]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TOF/AliTOFv0.cxx
Corrected Rotation Matrix and CVS log
[u/mrichter/AliRoot.git] / TOF / AliTOFv0.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17 $Log$
18 Revision 1.9  1999/09/29 09:24:33  fca
19 Introduction of the Copyright and cvs Log
20
21 */
22
23 ///////////////////////////////////////////////////////////////////////////////
24 //                                                                           //
25 //  Time Of Flight: design of C.Williams                FCA                  //
26 //  This class contains the functions for version 1 of the Time Of Flight    //
27 //  detector.                                                                //
28 //
29 //  VERSION WITH 5 MODULES AND TILTED STRIPS 
30 //  
31 //   WITH HOLES FOR PHOS AND HMPID inside the 
32 //   SPACE FRAME WITH HOLES
33 //
34 //
35 //   Authors:
36 //  
37 //   Alessio Seganti
38 //   Domenico Vicinanza
39 //
40 //   University of Salerno - Italy
41 //
42 //
43 //Begin_Html
44 /*
45 <img src="picts/AliTOFv0Class.gif">
46 */
47 //End_Html
48 //                                                                           //
49 ///////////////////////////////////////////////////////////////////////////////
50
51 #include "AliTOFv0.h"
52 #include "AliRun.h"
53 #include "AliConst.h"
54  
55 ClassImp(AliTOFv0)
56  
57 //_____________________________________________________________________________
58 AliTOFv0::AliTOFv0()
59 {
60   //
61   // Default constructor
62   //
63 }
64  
65 //_____________________________________________________________________________
66 AliTOFv0::AliTOFv0(const char *name, const char *title)
67        : AliTOF(name,title)
68 {
69   //
70   // Standard constructor
71   //
72 }
73  
74 //_____________________________________________________________________________
75 void AliTOFv0::CreateGeometry()
76 {
77   //
78   // Create geometry for Time Of Flight version 0
79   //
80   //Begin_Html
81   /*
82     <img src="picts/AliTOFv0.gif">
83   */
84   //End_Html
85   //
86   // Creates common geometry
87   //
88   AliTOF::CreateGeometry();
89 }
90  
91 //_____________________________________________________________________________
92 void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
93                      Float_t zlen2, Float_t zlen3, Float_t ztof0)
94 {
95   //
96   // Definition of the Time Of Fligh Resistive Plate Chambers
97   // xFLT, yFLT, zFLT - sizes of TOF modules (large)
98   
99   Float_t  ycoor;
100   Float_t par[10];
101   Int_t idrotm[100];
102   Int_t nrot = 0;
103   
104   Int_t *idtmed = fIdtmed->GetArray()-499;
105
106
107   par[0] =  xtof / 2.;
108   par[1] =  ytof / 2.;
109   par[2] = zlen1 / 2.;
110   gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
111   par[2] = zlen2 / 2.;
112   gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
113   par[2] = zlen3 / 2.;
114   gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
115
116
117 // Positioning of modules
118
119    Float_t zcoor;
120
121    Float_t zcor1 = ztof0 - zlen1/2;
122    Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
123    Float_t zcor3 = 0.;
124
125    AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
126    AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
127    gMC->Gspos("FTO1", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
128    gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
129    zcoor = (zlen1/2.);
130    gMC->Gspos("FTO1", 1, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
131    zcoor = 0.;
132    gMC->Gspos("FTO1", 1, "BTO3", 0,  zcoor, 0, idrotm[0], "ONLY");
133    
134    gMC->Gspos("FTO2", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
135    gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
136    zcoor = -zlen2/2.;
137    gMC->Gspos("FTO2", 0, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
138
139    gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
140
141 // Subtraction the distance to TOF module boundaries 
142
143   Float_t db = 7.;
144   Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
145
146   xFLT = xtof -(.5 +.5)*2;
147   yFLT = ytof;
148   zFLT1 = zlen1 - db;
149   zFLT2 = zlen2 - db;
150   zFLT3 = zlen3 - db;
151     
152 // Sizes of MRPC pads
153
154   Float_t yPad = 0.505; 
155   
156 // Large not sensitive volumes with CO2 
157   par[0] = xFLT/2;
158   par[1] = yFLT/2;
159
160   cout <<"************************* TOF geometry **************************"<<endl;
161
162   par[2] = (zFLT1 / 2.);
163   gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
164   gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
165
166   par[2] = (zFLT2 / 2.);
167   gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
168   gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
169
170   par[2] = (zFLT3 / 2.); 
171   gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
172   gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
173
174 ////////// Layers before detector ////////////////////
175
176 // Alluminium layer in front 1.0 mm thick at the beginning
177   par[0] = -1;
178   par[1] = 0.1;
179   par[2] = -1;
180   ycoor = -yFLT/2 + par[1];
181   gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
182   gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
183   gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
184   gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
185   gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium 
186   gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
187
188 // Honeycomb layer (1cm of special polyethilene)
189   ycoor = ycoor + par[1];
190   par[0] = -1;
191   par[1] = 0.5;
192   par[2] = -1;
193   ycoor = ycoor + par[1];
194   gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
195   gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
196   gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
197   gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
198   gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
199   gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
200
201 ///////////////// Detector itself //////////////////////
202
203   const Float_t StripWidth = 7.81;//cm
204   const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip
205   const Int_t nx = 40; // number of pads along x
206   const Int_t nz = 2;  // number of pads along z
207   const Float_t Gap=4.; //cm  distance between the strip axis
208   const Float_t Space = 5.5; //cm distance from the front plate of the box
209
210   Float_t zSenStrip;
211   zSenStrip = StripWidth-2*DeadBound;//cm
212
213   par[0] = -1;
214   par[1] = yPad/2; 
215   par[2] = StripWidth/2.;
216   
217   // Glass Layer of detector
218   gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
219
220   // Freon for non-sesitive boundaries
221   par[0] = -1;
222   par[1] = 0.110/2;
223   par[2] = -1;
224   gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
225   gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
226   // Mylar for non-sesitive boundaries
227   par[1] = 0.025;
228   gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); 
229   gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY");
230
231   // Mylar for outer layers
232   par[1] = 0.035/2;
233   ycoor = -yPad/2.+par[1];
234   gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
235   gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
236   gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
237   ycoor += par[1];
238  
239   // Graphyte layers
240   par[1] = 0.003/2;
241   ycoor += par[1];
242   gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
243   gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
244   gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
245
246   // Freon sensitive layer
247   par[0] = -1;
248   par[1] = 0.110/2.;
249   par[2] = zSenStrip/2.;
250   gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
251   gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
252   
253   // Pad definition x & z
254   gMC->Gsdvn("FLZ","FCFC", nz, 3); 
255   gMC->Gsdvn("FLX","FLZ" , nx, 1); 
256
257   // MRPC pixel itself 
258 //  par[0] = -1;
259 //  par[1] = -1; 
260 //  par[2] = -1;
261 //  gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);
262 //  gMC->Gspos("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY");
263
264
265 ////  Positioning the Strips  (FSTR) in the FLT volumes  /////
266
267  
268   // 3 (Central) Plate 
269   Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel
270   Float_t zpos = 0;
271   Float_t ang;
272   Float_t Offset;  
273   Float_t last;
274   nrot = 0;
275   Int_t i=1,j=1;
276   zcoor=0;
277   Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip
278  
279   do{
280      ang = atan(zcoor/t);
281      ang = ang*180/3.141592654;
282      AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 0.);
283      AliMatrix (idrotm[nrot+1], 90., 180., 90.+ang,90.,ang, 0);
284      ycoor = -14.5+ Space; //2 cm over front plate
285      ycoor += (1-(UpDown+1)/2)*Gap;
286      gMC->Gspos("FSTR",j  ,"FLT3",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
287      gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
288      ang  = ang*3.141592654/180;
289      
290      zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
291      UpDown*= -1; // Alternate strips 
292      i++;
293      j+=2;
294   } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5);
295   
296   ycoor = -29./2.+ Space; //2 cm over front plate
297
298   // Plate  2
299   zpos = -zFLT3/2-7.;
300   ang  = atan(zpos/sqrt(2*t*t-zpos*zpos));
301   Offset = StripWidth*TMath::Cos(ang)/2;
302   zpos -= Offset;
303   nrot = 0;
304   i=1;
305   // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently
306
307   do {
308      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
309      ang = ang*180/3.141592654;
310      AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 0.);
311      ycoor = -29./2.+ Space ; //2 cm over front plate
312      ycoor += (1-(UpDown+1)/2)*Gap;
313      zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2
314      gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
315      ang  = ang*3.141592654/180;
316      zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
317      last = StripWidth*TMath::Cos(ang)/2;
318      UpDown*=-1;
319      i++; 
320   } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7);
321
322   // Plate  1
323   zpos = -t+zFLT1+3.5;
324   ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
325   Offset = StripWidth*TMath::Cos(ang)/2.;
326   zpos -= Offset;
327   nrot = 0;
328   i=0;
329   ycoor= -29./2.+Space+Gap/2;
330
331  do {
332      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
333      ang = ang*180/3.141592654;
334      AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 0.);
335      i++;
336      zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.);
337      gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
338      ang  = ang *3.141592654/180;
339      zpos = zpos - zSenStrip/TMath::Cos(ang);
340      last = StripWidth*TMath::Cos(ang)/2.;
341   }  while (zpos>-t+7.+last);
342
343 printf("#######################################################\n");
344 printf("     Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
345      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
346      zpos = zpos - zSenStrip/TMath::Cos(ang);
347 printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
348 printf("#######################################################\n");
349
350 ////////// Layers after detector /////////////////
351
352 // Honeycomb layer after (3cm)
353
354   Float_t OverSpace = Space + 7.3;
355 ///  StripWidth*TMath::Sin(ang) + 1.3;
356
357   par[0] = -1;
358   par[1] = 0.6;
359   par[2] = -1;
360   ycoor = -yFLT/2 + OverSpace + par[1];
361   gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
362   gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
363   gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
364   gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
365   gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
366   gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
367
368 // Electronics (Cu) after
369   ycoor += par[1];
370   par[0] = -1;
371   par[1] = 1.43*0.05 / 2.; // 5% of X0
372   par[2] = -1;
373   ycoor += par[1];
374   gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
375   gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
376   gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
377   gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
378   gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
379   gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
380
381 // Cooling water after
382   ycoor += par[1];
383   par[0] = -1;
384   par[1] = 36.1*0.02 / 2.; // 2% of X0
385   par[2] = -1;
386   ycoor += par[1];
387   gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
388   gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
389   gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
390   gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
391   gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
392   gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
393
394 //back plate honycomb (2cm)
395   par[0] = -1;
396   par[1] = 2 / 2.;
397   par[2] = -1;
398   ycoor = yFLT/2 - par[1];
399   gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
400   gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
401   gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
402   gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
403   gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
404   gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
405 }
406
407 //_____________________________________________________________________________
408 void AliTOFv0::DrawModule()
409 {
410   //
411   // Draw a shaded view of the Time Of Flight version 1
412   //
413   // Set everything unseen
414   gMC->Gsatt("*", "seen", -1);
415   // 
416   // Set ALIC mother transparent
417   gMC->Gsatt("ALIC","SEEN",0);
418   //
419   // Set the volumes visible
420   gMC->Gsatt("ALIC","SEEN",0);
421   gMC->Gsatt("FBAR","SEEN",1);
422   gMC->Gsatt("FTO1","SEEN",1);
423   gMC->Gsatt("FTO2","SEEN",1);
424   gMC->Gsatt("FTO3","SEEN",1);
425   gMC->Gsatt("FBT1","SEEN",1);
426   gMC->Gsatt("FBT2","SEEN",1);
427   gMC->Gsatt("FBT3","SEEN",1);
428   gMC->Gsatt("FDT1","SEEN",1);
429   gMC->Gsatt("FDT2","SEEN",1);
430   gMC->Gsatt("FDT3","SEEN",1);
431   gMC->Gsatt("FLT1","SEEN",1);
432   gMC->Gsatt("FLT2","SEEN",1);
433   gMC->Gsatt("FLT3","SEEN",1);
434   gMC->Gsatt("FPL1","SEEN",1);
435   gMC->Gsatt("FPL2","SEEN",1);
436   gMC->Gsatt("FPL3","SEEN",1);
437   gMC->Gsatt("FLD1","SEEN",1);
438   gMC->Gsatt("FLD2","SEEN",1);
439   gMC->Gsatt("FLD3","SEEN",1);
440   gMC->Gsatt("FLZ1","SEEN",1);
441   gMC->Gsatt("FLZ2","SEEN",1);
442   gMC->Gsatt("FLZ3","SEEN",1);
443   gMC->Gsatt("FLX1","SEEN",1);
444   gMC->Gsatt("FLX2","SEEN",1);
445   gMC->Gsatt("FLX3","SEEN",1);
446   gMC->Gsatt("FPA0","SEEN",1);
447   //
448   gMC->Gdopt("hide", "on");
449   gMC->Gdopt("shad", "on");
450   gMC->Gsatt("*", "fill", 7);
451   gMC->SetClipBox(".");
452   gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
453   gMC->DefaultRange();
454   gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
455   gMC->Gdhead(1111, "Time Of Flight");
456   gMC->Gdman(18, 4, "MAN");
457   gMC->Gdopt("hide","off");
458 }
459
460 //_____________________________________________________________________________
461 void AliTOFv0::CreateMaterials()
462 {
463   //
464   // Define materials for the Time Of Flight
465   //
466   AliTOF::CreateMaterials();
467 }
468  
469 //_____________________________________________________________________________
470 void AliTOFv0::Init()
471 {
472   //
473   // Initialise the detector after the geometry has been defined
474   //
475   AliTOF::Init();
476   fIdFTO2=gMC->VolId("FTO2");
477   fIdFTO3=gMC->VolId("FTO3");
478   fIdFLT1=gMC->VolId("FLT1");
479   fIdFLT2=gMC->VolId("FLT2");
480   fIdFLT3=gMC->VolId("FLT3");
481 }
482  
483 //_____________________________________________________________________________
484 void AliTOFv0::StepManager()
485 {
486   //
487   // Procedure called at each step in the Time Of Flight
488   //
489   TLorentzVector mom, pos;
490   Float_t hits[8];
491   Int_t vol[3];
492   Int_t copy, id, i;
493   Int_t *idtmed = fIdtmed->GetArray()-499;
494   if(gMC->GetMedium()==idtmed[514-1] && 
495      gMC->IsTrackEntering() && gMC->TrackCharge()
496      && gMC->CurrentVolID(copy)==fIdSens) {
497     TClonesArray &lhits = *fHits;
498     //
499     // Record only charged tracks at entrance
500     gMC->CurrentVolOffID(1,copy);
501     vol[2]=copy;
502     gMC->CurrentVolOffID(3,copy);
503     vol[1]=copy;
504     id=gMC->CurrentVolOffID(8,copy);
505     vol[0]=copy;
506     if(id==fIdFTO3) {
507       vol[0]+=22;
508       id=gMC->CurrentVolOffID(5,copy);
509       if(id==fIdFLT3) vol[1]+=6;
510     } else if (id==fIdFTO2) {
511       vol[0]+=20;
512       id=gMC->CurrentVolOffID(5,copy);
513       if(id==fIdFLT2) vol[1]+=8;
514     } else {
515       id=gMC->CurrentVolOffID(5,copy);
516       if(id==fIdFLT1) vol[1]+=14;
517     }
518     gMC->TrackPosition(pos);
519     gMC->TrackMomentum(mom);
520     //
521     Double_t ptot=mom.Rho();
522     Double_t norm=1/ptot;
523     for(i=0;i<3;++i) {
524       hits[i]=pos[i];
525       hits[i+3]=mom[i]*norm;
526     }
527     hits[6]=ptot;
528     hits[7]=pos[3];
529     new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
530   }
531 }
532