1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 Revision 1.8 2001/09/05 09:09:38 hristov
19 The energy of feedback photons calculated correctly
21 Revision 1.7 2001/05/10 12:32:27 jbarbosa
22 Changed call to SetTrack.
24 Revision 1.6 2001/02/23 17:39:02 jbarbosa
25 Removed verbose output.
27 Revision 1.5 2001/02/23 17:25:08 jbarbosa
28 Re-definition of IntPH() to accomodate for wire sag effect.
30 Revision 1.4 2000/12/01 17:37:44 morsch
31 Replace in argument of SetTrack(..) string constant by kPFeedBackPhoton.
33 Revision 1.3 2000/10/03 21:44:09 morsch
34 Use AliSegmentation and AliHit abstract base classes.
36 Revision 1.2 2000/10/02 21:28:12 fca
37 Removal of useless dependecies via forward declarations
39 Revision 1.1 2000/06/12 15:29:37 jbarbosa
44 #include "AliRICHResponseV0.h"
45 #include "AliSegmentation.h"
51 #include <TParticle.h>
52 //___________________________________________
53 ClassImp(AliRICHResponseV0)
55 AliRICHResponseV0::AliRICHResponseV0()
57 SetSigmaIntegration(5.);
59 SetChargeSpread(0.18, 0.18);
61 SetAlphaFeedback(0.036);
62 SetEIonisation(26.e-9);
63 SetSqrtKx3(0.77459667);
66 SetSqrtKy3(0.77459667);
70 SetWireSag(1); // 1->On, 0->Off
71 SetVoltage(2150); // Should only be 2000, 2050, 2100 or 2150
72 }//AliRICHResponseV0::ctor()
73 Float_t AliRICHResponseV0::IntPH(Float_t eloss, Float_t yhit)
75 // Get number of electrons and return charge
78 nel= Int_t(eloss/fEIonisation);
87 //printf("Voltage:%d, Yhit:%f\n",fVoltage, yhit);
91 gain_var = 9e-6*TMath::Power(yhit,4) + 2e-7*TMath::Power(yhit,3) - 0.0316*TMath::Power(yhit,2) - 3e-4*yhit + 25.367;
92 //gain_var = 9e-5*TMath::Power(yhit,4) + 2e-6*TMath::Power(yhit,3) - 0.316*TMath::Power(yhit,2) - 3e-3*yhit + 253.67;
95 gain_var = 8e-6*TMath::Power(yhit,4) + 2e-7*TMath::Power(yhit,3) - 0.0283*TMath::Power(yhit,2) - 2e-4*yhit + 23.015;
97 gain_var = 7e-6*TMath::Power(yhit,4) + 1e-7*TMath::Power(yhit,3) - 0.0254*TMath::Power(yhit,2) - 2e-4*yhit + 20.888;
99 gain_var = 6e-6*TMath::Power(yhit,4) + 8e-8*TMath::Power(yhit,3) - 0.0227*TMath::Power(yhit,2) - 1e-4*yhit + 18.961;
101 gain_var = gain_var/100;
102 //printf("Yhit:%f, Gain variation:%f\n",yhit,gain_var);
104 Float_t gain = (fChargeSlope + fChargeSlope*gain_var)*.9;
105 //printf(" Yhit:%f, Gain variation:%f\n",yhit, gain);
107 for (Int_t i=1;i<=nel;i++) {
108 charge -= gain*TMath::Log(gRandom->Rndm());
113 for (Int_t i=1;i<=nel;i++) {
114 charge -= fChargeSlope*TMath::Log(gRandom->Rndm());
121 Float_t AliRICHResponseV0::IntPH(Float_t yhit)
124 // Get number of electrons and return charge, for a single photon
133 gain_var = 9e-6*TMath::Power(yhit,4) + 2e-7*TMath::Power(yhit,3) - 0.0316*TMath::Power(yhit,2) - 3e-4*yhit + 25.367;
134 //gain_var = 9e-5*TMath::Power(yhit,4) + 2e-6*TMath::Power(yhit,3) - 0.316*TMath::Power(yhit,2) - 3e-3*yhit + 253.67;
137 gain_var = 8e-6*TMath::Power(yhit,4) + 2e-7*TMath::Power(yhit,3) - 0.0283*TMath::Power(yhit,2) - 2e-4*yhit + 23.015;
139 gain_var = 7e-6*TMath::Power(yhit,4) + 1e-7*TMath::Power(yhit,3) - 0.0254*TMath::Power(yhit,2) - 2e-4*yhit + 20.888;
141 gain_var = 6e-6*TMath::Power(yhit,4) + 8e-8*TMath::Power(yhit,3) - 0.0227*TMath::Power(yhit,2) - 1e-4*yhit + 18.961;
143 gain_var = gain_var/100;
144 //printf(" Yhit:%f, Gain variation:%f\n",yhit, gain_var);
146 Float_t gain = (fChargeSlope + fChargeSlope*gain_var)*.9;
148 charge -= gain*TMath::Log(gRandom->Rndm());
149 //printf(" Yhit:%f, Gain variation:%f\n",yhit, gain);
153 charge -= fChargeSlope*TMath::Log(gRandom->Rndm());
160 // -------------------------------------------
161 Float_t AliRICHResponseV0::IntXY(AliSegmentation * segmentation)
164 const Float_t kInversePitch = 1/fPitch;
167 // Integration limits defined by segmentation model
170 Float_t xi1, xi2, yi1, yi2;
171 segmentation->IntegrationLimits(xi1,xi2,yi1,yi2);
173 xi1=xi1*kInversePitch;
174 xi2=xi2*kInversePitch;
175 yi1=yi1*kInversePitch;
176 yi2=yi2*kInversePitch;
178 //printf("Integration Limits: %f-%f, %f-%f\n",xi1,xi2,yi1,yi2);
180 //printf("KInversePitch:%f\n",kInversePitch);
183 // The Mathieson function
184 Double_t ux1=fSqrtKx3*TMath::TanH(fKx2*xi1);
185 Double_t ux2=fSqrtKx3*TMath::TanH(fKx2*xi2);
187 Double_t uy1=fSqrtKy3*TMath::TanH(fKy2*yi1);
188 Double_t uy2=fSqrtKy3*TMath::TanH(fKy2*yi2);
190 //printf("Integration Data: %f-%f, %f-%f\n",ux1,ux2,uy1,uy2);
192 //printf("%f %f %f %f\n",fSqrtKx3,fKx2,fKy4,fKx4);
194 response=4.*fKx4*(TMath::ATan(ux2)-TMath::ATan(ux1))*fKy4*(TMath::ATan(uy2)-TMath::ATan(uy1));
196 //printf("Response:%f\n",response);
202 Int_t AliRICHResponseV0::FeedBackPhotons(Float_t *source, Float_t qtot)
205 // Generate FeedBack photons
213 Float_t cthf, ranf[2], phif, enfp = 0, sthf;
215 Float_t e1[3], e2[3], e3[3];
220 Float_t pol[3], mom[4];
221 TLorentzVector position;
223 // Determine number of feedback photons
225 // Get weight of current particle
226 TParticle *current = (TParticle*)
227 (*gAlice->Particles())[gAlice->CurrentTrack()];
229 ifeed = Int_t(current->GetWeight()/100+0.5);
230 ipart = gMC->TrackPid();
231 fp = fAlphaFeedback * qtot;
232 nfp = gRandom->Poisson(fp);
234 // This call to fill the time of flight
235 gMC->TrackPosition(position);
236 //printf("Track position: %f %f %f %15.12f\n", position[0],position[1],position[2],position[3]);
239 for (i = 0; i <nfp; i++) {
243 cthf = ranf[0] * 2 - 1.;
244 if (cthf < 0) continue;
245 sthf = TMath::Sqrt((1 - cthf) * (1 + cthf));
246 phif = ranf[1] * 2 * TMath::Pi();
248 gMC->Rndm(&random, 1);
251 } else if (random <= .7) {
257 dir[0] = sthf * TMath::Sin(phif);
259 dir[2] = sthf * TMath::Cos(phif);
260 gMC->Gdtom(dir, mom, 2);
264 mom[3] = TMath::Sqrt(mom[0]*mom[0]+mom[1]*mom[1]+mom[2]*mom[2]);
265 //printf("Dir %f %f %f\n",dir[0],dir[1],dir[2]);
266 //printf("Momentum %15.12f %15.12f %15.12f\n",mom[0],mom[1],mom[2]);
267 //printf("Energy %e\n", mom[3]);
283 for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
284 if (!vmod) for(j=0;j<3;j++) {
290 for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
291 if (!vmod) for(j=0;j<3;j++) {
298 for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
299 vmod=TMath::Sqrt(1/vmod);
300 for(j=0;j<3;j++) e1[j]*=vmod;
303 for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
304 vmod=TMath::Sqrt(1/vmod);
305 for(j=0;j<3;j++) e2[j]*=vmod;
308 phi = ranf[0] * 2 * TMath::Pi();
309 for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi);
310 gMC->Gdtom(pol, pol, 2);
312 // Put photon on the stack and label it as feedback (51, 52)
315 gAlice->SetTrack(Int_t(1), gAlice->CurrentTrack(), Int_t(50000051),
316 mom[0],mom[1],mom[2],mom[3],source[0],source[1],source[2],position[3],pol[0],pol[1],pol[2],
317 kPFeedBackPhoton, nt, 1.);
319 //printf("Adding feedback with tof %f and going to %f %f %f\n",position[3],mom[0],mom[1],mom[2]);
322 //printf("feedbacks produced:%d\n",sNfeed);