]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TPC/AliTPCExBEffectiveSector.cxx
par file fix
[u/mrichter/AliRoot.git] / TPC / AliTPCExBEffectiveSector.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 ////////////////////////////////////////////////////////////////////////////
17 //                                                                        //
18 // AliTPCExBEffectiveSector class                                                   //
19 // Correct for the rest of ExB effect which are not covered yet by physical models
20 //
21 // Motivation:
22 //   ExB correction: 
23 //      dr    =  c0* integral(Er/Ez) + c1* integral(Erphi/Ez)
24 //      drphi = -c1* integral(Er/Ez) + c0* integral(Erphi/Ez)
25 //   Where:      
26 //   wt = Bz*(k*vdrift/E)           ~ 0.3 at B=0.5 T 
27 //   c0 = 1/(1+T2*T2*wt*wt) 
28 //   c1 = T1*wt/(1+T1*T1*wt*wt)
29 //   
30 //  
31 //  3 correction maps 0 implemented as histogram used
32 //  R-Phi correction map obtained minimizing residuals betwee the track
33 //        and space points (AliTPCcalibAlign class). Track is defined using
34 //        the points from the refernce plain at the middle of the TPC
35 //        and vertex
36 //        Corrected primar tracks straight pointing to the primary vertex
37 //
38 //  R distortion - obtained using the cluster residuals in the setup with
39 //                 plus and minus field 
40 //                 Only high momenta tracks used for this calibration (1 GeV threshold)
41 //     drphi_plus-drphi_minus=-2*c1 integral(Er/Ez)
42 //               - Erphi/Ez cancels   
43 ////////////////////////////////////////////////////////////////////////////
44 #include "AliMagF.h"
45 #include "TGeoGlobalMagField.h"
46 #include "AliTPCcalibDB.h"
47 #include "AliTPCParam.h"
48 #include "AliLog.h"
49
50 #include "TMath.h"
51 #include "AliTPCROC.h"
52 #include "TFile.h"
53 #include "TAxis.h"
54 #include "TTree.h"
55 #include "TTreeStream.h"
56 #include "THnSparse.h"
57 #include "THnBase.h"
58 #include "TProfile.h"
59 #include "TH2F.h"
60 #include "TH3F.h"
61 #include "TROOT.h"
62 #include "AliTPCExBEffectiveSector.h"
63 ClassImp(AliTPCExBEffectiveSector)
64
65 AliTPCExBEffectiveSector::AliTPCExBEffectiveSector()
66   : AliTPCCorrection("ExB_effectiveSector","ExB effective sector"),
67     fC0(1.),fC1(0.), 
68     fCorrectionR(0),        // radial correction
69     fCorrectionRPhi(0),     // r-phi correction
70     fCorrectionZ(0)        // z correction
71 {
72   //
73   // default constructor
74   //
75 }
76
77 AliTPCExBEffectiveSector::~AliTPCExBEffectiveSector() {
78   //
79   // default destructor
80   //
81   delete fCorrectionR;        // radial correction
82   delete fCorrectionRPhi;     // r-phi correction
83   delete fCorrectionZ;        // z correction
84 }
85
86
87
88 void AliTPCExBEffectiveSector::Init() {
89   //
90   // Initialization funtion
91   //
92   
93   AliMagF* magF= (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
94   if (!magF) AliError("Magneticd field - not initialized");
95   Double_t bzField = magF->SolenoidField()/10.; //field in T
96   AliTPCParam *param= AliTPCcalibDB::Instance()->GetParameters();
97   if (!param) AliError("Parameters - not initialized");
98   Double_t vdrift = param->GetDriftV()/1000000.; // [cm/us]   // From dataBase: to be updated: per second (ideally)
99   Double_t ezField = 400; // [V/cm]   // to be updated: never (hopefully)
100   Double_t wt = -10.0 * (bzField*10) * vdrift / ezField ; 
101   // Correction Terms for effective omegaTau; obtained by a laser calibration run
102   SetOmegaTauT1T2(wt,fT1,fT2);
103 }
104
105 void AliTPCExBEffectiveSector::Update(const TTimeStamp &/*timeStamp*/) {
106   //
107   // Update function 
108   //
109   AliMagF* magF= (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
110   if (!magF) AliError("Magneticd field - not initialized");
111   Double_t bzField = magF->SolenoidField()/10.; //field in T
112   AliTPCParam *param= AliTPCcalibDB::Instance()->GetParameters();
113   if (!param) AliError("Parameters - not initialized");
114   Double_t vdrift = param->GetDriftV()/1000000.; // [cm/us]   // From dataBase: to be updated: per second (ideally)
115   Double_t ezField = 400; // [V/cm]   // to be updated: never (hopefully)
116   Double_t wt = -10.0 * (bzField*10) * vdrift / ezField ; 
117   // Correction Terms for effective omegaTau; obtained by a laser calibration run
118   SetOmegaTauT1T2(wt,fT1,fT2);
119 }
120
121
122
123 void AliTPCExBEffectiveSector::GetCorrection(const Float_t x[],const Short_t roc,Float_t dx[]) {
124   //
125   // Calculates the correction using the lookup table (histogram) of distortion
126   // The histogram is created as poscl - postrack
127   //   
128   dx[0]=0;
129   dx[1]=0;
130   dx[2]=0;
131   if (!fCorrectionRPhi) return;
132   Double_t phi      = TMath::ATan2(x[1],x[0]);
133   Double_t r        = TMath::Sqrt(x[1]*x[1]+x[0]*x[0]);
134   Double_t sector   = 9.*phi/TMath::Pi();
135   if (sector<0) sector+=18.;
136   Double_t        kZ=x[2]/r;
137   //
138   if (kZ>1.2)        kZ= 1.2;
139   if (kZ<-1.2)       kZ= -1.2;
140   if (roc%36<18)  kZ= TMath::Abs(kZ);
141   if (roc%36>=18) kZ=-TMath::Abs(kZ);
142   if (TMath::Abs(kZ)<0.15){
143     kZ = (roc%36<18) ? 0.15:-0.15;
144   }  
145   //
146   Double_t dlR=0;
147   Double_t dlRPhi=0;
148   Double_t dlZ=0;
149   Double_t rr=TMath::Max(r,fCorrectionRPhi->GetYaxis()->GetXmin()+0.01);
150   rr=TMath::Min(rr,fCorrectionRPhi->GetYaxis()->GetXmax()-0.01);
151   Double_t kZZ=TMath::Max(kZ,fCorrectionRPhi->GetZaxis()->GetXmin()+0.001);
152   kZZ=TMath::Min(kZZ,fCorrectionRPhi->GetZaxis()->GetXmax()-0.001);
153
154   if (fCorrectionRPhi) {  
155     //    dlRPhi= -fCorrectionRPhi->Interpolate(sector,rr,kZZ);
156     dlRPhi= -fCorrectionRPhi->GetBinContent(fCorrectionRPhi->FindBin(sector,rr,kZZ));
157   }
158   if (fCorrectionR)    {
159     //    dlR= -fCorrectionR->Interpolate(sector,rr,kZZ);
160     dlR= -fCorrectionR->GetBinContent(fCorrectionR->FindBin(sector,rr,kZZ));
161   }
162   if (fCorrectionZ)    {
163     //    dlZ= -fCorrectionZ->Interpolate(sector,rr,kZZ);
164     dlZ= -fCorrectionZ->GetBinContent(fCorrectionZ->FindBin(sector,rr,kZZ));
165   }
166   Double_t dr    = fC0*dlR  + fC1*dlRPhi;
167   Double_t drphi = -fC1*dlR + fC0*dlRPhi;
168    // Calculate distorted position
169   if ( r > 0.0 ) {
170     r   =  r   + dr;
171     phi =  phi + drphi/r;
172   }
173   // Calculate correction in cartesian coordinates
174   dx[0] = r * TMath::Cos(phi) - x[0];
175   dx[1] = r * TMath::Sin(phi) - x[1];
176   dx[2] = dlZ; 
177
178 }
179
180 void AliTPCExBEffectiveSector::Print(const Option_t* option) const {
181   //
182   // Print function to check the settings (e.g. the twist in the X direction)
183   // option=="a" prints the C0 and C1 coefficents for calibration purposes
184   //
185
186   TString opt = option; opt.ToLower();
187   printf("%s\t%s\n",GetName(),GetTitle());  
188   if (opt.Contains("a")) { // Print all details
189     printf(" - T1: %1.4f, T2: %1.4f \n",fT1,fT2);
190     printf(" - C0: %1.4f, C1: %1.4f \n",fC0,fC1);
191   }    
192 }
193
194 void  AliTPCExBEffectiveSector::MakeResidualMap(THnBase * hisInput, const char *sname, Int_t ptype, Int_t dtype){
195   //
196   // Make cluster residual map from the n-dimensional histogram
197   // hisInput supposed to have given format:
198   //          - 4 Dim  - delta, sector, localX, kZ
199   // Vertex position assumed to be at (0,0,0)          
200   TTreeSRedirector *pcstream=new TTreeSRedirector(sname);
201   //
202   Int_t nbins1=hisInput->GetAxis(1)->GetNbins();
203   Int_t nbins2=hisInput->GetAxis(2)->GetNbins();
204   Int_t nbins3=hisInput->GetAxis(3)->GetNbins();
205   TF1 *fgaus=0;
206   TH3F * hisResMap3D = 
207     new TH3F("his3D","his3D",
208              nbins1,hisInput->GetAxis(1)->GetXmin(), hisInput->GetAxis(1)->GetXmax(),
209              nbins2,hisInput->GetAxis(2)->GetXmin(), hisInput->GetAxis(2)->GetXmax(),
210              nbins3,hisInput->GetAxis(3)->GetXmin(), hisInput->GetAxis(3)->GetXmax());
211   hisResMap3D->GetXaxis()->SetTitle("sector");
212   hisResMap3D->GetYaxis()->SetTitle("localX");
213   hisResMap3D->GetZaxis()->SetTitle("kZ");
214
215   TH2F * hisResMap2D[4] ={0,0,0,0};
216   for (Int_t i=0; i<4; i++){
217     hisResMap2D[i]=
218       new TH2F(Form("his2D_0%d",i),Form("his2D_0%d",i),
219                nbins1,hisInput->GetAxis(1)->GetXmin(), hisInput->GetAxis(1)->GetXmax(),
220                nbins2,hisInput->GetAxis(2)->GetXmin(), hisInput->GetAxis(2)->GetXmax());
221     hisResMap2D[i]->GetXaxis()->SetTitle("sector");
222     hisResMap2D[i]->GetYaxis()->SetTitle("localX");
223   }
224   //
225   //
226   //
227   TF1 * f1= 0;
228   Int_t axis0[4]={0,1,2,3};
229   Int_t axis1[4]={0,1,2,3};
230   for (Int_t ibin1=1; ibin1<nbins1; ibin1+=1){
231     // phi- sector  range
232     hisInput->GetAxis(1)->SetRange(ibin1-1,ibin1+1);
233     THnBase *his1=(THnBase *)hisInput->ProjectionND(4,axis0); 
234     Double_t sector=hisInput->GetAxis(1)->GetBinCenter(ibin1);
235     //
236     for (Int_t ibin2=1; ibin2<nbins2; ibin2+=1){
237       // local x range
238       // kz fits
239       his1->GetAxis(2)->SetRange(ibin2-1,ibin2+1);
240       THnBase *his2=(THnBase *)his1->ProjectionND(4,axis1); 
241       Double_t localX=hisInput->GetAxis(2)->GetBinCenter(ibin2);
242       //      
243       //A side
244       his2->GetAxis(3)->SetRangeUser(0.01,0.3);
245       TH1 * hisA = his2->Projection(0);
246       Double_t meanA= hisA->GetMean();
247       Double_t rmsA= hisA->GetRMS();
248       Double_t entriesA= hisA->GetEntries();
249       delete hisA;
250       //C side
251       his2->GetAxis(3)->SetRangeUser(0.01,0.3);
252       TH1 * hisC = his2->Projection(0);
253       Double_t meanC= hisC->GetMean();
254       Double_t rmsC= hisC->GetRMS();
255       Double_t entriesC= hisC->GetEntries();
256       delete hisC;
257       his2->GetAxis(3)->SetRangeUser(-1.2,1.2);      
258       TH2 * hisAC       = his2->Projection(0,3);
259       TProfile *profAC  = hisAC->ProfileX(); 
260       delete hisAC;
261       profAC->Fit("pol1","QNR","QNR",0.05,1);
262       if (!f1) f1=(TF1*)gROOT->FindObject("pol1");
263       Double_t offsetA=f1->GetParameter(0);
264       Double_t slopeA=f1->GetParameter(1);
265       Double_t offsetAE=f1->GetParError(0);
266       Double_t slopeAE=f1->GetParError(1); 
267       Double_t chi2A=f1->GetChisquare()/f1->GetNumberFreeParameters();
268       profAC->Fit("pol1","QNR","QNR",-1.1,-0.1);
269       f1=(TF1*)gROOT->FindObject("pol1");
270       Double_t offsetC=f1->GetParameter(0);
271       Double_t slopeC=f1->GetParameter(1); 
272       Double_t offsetCE=f1->GetParError(0);
273       Double_t slopeCE=f1->GetParError(1); 
274       Double_t chi2C=f1->GetChisquare()/f1->GetNumberFreeParameters();
275       printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n", sector,localX, entriesA+entriesC, slopeA,slopeC, chi2A, chi2C);
276
277       (*pcstream)<<"deltaFit"<<
278         "sector="<<sector<<
279         "localX="<<localX<<
280         "meanA="<<meanA<<
281         "rmsA="<<rmsA<<
282         "entriesA="<<entriesA<<
283         "meanC="<<meanC<<
284         "rmsC="<<rmsC<<
285         "entriesC="<<entriesC<<
286         "offsetA="<<offsetA<<
287         "slopeA="<<slopeA<<
288         "offsetAE="<<offsetAE<<
289         "slopeAE="<<slopeAE<<
290         "chi2A="<<chi2A<<
291         "offsetC="<<offsetC<<
292         "slopeC="<<slopeC<<
293         "offsetCE="<<offsetCE<<
294         "slopeCE="<<slopeCE<<
295         "chi2C="<<chi2C<<
296         "\n";
297       //
298       hisResMap2D[0]->SetBinContent(ibin1,ibin2, offsetA);
299       hisResMap2D[1]->SetBinContent(ibin1,ibin2, slopeA);
300       hisResMap2D[2]->SetBinContent(ibin1,ibin2, offsetC);
301       hisResMap2D[3]->SetBinContent(ibin1,ibin2, slopeC);
302       
303       for (Int_t ibin3=1; ibin3<nbins3; ibin3++){
304         Double_t kZ=hisInput->GetAxis(3)->GetBinCenter(ibin3);
305         if (TMath::Abs(kZ)<0.05) continue;  // crossing 
306         his2->GetAxis(3)->SetRange(ibin3,ibin3);
307         if (TMath::Abs(kZ)>0.15){
308           his2->GetAxis(3)->SetRange(ibin3,ibin3);
309         }
310         TH1 * his = his2->Projection(0);
311         Double_t mean= his->GetMean();
312         Double_t rms= his->GetRMS();
313         Double_t entries= his->GetEntries();
314         //printf("%f\t%f\t%f\t%f\t%f\t%f\n", sector,localX,kZ, entries, mean,rms);
315         hisResMap3D->SetBinContent(ibin1,ibin2,ibin3, mean);
316         Double_t phi=TMath::Pi()*sector/9;
317         if (phi>TMath::Pi()) phi+=TMath::Pi();
318         Double_t meanG=0;
319         Double_t rmsG=0;
320         if (entries>50){
321           if (!fgaus) {     
322             his->Fit("gaus","Q","goff");
323             fgaus= (TF1*)((his->GetListOfFunctions()->FindObject("gaus"))->Clone());
324           }
325           if (fgaus) {
326             his->Fit(fgaus,"Q","goff");
327             meanG=fgaus->GetParameter(1);
328             rmsG=fgaus->GetParameter(2);
329           }
330         }
331         Double_t dsec=sector-Int_t(sector)-0.5;
332         Double_t snp=dsec*TMath::Pi()/9.;
333         (*pcstream)<<"delta"<<
334           "ptype="<<ptype<<
335           "dtype="<<dtype<<
336           "sector="<<sector<<
337           "dsec="<<dsec<<
338           "snp="<<snp<<
339           "phi="<<phi<<
340           "localX="<<localX<<
341           "kZ="<<kZ<<
342           "theta="<<kZ<<
343           "mean="<<mean<<
344           "rms="<<rms<<
345           "meanG="<<meanG<<
346           "rmsG="<<rmsG<<
347           "entries="<<entries<<
348           "meanA="<<meanA<<
349           "rmsA="<<rmsA<<
350           "entriesA="<<entriesA<<
351           "meanC="<<meanC<<
352           "rmsC="<<rmsC<<
353           "entriesC="<<entriesC<<
354           "offsetA="<<offsetA<<
355           "slopeA="<<slopeA<<
356           "chi2A="<<chi2A<<
357           "offsetC="<<offsetC<<
358           "slopeC="<<slopeC<<
359           "chi2C="<<chi2C<<
360           "\n";
361         delete his;
362       }
363       delete his2;
364     }
365     delete his1;
366   }
367   hisResMap3D->Write();
368   hisResMap2D[0]->Write();
369   hisResMap2D[1]->Write();
370   hisResMap2D[2]->Write();
371   hisResMap2D[3]->Write();
372   delete pcstream;
373 }