1 /**************************************************************************
2 * Copyright(c) 2007-08, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
17 ///////////////////////////////////////////////////////////////////////////////
19 // Class for Evaluation and Validation of the ALTRO Tail Cancelation Filter //
20 // (TCF) parameters out of TPC Raw data //
22 // Author: Stefan Rossegger, Simon Feigl //
24 ///////////////////////////////////////////////////////////////////////////////
26 #include "AliTPCCalibTCF.h"
36 #include <AliSysInfo.h>
40 #include <TEntryList.h>
41 #include "AliRawReaderRoot.h"
42 #include "AliRawHLTManager.h"
43 #include "AliTPCRawStream.h"
44 #include "AliTPCROC.h"
46 #include "AliTPCAltroEmulator.h"
48 #include "AliTPCmapper.h"
51 ClassImp(AliTPCCalibTCF)
53 AliTPCCalibTCF::AliTPCCalibTCF() :
65 // AliTPCCalibTCF standard constructor
69 //_____________________________________________________________________________
70 AliTPCCalibTCF::AliTPCCalibTCF(Int_t gateWidth, Int_t sample, Int_t pulseLength, Int_t lowPulseLim, Int_t upPulseLim, Double_t rmsLim, Double_t ratioIntLim) :
72 fGateWidth(gateWidth),
74 fPulseLength(pulseLength),
75 fLowPulseLim(lowPulseLim),
76 fUpPulseLim(upPulseLim),
78 fRatioIntLim(ratioIntLim)
81 // AliTPCCalibTCF constructor with specific (non-standard) thresholds
85 //_____________________________________________________________________________
86 AliTPCCalibTCF::AliTPCCalibTCF(const AliTPCCalibTCF &tcf) :
88 fGateWidth(tcf.fGateWidth),
90 fPulseLength(tcf.fPulseLength),
91 fLowPulseLim(tcf.fLowPulseLim),
92 fUpPulseLim(tcf.fUpPulseLim),
94 fRatioIntLim(tcf.fRatioIntLim)
97 // AliTPCCalibTCF copy constructor
102 //_____________________________________________________________________________
103 AliTPCCalibTCF& AliTPCCalibTCF::operator = (const AliTPCCalibTCF &source)
106 // AliTPCCalibTCF assignment operator
109 if (&source == this) return *this;
110 new (this) AliTPCCalibTCF(source);
116 //_____________________________________________________________________________
117 AliTPCCalibTCF::~AliTPCCalibTCF()
120 // AliTPCCalibTCF destructor
124 //_____________________________________________________________________________
125 void AliTPCCalibTCF::ProcessRawFile(const char *nameRawFile, const char *nameFileOut, bool bUseHLTOUT) {
127 // Loops over all events within one RawData file and collects proper pulses
128 // (according to given tresholds) per pad
129 // Histograms per pad are stored in 'nameFileOut'
132 // create the data reader
133 AliRawReader *rawReader = new AliRawReaderRoot(nameRawFile);
138 // create HLT reader for redirection of TPC data from HLTOUT to TPC reconstruction
139 AliRawReader *hltReader=AliRawHLTManager::AliRawHLTManager::CreateRawReaderHLT(rawReader, "TPC");
141 // now choose the data source
142 if (bUseHLTOUT) rawReader=hltReader;
144 // rawReader->Reset();
145 rawReader->RewindEvents();
147 if (!rawReader->NextEvent()) {
148 printf("no events found in %s\n",nameRawFile);
154 AliSysInfo::AddStamp(Form("start_event_%d",ievent), ievent,-1,-1);
155 printf("Reading next event ... Nr: %d\n",ievent);
156 AliTPCRawStream *rawStream = new AliTPCRawStream(rawReader);
157 rawReader->Select("TPC");
158 ProcessRawEvent(rawStream, nameFileOut);
160 AliSysInfo::AddStamp(Form("end_event_%d",ievent), ievent,-1,-1);
162 } while (rawReader->NextEvent());
164 rawReader->~AliRawReader();
169 //_____________________________________________________________________________
170 void AliTPCCalibTCF::ProcessRawEvent(AliTPCRawStream *rawStream, const char *nameFileOut) {
172 // Extracts proper pulses (according the given tresholds) within one event
173 // and accumulates them into one histogram per pad. All histograms are
174 // saved in the file 'nameFileOut'.
175 // The first bins of the histograms contain the following information:
176 // bin 1: Number of accumulated pulses
177 // bin 2;3;4: Sector; Row; Pad;
182 Int_t sector = rawStream->GetSector();
183 Int_t row = rawStream->GetRow();
185 Int_t prevSec = 999999;
186 Int_t prevRow = 999999;
187 Int_t prevPad = 999999;
188 Int_t prevTime = 999999;
190 TFile fileOut(nameFileOut,"UPDATE");
193 TH1I *tempHis = new TH1I("tempHis","tempHis",fSample+fGateWidth,fGateWidth,fSample+fGateWidth);
194 TH1I *tempRMSHis = new TH1I("tempRMSHis","tempRMSHis",2000,0,2000);
196 // printf("raw next: %d\n",rawStream->Next());
198 while (rawStream->Next()) {
200 // in case of a new row, get sector and row number
201 if (rawStream->IsNewRow()){
202 sector = rawStream->GetSector();
203 row = rawStream->GetRow();
204 // if (sector!=prevSec) AliSysInfo::AddStamp(Form("sector_%d_row_%d",sector,row), -1,sector,row);
207 Int_t pad = rawStream->GetPad();
208 Int_t time = rawStream->GetTime();
209 Int_t signal = rawStream->GetSignal();
211 //printf("%d: t:%d sig:%d\n",pad,time,signal);
213 // Reading signal from one Pad
214 if (!rawStream->IsNewPad()) {
216 // this pad always gave a useless signal, probably induced by the supply
217 // voltage of the gate signal (date:2008-Aug-07)
218 if(sector==51 && row==95 && pad==0) {
222 // only process pulses of pads with correct address
223 if(sector<0 || sector+1 > Int_t(AliTPCROC::Instance()->GetNSector())) {
226 if(row<0 || row+1 > Int_t(AliTPCROC::Instance()->GetNRows(sector))) {
229 if(pad<0 || pad+1 > Int_t(AliTPCROC::Instance()->GetNPads(sector,row))) {
234 //printf("Wrong time: %d %d\n",rawStream->GetTime(),prevTime);
237 // still the same pad, save signal to temporary histogram
238 if ( (time<=fSample+fGateWidth) && (time>=fGateWidth)) {
239 tempHis->SetBinContent(time,signal);
245 // complete pulse found and stored into tempHis, now calculation
246 // of the properties and comparison to given thresholds
248 Int_t max = (Int_t)tempHis->GetMaximum(FLT_MAX);
249 Int_t maxpos = tempHis->GetMaximumBin();
251 Int_t first = (Int_t)TMath::Max(maxpos-10, 0);
252 Int_t last = TMath::Min((Int_t)maxpos+fPulseLength-10, fSample+fGateWidth);
254 // simple baseline substraction ? better one needed ? (pedestalsubstr.?)
255 // and RMS calculation with timebins before the pulse and at the end of
257 for (Int_t ipos = 0; ipos<6; ipos++) {
259 tempRMSHis->Fill(tempHis->GetBinContent(first+ipos));
261 for (Int_t ipos = 0; ipos<20; ipos++) {
262 // at the end to get rid of pulses with serious baseline fluctuations
263 tempRMSHis->Fill(tempHis->GetBinContent(last-ipos));
266 Double_t baseline = tempRMSHis->GetMean();
267 Double_t rms = tempRMSHis->GetRMS();
270 Double_t lowLim = fLowPulseLim+baseline;
271 Double_t upLim = fUpPulseLim+baseline;
273 // get rid of pulses which contain gate signal and/or too much noise
274 // with the help of ratio of integrals
275 Double_t intHist = 0;
276 Double_t intPulse = 0;
278 for(Int_t ipos=first; ipos<=last; ipos++) {
279 binValue = TMath::Abs(tempHis->GetBinContent(ipos) - baseline);
281 if(ipos>=first+5 && ipos<=first+25) {intPulse += binValue;}
284 // gets rid of high frequency noise:
285 // calculating ratio (value one to the right of maximum)/(maximum)
286 // has to be >= 0.1; if maximum==0 set ratio to 0.1
287 Double_t maxCorr = max - baseline;
288 Double_t binRatio = 0.1;
290 binRatio = (tempHis->GetBinContent(maxpos+1) - baseline) / maxCorr;
293 // Decision if found pulse is a proper one according to given tresholds
294 if (max>lowLim && max<upLim && !((last-first)<fPulseLength) && rms<fRMSLim && (intHist/intPulse)<fRatioIntLim && (binRatio >= 0.1) ) {
296 sprintf(hname,"sec%drow%dpad%d",prevSec,prevRow,prevPad);
298 TH1F *his = (TH1F*)fileOut.Get(hname);
300 if (!his ) { // new entry (pulse in new pad found)
302 his = new TH1F(hname,hname, fPulseLength+4, 0, fPulseLength+4);
303 his->SetBinContent(1,1); // pulse counter (1st pulse)
304 his->SetBinContent(2,prevSec); // sector
305 his->SetBinContent(3,prevRow); // row
306 his->SetBinContent(4,prevPad); // pad
308 for (Int_t ipos=0; ipos<last-first; ipos++){
309 signal = (Int_t)(tempHis->GetBinContent(ipos+first)-baseline);
310 his->SetBinContent(ipos+5,signal);
313 printf("new %s: Signal %d at bin %d \n", hname, max-(Int_t)baseline, maxpos+fGateWidth);
315 } else { // adding pulse to existing histogram (pad already found)
317 his->AddBinContent(1,1); // pulse counter for each pad
318 for (Int_t ipos=0; ipos<last-first; ipos++){
319 signal= (Int_t)(tempHis->GetBinContent(ipos+first)-baseline);
320 his->AddBinContent(ipos+5,signal);
322 printf("adding ... %s: Signal %d at bin %d \n", hname, max-(Int_t)baseline, maxpos+fGateWidth);
323 his->Write(hname,kOverwrite);
336 printf("Finished to read event ... \n");
340 //____________________________________________________________________________
341 void AliTPCCalibTCF::MergeHistoPerSector(const char *nameFileIn) {
343 // Merges all histograms within one sector, calculates the TCF parameters
344 // of the 'histogram-per-sector' and stores (histo and parameters) into
345 // seperated files ...
347 // note: first 4 timebins of a histogram hold specific informations
348 // about number of collected pulses, sector, row and pad
350 // 'nameFileIn': root file produced with Process function which holds
351 // one histogram per pad (sum of signals of proper pulses)
352 // 'Sec+nameFileIn': root file with one histogram per sector
353 // (information of row and pad are set to -1)
356 TFile fileIn(nameFileIn,"READ");
359 TIter next( fileIn.GetListOfKeys() );
361 char nameFileOut[100];
362 sprintf(nameFileOut,"Sec-%s",nameFileIn);
364 TFile fileOut(nameFileOut,"RECREATE");
367 Int_t nHist = fileIn.GetNkeys();
368 Int_t iHist = 0; // histogram counter for merge-status print
370 while ( (key=(TKey*)next()) ) {
374 hisPad = (TH1F*)fileIn.Get(key->GetName()); // copy object to memory
375 Int_t pulseLength = hisPad->GetNbinsX() -4;
376 // -4 because first four timebins contain pad specific informations
377 Int_t npulse = (Int_t)hisPad->GetBinContent(1);
378 Int_t sector = (Int_t)hisPad->GetBinContent(2);
381 sprintf(hname,"sector%d",sector);
382 TH1F *his = (TH1F*)fileOut.Get(hname);
384 if (!his ) { // new histogram (new sector)
385 his = new TH1F(hname,hname, pulseLength+4, 0, pulseLength+4);
386 his->SetBinContent(1,npulse); // pulse counter
387 his->SetBinContent(2,sector); // set sector info
388 his->SetBinContent(3,-1); // set to dummy value
389 his->SetBinContent(4,-1); // set to dummy value
390 for (Int_t ipos=0; ipos<pulseLength; ipos++){
391 his->SetBinContent(ipos+5,hisPad->GetBinContent(ipos+5));
394 printf("found %s ...\n", hname);
395 } else { // add to existing histogram for sector
396 his->AddBinContent(1,npulse); // pulse counter
397 for (Int_t ipos=0; ipos<pulseLength; ipos++){
398 his->AddBinContent(ipos+5,hisPad->GetBinContent(ipos+5));
400 his->Write(hname,kOverwrite);
404 printf("merging status: \t %d pads out of %d \n",iHist, nHist);
408 printf("merging done ...\n");
416 //____________________________________________________________________________
417 void AliTPCCalibTCF::AnalyzeRootFile(const char *nameFileIn, Int_t minNumPulse, Int_t histStart, Int_t histEnd) {
419 // This function takes a prepeared root file (accumulated histograms: output
420 // of process function) and performs an analysis (fit and equalization) in
421 // order to get the TCF parameters. These are stored in an TNtuple along with
422 // the pad and creation infos. The tuple is written to the output file
423 // "TCFparam+nameFileIn"
424 // To reduce the analysis time, the minimum number of accumulated pulses within
425 // one histogram 'minNumPulse' (to perform the analysis on) can be set
428 TFile fileIn(nameFileIn,"READ");
431 TIter next( fileIn.GetListOfKeys() );
433 char nameFileOut[100];
434 sprintf(nameFileOut,"TCF-%s",nameFileIn);
436 TFile fileOut(nameFileOut,"RECREATE");
439 TNtuple *paramTuple = new TNtuple("TCFparam","TCFparameter","sec:row:pad:npulse:Z0:Z1:Z2:P0:P1:P2");
441 Int_t nHist = fileIn.GetNkeys();
442 Int_t iHist = 0; // counter for print of analysis-status
444 while ((key = (TKey *) next())) { // loop over histograms
446 if(iHist < histStart || iHist > histEnd) {continue;}
448 hisIn = (TH1F*)fileIn.Get(key->GetName()); // copy object to memory
450 Int_t numPulse = (Int_t)hisIn->GetBinContent(1);
451 if ( numPulse >= minNumPulse ) {
452 printf("Analyze histogram %d out of %d\n",iHist,nHist);
453 Double_t* coefP = new Double_t[3];
454 Double_t* coefZ = new Double_t[3];
455 for(Int_t i = 0; i < 3; i++){
459 // perform the analysis on the given histogram
460 Int_t fitOk = AnalyzePulse(hisIn, coefZ, coefP);
461 if (fitOk) { // Add found parameters to file
462 Int_t sector = (Int_t)hisIn->GetBinContent(2);
463 Int_t row = (Int_t)hisIn->GetBinContent(3);
464 Int_t pad = (Int_t)hisIn->GetBinContent(4);
465 paramTuple->Fill(sector,row,pad,numPulse,coefZ[0],coefZ[1],coefZ[2],coefP[0],coefP[1],coefP[2]);
470 printf("Skip histogram %d out of %d | not enough accumulated pulses\n",iHist,nHist);
482 //____________________________________________________________________________
483 Int_t AliTPCCalibTCF::AnalyzePulse(TH1F *hisIn, Double_t *coefZ, Double_t *coefP) {
485 // Performs the analysis on one specific pulse (histogram) by means of fitting
486 // the pulse and equalization of the pulseheight. The found TCF parameters
487 // are stored in the arrays coefZ and coefP
490 Int_t pulseLength = hisIn->GetNbinsX() -4;
491 // -4 because the first four timebins usually contain pad specific informations
492 Int_t npulse = (Int_t)hisIn->GetBinContent(1);
493 Int_t sector = (Int_t)hisIn->GetBinContent(2);
494 Int_t row = (Int_t)hisIn->GetBinContent(3);
495 Int_t pad = (Int_t)hisIn->GetBinContent(4);
497 // write pulseinformation to TNtuple and normalize to 100 ADC (because of
498 // given upper and lower fit parameter limits) in order to pass the pulse
501 TNtuple *dataTuple = new TNtuple("ntupleFit","Pulse","timebin:sigNorm:error");
502 Double_t error = 0.05;
503 Double_t max = hisIn->GetMaximum(FLT_MAX);
504 for (Int_t ipos=0; ipos<pulseLength; ipos++) {
505 Double_t errorz=error;
506 if (ipos>100) { errorz = error*100; } // very simple weight: FIXME in case
507 Double_t signal = hisIn->GetBinContent(ipos+5);
508 Double_t signalNorm = signal/max*100; //pulseheight normaliz. to 100ADC
509 dataTuple->Fill(ipos, signalNorm, errorz);
512 // Call fit function (TMinuit) to get the first 2 PZ Values for the
513 // Tail Cancelation Filter
514 Int_t fitOk = FitPulse(dataTuple, coefZ, coefP);
517 // calculates the 3rd set (remaining 2 PZ values) in order to restore the
518 // original height of the pulse
519 Int_t equOk = Equalization(dataTuple, coefZ, coefP);
521 Error("FindFit", "Pulse equalisation procedure failed - pulse abandoned ");
522 printf("in Sector %d | Row %d | Pad %d |", sector, row, pad);
523 printf(" Npulses: %d \n\n", npulse);
524 coefP[2] = 0; coefZ[2] = 0;
525 dataTuple->~TNtuple();
528 printf("Calculated TCF parameters for: \n");
529 printf("Sector %d | Row %d | Pad %d |", sector, row, pad);
530 printf(" Npulses: %d \n", npulse);
531 for(Int_t i = 0; i < 3; i++){
532 printf("P[%d] = %f Z[%d] = %f \n",i,coefP[i],i,coefZ[i]);
533 if (i==2) { printf("\n"); }
535 dataTuple->~TNtuple();
537 } else { // fit did not converge
538 Error("FindFit", "TCF fit not converged - pulse abandoned ");
539 printf("in Sector %d | Row %d | Pad %d |", sector, row, pad);
540 printf(" Npulses: %d \n\n", npulse);
541 coefP[2] = 0; coefZ[2] = 0;
542 dataTuple->~TNtuple();
550 //____________________________________________________________________________
551 void AliTPCCalibTCF::TestTCFonRootFile(const char *nameFileIn, const char *nameFileTCF, Int_t minNumPulse, Int_t plotFlag, Int_t lowKey, Int_t upKey)
554 // Performs quality parameters evaluation of the calculated TCF parameters in
555 // the file 'nameFileTCF' for every (accumulated) histogram within the
556 // prepeared root file 'nameFileIn'.
557 // The found quality parameters are stored in an TNtuple which will be saved
558 // in a Root file 'Quality-*'.
559 // If the parameter for the given pulse (given pad) was not found, the pulse
563 TFile fileIn(nameFileIn,"READ");
565 Double_t* coefP = new Double_t[3];
566 Double_t* coefZ = new Double_t[3];
567 for(Int_t i = 0; i < 3; i++){
572 char nameFileOut[100];
573 sprintf(nameFileOut,"Quality_%s_AT_%s",nameFileTCF, nameFileIn);
574 TFile fileOut(nameFileOut,"RECREATE");
576 TNtuple *qualityTuple = new TNtuple("TCFquality","TCF quality Values","sec:row:pad:npulse:heightDev:areaRed:widthRed:undershot:maxUndershot");
580 TIter next( fileIn.GetListOfKeys() );
582 Int_t nHist = fileIn.GetNkeys();
585 for(Int_t i=0;i<lowKey-1;i++){++iHist; key = (TKey *) next();}
586 while ((key = (TKey *) next())) { // loop over saved histograms
588 // loading pulse to memory;
589 printf("validating pulse %d out of %d\n",++iHist,nHist);
590 hisIn = (TH1F*)fileIn.Get(key->GetName());
592 // find the correct TCF parameter according to the his infos (first 4 bins)
593 Int_t nPulse = FindCorTCFparam(hisIn, nameFileTCF, coefZ, coefP);
594 if (nPulse>=minNumPulse) { // doing the TCF quality analysis
595 Double_t *quVal = GetQualityOfTCF(hisIn,coefZ,coefP, plotFlag);
596 Int_t sector = (Int_t)hisIn->GetBinContent(2);
597 Int_t row = (Int_t)hisIn->GetBinContent(3);
598 Int_t pad = (Int_t)hisIn->GetBinContent(4);
599 qualityTuple->Fill(sector,row,pad,nPulse,quVal[0],quVal[1],quVal[2],quVal[3],quVal[4],quVal[5]);
603 if (iHist>=upKey) {break;}
608 qualityTuple->Write();
620 //_____________________________________________________________________________
621 void AliTPCCalibTCF::TestTCFonRawFile(const char *nameRawFile, const char *nameFileOut, const char *nameFileTCF, Int_t minNumPulse, Int_t plotFlag, bool bUseHLTOUT) {
623 // Performs quality parameters evaluation of the calculated TCF parameters in
624 // the file 'nameFileTCF' for every proper pulse (according to given thresholds)
625 // within the RAW file 'nameRawFile'.
626 // The found quality parameters are stored in a TNtuple which will be saved
627 // in the Root file 'nameFileOut'. If the parameter for the given pulse
628 // (given pad) was not found, the pulse is rejected.
632 // Reads a RAW data file, extracts Pulses (according the given tresholds)
633 // and test the found TCF parameters on them ...
637 // create the data reader
638 AliRawReader *rawReader = new AliRawReaderRoot(nameRawFile);
643 // create HLT reader for redirection of TPC data from HLTOUT to TPC reconstruction
644 AliRawReader *hltReader=AliRawHLTManager::AliRawHLTManager::CreateRawReaderHLT(rawReader, "TPC");
646 // now choose the data source
647 if (bUseHLTOUT) rawReader=hltReader;
649 // rawReader->Reset();
650 rawReader->RewindEvents();
652 if (!rawReader->NextEvent()) {
653 printf("no events found in %s\n",nameRawFile);
657 Double_t* coefP = new Double_t[3];
658 Double_t* coefZ = new Double_t[3];
659 for(Int_t i = 0; i < 3; i++){
666 TH1I *tempHis = new TH1I("tempHis","tempHis",fSample+fGateWidth,fGateWidth,fSample+fGateWidth);
667 TH1I *tempRMSHis = new TH1I("tempRMSHis","tempRMSHis",2000,0,2000);
669 TFile fileOut(nameFileOut,"UPDATE"); // Quality Parameters storage
670 TNtuple *qualityTuple = (TNtuple*)fileOut.Get("TCFquality");
671 if (!qualityTuple) { // no entry in file
672 qualityTuple = new TNtuple("TCFquality","TCF quality Values","sec:row:pad:npulse:heightDev:areaRed:widthRed:undershot:maxUndershot:pulseRMS");
677 printf("Reading next event ... Nr:%d\n",ievent);
678 AliTPCRawStream *rawStream = new AliTPCRawStream(rawReader);
679 rawReader->Select("TPC");
682 Int_t sector = rawStream->GetSector();
683 Int_t row = rawStream->GetRow();
685 Int_t prevSec = 999999;
686 Int_t prevRow = 999999;
687 Int_t prevPad = 999999;
688 Int_t prevTime = 999999;
690 while (rawStream->Next()) {
692 if (rawStream->IsNewRow()){
693 sector = rawStream->GetSector();
694 row = rawStream->GetRow();
697 Int_t pad = rawStream->GetPad();
698 Int_t time = rawStream->GetTime();
699 Int_t signal = rawStream->GetSignal();
701 if (!rawStream->IsNewPad()) { // Reading signal from one Pad
703 // this pad always gave a useless signal, probably induced by the supply
704 // voltage of the gate signal (date:2008-Aug-07)
705 if(sector==51 && row==95 && pad==0) {
709 // only process pulses of pads with correct address
710 if(sector<0 || sector+1 > Int_t(AliTPCROC::Instance()->GetNSector())) {
713 if(row<0 || row+1 > Int_t(AliTPCROC::Instance()->GetNRows(sector))) {
716 if(pad<0 || pad+1 > Int_t(AliTPCROC::Instance()->GetNPads(sector,row))) {
721 // printf("Wrong time: %d %d\n",rawStream->GetTime(),prevTime);
724 // still the same pad, save signal to temporary histogram
725 if (time<=fSample+fGateWidth && time>fGateWidth) {
726 tempHis->SetBinContent(time,signal);
729 } else { // Decision for saving pulse according to treshold settings
731 Int_t max = (Int_t)tempHis->GetMaximum(FLT_MAX);
732 Int_t maxpos = tempHis->GetMaximumBin();
734 Int_t first = (Int_t)TMath::Max(maxpos-10, 0);
735 Int_t last = TMath::Min((Int_t)maxpos+fPulseLength-10, fSample+fGateWidth);
738 // simple baseline substraction ? better one needed ? (pedestalsubstr.?)
739 // and RMS calculation with timebins before the pulse and at the end of
741 for (Int_t ipos = 0; ipos<6; ipos++) {
743 tempRMSHis->Fill(tempHis->GetBinContent(first+ipos));
745 for (Int_t ipos = 0; ipos<20; ipos++) {
746 // at the end to get rid of pulses with serious baseline fluctuations
747 tempRMSHis->Fill(tempHis->GetBinContent(last-ipos));
749 Double_t baseline = tempRMSHis->GetMean();
750 Double_t rms = tempRMSHis->GetRMS();
753 Double_t lowLim = fLowPulseLim+baseline;
754 Double_t upLim = fUpPulseLim+baseline;
756 // get rid of pulses which contain gate signal and/or too much noise
757 // with the help of ratio of integrals
758 Double_t intHist = 0;
759 Double_t intPulse = 0;
761 for(Int_t ipos=first; ipos<=last; ipos++) {
762 binValue = TMath::Abs(tempHis->GetBinContent(ipos) - baseline);
764 if(ipos>=first+5 && ipos<=first+25) {intPulse += binValue;}
767 // gets rid of high frequency noise:
768 // calculating ratio (value one to the right of maximum)/(maximum)
769 // has to be >= 0.1; if maximum==0 set ratio to 0.1
770 Double_t maxCorr = max - baseline;
771 Double_t binRatio = 0.1;
773 binRatio = (tempHis->GetBinContent(maxpos+1) - baseline) / maxCorr;
777 // Decision if found pulse is a proper one according to given tresholds
778 if (max>lowLim && max<upLim && !((last-first)<fPulseLength) && rms<fRMSLim && intHist/intPulse<fRatioIntLim && (binRatio >= 0.1) ){
780 // assuming that lowLim is higher than the pedestal value!
782 sprintf(hname,"sec%drow%dpad%d",prevSec,prevRow,prevPad);
783 TH1F *his = new TH1F(hname,hname, fPulseLength+4, 0, fPulseLength+4);
784 his->SetBinContent(1,1); // pulse counter (1st pulse)
785 his->SetBinContent(2,prevSec); // sector
786 his->SetBinContent(3,prevRow); // row
787 his->SetBinContent(4,prevPad); // pad
789 for (Int_t ipos=0; ipos<last-first; ipos++){
790 signal = (Int_t)(tempHis->GetBinContent(ipos+first)-baseline);
791 his->SetBinContent(ipos+5,signal);
794 printf("Pulse found in %s: ADC %d at bin %d \n", hname, max, maxpos+fGateWidth);
796 // find the correct TCF parameter according to the his infos
798 Int_t nPulse = FindCorTCFparam(his, nameFileTCF, coefZ, coefP);
800 if (nPulse>=minNumPulse) { // Parameters found - doing the TCF quality analysis
801 Double_t *quVal = GetQualityOfTCF(his,coefZ,coefP, plotFlag);
802 qualityTuple->Fill(sector,row,pad,nPulse,quVal[0],quVal[1],quVal[2],quVal[3],quVal[4],quVal[5]);
816 printf("Finished to read event ... \n");
821 } while (rawReader->NextEvent()); // event loop
823 printf("Finished to read file - close output file ... \n");
826 qualityTuple->Write("TCFquality",kOverwrite);
835 rawReader->~AliRawReader();
839 //____________________________________________________________________________
840 TH2F *AliTPCCalibTCF::PlotOccupSummary2Dhist(const char *nameFileIn, Int_t side) {
842 // Plots the number of summed pulses per pad on a given TPC side
843 // 'nameFileIn': root-file created with the Process function
846 TFile fileIn(nameFileIn,"READ");
849 TIter next(fileIn.GetListOfKeys());
851 TH2F * his2D = new TH2F("his2D","his2D", 250,-250,250,250,-250,250);
853 AliTPCROC * roc = AliTPCROC::Instance();
855 Int_t nHist=fileIn.GetNkeys();
856 if (!nHist) { return 0; }
869 while ((key = (TKey *) next())) { // loop over histograms within the file
871 his = (TH1F*)fileIn.Get(key->GetName()); // copy object to memory
873 npulse = (Int_t)his->GetBinContent(1);
874 sec = (Int_t)his->GetBinContent(2);
875 row = (Int_t)his->GetBinContent(3);
876 pad = (Int_t)his->GetBinContent(4);
878 if ( (side==0) && (sec%36>=18) ) continue;
879 if ( (side>0) && (sec%36<18) ) continue;
881 if ( (row==-1) && (pad==-1) ) { // summed pulses per sector
882 // fill all pad with this values
883 for (UInt_t rowi=0; rowi<roc->GetNRows(sec); rowi++) {
884 for (UInt_t padi=0; padi<roc->GetNPads(sec,rowi); padi++) {
885 roc->GetPositionGlobal(sec,rowi,padi,xyz);
886 binx = 1+TMath::Nint((xyz[0]+250.)*0.5);
887 biny = 1+TMath::Nint((xyz[1]+250.)*0.5);
888 his2D->SetBinContent(binx,biny,npulse);
892 roc->GetPositionGlobal(sec,row,pad,xyz);
893 binx = 1+TMath::Nint((xyz[0]+250.)*0.5);
894 biny = 1+TMath::Nint((xyz[1]+250.)*0.5);
896 his2D->SetBinContent(binx,biny,npulse);
898 if (iHist%100==0){ printf("hist %d out of %d\n",iHist,nHist);}
900 his2D->SetXTitle("x (cm)");
901 his2D->SetYTitle("y (cm)");
904 his2D->DrawCopy("colz");
907 gPad->SetTitle("A side");
909 gPad->SetTitle("C side");
916 //____________________________________________________________________________
917 void AliTPCCalibTCF::PlotOccupSummary(const char *nameFile, Int_t side, Int_t nPulseMin) {
919 // Plots the number of summed pulses per pad above a given minimum at the
920 // pad position at a given TPC side
921 // 'nameFile': root-file created with the Process function
924 TFile *file = new TFile(nameFile,"READ");
927 TIter next( file->GetListOfKeys() );
930 char nameFileOut[100];
931 sprintf(nameFileOut,"Occup-%s",nameFile);
932 TFile fileOut(nameFileOut,"RECREATE");
935 TNtuple *ntuple = new TNtuple("ntuple","ntuple","x:y:z:npulse");
936 // ntuple->SetDirectory(0); // force to be memory resistent
938 Int_t nHist=file->GetNkeys();
939 if (!nHist) { return; }
944 while ((key = (TKey *) next())) { // loop over histograms within the file
945 his = (TH1F*)file->Get(key->GetName()); // copy object to memory
947 Int_t npulse = (Int_t)his->GetBinContent(1);
948 Int_t sec = (Int_t)his->GetBinContent(2);
949 Int_t row = (Int_t)his->GetBinContent(3);
950 Int_t pad = (Int_t)his->GetBinContent(4);
952 if ( (row==-1) && (pad==-1) ) { // summed pulses per sector
953 row = 40; pad = 40; // set to approx middle row for better plot
957 Float_t *pos = new Float_t[3];
958 // find x,y,z position of the pad
959 AliTPCROC::Instance()->GetPositionGlobal(sec,row,pad,pos);
960 if (npulse>=nPulseMin) {
961 ntuple->Fill(pos[0],pos[1],pos[2],npulse);
962 if (iHist%100==0){ printf("hist %d out of %d\n",iHist,nHist);}
967 if (secWise) { // pulse per sector
968 ntuple->SetMarkerStyle(8);
969 ntuple->SetMarkerSize(4);
970 } else { // pulse per Pad
971 ntuple->SetMarkerStyle(7);
976 sprintf(cSel,"z>0&&npulse>=%d",nPulseMin);
977 ntuple->Draw("y:x:npulse",cSel,"colz");
979 sprintf(cSel,"z<0&&npulse>=%d",nPulseMin);
980 ntuple->Draw("y:x:npulse",cSel,"colz");
984 gPad->SetTitle("A side");
986 gPad->SetTitle("C side");
995 //____________________________________________________________________________
996 void AliTPCCalibTCF::PlotQualitySummary(const char *nameFileQuality, const char *plotSpec, const char *cut, const char *pOpt)
999 // This function is an easy interface to load the QualityTuple (produced with
1000 // the function 'TestOn%File' and plots them according to the plot specifications
1001 // 'plotSpec' e.g. "widthRed:maxUndershot"
1002 // One may also set cut and plot options ("cut","pOpt")
1004 // The stored quality parameters are ...
1005 // sec:row:pad:npulse: ... usual pad info
1006 // heightDev ... height deviation in percent
1007 // areaRed ... area reduction in percent
1008 // widthRed ... width reduction in percent
1009 // undershot ... mean undershot after the pulse in ADC
1010 // maxUndershot ... maximum of the undershot after the pulse in ADC
1011 // pulseRMS ... RMS of the pulse used to calculate the Quality parameters in ADC
1014 TFile file(nameFileQuality,"READ");
1015 TNtuple *qualityTuple = (TNtuple*)file.Get("TCFquality");
1016 //gStyle->SetPalette(1);
1018 TH2F *his2D = new TH2F(plotSpec,nameFileQuality,11,-10,1,25,1,100);
1020 sprintf(plSpec,"%s>>%s",plotSpec,plotSpec);
1021 qualityTuple->Draw(plSpec,cut,pOpt);
1023 gStyle->SetLabelSize(0.03,"X");
1024 gStyle->SetLabelSize(0.03,"Y");
1025 gStyle->SetLabelSize(0.03,"Z");
1026 gStyle->SetLabelOffset(-0.02,"X");
1027 gStyle->SetLabelOffset(-0.01,"Y");
1028 gStyle->SetLabelOffset(-0.03,"Z");
1030 his2D->GetXaxis()->SetTitle("max. undershot [ADC]");
1031 his2D->GetYaxis()->SetTitle("width Reduction [%]");
1033 his2D->DrawCopy(pOpt);
1035 gPad->SetPhi(0.1);gPad->SetTheta(90);
1041 //_____________________________________________________________________________
1042 Int_t AliTPCCalibTCF::FitPulse(TNtuple *dataTuple, Double_t *coefZ, Double_t *coefP) {
1044 // function to fit one pulse and to calculate the according pole-zero parameters
1047 // initialize TMinuit with a maximum of 8 params
1048 TMinuit *minuitFit = new TMinuit(8);
1049 minuitFit->mncler(); // Reset Minuit's list of paramters
1050 minuitFit->SetPrintLevel(-1); // No Printout
1051 minuitFit->SetFCN(AliTPCCalibTCF::FitFcn); // To set the address of the
1052 // minimization function
1053 minuitFit->SetObjectFit(dataTuple);
1055 Double_t arglist[10];
1059 minuitFit->mnexcm("SET ERR", arglist ,1,ierflg);
1061 // Set standard starting values and step sizes for each parameter
1062 // upper and lower limit (in a reasonable range) are set to improve
1063 // the stability of TMinuit
1064 static Double_t vstart[8] = {125, 4.0, 0.3, 0.5, 5.5, 100, 1, 2.24};
1065 static Double_t step[8] = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};
1066 static Double_t min[8] = {100, 3., 0.1, 0.2, 3., 60., 0., 2.0};
1067 static Double_t max[8] = {200, 20., 5., 3., 30., 300., 20., 2.5};
1069 minuitFit->mnparm(0, "A1", vstart[0], step[0], min[0], max[0], ierflg);
1070 minuitFit->mnparm(1, "A2", vstart[1], step[1], min[1], max[1], ierflg);
1071 minuitFit->mnparm(2, "A3", vstart[2], step[2], min[2], max[2], ierflg);
1072 minuitFit->mnparm(3, "T1", vstart[3], step[3], min[3], max[3], ierflg);
1073 minuitFit->mnparm(4, "T2", vstart[4], step[4], min[4], max[4], ierflg);
1074 minuitFit->mnparm(5, "T3", vstart[5], step[5], min[5], max[5], ierflg);
1075 minuitFit->mnparm(6, "T0", vstart[6], step[6], min[6], max[6], ierflg);
1076 minuitFit->mnparm(7, "TTP", vstart[7], step[7], min[7], max[7],ierflg);
1077 minuitFit->FixParameter(7); // 2.24 ... out of pulserRun Fit (->IRF)
1079 // Now ready for minimization step
1080 arglist[0] = 2000; // max num of iterations
1081 arglist[1] = 0.1; // tolerance
1083 minuitFit->mnexcm("MIGRAD", arglist ,2,ierflg);
1086 minuitFit->mnexcm("SET NOW", &p1 , 0, ierflg) ; // No Warnings
1088 if (ierflg == 4) { // Fit failed
1089 for (Int_t i=0;i<3;i++) {
1093 minuitFit->~TMinuit();
1095 } else { // Fit successfull
1097 // Extract parameters from TMinuit
1098 Double_t *fitParam = new Double_t[6];
1099 for (Int_t i=0;i<6;i++) {
1102 minuitFit->GetParameter(i,val,err);
1106 // calculates the first 2 sets (4 PZ values) out of the fitted parameters
1107 Double_t *valuePZ = ExtractPZValues(fitParam);
1109 // TCF coefficients which are used for the equalisation step (stage)
1111 coefZ[0] = TMath::Exp(-1/valuePZ[2]);
1112 coefZ[1] = TMath::Exp(-1/valuePZ[3]);
1113 coefP[0] = TMath::Exp(-1/valuePZ[0]);
1114 coefP[1] = TMath::Exp(-1/valuePZ[1]);
1116 fitParam->~Double_t();
1117 valuePZ->~Double_t();
1118 minuitFit->~TMinuit();
1127 //____________________________________________________________________________
1128 void AliTPCCalibTCF::FitFcn(Int_t &/*nPar*/, Double_t */*grad*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
1131 // Minimization function needed for TMinuit with FitFunction included
1132 // Fit function: Sum of three convolution terms (IRF conv. with Exp.)
1136 TNtuple *dataTuple = (TNtuple *) gMinuit->GetObjectFit();
1138 //calculate chisquare
1141 for (Int_t i=0; i<dataTuple->GetEntries(); i++) { // loop over data points
1142 dataTuple->GetEntry(i);
1143 Float_t *p = dataTuple->GetArgs();
1145 Double_t signal = p[1]; // Normalized signal
1146 Double_t error = p[2];
1148 // definition and evaluation if the IonTail specific fit function
1149 Double_t sigFit = 0;
1151 Double_t ttp = par[7]; // signal shaper raising time
1152 t=t-par[6]; // time adjustment
1157 Double_t f1 = 1/TMath::Power((4-ttp/par[3]),5)*(24*ttp*TMath::Exp(4)*(TMath::Exp(-t/par[3]) - TMath::Exp(-4*t/ttp) * ( 1+t*(4-ttp/par[3])/ttp+TMath::Power(t*(4-ttp/par[3])/ttp,2)/2 + TMath::Power(t*(4-ttp/par[3])/ttp,3)/6 + TMath::Power(t*(4-ttp/par[3])/ttp,4)/24)));
1159 Double_t f2 = 1/TMath::Power((4-ttp/par[4]),5)*(24*ttp*TMath::Exp(4)*(TMath::Exp(-t/par[4]) - TMath::Exp(-4*t/ttp) * ( 1+t*(4-ttp/par[4])/ttp+TMath::Power(t*(4-ttp/par[4])/ttp,2)/2 + TMath::Power(t*(4-ttp/par[4])/ttp,3)/6 + TMath::Power(t*(4-ttp/par[4])/ttp,4)/24)));
1161 Double_t f3 = 1/TMath::Power((4-ttp/par[5]),5)*(24*ttp*TMath::Exp(4)*(TMath::Exp(-t/par[5]) - TMath::Exp(-4*t/ttp) * ( 1+t*(4-ttp/par[5])/ttp+TMath::Power(t*(4-ttp/par[5])/ttp,2)/2 + TMath::Power(t*(4-ttp/par[5])/ttp,3)/6 + TMath::Power(t*(4-ttp/par[5])/ttp,4)/24)));
1163 sigFit = par[0]*f1 + par[1]*f2 +par[2]*f3;
1166 // chisqu calculation
1167 delta = (signal-sigFit)/error;
1168 chisq += delta*delta;
1177 //____________________________________________________________________________
1178 Double_t* AliTPCCalibTCF::ExtractPZValues(Double_t *param) {
1180 // Calculation of Pole and Zero values out of fit parameters
1183 Double_t vA1, vA2, vA3, vTT1, vTT2, vTT3, vTa, vTb;
1184 vA1 = 0; vA2 = 0; vA3 = 0;
1185 vTT1 = 0; vTT2 = 0; vTT3 = 0;
1188 // nasty method of sorting the fit parameters to avoid wrong mapping
1189 // to the different stages of the TCF filter
1190 // (e.g. first 2 fit parameters represent the electron signal itself!)
1192 if (param[3]==param[4]) {param[3]=param[3]+0.0001;}
1193 if (param[5]==param[4]) {param[5]=param[5]+0.0001;}
1195 if ((param[5]>param[4])&&(param[5]>param[3])) {
1196 if (param[4]>=param[3]) {
1197 vA1 = param[0]; vA2 = param[1]; vA3 = param[2];
1198 vTT1 = param[3]; vTT2 = param[4]; vTT3 = param[5];
1200 vA1 = param[1]; vA2 = param[0]; vA3 = param[2];
1201 vTT1 = param[4]; vTT2 = param[3]; vTT3 = param[5];
1203 } else if ((param[4]>param[5])&&(param[4]>param[3])) {
1204 if (param[5]>=param[3]) {
1205 vA1 = param[0]; vA2 = param[2]; vA3 = param[1];
1206 vTT1 = param[3]; vTT2 = param[5]; vTT3 = param[4];
1208 vA1 = param[2]; vA2 = param[0]; vA3 = param[1];
1209 vTT1 = param[5]; vTT2 = param[3]; vTT3 = param[4];
1211 } else if ((param[3]>param[4])&&(param[3]>param[5])) {
1212 if (param[5]>=param[4]) {
1213 vA1 = param[1]; vA2 = param[2]; vA3 = param[0];
1214 vTT1 = param[4]; vTT2 = param[5]; vTT3 = param[3];
1216 vA1 = param[2]; vA2 = param[1]; vA3 = param[0];
1217 vTT1 = param[5]; vTT2 = param[4]; vTT3 = param[3];
1222 // Transformation of fit parameters into PZ values (needed by TCF)
1223 Double_t beq = (vA1/vTT2+vA1/vTT3+vA2/vTT1+vA2/vTT3+vA3/vTT1+vA3/vTT2)/(vA1+vA2+vA3);
1224 Double_t ceq = (vA1/(vTT2*vTT3)+vA2/(vTT1*vTT3)+vA3/(vTT1*vTT2))/(vA1+vA2+vA3);
1226 Double_t s1 = -beq/2-sqrt((beq*beq-4*ceq)/4);
1227 Double_t s2 = -beq/2+sqrt((beq*beq-4*ceq)/4);
1229 if (vTT2<vTT3) {// not necessary but avoids significant undershots in first PZ
1237 Double_t *valuePZ = new Double_t[4];
1248 //____________________________________________________________________________
1249 Int_t AliTPCCalibTCF::Equalization(TNtuple *dataTuple, Double_t *coefZ, Double_t *coefP) {
1251 // calculates the 3rd set of TCF parameters (remaining 2 PZ values) in
1252 // order to restore the original pulse height and adds them to the passed arrays
1255 Double_t *s0 = new Double_t[1000]; // original pulse
1256 Double_t *s1 = new Double_t[1000]; // pulse after 1st PZ filter
1257 Double_t *s2 = new Double_t[1000]; // pulse after 2nd PZ filter
1259 const Int_t kPulseLength = dataTuple->GetEntries();
1261 for (Int_t ipos=0; ipos<kPulseLength; ipos++) {
1262 dataTuple->GetEntry(ipos);
1263 Float_t *p = dataTuple->GetArgs();
1267 // non-discret implementation of the first two TCF stages (recursive formula)
1268 // discrete Altro emulator is not used because of accuracy!
1269 s1[0] = s0[0]; // 1st PZ filter
1270 for(Int_t ipos = 1; ipos < kPulseLength ; ipos++){
1271 s1[ipos] = s0[ipos] + coefP[0]*s1[ipos-1] - coefZ[0]*s0[ipos-1];
1273 s2[0] = s1[0]; // 2nd PZ filter
1274 for(Int_t ipos = 1; ipos < kPulseLength ; ipos++){
1275 s2[ipos] = s1[ipos] + coefP[1]*s2[ipos-1] - coefZ[1]*s1[ipos-1];
1278 // find maximum amplitude and position of original pulse and pulse after
1279 // the first two stages of the TCF
1280 Int_t s0pos = 0, s2pos = 0;
1281 Double_t s0ampl = s0[0], s2ampl = s2[0]; // start values
1282 for(Int_t ipos = 1; ipos < kPulseLength; ipos++){
1283 if (s0[ipos] > s0ampl){
1285 s0pos = ipos; // should be pos 11 ... check?
1287 if (s2[ipos] > s2ampl){
1292 // calculation of 3rd set ...
1293 if(s0ampl > s2ampl){
1295 coefP[2] = (s0ampl - s2ampl)/s0[s0pos-1];
1296 } else if (s0ampl < s2ampl) {
1298 coefZ[2] = (s2ampl - s0ampl)/s0[s0pos-1];
1299 } else { // same height ? will most likely not happen ?
1300 printf("No equalization because of identical height\n");
1309 // if equalization out of range (<0 or >=1) it failed!
1310 // if ratio of amplitudes of fittet to original pulse < 0.9 it failed!
1311 if (coefP[2]<0 || coefZ[2]<0 || coefP[2]>=1 || coefZ[2]>=1 || TMath::Abs(s2ampl / s0ampl)<0.9) {
1321 //____________________________________________________________________________
1322 Int_t AliTPCCalibTCF::FindCorTCFparam(TH1F *hisIn, const char *nameFileTCF, Double_t *coefZ, Double_t *coefP) {
1324 // This function searches for the correct TCF parameters to the given
1325 // histogram 'hisIn' within the file 'nameFileTCF'
1326 // If no parameters for this pad (padinfo within the histogram!) where found
1327 // the function returns 0
1329 // Int_t numPulse = (Int_t)hisIn->GetBinContent(1); // number of pulses
1330 Int_t sector = (Int_t)hisIn->GetBinContent(2);
1331 Int_t row = (Int_t)hisIn->GetBinContent(3);
1332 Int_t pad = (Int_t)hisIn->GetBinContent(4);
1335 //-- searching for calculated TCF parameters for this pad/sector
1336 TFile fileTCF(nameFileTCF,"READ");
1337 TNtuple *paramTuple = (TNtuple*)fileTCF.Get("TCFparam");
1339 // create selection criteria to find the correct TCF params
1341 if ( paramTuple->GetEntries("row==-1&&pad==-1") ) {
1342 // parameters per SECTOR
1343 sprintf(sel,"sec==%d&&row==-1&&pad==-1",sector);
1345 // parameters per PAD
1346 sprintf(sel,"sec==%d&&row==%d&&pad==%d",sector,row,pad);
1349 // list should contain just ONE entry! ... otherwise there is a mistake!
1350 Long64_t entry = paramTuple->Draw(">>list",sel,"entrylist");
1351 TEntryList *list = (TEntryList*)gDirectory->Get("list");
1353 if (entry) { // TCF set was found for this pad
1354 Long64_t pos = list->GetEntry(0);
1355 paramTuple->GetEntry(pos); // get specific TCF parameters
1356 Float_t *p = paramTuple->GetArgs();
1358 if(sector==p[0]) {printf("sector ok ... "); }
1359 if(row==p[1]) {printf("row ok ... "); }
1360 if(pad==p[2]) {printf("pad ok ... \n"); }
1362 // number of averaged pulses used to produce TCF params
1363 nPulse = (Int_t)p[3];
1365 coefZ[0] = p[4]; coefP[0] = p[7];
1366 coefZ[1] = p[5]; coefP[1] = p[8];
1367 coefZ[2] = p[6]; coefP[2] = p[9];
1369 } else { // no specific TCF parameters found for this pad
1371 printf(" no specific TCF paramaters found for pad in ...\n");
1372 printf(" Sector %d | Row %d | Pad %d |\n", sector, row, pad);
1374 coefZ[0] = 0; coefP[0] = 0;
1375 coefZ[1] = 0; coefP[1] = 0;
1376 coefZ[2] = 0; coefP[2] = 0;
1382 return nPulse; // number of averaged pulses for producing the TCF params
1387 //____________________________________________________________________________
1388 Double_t *AliTPCCalibTCF::GetQualityOfTCF(TH1F *hisIn, Double_t *coefZ, Double_t *coefP, Int_t plotFlag) {
1390 // This function evaluates the quality parameters of the given TCF parameters
1391 // tested on the passed pulse (hisIn)
1392 // The quality parameters are stored in an array. They are ...
1393 // height deviation [ADC]
1394 // area reduction [percent]
1395 // width reduction [percent]
1396 // mean undershot [ADC]
1397 // maximum of undershot after pulse [ADC]
1400 // perform ALTRO emulator
1401 TNtuple *pulseTuple = ApplyTCFilter(hisIn, coefZ, coefP, plotFlag);
1403 printf("calculate quality val. for pulse in ... ");
1404 printf(" Sector %d | Row %d | Pad %d |\n", (Int_t)hisIn->GetBinContent(2), (Int_t)hisIn->GetBinContent(3), (Int_t)hisIn->GetBinContent(4));
1406 // Reasonable limit for the calculation of the quality values
1407 Int_t binLimit = 80;
1409 // ============== Variable preparation
1411 // -- height difference in percent of orginal pulse
1412 Double_t maxSig = pulseTuple->GetMaximum("sig");
1413 Double_t maxSigTCF = pulseTuple->GetMaximum("sigAfterTCF");
1414 // -- area reduction (above zero!)
1416 Double_t areaTCF = 0;
1417 // -- width reduction at certain ADC treshold
1418 // TODO: set treshold at ZS treshold? (3 sigmas of noise?)
1419 Int_t threshold = 3; // treshold in percent
1420 Int_t threshADC = (Int_t)(maxSig/100*threshold);
1421 Int_t startOfPulse = 0; Int_t startOfPulseTCF = 0;
1422 Int_t posOfStart = 0; Int_t posOfStartTCF = 0;
1423 Int_t widthFound = 0; Int_t widthFoundTCF = 0;
1424 Int_t width = 0; Int_t widthTCF = 0;
1425 // -- Calcluation of Undershot (mean of negavive signal after the first
1427 Double_t undershotTCF = 0;
1428 Double_t undershotStart = 0;
1429 // -- Calcluation of Undershot (Sum of negative signal after the pulse)
1430 Double_t maxUndershot = 0;
1433 // === loop over timebins to calculate quality parameters
1434 for (Int_t i=0; i<binLimit; i++) {
1436 // Read signal values
1437 pulseTuple->GetEntry(i);
1438 Float_t *p = pulseTuple->GetArgs();
1439 Double_t sig = p[1];
1440 Double_t sigTCF = p[2];
1442 // calculation of area (above zero)
1443 if (sig>0) {area += sig; }
1444 if (sigTCF>0) {areaTCF += sigTCF; }
1447 // Search for width at certain ADC treshold
1448 // -- original signal
1449 if (widthFound == 0) {
1450 if( (sig > threshADC) && (startOfPulse == 0) ){
1454 if( (sig <= threshADC) && (startOfPulse == 1) ){
1456 width = i - posOfStart + 1;
1459 // -- signal after TCF
1460 if (widthFoundTCF == 0) {
1461 if( (sigTCF > threshADC) && (startOfPulseTCF == 0) ){
1462 startOfPulseTCF = 1;
1465 if( (sigTCF <= threshADC) && (startOfPulseTCF == 1) ){
1467 widthTCF = i -posOfStartTCF + 1;
1472 // finds undershot start
1473 if ( (widthFoundTCF==1) && (sigTCF<0) ) {
1477 // Calculation of undershot sum (after pulse)
1478 if ( widthFoundTCF==1 ) {
1479 undershotTCF += sigTCF;
1482 // Search for maximal undershot (is equal to minimum after the pulse)
1483 if ( (undershotStart==1)&&(i<(posOfStartTCF+widthTCF+20)) ) {
1484 if (maxUndershot>sigTCF) { maxUndershot = sigTCF; }
1489 // == Calculation of Quality parameters
1491 // -- height difference in ADC
1492 Double_t heightDev = maxSigTCF-maxSig;
1494 // Area reduction of the pulse in percent
1495 Double_t areaReduct = 100-areaTCF/area*100;
1497 // Width reduction in percent
1498 Double_t widthReduct = 0;
1499 if ((widthFound==1)&&(widthFoundTCF==1)) { // in case of not too big IonTail
1500 widthReduct = 100-(Double_t)widthTCF/(Double_t)width*100;
1501 if (widthReduct<0) { widthReduct = 0;}
1504 // Undershot - mean of neg.signals after pulse
1505 Double_t length = 1;
1506 if (binLimit-widthTCF-posOfStartTCF) { length = (binLimit-widthTCF-posOfStartTCF);}
1507 Double_t undershot = undershotTCF/length;
1510 // calculation of pulse RMS with timebins before and at the end of the pulse
1511 TH1I *tempRMSHis = new TH1I("tempRMSHis","tempRMSHis",100,-50,50);
1512 for (Int_t ipos = 0; ipos<6; ipos++) {
1514 tempRMSHis->Fill(hisIn->GetBinContent(ipos+5));
1516 tempRMSHis->Fill(hisIn->GetBinContent(hisIn->GetNbinsX()-ipos));
1518 Double_t pulseRMS = tempRMSHis->GetRMS();
1519 tempRMSHis->~TH1I();
1523 printf("height deviation [ADC]:\t\t\t %3.1f\n", heightDev);
1524 printf("area reduction [percent]:\t\t %3.1f\n", areaReduct);
1525 printf("width reduction [percent]:\t\t %3.1f\n", widthReduct);
1526 printf("mean undershot [ADC]:\t\t\t %3.1f\n", undershot);
1527 printf("maximum of undershot after pulse [ADC]: %3.1f\n", maxUndershot);
1528 printf("RMS of the original (or summed) pulse [ADC]: \t %3.2f\n\n", pulseRMS);
1532 Double_t *qualityParam = new Double_t[6];
1533 qualityParam[0] = heightDev;
1534 qualityParam[1] = areaReduct;
1535 qualityParam[2] = widthReduct;
1536 qualityParam[3] = undershot;
1537 qualityParam[4] = maxUndershot;
1538 qualityParam[5] = pulseRMS;
1540 pulseTuple->~TNtuple();
1542 return qualityParam;
1546 //____________________________________________________________________________
1547 TNtuple *AliTPCCalibTCF::ApplyTCFilter(TH1F *hisIn, Double_t *coefZ, Double_t *coefP, Int_t plotFlag) {
1549 // Applies the given TCF parameters on the given pulse via the ALTRO emulator
1550 // class (discret values) and stores both pulses into a returned TNtuple
1553 Int_t nbins = hisIn->GetNbinsX() -4;
1554 // -1 because the first four timebins usually contain pad specific informations
1555 Int_t nPulse = (Int_t)hisIn->GetBinContent(1); // Number of summed pulses
1556 Int_t sector = (Int_t)hisIn->GetBinContent(2);
1557 Int_t row = (Int_t)hisIn->GetBinContent(3);
1558 Int_t pad = (Int_t)hisIn->GetBinContent(4);
1560 // redirect histogram values to arrays (discrete for altro emulator)
1561 Double_t *signalIn = new Double_t[nbins];
1562 Double_t *signalOut = new Double_t[nbins];
1563 short *signalInD = new short[nbins];
1564 short *signalOutD = new short[nbins];
1565 for (Int_t ipos=0;ipos<nbins;ipos++) {
1566 Double_t signal = hisIn->GetBinContent(ipos+5); // summed signal
1567 signalIn[ipos]=signal/nPulse; // mean signal
1568 signalInD[ipos]=(short)(TMath::Nint(signalIn[ipos])); //discrete mean signal
1569 signalOutD[ipos]=signalInD[ipos]; // will be overwritten by AltroEmulator
1572 // transform TCF parameters into ALTRO readable format (Integer)
1573 Int_t* valK = new Int_t[3];
1574 Int_t* valL = new Int_t[3];
1575 for (Int_t i=0; i<3; i++) {
1576 valK[i] = (Int_t)(coefP[i]*(TMath::Power(2,16)-1));
1577 valL[i] = (Int_t)(coefZ[i]*(TMath::Power(2,16)-1));
1580 // discret ALTRO EMULATOR ____________________________
1581 AliTPCAltroEmulator *altro = new AliTPCAltroEmulator(nbins, signalOutD);
1582 altro->ConfigAltro(0,1,0,0,0,0); // perform just the TailCancelation
1583 altro->ConfigTailCancellationFilter(valK[0],valK[1],valK[2],valL[0],valL[1],valL[2]);
1584 altro->RunEmulation();
1587 // non-discret implementation of the (recursive formula)
1588 // discrete Altro emulator is not used because of accuracy!
1589 Double_t *s1 = new Double_t[1000]; // pulse after 1st PZ filter
1590 Double_t *s2 = new Double_t[1000]; // pulse after 2nd PZ filter
1591 s1[0] = signalIn[0]; // 1st PZ filter
1592 for(Int_t ipos = 1; ipos<nbins; ipos++){
1593 s1[ipos] = signalIn[ipos] + coefP[0]*s1[ipos-1] - coefZ[0]*signalIn[ipos-1];
1595 s2[0] = s1[0]; // 2nd PZ filter
1596 for(Int_t ipos = 1; ipos<nbins; ipos++){
1597 s2[ipos] = s1[ipos] + coefP[1]*s2[ipos-1] - coefZ[1]*s1[ipos-1];
1599 signalOut[0] = s2[0]; // 3rd PZ filter
1600 for(Int_t ipos = 1; ipos<nbins; ipos++){
1601 signalOut[ipos] = s2[ipos] + coefP[2]*signalOut[ipos-1] - coefZ[2]*s2[ipos-1];
1606 // writing pulses to tuple
1607 TNtuple *pulseTuple = new TNtuple("ntupleTCF","PulseTCF","timebin:sig:sigAfterTCF:sigND:sigNDAfterTCF");
1608 for (Int_t ipos=0;ipos<nbins;ipos++) {
1609 pulseTuple->Fill(ipos,signalInD[ipos],signalOutD[ipos],signalIn[ipos],signalOut[ipos]);
1614 sprintf(hname,"sec%drow%dpad%d",sector,row,pad);
1615 new TCanvas(hname,hname,600,400);
1616 //just plotting non-discret pulses | they look pretties in case of mean sig ;-)
1617 pulseTuple->Draw("sigND:timebin","","L");
1618 // pulseTuple->Draw("sig:timebin","","Lsame");
1619 pulseTuple->SetLineColor(3);
1620 pulseTuple->Draw("sigNDAfterTCF:timebin","","Lsame");
1621 // pulseTuple->Draw("sigAfterTCF:timebin","","Lsame");
1627 signalIn->~Double_t();
1628 signalOut->~Double_t();
1637 //____________________________________________________________________________
1638 void AliTPCCalibTCF::PrintPulseThresholds() {
1640 // Prints the pulse threshold settings
1643 printf(" %4.0d [ADC] ... expected Gate fluctuation length \n", fGateWidth);
1644 printf(" %4.0d [ADC] ... expected usefull signal length \n", fSample);
1645 printf(" %4.0d [ADC] ... needed pulselength for TC characterisation \n", fPulseLength);
1646 printf(" %4.0d [ADC] ... lower pulse height limit \n", fLowPulseLim);
1647 printf(" %4.0d [ADC] ... upper pulse height limit \n", fUpPulseLim);
1648 printf(" %4.1f [ADC] ... maximal pulse RMS \n", fRMSLim);
1649 printf(" %4.1f [ADC] ... pulse/tail integral ratio \n", fRatioIntLim);
1654 //____________________________________________________________________________
1655 void AliTPCCalibTCF::MergeHistoPerFile(const char *fileNameIn, const char *fileNameSum, Int_t mode)
1657 // Gets histograms from fileNameIn and adds contents to fileSum
1659 // If fileSum doesn't exist, fileSum is created
1660 // mode = 0, just ONE BIG FILE ('fileSum') will be used
1661 // mode = 1, one file per sector ('fileSum-Sec#.root') will be used
1662 // mode=1 is much faster, but the additional function 'MergeToOneFile' has to be used in order to
1663 // get one big and complete collection file again ...
1665 // !Make sure not to add the same file more than once!
1667 TFile fileIn(fileNameIn,"READ");
1670 TIter next(fileIn.GetListOfKeys());
1674 Int_t nHist=fileIn.GetNkeys();
1678 char fileNameSumSec[100];
1681 fileOut = new TFile(fileNameSum,"UPDATE");
1683 while((key=(TKey*)next())) {
1684 const char *hisName = key->GetName();
1686 hisIn=(TH1F*)fileIn.Get(hisName);
1687 Int_t numPulse=(Int_t)hisIn->GetBinContent(1);
1688 Int_t sec=(Int_t)hisIn->GetBinContent(2);
1689 Int_t pulseLength= hisIn->GetNbinsX()-4;
1691 // in case of mode 1, store histos in files per sector
1692 if (sec!=secPrev && mode != 0) {
1693 if (secPrev>0) { // closing old file
1697 sprintf(fileNameSumSec,"%s-Sec%d.root",fileNameSum,sec);
1698 fileOut = new TFile(fileNameSumSec,"UPDATE");
1702 // search for existing histogram
1703 TH1F *his=(TH1F*)fileOut->Get(hisName);
1705 printf("Histogram %d / %d, %s, Action: ",iHist,nHist,hisName);
1716 his->Write(hisName);
1718 his->AddBinContent(1,numPulse);
1719 for (Int_t ii=5; ii<pulseLength+5; ii++) {
1720 his->AddBinContent(ii,hisIn->GetBinContent(ii));
1722 his->Write(hisName,TObject::kOverwrite);
1726 printf("closing files (may take a while)...\n");
1731 printf("...DONE\n\n");
1735 //____________________________________________________________________________
1736 void AliTPCCalibTCF::MergeToOneFile(const char *nameFileSum) {
1738 // Merges all Sec-files together ...
1739 // this is an additional functionality for the function MergeHistsPerFile
1740 // if for example mode=1
1745 // just delete the file entries ...
1746 TFile fileSumD(nameFileSum,"RECREATE");
1749 char nameFileSumSec[100];
1751 for (Int_t sec=0; sec<72; sec++) { // loop over all possible filenames
1753 sprintf(nameFileSumSec,"%s-Sec%d.root",nameFileSum,sec);
1754 TFile *fileSumSec = new TFile(nameFileSumSec,"READ");
1756 Int_t nHist=fileSumSec->GetNkeys();
1759 if (nHist) { // file found \ NKeys not empty
1761 TFile fileSum(nameFileSum,"UPDATE");
1764 printf("Sector file %s found\n",nameFileSumSec);
1765 TIter next(fileSumSec->GetListOfKeys());
1766 while( (key=(TKey*)next()) ) {
1767 const char *hisName = key->GetName();
1769 hisIn=(TH1F*)fileSumSec->Get(hisName);
1772 printf("found histogram %d / %d, %s\n",iHist,nHist,hisName);
1776 // TH1F *his = (TH1F*)hisIn->Clone(hisName);
1777 hisIn->Write(hisName);
1780 printf("Saving histograms from sector %d (may take a while) ...",sec);
1784 fileSumSec->Close();
1786 printf("...DONE\n\n");
1790 //____________________________________________________________________________
1791 Int_t AliTPCCalibTCF::DumpTCFparamToFilePerPad(const char *nameFileTCFPerPad,const char *nameFileTCFPerSec, const char *nameMappingFile) {
1793 // Writes TCF parameters per PAD to .data file
1795 // from now on: "roc" refers to the offline sector numbering
1796 // "sector" refers to the 18 sectors per side
1798 // Gets TCF parameters of single pads from nameFileTCFPerPad and writes them to
1799 // the file 'tpcTCFparamPAD.data'
1801 // If there are parameters for a pad missing, then the parameters of the roc,
1802 // in which the pad is located, are used as the pad parameters. The parameters for
1803 // the roc are retreived from nameFileTCFPerSec. If there are parameters for
1804 // a roc missing, then the parameters are set to -1.
1806 Float_t K0 = -1, K1 = -1, K2 = -1, L0 = -1, L1 = -1, L2 = -1;
1807 Int_t roc, row, pad, side, sector, rcu, hwAddr;
1810 Int_t tpcPadNum = 557568;
1811 Int_t validFlag = 1; // 1 if parameters for pad exist, 0 if they are only inherited from the roc
1813 Bool_t *entryID = new Bool_t[7200000]; // helping vector
1814 for (Int_t ii = 0; ii<7200000; ii++) {
1818 // get file/tuple with parameters per pad
1819 TFile fileTCFparam(nameFileTCFPerPad);
1820 TNtuple *paramTuple = (TNtuple*)fileTCFparam.Get("TCFparam");
1823 // usual location of mapping file: $ALICE_ROOT/TPC/Calib/tpcMapping.root
1824 TFile *fileMapping = new TFile(nameMappingFile, "read");
1825 AliTPCmapper *mapping = (AliTPCmapper*) fileMapping->Get("tpcMapping");
1829 printf("Failed to get mapping object from %s. ...\n", nameMappingFile);
1832 printf("Got mapping object from %s\n", nameMappingFile);
1835 // creating outputfile
1837 char nameFileOut[255];
1838 sprintf(nameFileOut,"tpcTCFparamPAD.data");
1839 fileOut.open(nameFileOut);
1840 // following not used:
1841 // char headerLine[255];
1842 // sprintf(headerLine,"15\tside\tsector\tRCU\tHWadr\tK0\tK1\tK2\tL0\tL1\tL2\tValidFlag");
1843 // fileOut << headerLine << std::endl;
1844 fileOut << "15" << std::endl;
1846 // loop over nameFileTCFPerPad, write parameters into outputfile
1847 // NOTE: NO SPECIFIC ORDER !!!
1848 printf("\nstart assigning parameters to pad...\n");
1849 for (Int_t iParam = 0; iParam < paramTuple->GetEntries(); iParam++) {
1850 paramTuple->GetEntry(iParam);
1851 Float_t *paramArgs = paramTuple->GetArgs();
1852 roc = Int_t(paramArgs[0]);
1853 row = Int_t(paramArgs[1]);
1854 pad = Int_t(paramArgs[2]);
1855 side = Int_t(mapping->GetSideFromRoc(roc));
1856 sector = Int_t(mapping->GetSectorFromRoc(roc));
1857 rcu = Int_t(mapping->GetRcu(roc,row,pad));
1858 hwAddr = Int_t(mapping->GetHWAddress(roc,row,pad));
1859 K0 = TMath::Nint(paramArgs[7] * (TMath::Power(2,16) - 1));
1860 K1 = TMath::Nint(paramArgs[8] * (TMath::Power(2,16) - 1));
1861 K2 = TMath::Nint(paramArgs[9] * (TMath::Power(2,16) - 1));
1862 L0 = TMath::Nint(paramArgs[4] * (TMath::Power(2,16) - 1));
1863 L1 = TMath::Nint(paramArgs[5] * (TMath::Power(2,16) - 1));
1864 L2 = TMath::Nint(paramArgs[6] * (TMath::Power(2,16) - 1));
1865 if (entryNum%10000==0) {
1866 printf("assigned pad %i / %i\n",entryNum,tpcPadNum);
1869 fileOut << entryNum++ << "\t" << side << "\t" << sector << "\t" << rcu << "\t" << hwAddr << "\t";
1870 fileOut << K0 << "\t" << K1 << "\t" << K2 << "\t" << L0 << "\t" << L1 << "\t" << L2 << "\t" << validFlag << std::endl;
1871 entryID[roc*100000 + row*1000 + pad] = 1;
1874 // Wrote all found TCF params per pad into data file
1875 // NOW FILLING UP THE REST WITH THE PARAMETERS FROM THE ROC MEAN
1877 // get file/tuple with parameters per roc
1878 TFile fileSecTCFparam(nameFileTCFPerSec);
1879 TNtuple *paramTupleSec = (TNtuple*)fileSecTCFparam.Get("TCFparam");
1881 // loop over all pads and get/write parameters for pads which don't have
1882 // parameters assigned yet
1884 for (roc = 0; roc<72; roc++) {
1885 side = Int_t(mapping->GetSideFromRoc(roc));
1886 sector = Int_t(mapping->GetSectorFromRoc(roc));
1887 for (Int_t iParamSec = 0; iParamSec < paramTupleSec->GetEntries(); iParamSec++) {
1888 paramTupleSec->GetEntry(iParamSec);
1889 Float_t *paramArgsSec = paramTupleSec->GetArgs();
1890 if (paramArgsSec[0] == roc) {
1891 K0 = TMath::Nint(paramArgsSec[7] * (TMath::Power(2,16) - 1));
1892 K1 = TMath::Nint(paramArgsSec[8] * (TMath::Power(2,16) - 1));
1893 K2 = TMath::Nint(paramArgsSec[9] * (TMath::Power(2,16) - 1));
1894 L0 = TMath::Nint(paramArgsSec[4] * (TMath::Power(2,16) - 1));
1895 L1 = TMath::Nint(paramArgsSec[5] * (TMath::Power(2,16) - 1));
1896 L2 = TMath::Nint(paramArgsSec[6] * (TMath::Power(2,16) - 1));
1899 K0 = K1 = K2 = L0 = L1 = L2 = -1;
1902 for (row = 0; row<mapping->GetNpadrows(roc); row++) {
1903 for (pad = 0; pad<mapping->GetNpads(roc,row); pad++) {
1904 if (entryID[roc*100000 + row*1000 + pad]==1) {
1908 entryID[roc*100000 + row*1000 + pad] = 1;
1909 rcu = Int_t(mapping->GetRcu(roc,row,pad));
1910 hwAddr = Int_t(mapping->GetHWAddress(roc,row,pad));
1911 if (entryNum%10000==0) {
1912 printf("assigned pad %i / %i\n",entryNum,tpcPadNum);
1915 fileOut << entryNum++ << "\t" << side << "\t" << sector << "\t" << rcu << "\t" << hwAddr << "\t";
1916 fileOut << K0 << "\t" << K1 << "\t" << K2 << "\t" << L0 << "\t" << L1 << "\t" << L2 << "\t" << validFlag << std::endl;
1921 printf("assigned pad %i / %i\ndone assigning\n",entryNum,tpcPadNum);
1923 // check if correct amount of sets of parameters were written
1924 for (Int_t ii = 0; ii<7200000; ii++) {
1925 checksum += entryID[ii];
1927 if (checksum == tpcPadNum) {
1928 printf("checksum ok, sets of parameters written = %i\n",checksum);
1930 printf("\nCHECKSUM WRONG, sets of parameters written = %i, should be %i\n\n",checksum,tpcPadNum);
1933 // closing & destroying
1935 fileTCFparam.Close();
1936 fileSecTCFparam.Close();
1938 printf("output written to file: %s\n",nameFileOut);
1944 //____________________________________________________________________________
1945 Int_t AliTPCCalibTCF::DumpTCFparamToFilePerSector(const char *nameFileTCFPerSec, const char *nameMappingFile) {
1947 // Writes TCF parameters per SECTOR (=ROC) to .data file
1949 // from now on: "roc" refers to the offline sector numbering
1950 // "sector" refers to the 18 sectors per side
1952 // Gets TCF parameters of a roc from nameFileTCFPerSec and writes them to
1953 // the file 'tpcTCFparamSector.data'
1955 // If there are parameters for a roc missing, then the parameters are set to -1
1957 Float_t K0 = -1, K1 = -1, K2 = -1, L0 = -1, L1 = -1, L2 = -1;
1959 Int_t validFlag = 0; // 1 if parameters for roc exist
1961 // get file/tuple with parameters per roc
1962 TFile fileTCFparam(nameFileTCFPerSec);
1963 TNtuple *paramTupleSec = (TNtuple*)fileTCFparam.Get("TCFparam");
1967 // usual location of mapping file: $ALICE_ROOT/TPC/Calib/tpcMapping.root
1968 TFile *fileMapping = new TFile(nameMappingFile, "read");
1969 AliTPCmapper *mapping = (AliTPCmapper*) fileMapping->Get("tpcMapping");
1973 printf("Failed to get mapping object from %s. ...\n", nameMappingFile);
1976 printf("Got mapping object from %s\n", nameMappingFile);
1980 // creating outputfile
1983 char nameFileOut[255];
1984 sprintf(nameFileOut,"tpcTCFparamSector.data");
1985 fileOut.open(nameFileOut);
1986 // following not used:
1987 // char headerLine[255];
1988 // sprintf(headerLine,"16\tside\tsector\tRCU\tHWadr\tK0\tK1\tK2\tL0\tL1\tL2\tValidFlag");
1989 // fileOut << headerLine << std::endl;
1990 fileOut << "16" << std::endl;
1992 // loop over all rcu's in the TPC (6 per sector)
1993 printf("\nstart assigning parameters to rcu's...\n");
1994 for (Int_t side = 0; side<2; side++) {
1995 for (Int_t sector = 0; sector<18; sector++) {
1996 for (Int_t rcu = 0; rcu<6; rcu++) {
1999 Int_t roc = Int_t(mapping->GetRocFromPatch(side, sector, rcu));
2001 // get parameters (through loop search) for rcu from corresponding roc
2002 for (Int_t iParam = 0; iParam < paramTupleSec->GetEntries(); iParam++) {
2003 paramTupleSec->GetEntry(iParam);
2004 Float_t *paramArgs = paramTupleSec->GetArgs();
2005 if (paramArgs[0] == roc) {
2007 K0 = TMath::Nint(paramArgs[7] * (TMath::Power(2,16) - 1));
2008 K1 = TMath::Nint(paramArgs[8] * (TMath::Power(2,16) - 1));
2009 K2 = TMath::Nint(paramArgs[9] * (TMath::Power(2,16) - 1));
2010 L0 = TMath::Nint(paramArgs[4] * (TMath::Power(2,16) - 1));
2011 L1 = TMath::Nint(paramArgs[5] * (TMath::Power(2,16) - 1));
2012 L2 = TMath::Nint(paramArgs[6] * (TMath::Power(2,16) - 1));
2016 if (!validFlag) { // No TCF parameters found for this roc
2017 K0 = K1 = K2 = L0 = L1 = L2 = -1;
2020 fileOut << entryNum++ << "\t" << side << "\t" << sector << "\t" << rcu << "\t" << -1 << "\t";
2021 fileOut << K0 << "\t" << K1 << "\t" << K2 << "\t" << L0 << "\t" << L1 << "\t" << L2 << "\t" << validFlag << std::endl;
2026 printf("done assigning\n");
2030 fileTCFparam.Close();
2031 printf("output written to file: %s\n",nameFileOut);