]> git.uio.no Git - u/mrichter/AliRoot.git/blob - RICH/RICHpadtest.C
Added alifs wrapper for CASTOR and alirun modified accordingly.
[u/mrichter/AliRoot.git] / RICH / RICHpadtest.C
1 void RICHpadtest (Int_t diaglevel,Int_t evNumber1=0,Int_t evNumber2=0) 
2 {
3
4 // Diaglevel
5 // 1-> Single Ring Hits 
6 // 2-> Single Ring Spectra 
7 // 3-> Single Ring Statistics
8 // 4-> Single Ring Reconstruction
9 // 5-> Full Event Hits  
10
11 /////////////////////////////////////////////////////////////////////////
12 //   This macro is a small example of a ROOT macro
13 //   illustrating how to read the output of GALICE
14 //   and do some analysis.
15 //   
16 /////////////////////////////////////////////////////////////////////////
17
18     gClassTable->GetID("AliRun");
19
20
21 // Dynamically link some shared libs
22  
23     if (gClassTable->GetID("AliRun") < 0) {
24       gROOT->LoadMacro("loadlibs.C");
25       loadlibs();
26     }else {
27       delete gAlice;
28       gAlice = 0;
29    }
30
31     gAlice=0;
32     
33 // Connect the Root Galice file containing Geometry, Kine and Hits
34     
35     TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject("galice.root");
36     if (!file) file = new TFile("galice.root","UPDATE");
37     
38 // Get AliRun object from file or create it if not on file
39     
40     if (!gAlice) {
41       gAlice = (AliRun*)file->Get("gAlice");
42       if (gAlice) printf("AliRun object found on file\n");
43       if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
44     }
45     else {
46       delete gAlice;
47       gAlice = (AliRun*)file->Get("gAlice");
48       if (gAlice) printf("AliRun object found on file\n");
49       if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
50     }
51
52 //  Create some histograms
53
54    AliRICH *RICH  = (AliRICH*)gAlice->GetDetector("RICH");
55    AliRICHSegmentationV0*  segmentation;
56    AliRICHChamber*       chamber;
57    
58    chamber = &(RICH->Chamber(0));
59    segmentation=(AliRICHSegmentationV0*) chamber->GetSegmentationModel(0);
60
61    Int_t NpadX = segmentation->Npx();                 // number of pads on X
62    Int_t NpadY = segmentation->Npy();                 // number of pads on Y
63     
64    Int_t Pad[144][160];
65    /*for (Int_t i=0;i<NpadX;i++) {
66      for (Int_t j=0;j<NpadY;j++) {
67        Pad[i][j]=0;
68      }
69    } */
70
71
72    Int_t xmin= -NpadX/2;  
73    Int_t xmax=  NpadX/2;
74    Int_t ymin= -NpadY/2;
75    Int_t ymax=  NpadY/2;
76
77    TH2F *hc0 = new TH2F("hc0","Zoom on center of central chamber",150,-30,30,150,-50,10);
78
79    if (diaglevel == 1)
80
81      {
82        printf("Single Ring Hits\n");
83        TH2F *feedback = new TH2F("feedback","Feedback hit distribution",150,-30,30,150,-50,10);
84        TH2F *mip = new TH2F("mip","Mip hit distribution",150,-30,30,150,-50,10);
85        TH2F *cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-30,30,150,-50,10);
86        TH2F *h = new TH2F("h","Detector hit distribution",150,-30,30,150,-50,10);
87        TH1F *hitsX = new TH1F("hitsX","Distribution of hits along x-axis",150,-30,30);
88        TH1F *hitsY = new TH1F("hitsY","Distribution of hits along z-axis",150,-50,10);
89      }       
90    else
91      {
92        printf("Full Event Hits\n");
93        
94        TH2F *feedback = new TH2F("feedback","Feedback hit distribution",150,-300,300,150,-300,300);
95        TH2F *mip = new TH2F("mip","Mip hit distribution",150,-300,300,150,-300,300);
96        TH2F *cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-300,300,150,-300,300);
97        TH2F *h = new TH2F("h","Detector hit distribution",150,-300,300,150,-300,300); 
98        TH1F *hitsX = new TH1F("digitsX","Distribution of hits along x-axis",200,-300,300);
99        TH1F *hitsY = new TH1F("digitsY","Distribution of hits along z-axis",200,-300,300);
100        
101      }
102
103    TH2F *hc1 = new TH2F("hc1","Chamber 1 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
104    TH2F *hc2 = new TH2F("hc2","Chamber 2 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
105    TH2F *hc3 = new TH2F("hc3","Chamber 3 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
106    TH2F *hc4 = new TH2F("hc4","Chamber 4 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
107    TH2F *hc5 = new TH2F("hc5","Chamber 5 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
108    TH2F *hc6 = new TH2F("hc6","Chamber 6 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
109    TH2F *hc7 = new TH2F("hc7","Chamber 7 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
110       
111    TH1F *Clcharge = new TH1F("Clcharge","Cluster Charge Distribution",500,0.,500.);
112    TH1F *ckovangle = new TH1F("ckovangle","Cerenkov angle per photon",200,.5,1);
113    TH1F *hckphi = new TH1F("hckphi","Cerenkov phi angle per photon",620,-3.1,3.1);
114    TH1F *mother = new TH1F("mother","Cerenkovs per Mip",75,0.,75.);
115    TH1F *radius = new TH1F("radius","Mean distance to Mip",100,0.,20.);
116    TH1F *phspectra1 = new TH1F("phspectra1","Detected Photon Spectra",200,5.,10.);
117    TH1F *phspectra2 = new TH1F("phspectra2","Produced Photon Spectra",200,5.,10.);
118    TH1F *totalphotonstrack = new TH1F("totalphotonstrack","Produced Photons per Mip",100,200,700.);
119    TH1F *totalphotonsevent = new TH1F("totalphotonsevent","Produced Photons per Mip",100,200,700.);
120    TH1F *feedbacks = new TH1F("feedbacks","Produced Feedbacks per Mip",50,0.5,50.);
121    TH1F *padnumber = new TH1F("padnumber","Number of pads per cluster",50,-0.5,50.);
122    TH1F *padsev = new TH1F("padsev","Number of pads hit per MIP",50,0.5,100.);
123    TH1F *clusev = new TH1F("clusev","Number of clusters per MIP",50,0.5,50.);
124    TH1F *photev = new TH1F("photev","Number of detected photons per MIP",50,0.5,50.);
125    TH1F *feedev = new TH1F("feedev","Number of feedbacks per MIP",50,0.5,50.);
126    TH1F *padsmip = new TH1F("padsmip","Number of pads per event inside MIP region",50,0.5,50.);
127    TH1F *padscl = new TH1F("padscl","Number of pads per event from cluster count",50,0.5,100.);
128    TH1F *pionspectra = new TH1F("pionspectra","Pion Spectra",200,.5,10.);
129    TH1F *protonspectra = new TH1F("protonspectra","Proton Spectra",200,.5,10.);
130    TH1F *kaonspectra = new TH1F("kaonspectra","Kaon Spectra",100,.5,10.);
131    TH1F *kaonspectra = new TH1F("kaonspectra","Kaon Spectra",100,.5,10.);
132    TH1F *chargedspectra = new TH1F("chargedspectra","Charged particles above 1 GeV Spectra",100,.5,10.);
133    TH1F *hitsPhi = new TH1F("hitsPhi","Distribution of phi angle of incidence",100,-180,180);
134    TH1F *hitsTheta = new TH1F("hitsTheta","Distribution of Theta angle of incidence",100,0,15);
135    TH1F *Omega1D = new TH1F("omega","Reconstructed Cerenkov angle per track",200,.5,1);
136    TH1F *Theta = new TH1F("theta","Reconstructed theta incidence angle per track",200,0,15);
137    TH1F *Phi = new TH1F("phi","Reconstructed phi incidence per track",200,-180,180);
138    TH1F *Omega3D = new TH1F("omega","Reconstructed Cerenkov angle per track",200,.5,1);
139    TH1F *PhotonCer = new TH1F("photoncer","Reconstructed Cerenkov angle per photon",200,.5,1);
140    TH2F *PadsUsed = new TH2F("padsused","Pads Used for Reconstruction",100,-30,30,100,-30,30);
141    
142
143 //   Start loop over events 
144
145    Int_t Nh=0;
146    Int_t pads=0;
147    Int_t Nh1=0;
148    Int_t mothers[80000];
149    Int_t mothers2[80000];
150    Float_t mom[3];
151    Int_t nraw=0;
152    Int_t phot=0;
153    Int_t feed=0;
154    Int_t padmip=0;
155    for (Int_t i=0;i<100;i++) mothers[i]=0;
156    for (int nev=0; nev<= evNumber2; nev++) {
157        Int_t nparticles = gAlice->GetEvent(nev);
158        
159
160        //cout<<"nev  "<<nev<<endl;
161        printf ("\n**********************************\nProcessing Event: %d\n",nev);
162        //cout<<"nparticles  "<<nparticles<<endl;
163        printf ("Particles       : %d\n\n",nparticles);
164        if (nev < evNumber1) continue;
165        if (nparticles <= 0) return;
166        
167 // Get pointers to RICH detector and Hits containers
168        
169        Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
170        gAlice->TreeR()->GetEvent(nent-1);
171        TClonesArray *Rawclusters = RICH->RawClustAddress(2);    //  Raw clusters branch
172        //printf ("Rawclusters:%p",Rawclusters);
173        Int_t nrawclusters = Rawclusters->GetEntriesFast();
174        //printf (" nrawclusters:%d\n",nrawclusters);
175        gAlice->TreeR()->GetEvent(nent-1);
176        TClonesArray *RecHits1D = RICH->RecHitsAddress1D(2);
177        Int_t nrechits1D = RecHits1D->GetEntriesFast();
178        //printf (" nrechits:%d\n",nrechits);
179        TClonesArray *RecHits3D = RICH->RecHitsAddress3D(2);
180        Int_t nrechits3D = RecHits3D->GetEntriesFast();
181        //printf (" nrechits:%d\n",nrechits);
182        TTree *TH = gAlice->TreeH(); 
183        Int_t ntracks = TH->GetEntries();
184
185        gAlice->ResetDigits();
186        Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
187        gAlice->TreeD()->GetEvent(0);
188
189
190
191        // Start loop on tracks in the hits containers
192        Int_t Nc=0;
193        for (Int_t track=0; track<ntracks;track++) {
194            printf ("\nProcessing Track: %d\n",track);
195            gAlice->ResetHits();
196            Int_t nbytes += TH->GetEvent(track);
197            if (RICH)  {
198                //RICH->ResetRawClusters();
199                TClonesArray *PadHits = RICH->PadHits();      // Cluster branch
200                TClonesArray *Hits = RICH->Hits();            // Hits branch
201                TClonesArray *Cerenkovs = RICH->Cerenkovs();  // Cerenkovs branch
202            }
203            //see hits distribution
204            
205
206            Int_t nhits = Hits->GetEntriesFast();
207            if (nhits) Nh+=nhits;
208            printf("Hits            : %d\n",nhits);
209            for (Int_t hit=0;hit<nhits;hit++) {
210               mHit = (AliRICHHit*) Hits->UncheckedAt(hit);
211               Int_t nch  = mHit->fChamber;              // chamber number
212               Float_t x  = mHit->X();                    // x-pos of hit
213               Float_t y  = mHit->Z();                    // y-pos
214               Float_t phi = mHit->fPhi;                 //Phi angle of incidence
215               Float_t theta = mHit->fTheta;             //Theta angle of incidence
216               Int_t index = mHit->Track();
217               Int_t particle = mHit->fParticle;        
218               Int_t freon = mHit->fLoss;    
219
220               hitsX->Fill(x,(float) 1);
221               hitsY->Fill(y,(float) 1);
222
223               //printf("Particle:%9d\n",particle);
224               
225               TParticle *current = (TParticle*)gAlice->Particle(index);
226               //printf("Particle type: %d\n",sizeoff(Particles));
227
228               hitsTheta->Fill(theta,(float) 1);
229               if (RICH->GetDebugLevel() == -1)
230                   //printf("Theta:%f, Phi:%f\n",theta,phi);
231
232               //printf("Debug Level:%d\n",RICH->GetDebugLevel());
233
234               /*if (TMath::Abs(particle) < 50000000)
235                 {
236                   mip->Fill(x,y,(float) 1);
237                   if (current->Energy() - current->GetCalcMass()>1 && freon==1)
238                     {
239                       hitsPhi->Fill(phi,(float) 1);
240                       //hitsTheta->Fill(theta,(float) 1);
241                       //printf("Theta:%f, Phi:%f\n",theta,phi);
242                     }
243                 }*/
244               
245               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
246                 {
247                   pionspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
248                 }
249               if (TMath::Abs(particle)==2212)
250                 {
251                   protonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
252                 }
253               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
254                   || TMath::Abs(particle)==311)
255                 {
256                   kaonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
257                 }
258               if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
259                 {
260                   if (current->Energy() - current->GetCalcMass()>1)
261                     chargedspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
262                 }
263               //printf("Hits:%d\n",hit);
264               //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y);
265               // Fill the histograms
266               Nh1+=nhits;
267               h->Fill(x,y,(float) 1);
268                   //}
269               //}
270           }
271            
272            Int_t ncerenkovs = Cerenkovs->GetEntriesFast();
273            //if (current->GetPdgCode() < 50000051 && current->GetPdgCode() > 50000040)
274            //totalphotonsevent->Fill(ncerenkovs,(float) 1);
275
276            if (ncerenkovs) {
277              printf("Cerenkovs       : %d\n",ncerenkovs);
278              totalphotonsevent->Fill(ncerenkovs,(float) 1);
279              for (Int_t hit=0;hit<ncerenkovs;hit++) {
280                    cHit = (AliRICHCerenkov*) Cerenkovs->UncheckedAt(hit);
281                    Int_t nchamber = cHit->fChamber;     // chamber number
282                    Int_t index =    cHit->Track();
283                    Int_t pindex =   cHit->fIndex;
284                    Float_t cx  =      cHit->X();                // x-position
285                    Float_t cy  =      cHit->Z();                // y-position
286                    Int_t cmother =  cHit->fCMother;      // Index of mother particle
287                    Int_t closs =    cHit->fLoss;           // How did the particle get lost? 
288                   //printf ("Cerenkov hit, X:%d, Y:%d\n",cx,cy); 
289
290                    //printf("Particle:%9d\n",index);
291                                  
292                    TParticle *current = (TParticle*)gAlice->Particle(index);
293                    Float_t energyckov = current->Energy();
294                    
295                    if (current->GetPdgCode() == 50000051)
296                      {
297                        if (closs==4)
298                          {
299                            feedback->Fill(cx,cy,(float) 1);
300                            feed++;
301                          }
302                      }
303                    if (current->GetPdgCode() == 50000050)
304                      {
305                        
306                        if (closs !=4)
307                          {
308                            phspectra2->Fill(energyckov*1e9,(float) 1);
309                          }
310                        
311                        if (closs==4)
312                          {
313                            cerenkov->Fill(cx,cy,(float) 1); 
314                            
315                                          
316                          TParticle *MIP = (TParticle*)gAlice->Particle(cmother);
317                          mipHit = (AliRICHHit*) Hits->UncheckedAt(0);
318                          mom[0] = current->Px();
319                          mom[1] = current->Py();
320                          mom[2] = current->Pz();
321                          //mom[0] = cHit->fMomX;
322                           // mom[1] = cHit->fMomZ;
323                            //mom[2] = cHit->fMomY;
324                          Float_t energymip = MIP->Energy();
325                          Float_t Mip_px = mipHit->fMomFreoX;
326                          Float_t Mip_py = mipHit->fMomFreoY;
327                          Float_t Mip_pz = mipHit->fMomFreoZ;
328                          //Float_t Mip_px = MIP->Px();
329                            //Float_t Mip_py = MIP->Py();
330                            //Float_t Mip_pz = MIP->Pz();
331                          
332                          
333                          
334                          Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2];
335                          Float_t rt = TMath::Sqrt(r);
336                          Float_t Mip_r = Mip_px*Mip_px + Mip_py*Mip_py + Mip_pz*Mip_pz; 
337                          Float_t Mip_rt = TMath::Sqrt(Mip_r);
338                          Float_t coscerenkov = (mom[0]*Mip_px + mom[1]*Mip_py + mom[2]*Mip_pz)/(rt*Mip_rt+0.0000001);
339                          Float_t cherenkov = TMath::ACos(coscerenkov);
340                          ckovangle->Fill(cherenkov,(float) 1);                           //Cerenkov angle calculus
341                          //printf("Cherenkov: %f\n",cherenkov);
342                          Float_t ckphi=TMath::ATan2(mom[0], mom[2]);
343                          hckphi->Fill(ckphi,(float) 1);
344                          
345                          
346                          Float_t mix = MIP->Vx();
347                          Float_t miy = MIP->Vy();
348                          Float_t mx = mipHit->X();
349                          Float_t my = mipHit->Z();
350                          //printf("FX %e, FY %e, VX %e, VY %e\n",cx,cy,mx,my);
351                          Float_t dx = cx - mx;
352                          Float_t dy = cy - my;
353                          //printf("Dx:%f, Dy:%f\n",dx,dy);
354                          Float_t final_radius = TMath::Sqrt(dx*dx+dy*dy);
355                          //printf("Final radius:%f\n",final_radius);
356                          radius->Fill(final_radius,(float) 1);
357                          
358                          phspectra1->Fill(energyckov*1e9,(float) 1);
359                          phot++;
360                        }
361                      for (Int_t nmothers=0;nmothers<=ntracks;nmothers++){
362                        if (cmother == nmothers){
363                          if (closs == 4)
364                            mothers2[cmother]++;
365                          mothers[cmother]++;
366                        }
367                      } 
368                    }
369                }
370            }
371            
372            if (nrawclusters) {
373              printf("Raw Clusters    : %d\n",nrawclusters);
374                for (Int_t hit=0;hit<nrawclusters;hit++) {
375                    rcHit = (AliRICHRawCluster*) Rawclusters->UncheckedAt(hit);
376                    //Int_t nchamber = rcHit->fChamber;     // chamber number
377                    //Int_t nhit = cHit->fHitNumber;        // hit number
378                    Int_t qtot = rcHit->fQ;                 // charge
379                    Int_t fx  =  rcHit->fX;                 // x-position
380                    Int_t fy  =  rcHit->fY;                 // y-position
381                    Int_t type = rcHit->fCtype;             // cluster type ?   
382                    Int_t mult = rcHit->fMultiplicity;      // How many pads form the cluster
383                    pads += mult;
384                    if (qtot > 0) {
385                      //printf ("fx: %d, fy: %d\n",fx,fy);
386                      if (fx>(x-4) && fx<(x+4)  && fy>(y-4) && fy<(y+4)) {
387                        //printf("There %d \n",mult);
388                        padmip+=mult;
389                      } else {
390                        padnumber->Fill(mult,(float) 1);
391                        nraw++;
392                        if (mult<4) Clcharge->Fill(qtot,(float) 1);
393                      }
394                    }
395                }
396            }
397
398            if(nrechits1D)
399              {
400                for (Int_t hit=0;hit<nrechits1D;hit++) {
401                  recHit1D = (AliRICHRecHit1D*) RecHits1D->UncheckedAt(hit);
402                  Float_t r_omega = recHit1D->fOmega;                  // Cerenkov angle
403                  Float_t *cer_pho = recHit1D->fCerPerPhoton;        // Cerenkov angle per photon
404                  Int_t *padsx = recHit1D->fPadsUsedX;           // Pads Used fo reconstruction (x)
405                  Int_t *padsy = recHit1D->fPadsUsedY;           // Pads Used fo reconstruction (y)
406                  Int_t goodPhotons = recHit1D->fGoodPhotons;    // Number of pads used for reconstruction
407                  
408                  Omega1D->Fill(r_omega,(float) 1);
409                 
410                  for (Int_t i=0; i<goodPhotons; i++)
411                    {
412                      PhotonCer->Fill(cer_pho[i],(float) 1);
413                      PadsUsed->Fill(padsx[i],padsy[i],1);
414                      //printf("Angle:%f, pad: %d %d\n",cer_pho[i],padsx[i],padsy[i]);
415                    }
416                  
417                  //printf("Omega: %f, Theta: %f, Phi: %f\n",r_omega,r_theta,r_phi);
418                }
419              }
420
421            if(nrechits3D)
422              {
423                for (Int_t hit=0;hit<nrechits3D;hit++) {
424                  recHit3D = (AliRICHRecHit3D*) RecHits3D->UncheckedAt(hit);
425                  Float_t r_omega = recHit3D->fOmega;                  // Cerenkov angle
426                  Float_t r_theta = recHit3D->fTheta;                  // Theta angle of incidence
427                  Float_t r_phi   = recHit3D->fPhi;                    // Phi angle if incidence
428                  
429                                  
430                  Omega3D->Fill(r_omega,(float) 1);
431                  Theta->Fill(r_theta*180/TMath::Pi(),(float) 1);
432                  Phi->Fill(r_phi*180/TMath::Pi(),(float) 1);
433
434                }
435              }
436        }
437        
438        for (Int_t nmothers=0;nmothers<ntracks;nmothers++){
439            totalphotonstrack->Fill(mothers[nmothers],(float) 1);
440            mother->Fill(mothers2[nmothers],(float) 1);
441            //printf ("Entries in %d : %d\n",nmothers, mothers[nmothers]);
442        }
443        
444        clusev->Fill(nraw,(float) 1);
445        photev->Fill(phot,(float) 1);
446        feedev->Fill(feed,(float) 1);
447        padsmip->Fill(padmip,(float) 1);
448        padscl->Fill(pads,(float) 1);
449        //printf("Photons:%d\n",phot);
450        phot = 0;
451        feed = 0;
452        pads = 0;
453        nraw=0;
454        padmip=0;
455
456        if (diaglevel < 4)
457          {
458
459
460            TClonesArray *Digits  = RICH->DigitsAddress(2);
461            Int_t ndigits = Digits->GetEntriesFast();
462            printf("Digits          :%d\n",ndigits);
463            padsev->Fill(ndigits,(float) 1);
464            for (Int_t hit=0;hit<ndigits;hit++) {
465              dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
466              Int_t qtot = dHit->fSignal;                // charge
467              Int_t ipx  = dHit->fPadX;               // pad number on X
468              Int_t ipy  = dHit->fPadY;               // pad number on Y
469              //printf("%d, %d\n",ipx,ipy);
470              if( ipx<=100 && ipy <=100) hc0->Fill(ipx,ipy,(float) qtot);
471            }
472          }
473          
474        if (diaglevel == 5)
475          {
476            for (Int_t ich=0;ich<7;ich++)
477              {
478                TClonesArray *Digits = RICH->DigitsAddress(ich);    //  Raw clusters branch
479                Int_t ndigits = Digits->GetEntriesFast();
480                //printf("Digits:%d\n",ndigits);
481                padsev->Fill(ndigits,(float) 1); 
482                if (ndigits) {
483                  for (Int_t hit=0;hit<ndigits;hit++) {
484                    dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
485                    //Int_t nchamber = padHit->fChamber;     // chamber number
486                    //Int_t nhit = dHit->fHitNumber;          // hit number
487                    Int_t qtot = dHit->fSignal;                // charge
488                    Int_t ipx  = dHit->fPadX;               // pad number on X
489                    Int_t ipy  = dHit->fPadY;               // pad number on Y
490                    //Int_t iqpad  = dHit->fQpad;           // charge per pad
491                    //Int_t rpad  = dHit->fRSec;            // R-position of pad
492                    //printf ("Pad hit, PadX:%d, PadY:%d\n",ipx,ipy);
493                    if( ipx<=100 && ipy <=100 && ich==2) hc0->Fill(ipx,ipy,(float) qtot);
494                    if( ipx<=162 && ipy <=162 && ich==0) hc1->Fill(ipx,ipy,(float) qtot);
495                    if( ipx<=162 && ipy <=162 && ich==1) hc2->Fill(ipx,ipy,(float) qtot);
496                    if( ipx<=162 && ipy <=162 && ich==2) hc3->Fill(ipx,ipy,(float) qtot);
497                    if( ipx<=162 && ipy <=162 && ich==3) hc4->Fill(ipx,ipy,(float) qtot);
498                    if( ipx<=162 && ipy <=162 && ich==4) hc5->Fill(ipx,ipy,(float) qtot);
499                    if( ipx<=162 && ipy <=162 && ich==5) hc6->Fill(ipx,ipy,(float) qtot);
500                    if( ipx<=162 && ipy <=162 && ich==6) hc7->Fill(ipx,ipy,(float) qtot);
501                  }
502                }
503              }
504          }
505    }
506        
507    
508    //Create canvases, set the view range, show histograms
509
510   switch(diaglevel)
511      {
512      case 1:
513        
514        TCanvas *c1 = new TCanvas("c1","Alice RICH digits",50,50,300,350);
515        hc0->SetXTitle("ix (npads)");
516        hc0->Draw("box");
517         
518 //
519        TCanvas *c4 = new TCanvas("c4","Hits per type",100,100,600,700);
520        c4->Divide(2,2);
521        //c4->SetFillColor(42);
522
523        c4->cd(1);
524        feedback->SetXTitle("x (cm)");
525        feedback->SetYTitle("y (cm)");
526        feedback->Draw();
527        
528        c4->cd(2);
529        //mip->SetFillColor(5);
530        mip->SetXTitle("x (cm)");
531        mip->SetYTitle("y (cm)");
532        mip->Draw();
533        
534        c4->cd(3);
535        //cerenkov->SetFillColor(5);
536        cerenkov->SetXTitle("x (cm)");
537        cerenkov->SetYTitle("y (cm)"); 
538        cerenkov->Draw();
539        
540        c4->cd(4);
541        //h->SetFillColor(5);
542        h->SetXTitle("x (cm)");
543        h->SetYTitle("y (cm)");
544        h->Draw();
545
546        TCanvas *c10 = new TCanvas("c10","Hits distribution",150,150,600,350);
547        c10->Divide(2,1);
548        //c10->SetFillColor(42);
549        
550        c10->cd(1);
551        hitsX->SetFillColor(5);
552        hitsX->SetXTitle("(cm)");
553        hitsX->Draw();
554        
555        c10->cd(2);
556        hitsY->SetFillColor(5);
557        hitsY->SetXTitle("(cm)");
558        hitsY->Draw();
559        
560       
561        break;
562 //
563      case 2:
564        
565        TCanvas *c6 = new TCanvas("c6","Photon Spectra",50,50,600,350);
566        c6->Divide(2,1);
567        //c6->SetFillColor(42);
568        
569        c6->cd(1);
570        phspectra2->SetFillColor(5);
571        phspectra2->SetXTitle("energy (eV)");
572        phspectra2->Draw();
573        c6->cd(2);
574        phspectra1->SetFillColor(5);
575        phspectra1->SetXTitle("energy (eV)");
576        phspectra1->Draw();
577        
578        TCanvas *c9 = new TCanvas("c9","Particles Spectra",100,100,600,700);
579        c9->Divide(2,2);
580        //c9->SetFillColor(42);
581        
582        c9->cd(1);
583        pionspectra->SetFillColor(5);
584        pionspectra->SetXTitle("(GeV)");
585        pionspectra->Draw();
586        
587        c9->cd(2);
588        protonspectra->SetFillColor(5);
589        protonspectra->SetXTitle("(GeV)");
590        protonspectra->Draw();
591        
592        c9->cd(3);
593        kaonspectra->SetFillColor(5);
594        kaonspectra->SetXTitle("(GeV)");
595        kaonspectra->Draw();
596        
597        c9->cd(4);
598        chargedspectra->SetFillColor(5);
599        chargedspectra->SetXTitle("(GeV)");
600        chargedspectra->Draw();
601
602        break;
603        
604      case 3:
605        
606        if (nrawclusters) {
607          TCanvas *c3=new TCanvas("c3","Clusters Statistics",50,50,600,700);
608          c3->Divide(2,2);
609          //c3->SetFillColor(42);
610          
611          c3->cd(1);
612          c3->SetLogy(1);
613          Clcharge->SetFillColor(5);
614          Clcharge->SetXTitle("ADC units");
615          Clcharge->Draw();
616          
617          c3->cd(2);
618          padnumber->SetFillColor(5);
619          padnumber->SetXTitle("(counts)");
620          padnumber->Draw();
621          
622          c3->cd(3);
623          clusev->SetFillColor(5);
624          clusev->SetXTitle("(counts)");
625          clusev->Draw();
626
627          c3->cd(4);
628          padsmip->SetFillColor(5);
629          padsmip->SetXTitle("(counts)");
630          padsmip->Draw(); 
631        }
632
633        if (nev<1)
634          {
635            TCanvas *c11 = new TCanvas("c11","Cherenkov per Mip",400,10,600,700);
636            mother->SetFillColor(5);
637            mother->SetXTitle("counts");
638            mother->Draw();
639          }
640
641        TCanvas *c7 = new TCanvas("c7","Production Statistics",100,100,600,700);
642        c7->Divide(2,2);
643        //c7->SetFillColor(42);
644        
645        c7->cd(1);
646        totalphotonsevent->SetFillColor(5);
647        totalphotonsevent->SetXTitle("Photons (counts)");
648        totalphotonsevent->Draw();
649        
650        c7->cd(2);
651        photev->SetFillColor(5);
652        photev->SetXTitle("(counts)");
653        photev->Draw();
654        
655        c7->cd(3);
656        feedev->SetFillColor(5);
657        feedev->SetXTitle("(counts)");
658        feedev->Draw();
659
660        c7->cd(4);
661        padsev->SetFillColor(5);
662        padsev->SetXTitle("(counts)");
663        padsev->Draw();
664
665        break;
666
667      case 4:
668        
669        TCanvas *c2 = new TCanvas("c2","Angles of incidence",50,50,600,700);
670        c2->Divide(2,2);
671        //c2->SetFillColor(42);
672        
673        c2->cd(1);
674        hitsPhi->SetFillColor(5);
675        hitsPhi->Draw();
676        c2->cd(2);
677        hitsTheta->SetFillColor(5);
678        hitsTheta->Draw();
679        c2->cd(3);
680        Phi->SetFillColor(5);
681        Phi->Draw();
682        c2->cd(4);
683        Theta->SetFillColor(5);
684        Theta->Draw();
685        
686        
687        TCanvas *c5 = new TCanvas("c5","Ring Reconstruction",100,100,900,700);
688        c5->Divide(3,3);
689        //c5->SetFillColor(42);
690        
691        c5->cd(1);
692        ckovangle->SetFillColor(5);
693        ckovangle->SetXTitle("angle (radians)");
694        ckovangle->Draw();
695        
696        c5->cd(2);
697        radius->SetFillColor(5);
698        radius->SetXTitle("radius (cm)");
699        radius->Draw();
700
701        c5->cd(3);
702        hc0->SetXTitle("pads");
703        hc0->Draw("box"); 
704        
705        c5->cd(5);
706        Omega1D->SetFillColor(5);
707        Omega1D->SetXTitle("angle (radians)");
708        Omega1D->Draw();
709
710        c5->cd(4);
711        PhotonCer->SetFillColor(5);
712        PhotonCer->SetXTitle("angle (radians)");
713        PhotonCer->Draw();
714
715        c5->cd(6);
716        PadsUsed->SetXTitle("pads");
717        PadsUsed->Draw("box"); 
718        
719        c5->cd(7);
720        Omega3D->SetFillColor(5);
721        Omega3D->SetXTitle("angle (radians)");
722        Omega3D->Draw();
723        
724        break;
725
726      case 5:
727        
728        //if (ndigits)
729          //{
730        TCanvas *c1 = new TCanvas("c1","Alice RICH digits",50,50,1200,700);
731        c1->Divide(4,2);
732        //c1->SetFillColor(42);
733        
734        c1->cd(1);
735        hc1->SetXTitle("ix (npads)");
736        hc1->Draw("box");
737        c1->cd(2);
738        hc2->SetXTitle("ix (npads)");
739        hc2->Draw("box");
740        c1->cd(3);
741        hc3->SetXTitle("ix (npads)");
742        hc3->Draw("box");
743        c1->cd(4);
744        hc4->SetXTitle("ix (npads)");
745        hc4->Draw("box");
746        c1->cd(5);
747        hc5->SetXTitle("ix (npads)");
748        hc5->Draw("box");
749        c1->cd(6);
750        hc6->SetXTitle("ix (npads)");
751        hc6->Draw("box");
752        c1->cd(7);
753        hc7->SetXTitle("ix (npads)");
754        hc7->Draw("box");
755        c1->cd(8);
756        hc0->SetXTitle("ix (npads)");
757        hc0->Draw("box");
758          //}
759 //
760        TCanvas *c4 = new TCanvas("c4","Hits per type",100,100,600,700);
761        c4->Divide(2,2);
762        //c4->SetFillColor(42);
763        
764        c4->cd(1);
765        feedback->SetXTitle("x (cm)");
766        feedback->SetYTitle("y (cm)");
767        feedback->Draw();
768        
769        c4->cd(2);
770        //mip->SetFillColor(5);
771        mip->SetXTitle("x (cm)");
772        mip->SetYTitle("y (cm)");
773        mip->Draw();
774        
775        c4->cd(3);
776        //cerenkov->SetFillColor(5);
777        cerenkov->SetXTitle("x (cm)");
778        cerenkov->SetYTitle("y (cm)"); 
779        cerenkov->Draw();
780        
781        c4->cd(4);
782        //h->SetFillColor(5);
783        h->SetXTitle("x (cm)");
784        h->SetYTitle("y (cm)");
785        h->Draw();
786
787        TCanvas *c10 = new TCanvas("c10","Hits distribution",150,150,600,350);
788        c10->Divide(2,1);
789        //c10->SetFillColor(42);
790        
791        c10->cd(1);
792        hitsX->SetFillColor(5);
793        hitsX->SetXTitle("(cm)");
794        hitsX->Draw();
795        
796        c10->cd(2);
797        hitsY->SetFillColor(5);
798        hitsY->SetXTitle("(cm)");
799        hitsY->Draw();
800        
801
802
803        break;
804        
805      }
806        
807
808    // calculate the number of pads which give a signal
809
810
811    Int_t Np=0;
812    /*for (Int_t i=0;i< NpadX;i++) {
813        for (Int_t j=0;j< NpadY;j++) {
814            if (Pad[i][j]>=6){
815                Np+=1;
816            }
817        }
818    }*/
819    //printf("The total number of pads which give a signal: %d %d\n",Nh,Nh1);
820    printf("\nEnd of macro\n");
821    printf("**********************************\n");
822 }
823
824