. Related to this, a 
266 <i>Z'^0</i> could appear on its own in a new <i>U(1)</i> group,
267 while <i>W'^+-</i> would have to sit in a <i>SU(2)</i> group
268 and thus have a <i>Z'^0</i> partner that is likely to be found
269 first. Only one process is implemented but, like for the
270 <i>W^+-</i>, the ISR showers contain automatic matching to the 
271 <i>W'^+-</i> + 1 jet matrix elements.
272
273 <br/><br/><strong>NewGaugeBoson:ffbar2Wprime</strong>  <input type="radio" name="30" value="on"><strong>On</strong>
274 <input type="radio" name="30" value="off" checked="checked"><strong>Off</strong>
275  &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
276 Scattering <i>f fbar' -> W'^+-</i>.
277 Code 3021.
278   
279
280 <p/>
281 The couplings of the <i>W'^+-</i> are here assumed universal,
282 i.e. the same for all generations. One may set vector and axial 
283 couplings freely, separately for the <i>q qbar'</i> and the 
284 <i>l nu_l</i> decay channels. The defaults correspond to the 
285 <i>V - A</i> structure and normalization of the Standard Model 
286 <i>W^+-</i>, but can be changed to simulate a wide selection 
287 of models. One limitation is that, for simplicity, the same 
288 Cabibbo--Kobayashi--Maskawa quark mixing matrix is assumed as for 
289 the standard <i>W^+-</i>. Depending on your assumed neutrino 
290 nature you may want to restrict your freedom in the lepton sector, 
291 but no limitations are enforced by the program. 
292
293 <br/><br/><table><tr><td><strong>Wprime:vq </td><td></td><td> <input type="text" name="31" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
294 vector coupling of quarks.
295   
296
297 <br/><br/><table><tr><td><strong>Wprime:aq </td><td></td><td> <input type="text" name="32" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
298 axial coupling of quarks.
299   
300
301 <br/><br/><table><tr><td><strong>Wprime:vl </td><td></td><td> <input type="text" name="33" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>)</td></tr></table>
302 vector coupling of leptons.
303   
304
305 <br/><br/><table><tr><td><strong>Wprime:al </td><td></td><td> <input type="text" name="34" value="-1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>-1.</strong></code>)</td></tr></table>
306 axial coupling of leptons.
307   
308
309 <p/>
310 The coupling to the decay channel <i>W'^+- -> W^+- Z^0</i> is 
311 more model-dependent, like for <i>Z'^0 -> W^+ W^-</i> described
312 above. By default it is therefore off, but can be
313 switched on as follows. Furthermore, we have left some amount of 
314 freedom in the choice of decay angular correlations in this 
315 channel, but obviously alternative shapes could be imagined.
316
317 <br/><br/><table><tr><td><strong>Wprime:coup2WZ </td><td></td><td> <input type="text" name="35" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
318 the coupling <i>W'^0 -> W^+- Z^0</i> is taken to be this number 
319 times <i>m_W^2 / m_W'^2</i> times the <i>W^+- -> W^+- Z^0</i> 
320 coupling. Thus a unit value corresponds to the 
321 <i>W^+- -> W^+- Z^0</i> coupling, scaled down by a factor
322 <i>m_W^2 / m_W'^2</i>, and gives a <i>W'^+-</i> partial 
323 width into this channel that increases linearly with the 
324 <i>W'^+-</i> mass. If you cancel this behaviour, by letting 
325 <code>Wprime:coup2WZ</code> be proportional to <i>m_W'^2 / m_W^2</i>, 
326 you instead obtain a partial width that goes like the fifth power 
327 of the <i>W'^+-</i> mass. These two extremes correspond to the 
328 "extended gauge model" and the "reference model", respectively, 
329 of [<a href="Bibliography.php" target="page">Alt89</a>].
330   
331
332 <br/><br/><table><tr><td><strong>Wprime:anglesWZ </td><td></td><td> <input type="text" name="36" value="0." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)</td></tr></table>
333 in the decay chain <i>W'^+- -> W^+- Z^0 ->f_1 fbar_2 f_3 fbar_4</i>
334 the decay angular distributions is taken to be a mixture of two
335 possible shapes. This parameter gives the fraction that is distributed
336 as in Higgs <i>H^+- -> W^+- Z^0</i> (longitudinal bosons), 
337 with the remainder (by default all) is taken to be the same as for 
338 <i>W^+- -> W^+- Z^0</i> (a mixture of transverse and longitudinal
339 bosons).   
340   
341
342 <p/>
343 A massive <i>W'^+-</i> is also likely to decay into Higgses
344 and potentially into other now unknown particles. Such possibilities
345 clearly are quite model-dependent, and have not been included 
346 for now.
347
348 <h3><i>R^0</i></h3>
349   
350 The <i>R^0</i> boson (particle code 41) represents one possible 
351 scenario for a horizontal gauge boson, i.e. a gauge boson 
352 that couples between the generations, inducing processes like 
353 <i>s dbar -> R^0 -> mu^- e^+</i>. Experimental limits on 
354 flavour-changing neutral currents forces such a boson to be fairly 
355 heavy. In spite of being neutral the antiparticle is distinct from
356 the particle: one carries a net positive generation number and 
357 the other a negative one. This particular model has no new
358 parameters beyond the <i>R^0</i> mass. Decays are assumed isotropic.  
359 For further details see [<a href="Bibliography.php" target="page">Ben85</a>].
360   
361 <br/><br/><strong>NewGaugeBoson:ffbar2R0</strong>  <input type="radio" name="37" value="on"><strong>On</strong>
362 <input type="radio" name="37" value="off" checked="checked"><strong>Off</strong>
363  &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
364 Scattering <i>f_1 fbar_2 -> R^0 -> f_3 fbar_4</i>, where 
365 <i>f_1</i> and <i>fbar_2</i> are separated by <i>+-</i> one
366 generation and similarly for <i>f_3</i> and <i>fbar_4</i>.
367 Thus possible final states are e.g. <i>d sbar</i>, <i>u cbar</i>
368 <i>s bbar</i>, <i>c tbar</i>, <i>e- mu+</i> and
369 <i>mu- tau+</i>.
370 Code 3041.
371   
372
373 <input type="hidden" name="saved" value="1"/>
374
375 <?php
376 echo "<input type='hidden' name='filepath' value='".$_GET["filepath"]."'/>"?>
377
378 <table width="100%"><tr><td align="right"><input type="submit" value="Save Settings" /></td></tr></table>
379 </form>
380
381 <?php
382
383 if($_POST["saved"] == 1)
384 {
385 $filepath = $_POST["filepath"];
386 $handle = fopen($filepath, 'a');
387
388 if($_POST["1"] != "off")
389 {
390 $data = "NewGaugeBoson:ffbar2gmZZprime = ".$_POST["1"]."\n";
391 fwrite($handle,$data);
392 }
393 if($_POST["2"] != "0")
394 {
395 $data = "Zprime:gmZmode = ".$_POST["2"]."\n";
396 fwrite($handle,$data);
397 }
398 if($_POST["3"] != "on")
399 {
400 $data = "Zprime:universality = ".$_POST["3"]."\n";
401 fwrite($handle,$data);
402 }
403 if($_POST["4"] != "-0.693")
404 {
405 $data = "Zprime:vd = ".$_POST["4"]."\n";
406 fwrite($handle,$data);
407 }
408 if($_POST["5"] != "-1.")
409 {
410 $data = "Zprime:ad = ".$_POST["5"]."\n";
411 fwrite($handle,$data);
412 }
413 if($_POST["6"] != "0.387")
414 {
415 $data = "Zprime:vu = ".$_POST["6"]."\n";
416 fwrite($handle,$data);
417 }
418 if($_POST["7"] != "1.")
419 {
420 $data = "Zprime:au = ".$_POST["7"]."\n";
421 fwrite($handle,$data);
422 }
423 if($_POST["8"] != "-0.08")
424 {
425 $data = "Zprime:ve = ".$_POST["8"]."\n";
426 fwrite($handle,$data);
427 }
428 if($_POST["9"] != "-1.")
429 {
430 $data = "Zprime:ae = ".$_POST["9"]."\n";
431 fwrite($handle,$data);
432 }
433 if($_POST["10"] != "1.")
434 {
435 $data = "Zprime:vnue = ".$_POST["10"]."\n";
436 fwrite($handle,$data);
437 }
438 if($_POST["11"] != "1.")
439 {
440 $data = "Zprime:anue = ".$_POST["11"]."\n";
441 fwrite($handle,$data);
442 }
443 if($_POST["12"] != "-0.693")
444 {
445 $data = "Zprime:vs = ".$_POST["12"]."\n";
446 fwrite($handle,$data);
447 }
448 if($_POST["13"] != "-1.")
449 {
450 $data = "Zprime:as = ".$_POST["13"]."\n";
451 fwrite($handle,$data);
452 }
453 if($_POST["14"] != "0.387")
454 {
455 $data = "Zprime:vc = ".$_POST["14"]."\n";
456 fwrite($handle,$data);
457 }
458 if($_POST["15"] != "1.")
459 {
460 $data = "Zprime:ac = ".$_POST["15"]."\n";
461 fwrite($handle,$data);
462 }
463 if($_POST["16"] != "-0.08")
464 {
465 $data = "Zprime:vmu = ".$_POST["16"]."\n";
466 fwrite($handle,$data);
467 }
468 if($_POST["17"] != "-1.")
469 {
470 $data = "Zprime:amu = ".$_POST["17"]."\n";
471 fwrite($handle,$data);
472 }
473 if($_POST["18"] != "1.")
474 {
475 $data = "Zprime:vnumu = ".$_POST["18"]."\n";
476 fwrite($handle,$data);
477 }
478 if($_POST["19"] != "1.")
479 {
480 $data = "Zprime:anumu = ".$_POST["19"]."\n";
481 fwrite($handle,$data);
482 }
483 if($_POST["20"] != "-0.693")
484 {
485 $data = "Zprime:vb = ".$_POST["20"]."\n";
486 fwrite($handle,$data);
487 }
488 if($_POST["21"] != "-1.")
489 {
490 $data = "Zprime:ab = ".$_POST["21"]."\n";
491 fwrite($handle,$data);
492 }
493 if($_POST["22"] != "0.387")
494 {
495 $data = "Zprime:vt = ".$_POST["22"]."\n";
496 fwrite($handle,$data);
497 }
498 if($_POST["23"] != "1.")
499 {
500 $data = "Zprime:at = ".$_POST["23"]."\n";
501 fwrite($handle,$data);
502 }
503 if($_POST["24"] != "-0.08")
504 {
505 $data = "Zprime:vtau = ".$_POST["24"]."\n";
506 fwrite($handle,$data);
507 }
508 if($_POST["25"] != "-1.")
509 {
510 $data = "Zprime:atau = ".$_POST["25"]."\n";
511 fwrite($handle,$data);
512 }
513 if($_POST["26"] != "1.")
514 {
515 $data = "Zprime:vnutau = ".$_POST["26"]."\n";
516 fwrite($handle,$data);
517 }
518 if($_POST["27"] != "1.")
519 {
520 $data = "Zprime:anutau = ".$_POST["27"]."\n";
521 fwrite($handle,$data);
522 }
523 if($_POST["28"] != "0.")
524 {
525 $data = "Zprime:coup2WW = ".$_POST["28"]."\n";
526 fwrite($handle,$data);
527 }
528 if($_POST["29"] != "0.")
529 {
530 $data = "Zprime:anglesWW = ".$_POST["29"]."\n";
531 fwrite($handle,$data);
532 }
533 if($_POST["30"] != "off")
534 {
535 $data = "NewGaugeBoson:ffbar2Wprime = ".$_POST["30"]."\n";
536 fwrite($handle,$data);
537 }
538 if($_POST["31"] != "1.")
539 {
540 $data = "Wprime:vq = ".$_POST["31"]."\n";
541 fwrite($handle,$data);
542 }
543 if($_POST["32"] != "-1.")
544 {
545 $data = "Wprime:aq = ".$_POST["32"]."\n";
546 fwrite($handle,$data);
547 }
548 if($_POST["33"] != "1.")
549 {
550 $data = "Wprime:vl = ".$_POST["33"]."\n";
551 fwrite($handle,$data);
552 }
553 if($_POST["34"] != "-1.")
554 {
555 $data = "Wprime:al = ".$_POST["34"]."\n";
556 fwrite($handle,$data);
557 }
558 if($_POST["35"] != "0.")
559 {
560 $data = "Wprime:coup2WZ = ".$_POST["35"]."\n";
561 fwrite($handle,$data);
562 }
563 if($_POST["36"] != "0.")
564 {
565 $data = "Wprime:anglesWZ = ".$_POST["36"]."\n";
566 fwrite($handle,$data);
567 }
568 if($_POST["37"] != "off")
569 {
570 $data = "NewGaugeBoson:ffbar2R0 = ".$_POST["37"]."\n";
571 fwrite($handle,$data);
572 }
573 fclose($handle);
574 }
575
576 ?>
577 </body>
578 </html>
579
580 <!-- Copyright (C) 2010 Torbjorn Sjostrand -->
581