1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 //-------------------------------------------------------------------------
20 // This version uses TGeo
22 //-------------------------------------------------------------------------
25 #include <Riostream.h>
28 #include <TVirtualMC.h>
29 #include <TGeoManager.h>
30 #include <TGeoMatrix.h>
31 #include <TGeoVolume.h>
32 #include <TGeoTorus.h>
38 #include <TGeoCompositeShape.h>
42 #include "AliPIPEv3.h"
48 //_____________________________________________________________________________
49 AliPIPEv3::AliPIPEv3()
54 //_____________________________________________________________________________
55 AliPIPEv3::AliPIPEv3(const char *name, const char *title)
62 //___________________________________________
63 void AliPIPEv3::CreateGeometry()
65 AliDebug(1,"Create PIPEv3 geometry");
67 // Class describing the beam pipe geometry
70 Float_t dz, z, zsh, z0;
74 const Float_t kDegRad = TMath::Pi() / 180.;
75 // Rotation by 180 deg
76 TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.);
77 TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.);
78 TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.);
79 TGeoRotation* rot045 = new TGeoRotation("rot045", 90., 45., 90., 135., 0., 0.);
80 TGeoRotation* rot135 = new TGeoRotation("rot135", 90. ,135., 90., 225., 0., 0.);
81 TGeoRotation* rot225 = new TGeoRotation("rot225", 90. ,225., 90., 315., 0., 0.);
82 TGeoRotation* rot315 = new TGeoRotation("rot315", 90. ,315., 90., 45., 0., 0.);
85 const TGeoMedium* kMedAir = gGeoManager->GetMedium("PIPE_AIR");
86 const TGeoMedium* kMedAirHigh = gGeoManager->GetMedium("PIPE_AIR_HIGH");
87 const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM");
88 const TGeoMedium* kMedInsu = gGeoManager->GetMedium("PIPE_INS_C0");
89 const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX");
90 const TGeoMedium* kMedBe = gGeoManager->GetMedium("PIPE_BE");
91 const TGeoMedium* kMedCu = gGeoManager->GetMedium("PIPE_CU");
92 const TGeoMedium* kMedKapton = gGeoManager->GetMedium("PIPE_KAPTON");
93 const TGeoMedium* kMedAco = gGeoManager->GetMedium("PIPE_ANTICORODAL");
94 const TGeoMedium* kMedNEG = gGeoManager->GetMedium("PIPE_NEG COATING");
97 TGeoVolume* top = gGeoManager->GetVolume("ALIC");
100 ////////////////////////////////////////////////////////////////////////////////
102 // The Central Vacuum system //
104 ////////////////////////////////////////////////////////////////////////////////
107 // The ALICE central beam-pipe according to drawing LHCVC2C_0001
108 // Drawings of sub-elements:
110 // Pos 7 - Minimised Flange: LHCVFX_P0025
111 // Pos 6 - Standard Flange: STDVFUHV0009
112 // Pos 8 - Bellow: LHCVBX__0001
114 // Absolute z-coordinates -82.0 - 400.0 cm
115 // Total length: 482.0 cm
116 // It consists of 3 main parts:
117 // CP/2 The flange on the non-absorber side: 36.5 cm
118 // CP/1 The central Be pipe: 405.0 cm
119 // CP/3 The double-bellow and flange on the absorber side: 40.5 cm
125 // Starting position in z
126 const Float_t kCPz0 = -400.0;
127 // Length of the CP/1 section
128 const Float_t kCP1Length = 405.0;
129 // Length of the CP/2 section
130 const Float_t kCP2Length = 36.5;
131 // Length of the CP/3 section
132 const Float_t kCP3Length = 40.5;
133 // Position of the CP/2 section
134 // const Float_t kCP2pos = kCPz0 + kCP2Length / 2.;
135 // Position of the CP/3 section
136 const Float_t kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.;
142 // Inner and outer radii of the Be-section [Pos 1]
143 const Float_t kCP1NegRo = 2.90 + 0.0002;
144 const Float_t kCP1BeRi = 2.90;
145 const Float_t kCP1BeRo = 2.98;
146 const Float_t kCP1KaRo = 2.99;
148 // Be-Stainless Steel adaptor tube [Pos 2] at both ends of the Be-section. Length 5 cm
149 const Float_t kCP1BeStAdaptorLength = 5.00;
151 // Bulge of the Be-Stainless Steel adaptor Tube [Pos 2]
152 const Float_t kCP1BeStRo = 3.05;
154 // Length of bulge [Pos 2]
155 const Float_t kCP1BulgeLength = 0.50;
157 // Distance between bulges [Pos 2]
158 const Float_t kCP1BulgeBulgeDistance = 1.00;
161 const Float_t kCP1BeLength = kCP1Length - 2. * kCP1BeStAdaptorLength;
164 // CP/1 Mother volume
165 TGeoVolume* voCp1Mo = new TGeoVolume("CP1MO",
166 new TGeoTube(0., kCP1BeStRo, kCP1Length / 2.),
168 voCp1Mo->SetVisibility(0);
170 /////////////////////////////////////////////
171 // CP/1 Be-Section //
172 /////////////////////////////////////////////
173 TGeoVolume* voCp1Vac = new TGeoVolume("CP1VAC",
174 new TGeoTube(0., kCP1BeRi, kCP1BeLength / 2.),
176 TGeoVolume* voCp1Be = new TGeoVolume("CP1BE",
177 new TGeoTube(0., kCP1BeRo, kCP1BeLength / 2.),
180 TGeoVolume* voCp1Ka = new TGeoVolume("CP1KA",
181 new TGeoTube(0., kCP1KaRo, kCP1BeLength / 2.),
184 TGeoVolume* voCp1NEG = new TGeoVolume("CP1NEG",
185 new TGeoTube(kCP1BeRi, kCP1NegRo, kCP1BeLength / 2.),
188 voCp1Ka->AddNode(voCp1Be, 1, gGeoIdentity);
189 voCp1Be->AddNode(voCp1Vac, 1, gGeoIdentity);
190 voCp1Be->AddNode(voCp1NEG, 1, gGeoIdentity);
191 voCp1Mo->AddNode(voCp1Ka, 1, gGeoIdentity);
193 /////////////////////////////////////////////
194 // CP/1 Be-Stainless Steel adaptor tube //
195 /////////////////////////////////////////////
196 TGeoPcon* shCp1At = new TGeoPcon(0., 360., 8);
198 z = - kCP1BeStAdaptorLength / 2.;
199 shCp1At->DefineSection(0, z, 0., kCP1BeStRo);
200 z += kCP1BulgeLength;
201 shCp1At->DefineSection(1, z, 0., kCP1BeStRo);
202 shCp1At->DefineSection(2, z, 0., kCP1BeRo);
203 // Between the bulges
204 z += kCP1BulgeBulgeDistance;
205 shCp1At->DefineSection(3, z, 0., kCP1BeRo);
206 shCp1At->DefineSection(4, z, 0., kCP1BeStRo);
208 z += kCP1BulgeLength;
209 shCp1At->DefineSection(5, z, 0., kCP1BeStRo);
210 shCp1At->DefineSection(6, z, 0., kCP1BeRo);
212 z = kCP1BeStAdaptorLength / 2.;
213 shCp1At->DefineSection(7, z, 0., kCP1BeRo);
215 TGeoVolume* voCp1At = new TGeoVolume("CP1AT", shCp1At, kMedSteel);
216 TGeoVolume* voCp1AtV = new TGeoVolume("CP1ATV", new TGeoTube(0., kCP1BeRi, kCP1BeStAdaptorLength / 2.), kMedVac);
217 voCp1At->AddNode(voCp1AtV, 1, gGeoIdentity);
219 // Position adaptor tube at both ends
220 dz = kCP1Length / 2. - kCP1BeStAdaptorLength / 2.;
221 voCp1Mo->AddNode(voCp1At, 1, new TGeoTranslation(0., 0., -dz));
222 voCp1Mo->AddNode(voCp1At, 2, new TGeoCombiTrans(0., 0., dz, rot180));
223 TGeoVolumeAssembly* voCp1 = new TGeoVolumeAssembly("Cp1");
224 voCp1->AddNode(voCp1Mo, 1, gGeoIdentity);
231 // Fixed Point tube [Pos 5]
233 // Inner and outer radii of the Stainless Steel pipe
234 const Float_t kCP2StRi = 2.90;
235 const Float_t kCP2StRo = 2.98;
237 // Transition to central Be-pipe (Bulge)
239 const Float_t kCP2BulgeLength = 0.80;
241 // Bulge outer radius
242 const Float_t kCP2BulgeRo = 3.05;
244 // Fixed Point at z = 391.7 (IP)
246 // Position of fixed point
247 const Float_t kCP2FixedPointZ = 8.30;
249 // Outer radius of fixed point
250 const Float_t kCP2FixedPointRo = 3.50;
252 // Length of fixed point
253 const Float_t kCP2FixedPointLength = 0.60;
255 // Fixed Flange [Pos 6]
257 // Fixed flange outer radius
258 const Float_t kCP2FixedFlangeRo = 7.60;
260 // Fixed flange inner radius
261 const Float_t kCP2FixedFlangeRi = 3.00;
262 // Fixed flange inner radius bulge
263 const Float_t kCP2FixedFlangeBulgeRi = 2.90;
264 // Fixed flange lengths of sections at inner radius
265 const Float_t kCP2FixedFlangeRecessLengths[3] ={1., 0.08, 0.9};
266 // Fixed flange length
267 const Float_t kCP2FixedFlangeLength = 1.98;
269 // Fixed flange bulge
271 const Float_t kCP2FixedFlangeBulgeRo = 3.00;
274 const Float_t kCP2FixedFlangeBulgeLength = 2.00;
277 // CP/2 Mother Volume
279 TGeoPcon* shCp2Mo = new TGeoPcon(0., 360., 14);
281 z = - kCP2Length / 2.;
282 shCp2Mo->DefineSection( 0, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
283 z += kCP2FixedFlangeRecessLengths[0];
284 shCp2Mo->DefineSection( 1, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
285 shCp2Mo->DefineSection( 2, z, 0., kCP2FixedFlangeRo);
286 z += (kCP2FixedFlangeRecessLengths[1] + kCP2FixedFlangeRecessLengths[2]) ;
287 shCp2Mo->DefineSection( 3, z, 0., kCP2FixedFlangeRo);
288 // Straight section between Flange and Fixed Point
289 shCp2Mo->DefineSection( 4, z, 0., kCP2FixedFlangeBulgeRo);
290 z += kCP2FixedFlangeBulgeLength;
291 shCp2Mo->DefineSection( 5, z, 0., kCP2FixedFlangeBulgeRo);
292 shCp2Mo->DefineSection( 6, z, 0., kCP2StRo);
293 z = - kCP2Length / 2 + kCP2FixedPointZ - kCP2FixedPointLength / 2.;
294 shCp2Mo->DefineSection( 7, z, 0., kCP2StRo);
296 shCp2Mo->DefineSection( 8, z, 0., kCP2FixedPointRo);
297 z += kCP2FixedPointLength;
298 shCp2Mo->DefineSection( 9, z, 0., kCP2FixedPointRo);
299 // Straight section between Fixed Point and transition bulge
300 shCp2Mo->DefineSection(10, z, 0., kCP2StRo);
301 z = kCP2Length / 2. - kCP2BulgeLength;
302 shCp2Mo->DefineSection(11, z, 0., kCP2StRo);
303 shCp2Mo->DefineSection(12, z, 0., kCP2BulgeRo);
305 shCp2Mo->DefineSection(13, z, 0., kCP2BulgeRo);
307 TGeoVolume* voCp2Mo = new TGeoVolume("CP2MO", shCp2Mo, kMedAir);
308 voCp2Mo->SetVisibility(0);
311 TGeoTube* shCp2Va = new TGeoTube(0., kCP2StRi, (kCP2Length - kCP2FixedFlangeRecessLengths[0])/2.);
312 TGeoVolume* voCp2Va = new TGeoVolume("CP2VA", shCp2Va, kMedVac);
314 voCp2Mo->AddNode(voCp2Va, 1, new TGeoTranslation(0., 0., kCP2FixedFlangeRecessLengths[0]/2.));
316 /////////////////////////////////////////////
317 // CP/2 Fixed Flange [Pos 6] //
318 /////////////////////////////////////////////
320 TGeoPcon* shCp2Fl = new TGeoPcon(0., 360., 6);
321 z = - kCP2FixedFlangeLength / 2.;
322 shCp2Fl->DefineSection(0, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
323 z += kCP2FixedFlangeRecessLengths[0];
324 shCp2Fl->DefineSection(1, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
325 shCp2Fl->DefineSection(2, z, kCP2FixedFlangeBulgeRi, kCP2FixedFlangeRo);
326 z += kCP2FixedFlangeRecessLengths[1];
327 shCp2Fl->DefineSection(3, z, kCP2FixedFlangeBulgeRi, kCP2FixedFlangeRo);
328 shCp2Fl->DefineSection(4, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
329 z = kCP2FixedFlangeLength / 2.;
330 shCp2Fl->DefineSection(5, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo);
331 TGeoVolume* voCp2Fl = new TGeoVolume("CP2FL", shCp2Fl, kMedSteel);
333 dz = - kCP2Length / 2. + kCP2FixedFlangeLength / 2.;
334 voCp2Mo->AddNode(voCp2Fl, 1, new TGeoTranslation(0., 0., dz));
337 /////////////////////////////////////////////////////////////
338 // CP/2 Beam pipe with fixed point and transition bulges //
339 /////////////////////////////////////////////////////////////
340 TGeoPcon* shCp2Pi = new TGeoPcon(0., 360., 10);
341 // Bulge at transition to flange
342 z = - (kCP2Length - kCP2FixedFlangeRecessLengths[0] - kCP2FixedFlangeRecessLengths[1]) / 2.;
344 shCp2Pi->DefineSection(0, z, kCP2StRi, kCP2FixedFlangeBulgeRo);
345 z += kCP2FixedFlangeBulgeLength;
346 shCp2Pi->DefineSection(1, z, kCP2StRi, kCP2FixedFlangeBulgeRo);
347 // Straight section between Bulge and Fixed Point
348 shCp2Pi->DefineSection(2, z, kCP2StRi, kCP2StRo);
349 z += (kCP2FixedPointZ - kCP2FixedPointLength / 2. - kCP2FixedFlangeRecessLengths[0]
350 - kCP2FixedFlangeRecessLengths[1] -
351 kCP2FixedFlangeBulgeLength);
352 shCp2Pi->DefineSection(3, z, kCP2StRi, kCP2StRo);
354 shCp2Pi->DefineSection(4, z, kCP2StRi, kCP2FixedPointRo);
355 z += kCP2FixedPointLength;
356 shCp2Pi->DefineSection(5, z, kCP2StRi, kCP2FixedPointRo);
357 // Straight section between Fixed Point and transition bulge
358 shCp2Pi->DefineSection(6, z, kCP2StRi, kCP2StRo);
359 z = - shCp2Pi->GetZ(0) - kCP2BulgeLength;
360 shCp2Pi->DefineSection(7, z, kCP2StRi, kCP2StRo);
361 // Bulge at transition to Be pipe
362 shCp2Pi->DefineSection(8, z, kCP2StRi, kCP2BulgeRo);
363 z = - shCp2Pi->GetZ(0);
364 shCp2Pi->DefineSection(9, z, kCP2StRi, kCP2BulgeRo);
366 TGeoVolume* voCp2Pi = new TGeoVolume("CP2PI", shCp2Pi, kMedSteel);
367 dz = (kCP2FixedFlangeRecessLengths[0] + kCP2FixedFlangeRecessLengths[1]) / 2.;
368 voCp2Mo->AddNode(voCp2Pi, 1, new TGeoTranslation(0., 0., dz));
371 // Central beam pipe support collars
373 // Position at z = -46., 40., 150.
374 TGeoVolume* voCpSupC = new TGeoVolume("CpSupC", new TGeoTube(3.051, 4.00, 0.35), kMedAco);
375 voCp1->AddNode(voCpSupC, 1, new TGeoTranslation(0., 0., kCP1Length / 2. - 98.2));
376 voCp1->AddNode(voCpSupC, 2, new TGeoTranslation(0., 0., kCP1Length / 2.- 191.5));
377 // Beam Pipe Protection Tube
381 // Plaque de Centrage ALIFWDA_0019
382 const Float_t kFwdaBPPTXL = 3.;
383 TGeoXtru* shFwdaBPPTX = new TGeoXtru(2);
384 Double_t xBPPTX[8] = {12.5, 7.5, -7.5, -12.5, -12.5, -7.5, 7.5, 12.5};
385 Double_t yBPPTX[8] = { 7.0, 12.0, 12.0, 7.0, -7.0, -12.0, -12.0, -7.0};
386 shFwdaBPPTX->DefinePolygon(8, xBPPTX, yBPPTX);
387 shFwdaBPPTX->DefineSection(0, 0., 0., 0., 1.);
388 shFwdaBPPTX->DefineSection(1, kFwdaBPPTXL, 0., 0., 1.);
389 shFwdaBPPTX->SetName("FwdaBPPTX");
390 TGeoTube* shFwdaBPPTY = new TGeoTube(0., 8.5, 3.2);
391 shFwdaBPPTY->SetName("FwdaBPPTY");
392 TGeoCompositeShape* shFwdaBPPTPC = new TGeoCompositeShape("shFwdaBPPTPC", "FwdaBPPTX-FwdaBPPTY");
393 TGeoVolume* voFwdaBPPTPC = new TGeoVolume("FwdaBPPTPC", shFwdaBPPTPC, kMedAco);
396 // const Float_t kFwdaBPPTTL = 48.;
397 const Float_t kFwdaBPPTTL = 35.;
398 TGeoVolume* voFwdaBPPTT = new TGeoVolume("FwdaBPPTT", new TGeoTube(8.85, 9.0, kFwdaBPPTTL/2.), kMedAco);
399 TGeoVolumeAssembly* voFwdaBPPT = new TGeoVolumeAssembly("FwdaBPPT");
400 voFwdaBPPT->AddNode(voFwdaBPPTPC, 1, gGeoIdentity);
401 voFwdaBPPT->AddNode(voFwdaBPPTT, 1, new TGeoTranslation(0., 0., kFwdaBPPTTL/2. + kFwdaBPPTXL));
404 // BeamPipe and T0A Support
408 // Support Plate ALIFWDA_0026
409 const Float_t kFwdaBPSPL = 4.0;
410 TGeoXtru* shFwdaBPSPX = new TGeoXtru(2);
411 Double_t xBPSPX[8] = {10.0, 6.0 , -6.0, -10.0, -10.0, -6.0, 6.0, 10.0};
412 Double_t yBPSPX[8] = { 6.0, 10.0, 10.0, 6.0, - 6.0, -10.0, -10.0, -6.0};
413 shFwdaBPSPX->DefinePolygon(8, xBPSPX, yBPSPX);
414 shFwdaBPSPX->DefineSection(0, 0., 0., 0., 1.);
415 shFwdaBPSPX->DefineSection(1, kFwdaBPSPL, 0., 0., 1.);
416 shFwdaBPSPX->SetName("FwdaBPSPX");
417 TGeoPcon* shFwdaBPSPY = new TGeoPcon(0., 360., 6);
418 shFwdaBPSPY->DefineSection(0, -1.00, 0., 5.5);
419 shFwdaBPSPY->DefineSection(1, 3.50, 0., 5.5);
420 shFwdaBPSPY->DefineSection(2, 3.50, 0., 5.0);
421 shFwdaBPSPY->DefineSection(3, 3.86, 0., 5.0);
422 shFwdaBPSPY->DefineSection(4, 3.86, 0., 5.5);
423 shFwdaBPSPY->DefineSection(5, 5.00, 0., 5.5);
424 shFwdaBPSPY->SetName("FwdaBPSPY");
425 TGeoCompositeShape* shFwdaBPSP = new TGeoCompositeShape("shFwdaBPSP", "FwdaBPSPX-FwdaBPSPY");
426 TGeoVolume* voFwdaBPSP = new TGeoVolume("FwdaBPSP", shFwdaBPSP, kMedAco);
428 // Flasque ALIFWDA_00027
431 const Float_t kFwdaBPSTTRi = 7.6/2.;
432 const Float_t kFwdaBPSTTRo1 = 13.9/2.;
433 const Float_t kFwdaBPSTTRo2 = 8.2/2.;
434 const Float_t kFwdaBPSTTRo3 = 9.4/2.;
436 TGeoPcon* shFwdaBPSFL = new TGeoPcon(0., 360., 8);
438 shFwdaBPSFL->DefineSection(0, z, kFwdaBPSTTRi, kFwdaBPSTTRo1);
440 shFwdaBPSFL->DefineSection(1, z, kFwdaBPSTTRi, kFwdaBPSTTRo1);
441 shFwdaBPSFL->DefineSection(2, z, kFwdaBPSTTRi, kFwdaBPSTTRo2);
443 shFwdaBPSFL->DefineSection(3, z, kFwdaBPSTTRi, kFwdaBPSTTRo2);
444 shFwdaBPSFL->DefineSection(4, z, kFwdaBPSTTRi, kFwdaBPSTTRo3);
446 shFwdaBPSFL->DefineSection(5, z, kFwdaBPSTTRi, kFwdaBPSTTRo3);
447 shFwdaBPSFL->DefineSection(6, z, kFwdaBPSTTRi, kFwdaBPSTTRo2);
449 shFwdaBPSFL->DefineSection(7, z, kFwdaBPSTTRi, kFwdaBPSTTRo2);
451 TGeoVolume* voFwdaBPSFL = new TGeoVolume("FwdaBPSFL", shFwdaBPSFL, kMedAco);
456 TGeoBBox* shFwdaBPSCSa = new TGeoBBox(3.0, 8.75, 0.5);
457 shFwdaBPSCSa->SetName("FwdaBPSCSa");
458 TGeoBBox* shFwdaBPSCSb = new TGeoBBox(1.25, 4.00, 1.0);
459 shFwdaBPSCSb->SetName("FwdaBPSCSb");
460 TGeoTranslation* tFwdaBPSCSb = new TGeoTranslation(0., 5.25 - 8.75, 0.);
461 tFwdaBPSCSb->SetName("tFwdaBPSCSb");
462 tFwdaBPSCSb->RegisterYourself();
463 TGeoBBox* shFwdaBPSCSc = new TGeoBBox(3.0, 0.50, 0.70);
464 shFwdaBPSCSc->SetName("FwdaBPSCSc");
465 TGeoTranslation* tFwdaBPSCSc = new TGeoTranslation(0., 0.5 - 8.75, 1.2);
466 tFwdaBPSCSc->SetName("tFwdaBPSCSc");
467 tFwdaBPSCSc->RegisterYourself();
468 TGeoCompositeShape* shFwdaBPSCS = new TGeoCompositeShape("shFwdaBPSCS", "(FwdaBPSCSa-FwdaBPSCSb:tFwdaBPSCSb)+FwdaBPSCSc:tFwdaBPSCSc");
469 TGeoVolume* voFwdaBPSCS = new TGeoVolume("FwdaBPSCS", shFwdaBPSCS, kMedAco);
472 // Assembling the beam pipe support
473 TGeoVolumeAssembly* voFwdaBPS = new TGeoVolumeAssembly("FwdaBPS");
474 voFwdaBPS->AddNode(voFwdaBPSP, 1, new TGeoCombiTrans(0., 0., 0., rot045));
475 voFwdaBPS->AddNode(voFwdaBPSFL, 1, new TGeoTranslation(0., 0., kFwdaBPSPL));
476 const Float_t kFwdaBPSCSdy = 18.75/TMath::Sqrt(2.);
478 voFwdaBPS->AddNode(voFwdaBPSCS, 1, new TGeoCombiTrans(- kFwdaBPSCSdy, kFwdaBPSCSdy, 2., rot045));
479 voFwdaBPS->AddNode(voFwdaBPSCS, 2, new TGeoCombiTrans(- kFwdaBPSCSdy, - kFwdaBPSCSdy, 2., rot135));
480 voFwdaBPS->AddNode(voFwdaBPSCS, 3, new TGeoCombiTrans( kFwdaBPSCSdy, - kFwdaBPSCSdy, 2., rot225));
481 voFwdaBPS->AddNode(voFwdaBPSCS, 4, new TGeoCombiTrans( kFwdaBPSCSdy, kFwdaBPSCSdy, 2., rot315));
483 TGeoVolumeAssembly* voCp2 = new TGeoVolumeAssembly("CP2");
484 voCp2->AddNode(voCp2Mo, 1, gGeoIdentity);
485 voCp2->AddNode(voFwdaBPPT, 1, new TGeoTranslation(0., 0., -kCP2Length / 2. + 13.8));
486 voCp2->AddNode(voFwdaBPS, 1, new TGeoTranslation(0., 0., -kCP2Length / 2. + 5.1));
493 // Adaptor tube [Pos 4]
495 // Adaptor tube length
496 const Float_t kCP3AdaptorTubeLength = 5.50;
498 // Inner and outer radii
499 const Float_t kCP3AdaptorTubeRi = 2.92;
500 const Float_t kCP3AdaptorTubeRo = 3.00;
502 // Bulge at transition point
503 // Inner and outer radii
504 const Float_t kCP3AdaptorTubeBulgeRi = 2.90;
505 const Float_t kCP3AdaptorTubeBulgeRo = 3.05;
508 const Float_t kCP3AdaptorTubeBulgeLength = 0.80;
513 const Float_t kCP3BellowLength = 13.00;
515 const Float_t kCP3BellowRo = 3.6;
517 const Float_t kCP3BellowRi = 2.8;
519 const Int_t kCP3NumberOfPlies = 18;
520 // Length of undulated region
521 const Float_t kCP3BellowUndulatedLength = 8.30;
523 const Float_t kCP3PlieThickness = 0.02;
524 // Connection Plie radies (at transition been undulated region and beam pipe)
525 const Float_t kCP3ConnectionPlieR = 0.21;
527 // const Float_t kCP3PlieR = 0.118286;
528 const Float_t kCP3PlieR =
529 (kCP3BellowUndulatedLength - 4. * kCP3ConnectionPlieR + 2. * kCP3PlieThickness +
530 (2. * kCP3NumberOfPlies - 2.) * kCP3PlieThickness) / (4. * kCP3NumberOfPlies - 2.);
531 // Length of connection pipe
532 const Float_t kCP3BellowConnectionLength = 2.35;
534 // Tube between bellows [Pos 3]
537 const Float_t kCP3TubeLength = 4.00;
539 // Minimised fixed flange [Pos 7]
541 // Length of flange connection tube
542 const Float_t kCP3FlangeConnectorLength = 5.0 - 1.4;
544 const Float_t kCP3FlangeLength = 1.40;
546 const Float_t kCP3FlangeRo = 4.30;
549 // CP/3 Mother volume
551 TGeoPcon* shCp3Mo = new TGeoPcon(0., 360., 12);
552 // From transition to first bellow
553 z = - kCP3Length / 2.;
554 shCp3Mo->DefineSection( 0, z, 0., kCP3AdaptorTubeBulgeRo);
555 z += kCP3BellowConnectionLength + kCP3AdaptorTubeLength;
556 shCp3Mo->DefineSection( 1, z, 0., kCP3AdaptorTubeBulgeRo);
558 shCp3Mo->DefineSection( 2, z, 0., kCP3BellowRo);
559 z += kCP3BellowUndulatedLength;
560 shCp3Mo->DefineSection( 3, z, 0., kCP3BellowRo);
561 // Connection between the two bellows
562 shCp3Mo->DefineSection( 4, z, 0., kCP3AdaptorTubeBulgeRo);
563 z += 2. * kCP3BellowConnectionLength + kCP3TubeLength;
564 shCp3Mo->DefineSection( 5, z, 0., kCP3AdaptorTubeBulgeRo);
566 shCp3Mo->DefineSection( 6, z, 0., kCP3BellowRo);
567 z += kCP3BellowUndulatedLength;
568 shCp3Mo->DefineSection( 7, z, 0., kCP3BellowRo);
569 // Pipe between second Bellow and Flange
570 shCp3Mo->DefineSection( 8, z, 0., kCP3AdaptorTubeBulgeRo);
571 z += kCP3BellowConnectionLength + kCP3FlangeConnectorLength;
572 shCp3Mo->DefineSection( 9, z, 0., kCP3AdaptorTubeBulgeRo);
574 shCp3Mo->DefineSection(10, z, 0., kCP3FlangeRo);
575 z = -shCp3Mo->GetZ(0);
576 shCp3Mo->DefineSection(11, z, 0., kCP3FlangeRo);
578 TGeoVolume* voCp3Mo = new TGeoVolume("CP3MO", shCp3Mo, kMedAir);
579 voCp3Mo->SetVisibility(0);
580 TGeoVolumeAssembly* voCp3 = new TGeoVolumeAssembly("Cp3");
581 voCp3->AddNode(voCp3Mo, 1, gGeoIdentity);
582 voCp3->AddNode(voCpSupC, 3, new TGeoTranslation(0., 0., - kCP3Length / 2. + 4.6));
585 //////////////////////////////////////////////
586 // CP/3 Adaptor tube //
587 //////////////////////////////////////////////
588 TGeoPcon* shCp3AtV = new TGeoPcon(0., 360., 4);
589 // Bulge at transition
590 z = - kCP3AdaptorTubeLength / 2.;
591 shCp3AtV->DefineSection(0, z, 0., kCP3AdaptorTubeBulgeRo);
592 z += kCP3AdaptorTubeBulgeLength;
593 shCp3AtV->DefineSection(1, z, 0., kCP3AdaptorTubeBulgeRo);
595 shCp3AtV->DefineSection(2, z, 0., kCP3AdaptorTubeRo);
596 z = + kCP3AdaptorTubeLength / 2.;
597 shCp3AtV->DefineSection(3, z, 0., kCP3AdaptorTubeRo);
599 TGeoVolume* voCp3AtV = new TGeoVolume("CP3ATV", shCp3AtV, kMedVac);
601 TGeoPcon* shCp3AtS = new TGeoPcon(0., 360., 4);
602 // Bulge at transition
603 shCp3AtS->DefineSection(0, shCp3AtV->GetZ(0), kCP3AdaptorTubeBulgeRi, kCP3AdaptorTubeBulgeRo);
604 shCp3AtS->DefineSection(1, shCp3AtV->GetZ(1), kCP3AdaptorTubeBulgeRi, kCP3AdaptorTubeBulgeRo);
606 shCp3AtS->DefineSection(2, shCp3AtV->GetZ(2), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo);
607 shCp3AtS->DefineSection(3, shCp3AtV->GetZ(3), kCP3AdaptorTubeRi , kCP3AdaptorTubeRo);
608 TGeoVolume* voCp3AtS = new TGeoVolume("CP3ATS", shCp3AtS, kMedSteel);
610 voCp3AtV->AddNode(voCp3AtS, 1, gGeoIdentity);
611 dz = - kCP3Length / 2. + kCP3AdaptorTubeLength / 2.;
612 voCp3Mo->AddNode(voCp3AtV, 1, new TGeoTranslation(0., 0., dz));
614 /////////////////////////////////
615 // CP/3 Bellow section //
616 /////////////////////////////////
619 // Upper part of the undulation
620 TGeoTorus* plieTorusUO = new TGeoTorus(kCP3BellowRo - kCP3PlieR, 0. , kCP3PlieR);
621 plieTorusUO->SetName("TorusUO");
622 TGeoTorus* plieTorusUI = new TGeoTorus(kCP3BellowRo - kCP3PlieR, kCP3PlieR - kCP3PlieThickness, kCP3PlieR);
623 plieTorusUI->SetName("TorusUI");
624 TGeoTube* plieTubeU = new TGeoTube (kCP3BellowRo - kCP3PlieR, kCP3BellowRo, kCP3PlieR);
625 plieTubeU->SetName("TubeU");
627 TGeoCompositeShape* shUpperPlieO = new TGeoCompositeShape("upperPlieO", "TorusUO*TubeU");
628 TGeoCompositeShape* shUpperPlieI = new TGeoCompositeShape("upperPlieI", "TorusUI*TubeU");
630 TGeoVolume* voWiggleUO = new TGeoVolume("CP3WUO", shUpperPlieO, kMedVac);
631 TGeoVolume* voWiggleUI = new TGeoVolume("CP3WUI", shUpperPlieI, kMedSteel);
632 voWiggleUO->AddNode(voWiggleUI, 1, gGeoIdentity);
634 // Lower part of the undulation
635 TGeoTorus* plieTorusLO = new TGeoTorus(kCP3BellowRi + kCP3PlieR, 0. , kCP3PlieR);
636 plieTorusLO->SetName("TorusLO");
637 TGeoTorus* plieTorusLI = new TGeoTorus(kCP3BellowRi + kCP3PlieR, kCP3PlieR - kCP3PlieThickness, kCP3PlieR);
638 plieTorusLI->SetName("TorusLI");
639 TGeoTube* plieTubeL = new TGeoTube (kCP3BellowRi, kCP3BellowRi + kCP3PlieR, kCP3PlieR);
640 plieTubeL->SetName("TubeL");
642 TGeoCompositeShape* shLowerPlieO = new TGeoCompositeShape("lowerPlieO", "TorusLO*TubeL");
643 TGeoCompositeShape* shLowerPlieI = new TGeoCompositeShape("lowerPlieI", "TorusLI*TubeL");
645 TGeoVolume* voWiggleLO = new TGeoVolume("CP3WLO", shLowerPlieO, kMedVac);
646 TGeoVolume* voWiggleLI = new TGeoVolume("CP3WLI", shLowerPlieI, kMedSteel);
647 voWiggleLO->AddNode(voWiggleLI, 1, gGeoIdentity);
650 // Connection between upper and lower part of undulation
651 TGeoVolume* voWiggleC1 = new TGeoVolume("Q3WCO1",
652 new TGeoTube(kCP3BellowRi + kCP3PlieR, kCP3BellowRo - kCP3PlieR, kCP3PlieThickness / 2.),
654 TGeoVolume* voWiggleC2 = new TGeoVolume("Q3WCO2",
655 new TGeoTube(kCP3BellowRi + kCP3ConnectionPlieR, kCP3BellowRo - kCP3PlieR, kCP3PlieThickness / 2.),
658 // Conncetion between undulated section and beam pipe
659 TGeoTorus* plieTorusCO = new TGeoTorus(kCP3BellowRi + kCP3ConnectionPlieR, 0. , kCP3ConnectionPlieR);
660 plieTorusCO->SetName("TorusCO");
661 TGeoTorus* plieTorusCI = new TGeoTorus(kCP3BellowRi + kCP3ConnectionPlieR, kCP3ConnectionPlieR - kCP3PlieThickness, kCP3ConnectionPlieR);
662 plieTorusCI->SetName("TorusCI");
663 TGeoTube* plieTubeC = new TGeoTube (kCP3BellowRi, kCP3BellowRi + kCP3ConnectionPlieR, kCP3ConnectionPlieR);
664 plieTubeC->SetName("TubeC");
666 TGeoCompositeShape* shConnectionPlieO = new TGeoCompositeShape("connectionPlieO", "TorusCO*TubeC");
667 TGeoCompositeShape* shConnectionPlieI = new TGeoCompositeShape("connectionPlieI", "TorusCI*TubeC");
669 TGeoVolume* voConnectionPO = new TGeoVolume("CP3CPO", shConnectionPlieO, kMedVac);
670 TGeoVolume* voConnectionPI = new TGeoVolume("CP3CPI", shConnectionPlieI, kMedSteel);
671 voConnectionPO->AddNode(voConnectionPI, 1, gGeoIdentity);
674 TGeoVolume* voConnectionPipeO = new TGeoVolume("CP3BECO",
675 new TGeoTube(0., kCP3AdaptorTubeRo, kCP3BellowConnectionLength / 2.),
677 TGeoVolume* voConnectionPipeI = new TGeoVolume("CP3BECI",
678 new TGeoTube(kCP3AdaptorTubeRi, kCP3AdaptorTubeRo, kCP3BellowConnectionLength / 2.),
681 voConnectionPipeO->AddNode(voConnectionPipeI, 1, gGeoIdentity);
685 TGeoPcon* shBellowMotherPC = new TGeoPcon(0., 360., 6);
686 dz = - kCP3BellowLength / 2;
687 shBellowMotherPC->DefineSection(0, dz, 0., kCP3AdaptorTubeRo);
688 dz += kCP3BellowConnectionLength;
689 shBellowMotherPC->DefineSection(1, dz, 0., kCP3AdaptorTubeRo);
690 shBellowMotherPC->DefineSection(2, dz, 0., kCP3BellowRo);
691 dz = kCP3BellowLength /2. - kCP3BellowConnectionLength;;
692 shBellowMotherPC->DefineSection(3, dz, 0., kCP3BellowRo);
693 shBellowMotherPC->DefineSection(4, dz, 0., kCP3AdaptorTubeRo);
694 dz += kCP3BellowConnectionLength;
695 shBellowMotherPC->DefineSection(5, dz, 0., kCP3AdaptorTubeRo);
697 TGeoVolume* voBellowMother = new TGeoVolume("CP3BeMO", shBellowMotherPC, kMedVac);
698 voBellowMother->SetVisibility(0);
702 z0 = - kCP3BellowLength / 2. + kCP3BellowConnectionLength + 2. * kCP3ConnectionPlieR - kCP3PlieThickness;
703 zsh = 4. * kCP3PlieR - 2. * kCP3PlieThickness;
704 for (Int_t iw = 0; iw < 18; iw++) {
705 Float_t zpos = z0 + iw * zsh;
707 voBellowMother->AddNode(voWiggleC1, iw + 1 , new TGeoTranslation(0., 0., zpos + kCP3PlieThickness / 2.));
709 voBellowMother->AddNode(voWiggleC2, iw + 1 , new TGeoTranslation(0., 0., zpos + kCP3PlieThickness / 2.));
712 voBellowMother->AddNode(voWiggleUO, iw + 1, new TGeoTranslation(0., 0., zpos));
716 voBellowMother->AddNode(voWiggleC1, iw + 19, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness / 2.));
718 voBellowMother->AddNode(voWiggleC2, iw + 19, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness / 2.));
722 voBellowMother->AddNode(voWiggleLO, iw + 1, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness));
726 // Add connecting undulation between bellow and connecting pipe
727 dz = - kCP3BellowUndulatedLength / 2. + kCP3ConnectionPlieR;
728 voBellowMother->AddNode(voConnectionPO, 1, new TGeoTranslation(0., 0., dz));
729 voBellowMother->AddNode(voConnectionPO, 2, new TGeoTranslation(0., 0., -dz));
731 // Add connecting pipe
732 dz = - kCP3BellowLength / 2. + kCP3BellowConnectionLength / 2.;
733 voBellowMother->AddNode(voConnectionPipeO, 1, new TGeoTranslation(0., 0., dz));
734 voBellowMother->AddNode(voConnectionPipeO, 2, new TGeoTranslation(0., 0., -dz));
736 // Add bellow to CP/3 mother
737 dz = - kCP3Length / 2. + kCP3AdaptorTubeLength + kCP3BellowLength / 2.;
738 voCp3Mo->AddNode(voBellowMother, 1, new TGeoTranslation(0., 0., dz));
739 dz += (kCP3BellowLength + kCP3TubeLength);
740 voCp3Mo->AddNode(voBellowMother, 2, new TGeoTranslation(0., 0., dz));
743 ///////////////////////////////////////////
744 // Beam pipe section between bellows //
745 ///////////////////////////////////////////
747 TGeoVolume* voCp3Bco = new TGeoVolume("CP3BCO",
748 new TGeoTube(0., kCP3AdaptorTubeRo, kCP3TubeLength / 2.),
751 TGeoVolume* voCp3Bci = new TGeoVolume("CP3BCI",
752 new TGeoTube(kCP3AdaptorTubeRi, kCP3AdaptorTubeRo, kCP3TubeLength / 2.),
755 voCp3Bco->AddNode(voCp3Bci, 1, gGeoIdentity);
756 dz = - kCP3Length / 2. + kCP3AdaptorTubeLength + kCP3BellowLength + kCP3TubeLength / 2.;
757 voCp3Mo->AddNode(voCp3Bco, 1, new TGeoTranslation(0., 0., dz));
760 ///////////////////////////////////////////
761 // CP3 Minimised Flange //
762 ///////////////////////////////////////////
764 TGeoPcon* shCp3mfo = new TGeoPcon(0., 360., 4);
765 z = - (kCP3FlangeConnectorLength + kCP3FlangeLength) / 2.;
767 shCp3mfo->DefineSection(0, z, 0., kCP3AdaptorTubeRo);
768 z += kCP3FlangeConnectorLength;
769 shCp3mfo->DefineSection(1, z, 0., kCP3AdaptorTubeRo);
771 shCp3mfo->DefineSection(2, z, 0., kCP3FlangeRo);
772 z = - shCp3mfo->GetZ(0);
773 shCp3mfo->DefineSection(3, z, 0., kCP3FlangeRo);
775 TGeoVolume* voCp3mfo = new TGeoVolume("CP3MFO", shCp3mfo, kMedVac);
778 TGeoPcon* shCp3mfi = new TGeoPcon(0., 360., 4);
780 shCp3mfi->DefineSection(0, shCp3mfo->GetZ(0), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo);
781 shCp3mfi->DefineSection(1, shCp3mfo->GetZ(1), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo);
783 shCp3mfi->DefineSection(2, shCp3mfo->GetZ(2), kCP3AdaptorTubeRi, kCP3FlangeRo);
784 shCp3mfi->DefineSection(3, shCp3mfo->GetZ(3), kCP3AdaptorTubeRi, kCP3FlangeRo);
786 TGeoVolume* voCp3mfi = new TGeoVolume("CP3MFI", shCp3mfi, kMedSteel);
788 voCp3mfo->AddNode(voCp3mfi, 1, gGeoIdentity);
789 dz = kCP3Length / 2. - (kCP3FlangeConnectorLength + kCP3FlangeLength) / 2.;
790 voCp3Mo->AddNode(voCp3mfo, 1, new TGeoTranslation(0., 0., dz));
794 // Assemble the central beam pipe
796 TGeoVolumeAssembly* asCP = new TGeoVolumeAssembly("CP");
798 asCP->AddNode(voCp2, 1, gGeoIdentity);
799 z += kCP2Length / 2. + kCP1Length / 2.;
800 asCP->AddNode(voCp1, 1, new TGeoTranslation(0., 0., z));
801 z += kCP1Length / 2. + kCP3Length / 2.;
802 asCP->AddNode(voCp3, 1, new TGeoTranslation(0., 0., z));
803 top->AddNode(asCP, 1, new TGeoCombiTrans(0., 0., 400. - kCP2Length / 2, rot180));
808 ////////////////////////////////////////////////////////////////////////////////
812 ////////////////////////////////////////////////////////////////////////////////
815 // Drawing LHCVC2U_0001
816 // Copper Tube RB24/1 393.5 cm
817 // Warm module VMACA 18.0 cm
818 // Annular Ion Pump 35.0 cm
820 // Warm module VMABC 28.0 cm
821 // ================================
826 // Copper Tube RB24/1
827 const Float_t kRB24CuTubeL = 393.5;
828 const Float_t kRB24CuTubeRi = 8.0/2.;
829 const Float_t kRB24CuTubeRo = 8.4/2.;
830 const Float_t kRB24CuTubeFRo = 7.6;
831 const Float_t kRB24CuTubeFL = 1.86;
833 TGeoVolume* voRB24CuTubeM = new TGeoVolume("voRB24CuTubeM",
834 new TGeoTube(0., kRB24CuTubeRo, kRB24CuTubeL/2.), kMedVac);
835 voRB24CuTubeM->SetVisibility(0);
836 TGeoVolume* voRB24CuTube = new TGeoVolume("voRB24CuTube",
837 new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24CuTubeL/2.), kMedCu);
838 voRB24CuTubeM->AddNode(voRB24CuTube, 1, gGeoIdentity);
839 // Air outside tube with higher transport cuts
840 TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA",
841 new TGeoTube(25., 100., kRB24CuTubeL/2.), kMedAirHigh);
842 voRB24CuTubeA->SetVisibility(0);
843 // Simplified DN 100 Flange
844 TGeoVolume* voRB24CuTubeF = new TGeoVolume("voRB24CuTubeF",
845 new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL/2.), kMedSteel);
847 // Warm Module Type VMACA
850 // Pos 1 Warm Bellows DN100 LHCVBU__0012
851 // Pos 2 RF Contact D80 LHCVSR__0005
852 // Pos 3 Trans. Tube Flange LHCVSR__0065
853 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
854 // [Pos 5 Tension spring LHCVSR__0011]
858 // Pos1 Warm Bellows DN100
859 // Pos1.1 Bellows LHCVBU__0006
863 // Connection tube inner r
864 const Float_t kRB24B1ConTubeRin = 10.0/2.;
865 // Connection tube outer r
866 const Float_t kRB24B1ConTubeRou = 10.3/2.;
867 // Connection tube length
868 const Float_t kRB24B1ConTubeL = 2.5;
870 const Float_t kRB24B1CompL = 16.00; // Length of the compensator
871 const Float_t kRB24B1BellowRi = 10.25/2.; // Bellow inner radius
872 const Float_t kRB24B1BellowRo = 11.40/2.; // Bellow outer radius
873 const Int_t kRB24B1NumberOfPlies = 27; // Number of plies
874 const Float_t kRB24B1BellowUndL = 11.00; // Length of undulated region
875 const Float_t kRB24B1PlieThickness = 0.015; // Plie thickness
877 const Float_t kRB24B1PlieRadius =
878 (kRB24B1BellowUndL + (2. * kRB24B1NumberOfPlies - 2.) * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies);
880 const Float_t kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube
881 const Float_t kRB24B1ProtTubeLength = 4.2; // Length of the protection tube
883 const Float_t kRB24B1RFlangeL = 1.86; // Length of the flanges
884 const Float_t kRB24B1RFlangeLO = 0.26; // Flange overlap
885 const Float_t kRB24B1RFlangeRO = 11.18/2; // Inner radius at Flange overlap
886 const Float_t kRB24B1RFlangeRou = 15.20/2.; // Outer radius of flange
887 const Float_t kRB24B1RFlangeRecess = 0.98; // Flange recess
888 const Float_t kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
892 // Bellow mother volume
893 TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 14);
894 // Connection Tube and Flange
896 shRB24B1BellowM->DefineSection( 0, z, 0., kRB24B1RFlangeRou);
897 z += kRB24B1RFlangeLO;
898 shRB24B1BellowM->DefineSection( 1, z, 0., kRB24B1RFlangeRou);
899 shRB24B1BellowM->DefineSection( 2, z, 0., kRB24B1RFlangeRou);
901 shRB24B1BellowM->DefineSection( 3, z, 0., kRB24B1RFlangeRou);
902 shRB24B1BellowM->DefineSection( 4, z, 0., kRB24B1ConTubeRou);
903 z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess;
904 shRB24B1BellowM->DefineSection( 5, z, 0., kRB24B1ConTubeRou);
906 shRB24B1BellowM->DefineSection( 6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
907 z += kRB24B1BellowUndL;
908 shRB24B1BellowM->DefineSection( 7, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
909 shRB24B1BellowM->DefineSection( 8, z, 0., kRB24B1ConTubeRou);
910 // Connection Tube and Flange
911 z = kRB24B1L - shRB24B1BellowM->GetZ(3);
912 shRB24B1BellowM->DefineSection( 9, z, 0., kRB24B1ConTubeRou);
913 shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou);
914 z = kRB24B1L - shRB24B1BellowM->GetZ(1);
915 shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou);
916 shRB24B1BellowM->DefineSection(12, z, 0., kRB24B1RFlangeRou);
917 z = kRB24B1L - shRB24B1BellowM->GetZ(0);
918 shRB24B1BellowM->DefineSection(13, z, 0., kRB24B1RFlangeRou);
920 TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVac);
921 voRB24B1BellowM->SetVisibility(0);
924 TGeoVolume* voRB24B1Bellow
925 = MakeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo,
926 kRB24B1BellowUndL, kRB24B1PlieRadius ,kRB24B1PlieThickness);
927 voRB24B1Bellow->SetVisibility(0);
930 // End Parts (connection tube)
931 TGeoVolume* voRB24B1CT = new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL/2.), kMedSteel);
934 TGeoVolume* voRB24B1PT = new TGeoVolume("RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness,
935 kRB24B1ProtTubeLength / 2.), kMedSteel);
937 z = kRB24B1ConTubeL/2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
939 voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z));
940 z += (kRB24B1ConTubeL/2.+ kRB24B1BellowUndL/2.);
941 voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z));
942 z += (kRB24B1BellowUndL/2. + kRB24B1ConTubeL/2);
943 voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z));
944 z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO;
945 voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z));
946 z += kRB24B1ProtTubeLength + 0.6;
947 voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z));
951 // Pos 1/2 Rotatable Flange LHCVBU__0013
952 // Pos 1/3 Flange DN100/103 LHCVBU__0018
953 // The two flanges can be represented by the same volume
954 // Outer Radius (including the outer movable ring).
955 // The inner ring has a diameter of 12.04 cm
958 TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10);
960 shRB24B1RFlange->DefineSection(0, z, 10.30/2., kRB24B1RFlangeRou);
961 z += 0.55; // 5.5 mm added for outer ring
963 shRB24B1RFlange->DefineSection(1, z, 10.30/2., kRB24B1RFlangeRou);
964 shRB24B1RFlange->DefineSection(2, z, 10.06/2., kRB24B1RFlangeRou);
966 shRB24B1RFlange->DefineSection(3, z, 10.06/2., kRB24B1RFlangeRou);
967 // In reality this part is rounded
968 shRB24B1RFlange->DefineSection(4, z, 10.91/2., kRB24B1RFlangeRou);
970 shRB24B1RFlange->DefineSection(5, z, 10.91/2., kRB24B1RFlangeRou);
971 shRB24B1RFlange->DefineSection(6, z, 10.06/2., kRB24B1RFlangeRou);
973 shRB24B1RFlange->DefineSection(7, z, 10.06/2., kRB24B1RFlangeRou);
974 shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
975 z += kRB24B1RFlangeLO;
976 shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
978 TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteel);
981 z = kRB24B1L - kRB24B1RFlangeL;
982 voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z));
984 voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180));
986 // Pos 2 RF Contact D80 LHCVSR__0005
988 // Pos 2.1 RF Contact Flange LHCVSR__0003
990 TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6);
991 const Float_t kRB24B1RCTFlangeRin = 8.06/2. + 0.05; // Inner radius
992 const Float_t kRB24B1RCTFlangeL = 1.45; // Length
995 shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20/2.);
997 shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20/2.);
998 shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60/2.);
1000 shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60/2.);
1001 shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16/2.);
1003 shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16/2.);
1004 TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCu);
1005 z = kRB24B1L - kRB24B1RCTFlangeL;
1007 voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z));
1009 // Pos 2.2 RF-Contact LHCVSR__0004
1011 TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3);
1012 const Float_t kRB24B1RCTRin = 8.00/2.; // Inner radius
1013 const Float_t kRB24B1RCTCRin = 8.99/2.; // Max. inner radius conical section
1014 const Float_t kRB24B1RCTL = 11.78; // Length
1015 const Float_t kRB24B1RCTSL = 10.48; // Length of straight section
1016 const Float_t kRB24B1RCTd = 0.03; // Thickness
1019 shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd);
1020 z = kRB24B1RCTL - kRB24B1RCTSL;
1021 // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ????
1022 shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd);
1023 z = kRB24B1RCTL - 0.03;
1024 shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd);
1026 TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCu);
1027 z = kRB24B1L - kRB24B1RCTL - 0.45;
1028 voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z));
1031 // Pos 3 Trans. Tube Flange LHCVSR__0065
1033 // Pos 3.1 Transition Tube D53 LHCVSR__0064
1034 // Pos 3.2 Transition Flange LHCVSR__0060
1035 // Pos 3.3 Transition Tube LHCVSR__0058
1036 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7);
1039 shRB24B1TTF->DefineSection(0, z, 6.30/2., 11.16/2.);
1041 shRB24B1TTF->DefineSection(1, z, 6.30/2., 11.16/2.);
1042 shRB24B1TTF->DefineSection(2, z, 6.30/2., 9.3/2.);
1044 shRB24B1TTF->DefineSection(3, z, 6.30/2., 9.3/2.);
1046 shRB24B1TTF->DefineSection(4, z, 6.30/2., 6.7/2.);
1048 shRB24B1TTF->DefineSection(5, z, 6.30/2., 6.7/2.);
1051 shRB24B1TTF->DefineSection(6, z, 8.05/2., 8.45/2.);
1052 TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteel);
1054 voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z));
1059 // Pos 1 Rotable Flange LHCVFX__0031
1060 // Pos 2 RF Screen Tube LHCVC2U_0005
1061 // Pos 3 Shell LHCVC2U_0007
1062 // Pos 4 Extruded Shell LHCVC2U_0006
1063 // Pos 5 Feedthrough Tube LHCVC2U_0004
1064 // Pos 6 Tubulated Flange STDVFUHV0021
1065 // Pos 7 Fixed Flange LHCVFX__0032
1066 // Pos 8 Pumping Elements
1069 // Pos 1 Rotable Flange LHCVFX__0031
1070 // pos 7 Fixed Flange LHCVFX__0032
1073 const Float_t kRB24AIpML = 35.;
1075 TGeoVolume* voRB24AIpM = new TGeoVolume("voRB24AIpM", new TGeoTube(0., 10., kRB24AIpML/2.), kMedAir);
1076 voRB24AIpM->SetVisibility(0);
1080 // Flange 2 x 1.98 = 3.96
1082 //==========================
1084 // Overlap 2 * 0.90 = 1.80
1086 const Float_t kRB24IpRFD1 = 0.68; // Length of section 1
1087 const Float_t kRB24IpRFD2 = 0.30; // Length of section 2
1088 const Float_t kRB24IpRFD3 = 0.10; // Length of section 3
1089 const Float_t kRB24IpRFD4 = 0.35; // Length of section 4
1090 const Float_t kRB24IpRFD5 = 0.55; // Length of section 5
1092 const Float_t kRB24IpRFRo = 15.20/2.; // Flange outer radius
1093 const Float_t kRB24IpRFRi1 = 6.30/2.; // Flange inner radius section 1
1094 const Float_t kRB24IpRFRi2 = 6.00/2.; // Flange inner radius section 2
1095 const Float_t kRB24IpRFRi3 = 5.84/2.; // Flange inner radius section 3
1096 const Float_t kRB24IpRFRi4 = 6.00/2.; // Flange inner radius section 1
1097 const Float_t kRB24IpRFRi5 = 10.50/2.; // Flange inner radius section 2
1099 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9);
1101 shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo);
1103 shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo);
1105 shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo);
1106 shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo);
1108 shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo);
1109 shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo);
1111 shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo);
1112 shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo);
1114 shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo);
1116 TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel);
1119 // Pos 2 RF Screen Tube LHCVC2U_0005
1124 Float_t kRB24IpSTTL = 32.84; // Total length of the tube
1125 Float_t kRB24IpSTTRi = 5.80/2.; // Inner Radius
1126 Float_t kRB24IpSTTRo = 6.00/2.; // Outer Radius
1127 TGeoVolume* voRB24IpSTT = new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL/2.), kMedSteel);
1129 Float_t kRB24IpSTCL = 0.4; // Lenth of the crochet detail
1130 // Length of the screen
1131 Float_t kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL;
1132 // Rel. position of the screen
1133 Float_t kRB24IpSTSZ = 7.00 + kRB24IpSTCL;
1134 TGeoVolume* voRB24IpSTS = new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL/2.), kMedSteel);
1136 TGeoVolume* voRB24IpSTV = new TGeoVolume("RB24IpSTV", new TGeoTube(0., kRB24IpSTTRi, kRB24AIpML/2.), kMedVac);
1138 voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL/2. + kRB24IpSTSL/2.));
1142 Float_t kRB24IpSTCRi = kRB24IpSTTRo + 0.25;
1144 Float_t kRB24IpSTCRo = kRB24IpSTTRo + 0.35;
1145 // Length of 1stsection
1146 Float_t kRB24IpSTCL1 = 0.15;
1147 // Length of 2nd section
1148 Float_t kRB24IpSTCL2 = 0.15;
1149 // Length of 3rd section
1150 Float_t kRB24IpSTCL3 = 0.10;
1151 // Rel. position of 1st Crochet
1154 TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5);
1156 shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1158 shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1159 shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1161 shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1163 shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001);
1164 TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel);
1166 // Pos 3 Shell LHCVC2U_0007
1167 // Pos 4 Extruded Shell LHCVC2U_0006
1168 Float_t kRB24IpShellL = 4.45; // Length of the Shell
1169 Float_t kRB24IpShellD = 0.10; // Wall thickness of the shell
1170 Float_t kRB24IpShellCTRi = 6.70/2.; // Inner radius of the connection tube
1171 Float_t kRB24IpShellCTL = 1.56; // Length of the connection tube
1172 Float_t kRB24IpShellCARi = 17.80/2.; // Inner radius of the cavity
1173 Float_t kRB24IpShellCCRo = 18.20/2.; // Inner radius at the centre
1175 TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7);
1177 shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1178 z0 += kRB24IpShellCTL;
1179 shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1180 shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD);
1181 z0 += kRB24IpShellD;
1182 shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1183 z0 = kRB24IpShellL - kRB24IpShellD;
1184 shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1185 shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1187 shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1188 TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel);
1190 TGeoPcon* shRB24IpShellM = MakeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi , 13);
1193 for (Int_t i = 0; i < 6; i++) {
1194 z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5-i);
1195 Float_t rmin = shRB24IpShellM->GetRmin(5-i);
1196 Float_t rmax = shRB24IpShellM->GetRmax(5-i);
1197 shRB24IpShellM->DefineSection(7+i, z, rmin, rmax);
1200 TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac);
1201 voRB24IpShellM->SetVisibility(0);
1202 voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity);
1203 voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180));
1205 // Pos 8 Pumping Elements
1208 TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54/2.), kMedSteel);
1209 Float_t kRB24IpPEAR = 5.5;
1211 for (Int_t i = 0; i < 15; i++) {
1212 Float_t phi = Float_t(i) * 24.;
1213 Float_t x = kRB24IpPEAR * TMath::Cos(kDegRad * phi);
1214 Float_t y = kRB24IpPEAR * TMath::Sin(kDegRad * phi);
1215 voRB24IpShellM->AddNode(voRB24IpPE, i+1, new TGeoTranslation(x, y, kRB24IpShellL));
1222 // Here we could add some Ti strips
1224 // Postioning of elements
1225 voRB24AIpM->AddNode(voRB24IpRF, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2.));
1226 voRB24AIpM->AddNode(voRB24IpRF, 2, new TGeoCombiTrans (0., 0., +kRB24AIpML/2., rot180));
1227 voRB24AIpM->AddNode(voRB24IpSTT, 1, new TGeoTranslation(0., 0., 0.));
1228 voRB24AIpM->AddNode(voRB24IpSTV, 1, new TGeoTranslation(0., 0., 0.));
1229 voRB24AIpM->AddNode(voRB24IpShellM, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2. + 8.13));
1230 voRB24AIpM->AddNode(voRB24IpSTC, 1, new TGeoTranslation(0., 0., 8.13 - kRB24AIpML/2.));
1231 voRB24AIpM->AddNode(voRB24IpSTC, 2, new TGeoCombiTrans (0., 0., 8.14 + 8.9 - kRB24AIpML/2., rot180));
1235 // VAC Series 47 DN 63 with manual actuator
1237 const Float_t kRB24ValveWz = 7.5;
1238 const Float_t kRB24ValveDN = 10.0/2.;
1240 // Body containing the valve plate
1242 const Float_t kRB24ValveBoWx = 15.6;
1243 const Float_t kRB24ValveBoWy = (21.5 + 23.1 - 5.);
1244 const Float_t kRB24ValveBoWz = 4.6;
1245 const Float_t kRB24ValveBoD = 0.5;
1247 TGeoVolume* voRB24ValveBoM =
1248 new TGeoVolume("RB24ValveBoM",
1249 new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedAir);
1250 voRB24ValveBoM->SetVisibility(0);
1251 TGeoVolume* voRB24ValveBo =
1252 new TGeoVolume("RB24ValveBo",
1253 new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedSteel);
1254 voRB24ValveBoM->AddNode(voRB24ValveBo, 1, gGeoIdentity);
1258 TGeoVolume* voRB24ValveBoI = new TGeoVolume("RB24ValveBoI",
1259 new TGeoBBox( kRB24ValveBoWx/2. - kRB24ValveBoD,
1260 kRB24ValveBoWy/2. - kRB24ValveBoD/2.,
1261 kRB24ValveBoWz/2. - kRB24ValveBoD),
1263 voRB24ValveBo->AddNode(voRB24ValveBoI, 1, new TGeoTranslation(0., kRB24ValveBoD/2., 0.));
1265 // Opening and Flanges
1266 const Float_t kRB24ValveFlRo = 18./2.;
1267 const Float_t kRB24ValveFlD = 1.45;
1268 TGeoVolume* voRB24ValveBoA = new TGeoVolume("RB24ValveBoA",
1269 new TGeoTube(0., kRB24ValveDN/2., kRB24ValveBoD/2.), kMedVac);
1270 voRB24ValveBo->AddNode(voRB24ValveBoA, 1, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, -kRB24ValveBoWz/2. + kRB24ValveBoD/2.));
1271 voRB24ValveBo->AddNode(voRB24ValveBoA, 2, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, +kRB24ValveBoWz/2. - kRB24ValveBoD/2.));
1273 TGeoVolume* voRB24ValveFl = new TGeoVolume("RB24ValveFl", new TGeoTube(kRB24ValveDN/2., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedSteel);
1274 TGeoVolume* voRB24ValveFlI = new TGeoVolume("RB24ValveFlI", new TGeoTube(0., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedVac);
1275 voRB24ValveFlI->AddNode(voRB24ValveFl, 1, gGeoIdentity);
1279 const Float_t kRB24ValveAFlWx = 18.9;
1280 const Float_t kRB24ValveAFlWy = 5.0;
1281 const Float_t kRB24ValveAFlWz = 7.7;
1282 TGeoVolume* voRB24ValveAFl = new TGeoVolume("RB24ValveAFl", new TGeoBBox(kRB24ValveAFlWx/2., kRB24ValveAFlWy/2., kRB24ValveAFlWz/2.), kMedSteel);
1285 const Float_t kRB24ValveATRo = 9.7/2.;
1286 const Float_t kRB24ValveATH = 16.6;
1287 TGeoVolume* voRB24ValveAT = new TGeoVolume("RB24ValveAT", new TGeoTube(kRB24ValveATRo - 2. * kRB24ValveBoD,kRB24ValveATRo, kRB24ValveATH/2.),
1290 // Manual Actuator (my best guess)
1291 TGeoVolume* voRB24ValveMA1 = new TGeoVolume("RB24ValveMA1", new TGeoCone(2.5/2., 0., 0.5, 4.5, 5.), kMedSteel);
1292 TGeoVolume* voRB24ValveMA2 = new TGeoVolume("RB24ValveMA2", new TGeoTorus(5., 0., 1.25), kMedSteel);
1293 TGeoVolume* voRB24ValveMA3 = new TGeoVolume("RB24ValveMA3", new TGeoTube (0., 1.25, 2.5), kMedSteel);
1297 // Position all volumes
1299 TGeoVolumeAssembly* voRB24ValveMo = new TGeoVolumeAssembly("RB24ValveMo");
1300 voRB24ValveMo->AddNode(voRB24ValveFl, 1, new TGeoTranslation(0., 0., - 7.5/2. + kRB24ValveFlD/2.));
1301 voRB24ValveMo->AddNode(voRB24ValveFl, 2, new TGeoTranslation(0., 0., + 7.5/2. - kRB24ValveFlD/2.));
1303 voRB24ValveMo->AddNode(voRB24ValveBoM, 1, new TGeoTranslation(0., y0 + kRB24ValveBoWy/2., 0.));
1304 y0 += kRB24ValveBoWy;
1305 voRB24ValveMo->AddNode(voRB24ValveAFl, 1, new TGeoTranslation(0., y0 + kRB24ValveAFlWy/2., 0.));
1306 y0 += kRB24ValveAFlWy;
1307 voRB24ValveMo->AddNode(voRB24ValveAT, 1, new TGeoCombiTrans(0., y0 + kRB24ValveATH/2., 0., rotyz));
1308 y0 += kRB24ValveATH;
1309 voRB24ValveMo->AddNode(voRB24ValveMA1, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz));
1311 voRB24ValveMo->AddNode(voRB24ValveMA2, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz));
1313 voRB24ValveMo->AddNode(voRB24ValveMA3, 1, new TGeoCombiTrans(5./TMath::Sqrt(2.), y0 + 5.0/2., 5./TMath::Sqrt(2.), rotyz));
1315 // Warm Module Type VMABC
1321 // Central Piece 11.50
1324 //===================================
1327 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1328 // Pos 2 Trans. Tube Flange LHCVSR__0062
1329 // Pos 3 RF Contact D63 LHCVSR__0057
1330 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
1331 // [Pos 5 Tension spring LHCVSR__00239]
1334 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1335 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014
1338 const Float_t kRB24VMABCRBT1Ri = 10.0/2.;
1339 const Float_t kRB24VMABCRBT1Ro = 10.3/2.;
1340 const Float_t kRB24VMABCRBT1L = 11.5;
1341 const Float_t kRB24VMABCRBT1L2 = 8.;
1342 const Float_t kRB24VMABCL = 28.;
1344 TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.);
1345 shRB24VMABCRBT1->SetName("RB24VMABCRBT1");
1346 TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.);
1347 shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o");
1348 TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L/2.);
1349 shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2");
1350 // Lower inforcement
1351 TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume("RB24VMABCRBT12",
1352 new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2/2., 220., 320.)
1356 const Float_t kRB24VMABCRBT2Ri = 6.0/2.;
1357 const Float_t kRB24VMABCRBT2Ro = 6.3/2.;
1358 const Float_t kRB24VMABCRBF2Ro = 11.4/2.;
1359 const Float_t kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding
1360 const Float_t kRB24VMABCRBF2L = 1.75;
1361 TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L/2.);
1362 shRB24VMABCRBT2->SetName("RB24VMABCRBT2");
1363 TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L/2. + 2.);
1364 shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i");
1365 TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L/2., 0., 7.2 - kRB24VMABCRBT1L/2. , rotxz);
1366 tRBT2->SetName("tRBT2");
1367 tRBT2->RegisterYourself();
1368 TGeoCompositeShape* shRB24VMABCRBT2c = new TGeoCompositeShape("shRB24VMABCRBT2c","RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o");
1369 TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteel);
1371 // Pos 1.4 Flange DN63 LHCVBU__0008
1372 TGeoVolume* voRB24VMABCRBF2 = new TGeoVolume("RB24VMABCRBF2",
1373 new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel);
1374 // DN63 Blank Flange (my best guess)
1375 TGeoVolume* voRB24VMABCRBF2B = new TGeoVolume("RB24VMABCRBF2B",
1376 new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel);
1379 const Float_t kRB24VMABCRBT3Ri = 3.5/2.;
1380 const Float_t kRB24VMABCRBT3Ro = 3.8/2.;
1381 const Float_t kRB24VMABCRBF3Ro = 7.0/2.;
1382 const Float_t kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding
1383 const Float_t kRB24VMABCRBF3L = 1.27;
1384 TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L/2);
1385 shRB24VMABCRBT3->SetName("RB24VMABCRBT3");
1386 TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L/2. + 2.);
1387 shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i");
1388 TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz);
1389 tRBT3->SetName("tRBT3");
1390 tRBT3->RegisterYourself();
1391 TGeoCompositeShape* shRB24VMABCRBT3c = new TGeoCompositeShape("shRB24VMABCRBT3c","RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o");
1392 TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel);
1394 // Pos 1.4 Flange DN35 LHCVBU__0007
1395 TGeoVolume* voRB24VMABCRBF3 = new TGeoVolume("RB24VMABCRBF3",
1396 new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L/2.), kMedSteel);
1399 const Float_t kRB24VMABCRBT4Ri = 6.0/2.;
1400 const Float_t kRB24VMABCRBT4Ro = 6.4/2.;
1401 const Float_t kRB24VMABCRBT4L = 6.6;
1402 TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L/2.);
1403 shRB24VMABCRBT4->SetName("RB24VMABCRBT4");
1404 TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0.,-11.+kRB24VMABCRBT4L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz);
1405 tRBT4->SetName("tRBT4");
1406 tRBT4->RegisterYourself();
1407 TGeoCompositeShape* shRB24VMABCRBT4c = new TGeoCompositeShape("shRB24VMABCRBT4c","RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2");
1408 TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteel);
1409 TGeoCompositeShape* shRB24VMABCRB = new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)");
1410 TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteel);
1413 const Float_t kRB24VMABCRBBx = 16.0;
1414 const Float_t kRB24VMABCRBBy = 1.5;
1415 const Float_t kRB24VMABCRBBz = 15.0;
1417 // Relative position of tubes
1418 const Float_t kRB24VMABCTz = 7.2;
1419 // Relative position of plate
1420 const Float_t kRB24VMABCPz = 3.6;
1421 const Float_t kRB24VMABCPy = -12.5;
1423 TGeoVolume* voRB24VMABCRBP = new TGeoVolume("RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx/2., kRB24VMABCRBBy/2., kRB24VMABCRBBz/2.), kMedSteel);
1425 // Pirani Gauge (my best guess)
1427 TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15);
1430 shRB24VMABCPirani->DefineSection( 0, z, 0.8 , kRB24VMABCRBF3Ro);
1431 z += kRB24VMABCRBF3L; // 1.3
1432 shRB24VMABCPirani->DefineSection( 1, z, 0.8 , kRB24VMABCRBF3Ro);
1433 shRB24VMABCPirani->DefineSection( 2, z, 0.8 , 1.0);
1436 shRB24VMABCPirani->DefineSection( 3, z, 0.8 , 1.0);
1438 shRB24VMABCPirani->DefineSection( 4, z, 0.8 , 1.75);
1440 shRB24VMABCPirani->DefineSection( 5, z, 0.8 , 1.75);
1441 shRB24VMABCPirani->DefineSection( 6, z, 0.8 , 1.0);
1443 shRB24VMABCPirani->DefineSection( 7, z, 0.8 , 1.0);
1444 shRB24VMABCPirani->DefineSection( 8, z, 0.8 , 2.5);
1446 shRB24VMABCPirani->DefineSection( 9, z, 0.80, 2.50);
1447 shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75);
1449 shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75);
1450 shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75);
1452 shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75);
1453 shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75);
1455 shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75);
1456 TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteel);
1463 // Positioning of elements
1464 TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB");
1466 voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity);
1468 voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1, new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy /2.,
1469 kRB24VMABCRBBz/2. - kRB24VMABCRBT1L/2. + kRB24VMABCPz));
1471 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity);
1473 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz));
1474 // Blank Flange Tube 2
1475 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy- kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz));
1477 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity);
1479 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L/2., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz));
1481 voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1, new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz));
1483 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity);
1485 voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L2/2. - kRB24VMABCRBT1L/2. + 2.8));
1488 // Pos 1.3 Bellows with end part LHCVBU__0002
1491 // Connection tube inner r
1492 const Float_t kRB24VMABBEConTubeRin = 10.0/2.;
1493 // Connection tube outer r
1494 const Float_t kRB24VMABBEConTubeRou = 10.3/2.;
1495 // Connection tube length
1496 const Float_t kRB24VMABBEConTubeL1 = 0.9;
1497 const Float_t kRB24VMABBEConTubeL2 = 2.6;
1498 // const Float_t RB24VMABBEBellowL = kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 + kRB24B1BellowUndL;
1501 TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6);
1502 // Connection Tube and Flange
1504 shRB24VMABBEBellowM->DefineSection( 0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1505 z += kRB24VMABBEConTubeL1;
1506 shRB24VMABBEBellowM->DefineSection( 1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1507 shRB24VMABBEBellowM->DefineSection( 2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1508 z += kRB24B1BellowUndL;
1509 shRB24VMABBEBellowM->DefineSection( 3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1510 shRB24VMABBEBellowM->DefineSection( 4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1511 z += kRB24VMABBEConTubeL2;
1512 shRB24VMABBEBellowM->DefineSection( 5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1513 TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVac);
1514 voRB24VMABBEBellowM->SetVisibility(0);
1516 // Connection tube left
1517 TGeoVolume* voRB24VMABBECT1 = new TGeoVolume("RB24VMABBECT1",
1518 new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL1/2.),
1520 // Connection tube right
1521 TGeoVolume* voRB24VMABBECT2 = new TGeoVolume("RB24VMABBECT2",
1522 new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL2/2.),
1524 z = kRB24VMABBEConTubeL1/2.;
1525 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z));
1526 z += kRB24VMABBEConTubeL1/2.;
1527 z += kRB24B1BellowUndL/2.;
1528 voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z));
1529 z += kRB24B1BellowUndL/2.;
1530 z += kRB24VMABBEConTubeL2/2.;
1531 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z));
1532 z += kRB24VMABBEConTubeL2/2.;
1534 voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L/2.));
1536 // Pos 1.2 Rotable flange LHCVBU__0013[*]
1538 voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., - kRB24VMABCRBT1L/2. + 0.86, rot180));
1540 z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL +kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2;
1541 voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86));
1544 // Pos 2 Trans. Tube Flange LHCVSR__0062
1545 // Pos 2.1 Transition Tube LHCVSR__0063
1546 // Pos 2.2 Transition Flange LHCVSR__0060
1548 // Transition Tube with Flange
1549 TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7);
1551 shRB24VMABCTT->DefineSection(0, z, 6.3/2., 11.16/2.);
1553 shRB24VMABCTT->DefineSection(1, z, 6.3/2., 11.16/2.);
1554 shRB24VMABCTT->DefineSection(2, z, 6.3/2., 9.30/2.);
1556 shRB24VMABCTT->DefineSection(3, z, 6.3/2., 9.30/2.);
1557 shRB24VMABCTT->DefineSection(4, z, 6.3/2., 6.70/2.);
1558 z += (20.35 - 0.63);
1559 shRB24VMABCTT->DefineSection(5, z, 6.3/2., 6.7/2.);
1561 shRB24VMABCTT->DefineSection(6, z, 6.3/2., 6.7/2.);
1562 TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteel);
1563 voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., - kRB24VMABCRBT1L/2.-1.));
1565 // Pos 3 RF Contact D63 LHCVSR__0057
1566 // Pos 3.1 RF Contact Flange LHCVSR__0017
1568 TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6);
1569 const Float_t kRB24VMABCCTFlangeRin = 6.36/2.; // Inner radius
1570 const Float_t kRB24VMABCCTFlangeL = 1.30; // Length
1573 shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5/2.);
1575 shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5/2.);
1576 shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9/2.);
1578 shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9/2.);
1579 shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16/2.);
1581 shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16/2.);
1582 TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCu);
1584 // Pos 3.2 RF-Contact LHCVSR__0056
1586 TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4);
1587 const Float_t kRB24VMABCCTRin = 6.30/2.; // Inner radius
1588 const Float_t kRB24VMABCCTCRin = 7.29/2.; // Max. inner radius conical section
1589 const Float_t kRB24VMABCCTL = 11.88; // Length
1590 const Float_t kRB24VMABCCTSL = 10.48; // Length of straight section
1591 const Float_t kRB24VMABCCTd = 0.03; // Thickness
1593 shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd);
1594 z = kRB24VMABCCTL - kRB24VMABCCTSL;
1595 shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd);
1596 z = kRB24VMABCCTL - kRB24VMABCCTFlangeL;
1597 shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1599 shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1601 TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCu);
1603 TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT");
1604 voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity);
1605 voRB24VMABRFCT->AddNode( voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL));
1607 z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.;
1608 voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z));
1612 // Assembling RB24/1
1614 TGeoVolumeAssembly* voRB24 = new TGeoVolumeAssembly("RB24");
1615 // Cu Tube with two simplified flanges
1616 voRB24->AddNode(voRB24CuTubeM, 1, gGeoIdentity);
1617 voRB24->AddNode(voRB24CuTubeA, 1, gGeoIdentity);
1618 z = - kRB24CuTubeL/2 + kRB24CuTubeFL/2.;
1619 voRB24->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z));
1620 z = + kRB24CuTubeL/2 - kRB24CuTubeFL/2.;
1621 voRB24->AddNode(voRB24CuTubeF, 2, new TGeoTranslation(0., 0., z));
1622 // VMABC close to compensator magnet
1623 z = - kRB24CuTubeL/2. - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.;
1625 voRB24->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1628 voRB24->AddNode(voRB24B1BellowM, 1, new TGeoTranslation(0., 0., z));
1629 z += (kRB24B1L + kRB24AIpML/2.);
1631 voRB24->AddNode(voRB24AIpM, 1, new TGeoTranslation(0., 0., z));
1632 z += (kRB24AIpML/2. + kRB24ValveWz/2.);
1634 voRB24->AddNode(voRB24ValveMo, 1, new TGeoTranslation(0., 0., z));
1635 z += (kRB24ValveWz/2.+ kRB24VMABCRBT1L/2. + 1.);
1636 // VMABC close to forward detectors
1637 voRB24->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1641 // Copper Tube RB24/2
1642 const Float_t kRB242CuTubeL = 330.0;
1644 TGeoVolume* voRB242CuTubeM = new TGeoVolume("voRB242CuTubeM",
1645 new TGeoTube(0., kRB24CuTubeRo, kRB242CuTubeL/2.), kMedVac);
1646 voRB24CuTubeM->SetVisibility(0);
1647 TGeoVolume* voRB242CuTube = new TGeoVolume("voRB242CuTube",
1648 new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB242CuTubeL/2.), kMedCu);
1649 voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity);
1652 TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242");
1653 voRB242->AddNode(voRB242CuTube, 1, gGeoIdentity);
1654 z = - kRB242CuTubeL/2 + kRB24CuTubeFL/2.;
1655 voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z));
1656 z = + kRB242CuTubeL/2 - kRB24CuTubeFL/2.;
1657 voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z));
1658 z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL/2.;
1659 voRB24->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z));
1663 // Copper Tube RB24/3
1664 const Float_t kRB243CuTubeL = 303.35;
1666 TGeoVolume* voRB243CuTubeM = new TGeoVolume("voRB243CuTubeM",
1667 new TGeoTube(0., kRB24CuTubeRo, kRB243CuTubeL/2.), kMedVac);
1668 voRB24CuTubeM->SetVisibility(0);
1669 TGeoVolume* voRB243CuTube = new TGeoVolume("voRB243CuTube",
1670 new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB243CuTubeL/2.), kMedCu);
1671 voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity);
1674 TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243");
1675 TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A");
1677 voRB243A->AddNode(voRB243CuTube, 1, gGeoIdentity);
1678 z = - kRB243CuTubeL/2 + kRB24CuTubeFL/2.;
1679 voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z));
1680 z = + kRB243CuTubeL/2 - kRB24CuTubeFL/2.;
1681 voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z));
1682 z = + kRB243CuTubeL/2;
1683 voRB243A->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z));
1685 z = - kRB243CuTubeL/2. - kRB24B1L;
1686 voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z));
1687 z = - (1.5 * kRB243CuTubeL + 2. * kRB24B1L);
1688 voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z));
1690 z = - 2. * (kRB243CuTubeL + kRB24B1L) - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.;
1691 voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1693 z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL;
1694 voRB24->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z));
1699 top->AddNode(voRB24, 1, new TGeoCombiTrans(0., 0., kRB24CuTubeL/2 + 88.5 + 400., rot180));
1703 ////////////////////////////////////////////////////////////////////////////////
1705 // The Absorber Vacuum system //
1707 ////////////////////////////////////////////////////////////////////////////////
1709 // Rotable Flange starts at: 82.00 cm from IP
1710 // Length of rotable flange section: 10.68 cm
1712 // Length of straight section 207.21 cm
1713 // =======================================================================
1714 // 299.97 cm [0.03 cm missing ?]
1715 // Length of opening cone 252.09 cm
1717 // Length of compensator 30.54 cm
1719 // Length of fixed flange 2.13 - 0.97 1.16 cm
1720 // =======================================================================
1721 // 584.06 cm [584.80 installed] [0.74 cm missing]
1723 // Length of split flange 2.13 - 1.2 0.93 cm
1725 // Length of fixed point section 16.07 cm
1727 // Length of opening cone 629.20 cm
1729 // Kength of the compensator 41.70 cm
1731 // Length of fixed flange 2.99 - 1.72 1.27 cm
1732 // =================================================
1733 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1736 // Length of split flange 2.13 - 1.2 0.93 cm
1738 // Length of fixed point section 16.07 cm
1740 // Length of opening cone 629.20 cm
1742 // Length of closing cone
1744 // Lenth of straight section
1745 // Kength of the compensator 41.70 cm
1747 // Length of fixed flange 2.99 - 1.72 1.27 cm
1748 // =================================================
1749 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1751 ///////////////////////////////////////////
1754 // Drawing LHCV2a_0050 [as installed] //
1755 // Drawing LHCV2a_0008 //
1756 // Drawing LHCV2a_0001 //
1757 ///////////////////////////////////////////
1758 // Pos1 Vacuum Tubes LHCVC2A__0010
1759 // Pos2 Compensator LHCVC2A__0064
1760 // Pos3 Rotable Flange LHCVFX___0016
1761 // Pos4 Fixed Flange LHCVFX___0006
1762 // Pos5 Bellow Tooling LHCVFX___0003
1766 ///////////////////////////////////
1767 // RB26/1-2 Vacuum Tubes //
1768 // Drawing LHCVC2a_0010 //
1769 ///////////////////////////////////
1770 const Float_t kRB26s12TubeL = 459.45; // 0.15 cm added for welding
1772 // Add 1 cm on outer diameter for insulation
1774 TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 5);
1775 // Section 1: straight section
1776 shRB26s12Tube->DefineSection(0, 0.00, 5.84/2., 6.00/2.);
1777 shRB26s12Tube->DefineSection(1, 207.21, 5.84/2., 6.00/2.);
1778 // Section 2: 0.72 deg opening cone
1779 shRB26s12Tube->DefineSection(2, 207.21, 5.84/2., 6.14/2.);
1780 shRB26s12Tube->DefineSection(3, 452.30, 12.00/2., 12.30/2.);
1781 shRB26s12Tube->DefineSection(4, kRB26s12TubeL, 12.00/2., 12.30/2.);
1782 TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteel);
1783 // Add the insulation layer
1784 TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", MakeInsulationFromTemplate(shRB26s12Tube), kMedInsu);
1785 voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity);
1788 TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", MakeMotherFromTemplate(shRB26s12Tube), kMedVac);
1789 voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity);
1793 ///////////////////////////////////
1794 // RB26/2 Axial Compensator //
1795 // Drawing LHCVC2a_0064 //
1796 ///////////////////////////////////
1797 const Float_t kRB26s2CompL = 30.65; // Length of the compensator
1798 const Float_t kRB26s2BellowRo = 14.38/2.; // Bellow outer radius [Pos 1]
1799 const Float_t kRB26s2BellowRi = 12.12/2.; // Bellow inner radius [Pos 1]
1800 const Int_t kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1]
1801 const Float_t kRB26s2BellowUndL = 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?]
1802 const Float_t kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1]
1803 const Float_t kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
1805 const Float_t kRB26s2PlieR =
1806 (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2PlieThickness +
1807 (2. * kRB26s2NumberOfPlies - 2.) * kRB26s2PlieThickness) / (4. * kRB26s2NumberOfPlies - 2.);
1808 const Float_t kRB26s2CompTubeInnerR = 12.00/2.; // Connection tubes inner radius [Pos 2 + 3]
1809 const Float_t kRB26s2CompTubeOuterR = 12.30/2.; // Connection tubes outer radius [Pos 2 + 3]
1810 const Float_t kRB26s2WeldingTubeLeftL = 9.00/2.; // Left connection tube half length [Pos 2]
1811 const Float_t kRB26s2WeldingTubeRightL = 11.65/2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding]
1812 const Float_t kRB26s2RingOuterR = 18.10/2.; // Ring inner radius [Pos 4]
1813 const Float_t kRB26s2RingL = 0.40/2.; // Ring half length [Pos 4]
1814 const Float_t kRB26s2RingZ = 6.50 ; // Ring z-position [Pos 4]
1815 const Float_t kRB26s2ProtOuterR = 18.20/2.; // Protection tube outer radius [Pos 5]
1816 const Float_t kRB26s2ProtL = 15.00/2.; // Protection tube half length [Pos 5]
1817 const Float_t kRB26s2ProtZ = 6.70 ; // Protection tube z-position [Pos 5]
1822 TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6);
1823 shRB26s2Compensator->DefineSection( 0, 0.0, 0., kRB26s2CompTubeOuterR);
1824 shRB26s2Compensator->DefineSection( 1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR);
1825 shRB26s2Compensator->DefineSection( 2, kRB26s2RingZ, 0., kRB26s2ProtOuterR);
1826 shRB26s2Compensator->DefineSection( 3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR);
1827 shRB26s2Compensator->DefineSection( 4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR);
1828 shRB26s2Compensator->DefineSection( 5, kRB26s2CompL , 0., kRB26s2CompTubeOuterR);
1829 TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVac);
1835 TGeoVolume* voRB26s2Bellow = new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL/2.), kMedVac);
1837 // Upper part of the undulation
1839 TGeoTorus* shRB26s2PlieTorusU = new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1840 shRB26s2PlieTorusU->SetName("RB26s2TorusU");
1841 TGeoTube* shRB26s2PlieTubeU = new TGeoTube (kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR);
1842 shRB26s2PlieTubeU->SetName("RB26s2TubeU");
1843 TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU");
1845 TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteel);
1847 // Lower part of the undulation
1848 TGeoTorus* shRB26s2PlieTorusL = new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1849 shRB26s2PlieTorusL->SetName("RB26s2TorusL");
1850 TGeoTube* shRB26s2PlieTubeL = new TGeoTube (kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR);
1851 shRB26s2PlieTubeL->SetName("RB26s2TubeL");
1852 TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL");
1854 TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteel);
1857 // Connection between upper and lower part of undulation
1858 TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume("RB26s2PlieConn1",
1859 new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR,
1860 kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteel);
1863 TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle");
1864 z0 = - kRB26s2PlieThickness / 2.;
1865 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1 , new TGeoTranslation(0., 0., z0));
1866 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1867 voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1 , new TGeoTranslation(0., 0., z0));
1868 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1869 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2 , new TGeoTranslation(0., 0., z0));
1870 z0 += kRB26s2PlieR - kRB26s2PlieThickness;
1871 voRB26s2Wiggle->AddNode(voRB26s2WiggleL , 1 , new TGeoTranslation(0., 0., z0));
1872 // Positioning of the volumes
1873 z0 = - kRB26s2BellowUndL/2.+ kRB26s2ConnectionPlieR;
1874 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1875 z0 += kRB26s2ConnectionPlieR;
1876 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
1877 for (Int_t iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
1878 Float_t zpos = z0 + iw * zsh;
1879 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
1882 voRB26s2Compensator->AddNode(voRB26s2Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL/2.));
1885 // [Pos 2] Left Welding Tube
1887 TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL);
1888 TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteel);
1889 voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL));
1891 // [Pos 3] Right Welding Tube
1893 TGeoTube* shRB26s2CompRightTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL);
1894 TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteel);
1895 voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL));
1899 TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL);
1900 TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteel);
1901 voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL));
1904 // [Pos 5] Outer Protecting Tube
1906 TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL);
1907 TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteel);
1908 voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL));
1910 ///////////////////////////////////
1911 // Rotable Flange //
1912 // Drawing LHCVFX_0016 //
1913 ///////////////////////////////////
1914 const Float_t kRB26s1RFlangeTubeRi = 5.84/2. ; // Tube inner radius
1915 const Float_t kRB26s1RFlangeTubeRo = 6.00/2. ; // Tube outer radius
1917 // Pos 1 Clamp Ring LHCVFX__0015
1918 const Float_t kRB26s1RFlangeCrL = 1.40 ; // Lenth of the clamp ring
1919 const Float_t kRB26s1RFlangeCrRi1 = 6.72/2. ; // Ring inner radius section 1
1920 const Float_t kRB26s1RFlangeCrRi2 = 6.06/2. ; // Ring inner radius section 2
1921 const Float_t kRB26s1RFlangeCrRo = 8.60/2. ; // Ring outer radius
1922 const Float_t kRB26s1RFlangeCrD = 0.800 ; // Width section 1
1924 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4);
1926 shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1927 z0 += kRB26s1RFlangeCrD;
1928 shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1929 shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1930 z0 = kRB26s1RFlangeCrL;
1931 shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1932 TGeoVolume* voRB26s1RFlangeCr =
1933 new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteel);
1935 // Pos 2 Insert LHCVFX__0015
1936 const Float_t kRB26s1RFlangeIsL = 4.88 ; // Lenth of the insert
1937 const Float_t kRB26s1RFlangeIsR = 6.70/2. ; // Ring radius
1938 const Float_t kRB26s1RFlangeIsD = 0.80 ; // Ring Width
1940 TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4);
1942 shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1943 z0 += kRB26s1RFlangeIsD;
1944 shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1945 shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1946 z0 = kRB26s1RFlangeIsL;
1947 shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1948 TGeoVolume* voRB26s1RFlangeIs =
1949 new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteel);
1950 // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap)
1951 // Pos 3 Fixed Point Section LHCVC2A_0021
1952 const Float_t kRB26s1RFlangeFpL = 5.88 ; // Length of the fixed point section (0.08 cm added for welding)
1953 const Float_t kRB26s1RFlangeFpZ = 3.82 ; // Position of the ring
1954 const Float_t kRB26s1RFlangeFpD = 0.59 ; // Width of the ring
1955 const Float_t kRB26s1RFlangeFpR = 7.00/2. ; // Radius of the ring
1957 TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6);
1959 shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1960 z0 += kRB26s1RFlangeFpZ;
1961 shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1962 shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1963 z0 += kRB26s1RFlangeFpD;
1964 shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1965 shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1966 z0 = kRB26s1RFlangeFpL;
1967 shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1968 TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteel);
1970 // Put everything in a mother volume
1971 TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8);
1973 shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo);
1974 z0 += kRB26s1RFlangeCrL;
1975 shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo);
1976 shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo);
1977 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ;
1978 shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo);
1979 shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR);
1980 z0 += kRB26s1RFlangeFpD;
1981 shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR);
1982 shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo);
1983 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
1984 shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo);
1985 TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVac);
1987 voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity);
1988 voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity);
1989 voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL));
1991 ///////////////////////////////////
1993 // Drawing LHCVFX_0006 //
1994 ///////////////////////////////////
1995 const Float_t kRB26s2FFlangeL = 2.13; // Length of the flange
1996 const Float_t kRB26s2FFlangeD1 = 0.97; // Length of section 1
1997 const Float_t kRB26s2FFlangeD2 = 0.29; // Length of section 2
1998 const Float_t kRB26s2FFlangeD3 = 0.87; // Length of section 3
1999 const Float_t kRB26s2FFlangeRo = 17.15/2.; // Flange outer radius
2000 const Float_t kRB26s2FFlangeRi1 = 12.30/2.; // Flange inner radius section 1
2001 const Float_t kRB26s2FFlangeRi2 = 12.00/2.; // Flange inner radius section 2
2002 const Float_t kRB26s2FFlangeRi3 = 12.30/2.; // Flange inner radius section 3
2004 TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6);
2006 shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
2007 z0 += kRB26s2FFlangeD1;
2008 shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
2009 shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
2010 z0 += kRB26s2FFlangeD2;
2011 shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
2012 shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
2013 z0 += kRB26s2FFlangeD3;
2014 shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
2015 TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteel);
2017 TGeoVolume* voRB26s2FFlangeM = new TGeoVolume("RB26s2FFlangeM", MakeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVac);
2018 voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity);
2022 ////////////////////////////////////////
2025 // Drawing LHCV2a_0048 //
2026 // Drawing LHCV2a_0002 //
2027 ////////////////////////////////////////
2029 // Pos 1 Vacuum Tubes LHCVC2A__0003
2030 // Pos 2 Fixed Point LHCVFX___0005
2031 // Pos 3 Split Flange LHCVFX___0007
2032 // Pos 4 Fixed Flange LHCVFX___0004
2033 // Pos 5 Axial Compensator LHCVC2A__0065
2038 ///////////////////////////////////
2040 // Drawing LHCVC2A_0003 //
2041 ///////////////////////////////////
2042 const Float_t kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding
2043 const Float_t kRB26s3TubeR1 = 12./2.;
2044 const Float_t kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi());
2047 TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7);
2048 // Section 1: straight section
2049 shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
2050 shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
2051 // Section 2: 0.829 deg opening cone
2052 shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20);
2054 shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20);
2055 shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30);
2057 shRB26s3Tube->DefineSection(5, 622.20, 30.00/2., 30.60/2.);
2058 shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00/2., 30.60/2.);
2060 TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteel);
2061 // Add the insulation layer
2062 TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", MakeInsulationFromTemplate(shRB26s3Tube), kMedInsu);
2063 voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity);
2065 TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", MakeMotherFromTemplate(shRB26s3Tube), kMedVac);
2066 voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity);
2070 ///////////////////////////////////
2072 // Drawing LHCVFX_0005 //
2073 ///////////////////////////////////
2074 const Float_t kRB26s3FixedPointL = 16.37 ; // Length of the fixed point section (0.3 cm added for welding)
2075 const Float_t kRB26s3FixedPointZ = 9.72 ; // Position of the ring (0.15 cm added for welding)
2076 const Float_t kRB26s3FixedPointD = 0.595 ; // Width of the ring
2077 const Float_t kRB26s3FixedPointR = 13.30/2. ; // Radius of the ring
2078 const Float_t kRB26s3FixedPointRi = 12.00/2. ; // Inner radius of the tube
2079 const Float_t kRB26s3FixedPointRo1 = 12.30/2. ; // Outer radius of the tube (in)
2080 const Float_t kRB26s3FixedPointRo2 = 12.40/2. ; // Outer radius of the tube (out)
2081 const Float_t kRB26s3FixedPointDs = 1.5 ; // Width of straight section behind ring
2082 const Float_t kRB26s3FixedPointDc = 3.15 ; // Width of conical section behind ring (0.15 cm added for welding)
2084 TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8);
2086 shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2087 z0 += kRB26s3FixedPointZ;
2088 shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2089 shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2090 z0 += kRB26s3FixedPointD;
2091 shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2092 shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2093 z0 += kRB26s3FixedPointDs;
2094 shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2095 z0 += kRB26s3FixedPointDc;
2096 shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2097 z0 = kRB26s3FixedPointL;
2098 shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2099 TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteel);
2101 TGeoVolume* voRB26s3FixedPointM = new TGeoVolume("RB26s3FixedPointM", MakeMotherFromTemplate(shRB26s3FixedPoint), kMedVac);
2102 voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity);
2104 ///////////////////////////////////
2106 // Drawing LHCVFX_0005 //
2107 ///////////////////////////////////
2108 const Float_t kRB26s3SFlangeL = 2.13; // Length of the flange
2109 const Float_t kRB26s3SFlangeD1 = 0.57; // Length of section 1
2110 const Float_t kRB26s3SFlangeD2 = 0.36; // Length of section 2
2111 const Float_t kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3
2112 const Float_t kRB26s3SFlangeRo = 17.15/2.; // Flange outer radius
2113 const Float_t kRB26s3SFlangeRi1 = 12.30/2.; // Flange inner radius section 1
2114 const Float_t kRB26s3SFlangeRi2 = 12.00/2.; // Flange inner radius section 2
2115 const Float_t kRB26s3SFlangeRi3 = 12.30/2.; // Flange inner radius section 3
2117 TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6);
2119 shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2120 z0 += kRB26s3SFlangeD1;
2121 shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2122 shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2123 z0 += kRB26s3SFlangeD2;
2124 shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2125 shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2126 z0 += kRB26s3SFlangeD3;
2127 shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2128 TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteel);
2130 TGeoVolume* voRB26s3SFlangeM = new TGeoVolume("RB26s3SFlangeM", MakeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVac);
2131 voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity);
2133 ///////////////////////////////////
2134 // RB26/3 Fixed Flange //
2135 // Drawing LHCVFX___0004 //
2136 ///////////////////////////////////
2137 const Float_t kRB26s3FFlangeL = 2.99; // Length of the flange
2138 const Float_t kRB26s3FFlangeD1 = 1.72; // Length of section 1
2139 const Float_t kRB26s3FFlangeD2 = 0.30; // Length of section 2
2140 const Float_t kRB26s3FFlangeD3 = 0.97; // Length of section 3
2141 const Float_t kRB26s3FFlangeRo = 36.20/2.; // Flange outer radius
2142 const Float_t kRB26s3FFlangeRi1 = 30.60/2.; // Flange inner radius section 1
2143 const Float_t kRB26s3FFlangeRi2 = 30.00/2.; // Flange inner radius section 2
2144 const Float_t kRB26s3FFlangeRi3 = 30.60/2.; // Flange inner radius section 3
2146 TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6);
2148 shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2149 z0 += kRB26s3FFlangeD1;
2150 shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2151 shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2152 z0 += kRB26s3FFlangeD2;
2153 shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2154 shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2155 z0 += kRB26s3FFlangeD3;
2156 shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2157 TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteel);
2159 TGeoVolume* voRB26s3FFlangeM = new TGeoVolume("RB26s3FFlangeM", MakeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVac);
2160 voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity);
2164 ///////////////////////////////////
2165 // RB26/3 Axial Compensator //
2166 // Drawing LHCVC2a_0065 //
2167 ///////////////////////////////////
2168 const Float_t kRB26s3CompL = 42.0; // Length of the compensator (0.3 cm added for welding)
2169 const Float_t kRB26s3BellowRo = 34.00/2.; // Bellow outer radius [Pos 1]
2170 const Float_t kRB26s3BellowRi = 30.10/2.; // Bellow inner radius [Pos 1]
2171 const Int_t kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1]
2172 const Float_t kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1]
2173 const Float_t kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1]
2174 const Float_t kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2176 const Float_t kRB26s3PlieR =
2177 (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3PlieThickness +
2178 (2. * kRB26s3NumberOfPlies - 2.) * kRB26s3PlieThickness) / (4. * kRB26s3NumberOfPlies - 2.);
2181 // The welding tubes have 3 sections with different radii and 2 transition regions.
2182 // Section 1: connection to the outside
2183 // Section 2: commection to the bellow
2184 // Section 3: between 1 and 2
2185 const Float_t kRB26s3CompTubeInnerR1 = 30.0/2.; // Outer Connection tubes inner radius [Pos 4 + 3]
2186 const Float_t kRB26s3CompTubeOuterR1 = 30.6/2.; // Outer Connection tubes outer radius [Pos 4 + 3]
2187 const Float_t kRB26s3CompTubeInnerR2 = 29.4/2.; // Connection tubes inner radius [Pos 4 + 3]
2188 const Float_t kRB26s3CompTubeOuterR2 = 30.0/2.; // Connection tubes outer radius [Pos 4 + 3]
2189 const Float_t kRB26s3CompTubeInnerR3 = 30.6/2.; // Connection tubes inner radius at bellow [Pos 4 + 3]
2190 const Float_t kRB26s3CompTubeOuterR3 = 32.2/2.; // Connection tubes outer radius at bellow [Pos 4 + 3]
2192 const Float_t kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4]
2193 const Float_t kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4]
2194 const Float_t kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4]
2195 const Float_t kRB26s3WeldingTubeRightL1 = 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding)
2196 const Float_t kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3]
2198 const Float_t kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3]
2199 const Float_t kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3]
2203 const Float_t kRB26s3RingOuterR = 36.1/2.; // Ring inner radius [Pos 4]
2204 const Float_t kRB26s3RingL = 0.8/2.; // Ring half length [Pos 4]
2205 const Float_t kRB26s3RingZ = 3.7 ; // Ring z-position [Pos 4]
2206 const Float_t kRB26s3ProtOuterR = 36.2/2.; // Protection tube outer radius [Pos 2]
2207 const Float_t kRB26s3ProtL = 27.0/2.; // Protection tube half length [Pos 2]
2208 const Float_t kRB26s3ProtZ = 4.0 ; // Protection tube z-position [Pos 2]
2213 TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6);
2214 shRB26s3Compensator->DefineSection( 0, 0.0, 0., kRB26s3CompTubeOuterR1);
2215 shRB26s3Compensator->DefineSection( 1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1);
2216 shRB26s3Compensator->DefineSection( 2, kRB26s3RingZ, 0., kRB26s3ProtOuterR);
2217 shRB26s3Compensator->DefineSection( 3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR);
2218 shRB26s3Compensator->DefineSection( 4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1);
2219 shRB26s3Compensator->DefineSection( 5, kRB26s3CompL , 0., kRB26s3CompTubeOuterR1);
2220 TGeoVolume* voRB26s3Compensator =
2221 new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVac);
2227 TGeoVolume* voRB26s3Bellow = new TGeoVolume("RB26s3Bellow",
2228 new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, kRB26s3BellowUndL/2.), kMedVac);
2230 // Upper part of the undulation
2232 TGeoTorus* shRB26s3PlieTorusU = new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2233 shRB26s3PlieTorusU->SetName("RB26s3TorusU");
2234 TGeoTube* shRB26s3PlieTubeU = new TGeoTube (kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR);
2235 shRB26s3PlieTubeU->SetName("RB26s3TubeU");
2236 TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU");
2238 TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteel);
2240 // Lower part of the undulation
2241 TGeoTorus* shRB26s3PlieTorusL = new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2242 shRB26s3PlieTorusL->SetName("RB26s3TorusL");
2243 TGeoTube* shRB26s3PlieTubeL = new TGeoTube (kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR);
2244 shRB26s3PlieTubeL->SetName("RB26s3TubeL");
2245 TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL");
2247 TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteel);
2250 // Connection between upper and lower part of undulation
2251 TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume("RB26s3PlieConn1",
2252 new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR,
2253 kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteel);
2256 TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle");
2257 z0 = - kRB26s3PlieThickness / 2.;
2258 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1 , new TGeoTranslation(0., 0., z0));
2259 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2260 voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1 , new TGeoTranslation(0., 0., z0));
2261 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2262 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2 , new TGeoTranslation(0., 0., z0));
2263 z0 += kRB26s3PlieR - kRB26s3PlieThickness;
2264 voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1 , new TGeoTranslation(0., 0., z0));
2265 // Positioning of the volumes
2266 z0 = - kRB26s3BellowUndL/2.+ kRB26s3ConnectionPlieR;
2267 voRB26s3Bellow->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0));
2268 z0 += kRB26s3ConnectionPlieR;
2269 zsh = 4. * kRB26s3PlieR - 2. * kRB26s3PlieThickness;
2270 for (Int_t iw = 0; iw < kRB26s3NumberOfPlies; iw++) {
2271 Float_t zpos = z0 + iw * zsh;
2272 voRB26s3Bellow->AddNode(voRB26s3Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s3PlieThickness));
2275 voRB26s3Compensator->AddNode(voRB26s3Bellow, 1, new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + kRB26s3BellowUndL/2.));
2279 // [Pos 2] Outer Protecting Tube
2281 TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL);
2282 TGeoVolume* voRB26s3CompProtTube =
2283 new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteel);
2284 voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL));
2288 // [Pos 3] Right Welding Tube
2290 TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5);
2292 shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2293 z0 += kRB26s3WeldingTubeT2;
2294 shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2295 z0 += kRB26s3WeldingTubeRightL2;
2296 shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2297 z0 += kRB26s3WeldingTubeT1;
2298 shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2299 z0 += kRB26s3WeldingTubeRightL1;
2300 shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2302 TGeoVolume* voRB26s3CompRightTube =
2303 new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteel);
2304 voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0));
2307 // [Pos 4] Left Welding Tube
2309 TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5);
2311 shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2312 z0 += kRB26s3WeldingTubeLeftL1;
2313 shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2314 z0 += kRB26s3WeldingTubeT1;
2315 shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2316 z0 += kRB26s3WeldingTubeLeftL2;
2317 shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2318 z0 += kRB26s3WeldingTubeT2;
2319 shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2321 TGeoVolume* voRB26s3CompLeftTube =
2322 new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteel);
2323 voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity);
2327 TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL);
2328 TGeoVolume* voRB26s3CompRing =
2329 new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteel);
2330 voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL));
2334 ///////////////////////////////////////////
2337 // Drawing LHCV2a_0012 [as installed] //
2338 ////////////////////////////////////////////
2339 // Pos1 Vacuum Tubes LHCVC2A__0014
2340 // Pos2 Compensator LHCVC2A__0066
2341 // Pos3 Fixed Point Section LHCVC2A__0016
2342 // Pos4 Split Flange LHCVFX___0005
2343 // Pos5 RotableFlange LHCVFX___0009
2344 ////////////////////////////////////////////
2346 ///////////////////////////////////
2347 // RB26/4-5 Vacuum Tubes //
2348 // Drawing LHCVC2a_0014 //
2349 ///////////////////////////////////
2350 const Float_t kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding
2352 TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11);
2353 // Section 1: straight section
2354 shRB26s45Tube->DefineSection( 0, 0.00, 30.00/2., 30.60/2.);
2355 shRB26s45Tube->DefineSection( 1, 1.20, 30.00/2., 30.60/2.);
2356 shRB26s45Tube->DefineSection( 2, 1.20, 30.00/2., 30.80/2.);
2357 shRB26s45Tube->DefineSection( 3, 25.10, 30.00/2., 30.80/2.);
2358 // Section 2: 0.932 deg opening cone
2359 shRB26s45Tube->DefineSection( 4, 486.10, 45.00/2., 45.80/2.);
2360 // Section 3: straight section 4 mm
2361 shRB26s45Tube->DefineSection( 5, 512.10, 45.00/2., 45.80/2.);
2362 // Section 4: straight section 3 mm
2363 shRB26s45Tube->DefineSection( 6, 512.10, 45.00/2., 45.60/2.);
2364 shRB26s45Tube->DefineSection( 7, 527.70, 45.00/2., 45.60/2.);
2365 // Section 4: closing cone
2366 shRB26s45Tube->DefineSection( 8, 591.30, 10.00/2., 10.60/2.);
2367 shRB26s45Tube->DefineSection( 9, 591.89, 10.00/2., 10.30/2.);
2369 shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00/2., 10.30/2.);
2370 TGeoVolume* voRB26s45Tube =
2371 new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteel);
2373 TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", MakeMotherFromTemplate(shRB26s45Tube), kMedVac);
2374 voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity);
2378 ///////////////////////////////////
2379 // RB26/5 Axial Compensator //
2380 // Drawing LHCVC2a_0066 //
2381 ///////////////////////////////////
2382 const Float_t kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding)
2383 const Float_t kRB26s5BellowRo = 12.48/2.; // Bellow outer radius [Pos 1]
2384 const Float_t kRB26s5BellowRi = 10.32/2.; // Bellow inner radius [Pos 1]
2385 const Int_t kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1]
2386 const Float_t kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1]
2387 const Float_t kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1]
2388 const Float_t kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2389 const Float_t kRB26s5ConnectionR = 11.2/2.; // Bellow connection radius [Pos 1]
2391 const Float_t kRB26s5PlieR =
2392 (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5PlieThickness +
2393 (2. * kRB26s5NumberOfPlies - 2.) * kRB26s5PlieThickness) / (4. * kRB26s5NumberOfPlies - 2.);
2394 const Float_t kRB26s5CompTubeInnerR = 10.00/2.; // Connection tubes inner radius [Pos 2 + 3]
2395 const Float_t kRB26s5CompTubeOuterR = 10.30/2.; // Connection tubes outer radius [Pos 2 + 3]
2396 const Float_t kRB26s5WeldingTubeLeftL = 3.70/2.; // Left connection tube half length [Pos 2]
2397 const Float_t kRB26s5WeldingTubeRightL = 13.40/2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding)
2398 const Float_t kRB26s5RingInnerR = 11.2/2.; // Ring inner radius [Pos 4]
2399 const Float_t kRB26s5RingOuterR = 16.0/2.; // Ring inner radius [Pos 4]
2400 const Float_t kRB26s5RingL = 0.4/2.; // Ring half length [Pos 4]
2401 const Float_t kRB26s5RingZ = 14.97; // Ring z-position [Pos 4]
2402 const Float_t kRB26s5ProtOuterR = 16.2/2.; // Protection tube outer radius [Pos 5]
2403 const Float_t kRB26s5ProtL = 13.0/2.; // Protection tube half length [Pos 5]
2404 const Float_t kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5]
2405 const Float_t kRB26s5DetailZR = 11.3/2.; // Detail Z max radius
2410 TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8);
2411 shRB26s5Compensator->DefineSection( 0, 0.0, 0., kRB26s5CompTubeOuterR);
2412 shRB26s5Compensator->DefineSection( 1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR);
2413 shRB26s5Compensator->DefineSection( 2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR);
2414 shRB26s5Compensator->DefineSection( 3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR);
2415 shRB26s5Compensator->DefineSection( 4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR);
2416 shRB26s5Compensator->DefineSection( 5, kRB26s5CompL - 8., 0., kRB26s5DetailZR);
2417 shRB26s5Compensator->DefineSection( 6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR);
2418 shRB26s5Compensator->DefineSection( 7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR);
2419 TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVac);
2425 TGeoVolume* voRB26s5Bellow = new TGeoVolume("RB26s5Bellow",
2426 new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL/2.), kMedVac);
2428 // Upper part of the undulation
2430 TGeoTorus* shRB26s5PlieTorusU = new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2431 shRB26s5PlieTorusU->SetName("RB26s5TorusU");
2432 TGeoTube* shRB26s5PlieTubeU = new TGeoTube (kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR);
2433 shRB26s5PlieTubeU->SetName("RB26s5TubeU");
2434 TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU");
2436 TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteel);
2438 // Lower part of the undulation
2439 TGeoTorus* shRB26s5PlieTorusL = new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2440 shRB26s5PlieTorusL->SetName("RB26s5TorusL");
2441 TGeoTube* shRB26s5PlieTubeL = new TGeoTube (kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR);
2442 shRB26s5PlieTubeL->SetName("RB26s5TubeL");
2443 TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL");
2445 TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteel);
2448 // Connection between upper and lower part of undulation
2449 TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume("RB26s5PlieConn1",
2450 new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR,
2451 kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteel);
2454 TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle");
2455 z0 = - kRB26s5PlieThickness / 2.;
2456 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1 , new TGeoTranslation(0., 0., z0));
2457 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2458 voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1 , new TGeoTranslation(0., 0., z0));
2459 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2460 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2 , new TGeoTranslation(0., 0., z0));
2461 z0 += kRB26s5PlieR - kRB26s5PlieThickness;
2462 voRB26s5Wiggle->AddNode(voRB26s5WiggleL , 1 , new TGeoTranslation(0., 0., z0));
2463 // Positioning of the volumes
2464 z0 = - kRB26s5BellowUndL/2.+ kRB26s5ConnectionPlieR;
2465 voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2466 z0 += kRB26s5ConnectionPlieR;
2467 zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness;
2468 for (Int_t iw = 0; iw < kRB26s5NumberOfPlies; iw++) {
2469 Float_t zpos = z0 + iw * zsh;
2470 voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness));
2473 voRB26s5Compensator->AddNode(voRB26s5Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL/2.));
2476 // [Pos 2] Left Welding Tube
2478 TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3);
2480 shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2481 z0 += 2 * kRB26s5WeldingTubeLeftL - ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2482 shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2483 z0 += ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2484 shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR);
2485 TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteel);
2486 voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity);
2488 // [Pos 3] Right Welding Tube
2490 TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11);
2492 shRB26s5CompRightTube->DefineSection( 0, 0. , kRB26s5CompTubeInnerR + 0.22, 11.2/2.);
2493 shRB26s5CompRightTube->DefineSection( 1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2/2.);
2494 shRB26s5CompRightTube->DefineSection( 2, 0.22, kRB26s5CompTubeInnerR , 11.2/2. - 0.22);
2495 shRB26s5CompRightTube->DefineSection( 3, 0.44, kRB26s5CompTubeInnerR , 11.2/2.);
2496 shRB26s5CompRightTube->DefineSection( 4, 1.70, kRB26s5CompTubeInnerR , 11.2/2.);
2497 shRB26s5CompRightTube->DefineSection( 5, 2.10, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR);
2498 shRB26s5CompRightTube->DefineSection( 6, 2.80, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR);
2499 shRB26s5CompRightTube->DefineSection( 7, 2.80, kRB26s5CompTubeInnerR , 11.3/2.);
2500 shRB26s5CompRightTube->DefineSection( 8, 3.40, kRB26s5CompTubeInnerR , 11.3/2.);
2502 shRB26s5CompRightTube->DefineSection( 9, 3.50, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR);
2503 shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2505 TGeoVolume* voRB26s5CompRightTube =
2506 new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteel);
2507 voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1,
2508 new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL));
2512 TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL);
2513 TGeoVolume* voRB26s5CompRing =
2514 new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteel);
2515 voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL));
2518 // [Pos 5] Outer Protecting Tube
2520 TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL);
2521 TGeoVolume* voRB26s5CompProtTube =
2522 new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteel);
2523 voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL));
2525 ///////////////////////////////////////
2526 // RB26/4 Fixed Point Section //
2527 // Drawing LHCVC2a_0016 //
2528 ///////////////////////////////////////
2529 const Float_t kRB26s4TubeRi = 30.30/2. ; // Tube inner radius (0.3 cm added for welding)
2530 const Float_t kRB26s4TubeRo = 30.60/2. ; // Tube outer radius
2531 const Float_t kRB26s4FixedPointL = 12.63 ; // Length of the fixed point section
2532 const Float_t kRB26s4FixedPointZ = 10.53 ; // Position of the ring (0.15 added for welding)
2533 const Float_t kRB26s4FixedPointD = 0.595 ; // Width of the ring
2534 const Float_t kRB26s4FixedPointR = 31.60/2. ; // Radius of the ring
2536 TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6);
2538 shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2539 z0 += kRB26s4FixedPointZ;
2540 shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2541 shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2542 z0 += kRB26s4FixedPointD;
2543 shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2544 shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2545 z0 = kRB26s4FixedPointL;
2546 shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2547 TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteel);
2549 TGeoVolume* voRB26s4FixedPointM = new TGeoVolume("RB26s4FixedPointM", MakeMotherFromTemplate(shRB26s4FixedPoint), kMedVac);
2550 voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity);
2553 ///////////////////////////////////////
2554 // RB26/4 Split Flange //
2555 // Drawing LHCVFX__0005 //
2556 ///////////////////////////////////////
2557 const Float_t kRB26s4SFlangeL = 2.99; // Length of the flange
2558 const Float_t kRB26s4SFlangeD1 = 0.85; // Length of section 1
2559 const Float_t kRB26s4SFlangeD2 = 0.36; // Length of section 2
2560 const Float_t kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3
2561 const Float_t kRB26s4SFlangeRo = 36.20/2.; // Flange outer radius
2562 const Float_t kRB26s4SFlangeRi1 = 30.60/2.; // Flange inner radius section 1
2563 const Float_t kRB26s4SFlangeRi2 = 30.00/2.; // Flange inner radius section 2
2564 const Float_t kRB26s4SFlangeRi3 = 30.60/2.; // Flange inner radius section 3
2566 TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6);
2568 shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2569 z0 += kRB26s4SFlangeD1;
2570 shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2571 shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2572 z0 += kRB26s4SFlangeD2;
2573 shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2574 shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2575 z0 += kRB26s4SFlangeD3;
2576 shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2577 TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteel);
2579 TGeoVolume* voRB26s4SFlangeM = new TGeoVolume("RB26s4SFlangeM", MakeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVac);
2580 voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity);
2582 ///////////////////////////////////////
2583 // RB26/5 Rotable Flange //
2584 // Drawing LHCVFX__0009 //
2585 ///////////////////////////////////////
2586 const Float_t kRB26s5RFlangeL = 1.86; // Length of the flange
2587 const Float_t kRB26s5RFlangeD1 = 0.61; // Length of section 1
2588 const Float_t kRB26s5RFlangeD2 = 0.15; // Length of section 2
2589 const Float_t kRB26s5RFlangeD3 = 0.60; // Length of section 3
2590 const Float_t kRB26s5RFlangeD4 = 0.50; // Length of section 4
2591 const Float_t kRB26s5RFlangeRo = 15.20/2.; // Flange outer radius
2592 const Float_t kRB26s5RFlangeRi1 = 10.30/2.; // Flange inner radius section 1
2593 const Float_t kRB26s5RFlangeRi2 = 10.00/2.; // Flange inner radius section 2
2594 const Float_t kRB26s5RFlangeRi3 = 10.30/2.; // Flange inner radius section 3
2595 const Float_t kRB26s5RFlangeRi4 = 10.50/2.; // Flange inner radius section 4
2598 TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8);
2600 shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2601 z0 += kRB26s5RFlangeD4;
2602 shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2603 shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2604 z0 += kRB26s5RFlangeD3;
2605 shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2606 shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2607 z0 += kRB26s5RFlangeD2;
2608 shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2609 shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2610 z0 += kRB26s5RFlangeD1;
2611 shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2612 TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteel);
2614 TGeoVolume* voRB26s5RFlangeM = new TGeoVolume("RB26s5RFlangeM", MakeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVac);
2615 voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity);
2618 // Assemble RB26/1-2
2620 TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12");
2622 asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity);
2623 z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
2624 asRB26s12->AddNode(voRB26s12TubeM, 1, new TGeoTranslation(0., 0., z0));
2625 z0 += kRB26s12TubeL;
2626 asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0));
2628 z0 -= kRB26s2FFlangeD1;
2629 asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2630 z0 += kRB26s2FFlangeL;
2631 const Float_t kRB26s12L = z0;
2636 TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3");
2638 asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity);
2639 z0 += kRB26s3SFlangeL;
2640 z0 -= kRB26s3SFlangeD3;
2641 asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2642 z0 += kRB26s3FixedPointL;
2643 asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0));
2645 asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0));
2647 z0 -= kRB26s3FFlangeD1;
2648 asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2649 z0 += kRB26s3FFlangeL;
2650 const Float_t kRB26s3L = z0;
2654 // Assemble RB26/4-5
2656 TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45");
2658 asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity);
2659 z0 += kRB26s4SFlangeL;
2660 z0 -= kRB26s4SFlangeD3;
2661 asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2662 z0 += kRB26s4FixedPointL;
2663 asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0));
2664 z0 += kRB26s45TubeL;
2665 asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0));
2667 z0 -= kRB26s5RFlangeD3;
2668 z0 -= kRB26s5RFlangeD4;
2669 asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0));
2670 z0 += kRB26s5RFlangeL;
2671 const Float_t kRB26s45L = z0;
2676 TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe");
2678 asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0));
2680 asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0));
2682 asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0));
2684 top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180));
2689 //___________________________________________
2690 void AliPIPEv3::CreateMaterials()
2693 // Define materials for beam pipe
2696 AliDebugClass(1,"Create PIPEv3 materials");
2697 Int_t isxfld = gAlice->Field()->Integ();
2698 Float_t sxmgmx = gAlice->Field()->Max();
2700 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
2701 Float_t zsteel[4] = { 26.,24.,28.,14. };
2702 Float_t wsteel[4] = { .715,.18,.1,.005 };
2704 Float_t aAlBe[2] = { 26.98, 9.01};
2705 Float_t zAlBe[2] = { 13.00, 4.00};
2706 Float_t wAlBe[2] = { 0.4, 0.6};
2709 Float_t aPA[4] = {16., 14., 12., 1.};
2710 Float_t zPA[4] = { 8., 7., 6., 1.};
2711 Float_t wPA[4] = { 1., 1., 6., 11.};
2715 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
2716 Float_t zAir[4]={6.,7.,8.,18.};
2717 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
2718 Float_t dAir = 1.20479E-3;
2719 Float_t dAir1 = 1.20479E-10;
2721 // Insulation powder
2723 Float_t ains[4] ={28.0855, 15.9994, 47.867, 26.982};
2724 Float_t zins[4] ={14., 8. , 22. , 13. };
2725 Float_t wins[4] ={ 0.3019, 0.4887, 0.1914, 0.018};
2732 Float_t aaco[3] ={26.982, 28.0855, 24.035};
2733 Float_t zaco[3] ={13., 14. , 12. };
2734 Float_t waco[3] ={ 0.924, 0.07, 0.006};
2737 Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994};
2738 Float_t zKapton[4]={1.,6.,7.,8.};
2739 Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235};
2740 Float_t dKapton = 1.42;
2743 Float_t aNEG[4] = {47.87, 50.94, 91.24};
2744 Float_t zNEG[4] = {22.00, 23.00, 40.00};
2745 Float_t wNEG[4] = {1./3., 1./3., 1./3.};
2746 Float_t dNEG = 5.6; // ?
2751 AliMaterial(5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7);
2754 AliMaterial(6, "CARBON$ ", 12.01, 6., 2.265, 18.8, 49.9);
2757 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2760 AliMaterial(10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6/8.96);
2763 AliMixture(15, "AIR$ ", aAir, zAir, dAir, 4, wAir);
2764 AliMixture(35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir);
2767 AliMixture(16, "VACUUM$ ", aAir, zAir, dAir1, 4, wAir);
2770 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
2772 // reduced density steel to approximate pump getter material
2773 AliMixture(20, "GETTER$", asteel, zsteel, 1.00, 4, wsteel);
2776 AliMixture(21, "AlBe$", aAlBe, zAlBe, 2.07, 2, wAlBe);
2779 AliMixture(22, "PA$", aPA, zPA, 1.14, -4, wPA);
2782 AliMixture(23, "KAPTON", aKapton, zKapton, dKapton, 4, wKapton);
2784 AliMixture(24, "ANTICORODAL", aaco, zaco, 2.66, 3, waco);
2787 // Insulation powder
2788 AliMixture(14, "INSULATION0$", ains, zins, 0.41, 4, wins);
2789 AliMixture(34, "INSULATION1$", ains, zins, 0.41, 4, wins);
2790 AliMixture(54, "INSULATION2$", ains, zins, 0.41, 4, wins);
2793 AliMixture(25, "NEG COATING", aNEG, zNEG, dNEG, -3, wNEG);
2797 // Defines tracking media parameters.
2799 Float_t epsil = .001; // Tracking precision,
2800 Float_t stemax = -0.01; // Maximum displacement for multiple scat
2801 Float_t tmaxfd = -20.; // Maximum angle due to field deflection
2802 Float_t deemax = -.3; // Maximum fractional energy loss, DLS
2803 Float_t stmin = -.8;
2808 AliMedium(5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2811 AliMedium(6, "C", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2814 AliMedium(9, "ALU", 9, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2816 AliMedium(10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2819 AliMedium(15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2820 AliMedium(35, "AIR_HIGH",35, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2823 AliMedium(16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2826 AliMedium(19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2829 AliMedium(20, "GETTER", 20, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2832 AliMedium(21, "AlBe" , 21, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2835 AliMedium(22, "PA" , 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2837 AliMedium(24, "ANTICORODAL", 24, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2838 // Insulation Powder
2839 AliMedium(14, "INS_C0 ", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2840 AliMedium(34, "INS_C1 ", 34, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2841 AliMedium(54, "INS_C2 ", 54, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2844 AliMedium(23, "KAPTON", 23, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2848 AliMedium(25, "NEG COATING", 25, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2852 TGeoPcon* AliPIPEv3::MakeMotherFromTemplate(TGeoPcon* shape, Int_t imin, Int_t imax, Float_t r0, Int_t nz)
2855 // Create a mother shape from a template setting some min radii to 0
2857 Int_t nz0 = shape->GetNz();
2858 // if nz > -1 the number of planes is given by nz
2859 if (nz != -1) nz0 = nz;
2860 TGeoPcon* mother = new TGeoPcon(0., 360., nz0);
2862 if (imin == -1 || imax == -1) {
2864 imax = shape->GetNz();
2865 } else if (imax >= nz0) {
2867 printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0);
2872 for (Int_t i = 0; i < shape->GetNz(); i++) {
2873 Double_t rmin = shape->GetRmin(i);
2874 if ((i >= imin) && (i <= imax) ) rmin = r0;
2875 Double_t rmax = shape->GetRmax(i);
2876 Double_t z = shape->GetZ(i);
2877 mother->DefineSection(i, z, rmin, rmax);
2883 TGeoPcon* AliPIPEv3::MakeInsulationFromTemplate(TGeoPcon* shape)
2886 // Create an beam pipe insulation layer shape from a template
2888 Int_t nz = shape->GetNz();
2889 TGeoPcon* insu = new TGeoPcon(0., 360., nz);
2891 for (Int_t i = 0; i < nz; i++) {
2892 Double_t z = shape->GetZ(i);
2893 Double_t rmin = shape->GetRmin(i);
2894 Double_t rmax = shape->GetRmax(i);
2896 shape->DefineSection(i, z, rmin, rmax);
2898 insu->DefineSection(i, z, rmin, rmax);
2905 TGeoVolume* AliPIPEv3::MakeBellow(char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t dU, Float_t rPlie, Float_t dPlie)
2907 // nc Number of convolution
2908 // rMin Inner radius of the bellow
2909 // rMax Outer radius of the bellow
2910 // dU Undulation length
2911 // rPlie Plie radius
2912 // dPlie Plie thickness
2913 const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM");
2914 const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX");
2916 char name[64], nameA[64], nameB[64], bools[64];
2917 sprintf(name, "%sBellowUS", ext);
2918 TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac);
2920 // Upper part of the undulation
2922 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2923 sprintf(nameA, "%sTorusU", ext);
2924 shPlieTorusU->SetName(nameA);
2925 TGeoTube* shPlieTubeU = new TGeoTube (rMax - rPlie, rMax, rPlie);
2926 sprintf(nameB, "%sTubeU", ext);
2927 shPlieTubeU->SetName(nameB);
2928 sprintf(name, "%sUpperPlie", ext);
2929 sprintf(bools, "%s*%s", nameA, nameB);
2930 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name, bools);
2932 TGeoVolume* voWiggleU = new TGeoVolume(name, shUpperPlie, kMedSteel);
2934 // Lower part of the undulation
2935 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
2936 sprintf(nameA, "%sTorusL", ext);
2937 shPlieTorusL->SetName(nameA);
2938 TGeoTube* shPlieTubeL = new TGeoTube (rMin, rMin + rPlie, rPlie);
2939 sprintf(nameB, "%sTubeL", ext);
2940 shPlieTubeL->SetName(nameB);
2941 sprintf(name, "%sLowerPlie", ext);
2942 sprintf(bools, "%s*%s", nameA, nameB);
2943 TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name, bools);
2945 TGeoVolume* voWiggleL = new TGeoVolume(name, shLowerPlie, kMedSteel);
2948 // Connection between upper and lower part of undulation
2949 sprintf(name, "%sPlieConn1", ext);
2950 TGeoVolume* voWiggleC1 = new TGeoVolume(name, new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie/2.), kMedSteel);
2953 Float_t dz = rPlie - dPlie / 2.;
2954 Float_t z0 = - dPlie / 2.;
2955 sprintf(name, "%sWiggle", ext);
2956 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name);
2957 asWiggle->AddNode(voWiggleC1, 1 , new TGeoTranslation(0., 0., z0));
2959 asWiggle->AddNode(voWiggleU, 1 , new TGeoTranslation(0., 0., z0));
2961 asWiggle->AddNode(voWiggleC1, 2 , new TGeoTranslation(0., 0., z0));
2963 asWiggle->AddNode(voWiggleL , 1 , new TGeoTranslation(0., 0., z0));
2964 // Positioning of the volumes
2965 z0 = - dU / 2.+ rPlie;
2966 voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0));
2968 Float_t zsh = 4. * rPlie - 2. * dPlie;
2969 for (Int_t iw = 0; iw < nc; iw++) {
2970 Float_t zpos = z0 + iw * zsh;
2971 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie));