]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerMI.cxx
New comparison macro (M.Ivanov)
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerMI.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 // TRD cluster finder for the slow simulator. 
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TF1.h>
25 #include <TTree.h>
26 #include <TH1.h>
27 #include <TFile.h>
28
29 #include "AliRun.h"
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32
33 #include "AliTRDclusterizerMI.h"
34 #include "AliTRDmatrix.h"
35 #include "AliTRDgeometry.h"
36 #include "AliTRDdataArrayF.h"
37 #include "AliTRDdataArrayI.h"
38 #include "AliTRDdigitsManager.h"
39 #include "AliTRDparameter.h"
40 #include "AliTRDclusterMI.h"
41 #include "AliTRDpadPlane.h"
42
43 ClassImp(AliTRDclusterizerMI)
44
45 //_____________________________________________________________________________
46 AliTRDclusterizerMI::AliTRDclusterizerMI():AliTRDclusterizerV1()
47 {
48   //
49   // AliTRDclusterizerMI default constructor
50   //
51 }
52
53 //_____________________________________________________________________________
54 AliTRDclusterizerMI::AliTRDclusterizerMI(const Text_t* name, const Text_t* title)
55                     :AliTRDclusterizerV1(name,title)
56 {
57   //
58   // AliTRDclusterizerMI default constructor
59   //
60 }
61
62 //_____________________________________________________________________________
63 AliTRDclusterizerMI::~AliTRDclusterizerMI()
64 {
65   //
66   // AliTRDclusterizerMI destructor
67   //
68 }
69
70 //_____________________________________________________________________________
71 AliTRDclusterMI *  AliTRDclusterizerMI::AddCluster()
72 {
73   //
74   // Adds cluster
75   //
76
77   AliTRDclusterMI *c = new AliTRDclusterMI();
78   fClusterContainer->Add(c);
79   return c;
80
81 }
82
83 //_____________________________________________________________________________
84 void AliTRDclusterizerMI::SetCluster(AliTRDclusterMI * cl,Double_t *pos
85                                    , Int_t det, Double_t amp
86                                    , Int_t *tracks, Double_t *sig, Int_t iType
87                                    , Double_t sigmay, Double_t relpad)
88 {
89   //
90   // Sets cluster
91   //
92
93   cl->SetDetector(det);
94   cl->AddTrackIndex(tracks);
95   cl->SetQ(amp);
96   cl->SetY(pos[0]);
97   cl->SetZ(pos[1]);
98   cl->SetSigmaY2(sig[0]);   
99   cl->SetSigmaZ2(sig[1]);
100   cl->SetLocalTimeBin(((Int_t) pos[2]));
101   cl->SetNPads(iType);
102   cl->SetRelPos(relpad);
103   cl->fRmsY = sigmay;
104 }
105
106 //_____________________________________________________________________________
107 void AliTRDclusterizerMI::MakeCluster(Double_t * padSignal, Double_t * pos
108                                     , Double_t &sigma, Double_t & relpad)
109 {
110   //
111   // Does something with the cluster  
112   //
113
114   Double_t sum   = 0;
115   Double_t sumx  = 0;
116   Double_t sumx2 = 0;
117   Double_t signal[3]={padSignal[0],padSignal[1],padSignal[2]};
118   if ( signal[0]<2){
119     signal[0] = 0.015*(signal[1]*signal[1])/(signal[2]+0.5);
120     if (signal[0]>2) signal[0]=2;
121   }
122   if ( signal[2]<2){
123     signal[2] = 0.015*(signal[1]*signal[1])/(signal[0]+0.5);
124     if (signal[2]>2) signal[2]=2;
125   }
126
127   for (Int_t i=-1;i<=1;i++){
128     sum   +=signal[i+1];
129     sumx  +=signal[i+1]*float(i);
130     sumx2 +=signal[i+1]*float(i)*float(i);
131   }
132   
133   pos[0] = sumx/sum;
134   sigma  = sumx2/sum-pos[0]*pos[0];
135   relpad = pos[0];
136 }
137
138 //_____________________________________________________________________________
139 Bool_t AliTRDclusterizerMI::MakeClusters()
140 {
141   //
142   // Generates the cluster.
143   //
144
145   //////////////////////
146   //STUPIDITY to be fixed later
147   fClusterContainer = RecPoints();
148
149   Int_t row, col, time;
150
151   /*
152   if (fTRD->IsVersion() != 1) {
153     printf("<AliTRDclusterizerMI::MakeCluster> ");
154     printf("TRD must be version 1 (slow simulator).\n");
155     return kFALSE; 
156   }
157   */
158
159   // Get the geometry
160   AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
161
162   // Create a default parameter class if none is defined
163   if (!fPar) {
164     fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
165     printf("<AliTRDclusterizerMI::MakeCluster> ");
166     printf("Create the default parameter object.\n");
167   }
168
169   Double_t timeBinSize = fPar->GetDriftVelocity()
170                        / fPar->GetSamplingFrequency();
171   // Half of ampl.region
172   const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
173
174   Float_t omegaTau = fPar->GetOmegaTau();
175   if (fVerbose > 0) {
176     printf("<AliTRDclusterizerMI::MakeCluster> ");
177     printf("OmegaTau = %f \n",omegaTau);
178     printf("<AliTRDclusterizerMI::MakeCluster> ");
179     printf("Start creating clusters.\n");
180   } 
181
182   AliTRDdataArrayI *digits;
183   AliTRDdataArrayI *track0;
184   AliTRDdataArrayI *track1;
185   AliTRDdataArrayI *track2; 
186
187   // Threshold value for the maximum
188   Int_t maxThresh = fPar->GetClusMaxThresh();   
189   // Threshold value for the digit signal
190   Int_t sigThresh = fPar->GetClusSigThresh();   
191
192   // Iteration limit for unfolding procedure
193   const Double_t kEpsilon = 0.01;             
194
195   const Int_t    kNclus   = 3;  
196   const Int_t    kNsig    = 5;
197   const Int_t    kNtrack  = 3 * kNclus;
198
199   Int_t    iType          = 0;
200   Int_t    iUnfold        = 0;
201
202   Double_t ratioLeft      = 1.0;
203   Double_t ratioRight     = 1.0;
204
205   Double_t padSignal[kNsig];   
206   Double_t clusterSignal[kNclus];
207   Double_t clusterPads[kNclus];   
208   Int_t    clusterDigit[kNclus];
209   Int_t    clusterTracks[kNtrack];   
210
211   Int_t chamBeg = 0;
212   Int_t chamEnd = AliTRDgeometry::Ncham();
213   Int_t planBeg = 0;
214   Int_t planEnd = AliTRDgeometry::Nplan();
215   Int_t sectBeg = 0;
216   Int_t sectEnd = AliTRDgeometry::Nsect();
217
218   // Start clustering in every chamber
219   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
220     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
221       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
222
223         Int_t idet = geo->GetDetector(iplan,icham,isect);
224
225         Int_t nClusters      = 0;
226         Int_t nClusters2pad  = 0;
227         Int_t nClusters3pad  = 0;
228         Int_t nClusters4pad  = 0;
229         Int_t nClusters5pad  = 0;
230         Int_t nClustersLarge = 0;
231
232         if (fVerbose > 0) {
233           printf("<AliTRDclusterizerMI::MakeCluster> ");
234           printf("Analyzing chamber %d, plane %d, sector %d.\n"
235                 ,icham,iplan,isect);
236         }
237
238         Int_t   nRowMax     = fPar->GetRowMax(iplan,icham,isect);
239         Int_t   nColMax     = fPar->GetColMax(iplan);
240         Int_t   nTimeBefore = fPar->GetTimeBefore();
241         Int_t   nTimeTotal  = fPar->GetTimeTotal();  
242
243         AliTRDpadPlane *padPlane = fPar->GetPadPlane(iplan,icham);
244
245         // Get the digits
246         digits = fDigitsManager->GetDigits(idet);
247         digits->Expand();
248         track0 = fDigitsManager->GetDictionary(idet,0);
249         track0->Expand();
250         track1 = fDigitsManager->GetDictionary(idet,1);
251         track1->Expand();
252         track2 = fDigitsManager->GetDictionary(idet,2); 
253         track2->Expand();
254
255         // Loop through the chamber and find the maxima 
256         for ( row = 0;  row <  nRowMax;    row++) {
257           for ( col = 2;  col <  nColMax;    col++) {
258             for (time = 0; time < nTimeTotal; time++) {
259
260               Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
261               Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
262               Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
263  
264               // Look for the maximum
265               if (signalM >= maxThresh) {
266                 if (((signalL >= sigThresh) &&
267                      (signalL <  signalM))  ||
268                     ((signalR >= sigThresh) &&
269                      (signalR <  signalM))) {
270                   // Maximum found, mark the position by a negative signal
271                   digits->SetDataUnchecked(row,col-1,time,-signalM);
272                 }
273               }
274
275             }  
276           }    
277         }      
278
279         // Now check the maxima and calculate the cluster position
280         for ( row = 0;  row <  nRowMax  ;  row++) {
281           for (time = 0; time < nTimeTotal; time++) {
282             for ( col = 1;  col <  nColMax-1;  col++) {
283
284               // Maximum found ?             
285               if (digits->GetDataUnchecked(row,col,time) < 0) {
286
287                 Int_t iPad;
288                 for (iPad = 0; iPad < kNclus; iPad++) {
289                   Int_t iPadCol = col - 1 + iPad;
290                   clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
291                                                                                ,iPadCol
292                                                                                ,time));
293                   clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
294                   clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
295                   clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
296                   clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
297                 }
298
299                 // Count the number of pads in the cluster
300                 Int_t nPadCount = 0;
301                 Int_t ii        = 0;
302                 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
303                                                                   >= sigThresh) {
304                   nPadCount++;
305                   ii++;
306                   if (col-ii   <        0) break;
307                 }
308                 ii = 0;
309                 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
310                                                                   >= sigThresh) {
311                   nPadCount++;
312                   ii++;
313                   if (col+ii+1 >= nColMax) break;
314                 }
315
316                 nClusters++;
317                 switch (nPadCount) {
318                 case 2:
319                   iType = 0;
320                   nClusters2pad++;
321                   break;
322                 case 3:
323                   iType = 1;
324                   nClusters3pad++;
325                   break;
326                 case 4:
327                   iType = 2;
328                   nClusters4pad++;
329                   break;
330                 case 5:
331                   iType = 3;
332                   nClusters5pad++;
333                   break;
334                 default:
335                   iType = 4;
336                   nClustersLarge++;
337                   break;
338                 };
339
340                 // Don't analyze large clusters
341                 //if (iType == 4) continue;
342
343                 // Look for 5 pad cluster with minimum in the middle
344                 Bool_t fivePadCluster = kFALSE;
345                 if (col < nColMax-3) {
346                   if (digits->GetDataUnchecked(row,col+2,time) < 0) {
347                     fivePadCluster = kTRUE;
348                   }
349                   if ((fivePadCluster) && (col < nColMax-5)) {
350                     if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
351                       fivePadCluster = kFALSE;
352                     }
353                   }
354                   if ((fivePadCluster) && (col >         1)) {
355                     if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
356                       fivePadCluster = kFALSE;
357                     }
358                   }
359                 }
360
361                 // 5 pad cluster
362                 // Modify the signal of the overlapping pad for the left part 
363                 // of the cluster which remains from a previous unfolding
364                 if (iUnfold) {
365                   clusterSignal[0] *= ratioLeft;
366                   iType   = 3;
367                   iUnfold = 0;
368                 }
369
370                 // Unfold the 5 pad cluster
371                 if (fivePadCluster) {
372                   for (iPad = 0; iPad < kNsig; iPad++) {
373                     padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
374                                                                          ,col-1+iPad
375                                                                          ,time));
376                   }
377                   // Unfold the two maxima and set the signal on 
378                   // the overlapping pad to the ratio
379                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
380                   ratioLeft         = 1.0 - ratioRight; 
381                   clusterSignal[2] *= ratioRight;
382                   iType   = 3;
383                   iUnfold = 1;
384                 }
385
386                 Double_t clusterCharge = clusterSignal[0]
387                                        + clusterSignal[1]
388                                        + clusterSignal[2];
389                 
390                 // The position of the cluster
391                 clusterPads[0] = row + 0.5;
392                 // Take the shift of the additional time bins into account
393                 clusterPads[2] = time - nTimeBefore + 0.5;
394
395                 if (fPar->LUTOn()) {
396
397                   // Calculate the position of the cluster by using the
398                   // lookup table method
399 //                   clusterPads[1] = col + 0.5
400 //                                  + fPar->LUTposition(iplan,clusterSignal[0]
401 //                                                           ,clusterSignal[1]
402 //                                                        ,clusterSignal[2]);
403                   clusterPads[1] = 0.5
404                                  + fPar->LUTposition(iplan,clusterSignal[0]
405                                                           ,clusterSignal[1]
406                                                           ,clusterSignal[2]);
407
408                 }
409                 else {
410
411                   // Calculate the position of the cluster by using the
412                   // center of gravity method
413 //                   clusterPads[1] = col + 0.5 
414 //                                  + (clusterSignal[2] - clusterSignal[0]) 
415 //                               / clusterCharge;
416                   clusterPads[1] = 0.5 
417                                  + (clusterSignal[2] - clusterSignal[0]) 
418                                  / clusterCharge;
419
420                 }
421
422                 Double_t q0 = clusterSignal[0];
423                 Double_t q1 = clusterSignal[1];
424                 Double_t q2 = clusterSignal[2];
425                 Double_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
426                                          (clusterCharge*clusterCharge);
427
428                 // Calculate the position and the error
429                 Double_t clusterPos[3];
430 //                 clusterPos[0] = clusterPads[1] * colSize + col0;
431 //                 clusterPos[1] = clusterPads[0] * rowSize + row0;
432                 clusterPos[0] = padPlane->GetColPos(col) - clusterPads[1];
433                 clusterPos[1] = padPlane->GetRowPos(row) - clusterPads[0];
434                 clusterPos[2] = clusterPads[2];
435                 Double_t clusterSig[2];
436                 Double_t colSize = padPlane->GetColSize(col);
437                 Double_t rowSize = padPlane->GetRowSize(row);
438                 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
439                 clusterSig[1] = rowSize * rowSize / 12.;
440
441                 // Correct for ExB displacement
442                 if (fPar->ExBOn()) { 
443                   Int_t    local_time_bin = (Int_t) clusterPads[2];
444                   Double_t driftLength    = local_time_bin * timeBinSize + kAmWidth;
445                   Double_t deltaY         = omegaTau * driftLength;
446                   clusterPos[1]           = clusterPos[1] - deltaY;
447                 }
448
449                 //
450                 //
451                 AliTRDclusterMI * cluster = AddCluster();
452                 Double_t sigma, relpos;
453                 MakeCluster(clusterSignal, clusterPos, sigma,relpos);
454
455 //                 clusterPos[0] = clusterPads[1] * colSize + col0;
456 //                 clusterPos[1] = clusterPads[0] * rowSize + row0;
457                 clusterPos[2] = clusterPads[2];
458                 clusterPos[0] = padPlane->GetColPos(col) - clusterPads[1];
459                 clusterPos[1] = padPlane->GetRowPos(row) - clusterPads[0];
460                 SetCluster(cluster, clusterPos,idet,clusterCharge,clusterTracks,clusterSig,iType,sigma,relpos);
461                 // Add the cluster to the output array 
462                 //                fTRD->AddCluster(clusterPos
463                 //                ,idet
464                 //                ,clusterCharge
465                 //                ,clusterTracks
466                 //              ,clusterSig
467                 //                ,iType);
468
469               }
470             } 
471           }   
472         }     
473
474         // Compress the arrays
475         digits->Compress(1,0);
476         track0->Compress(1,0);
477         track1->Compress(1,0);
478         track2->Compress(1,0);
479
480         // Write the cluster and reset the array
481         WriteClusters(idet);
482         ResetRecPoints();
483
484         if (fVerbose > 0) {
485           printf("<AliTRDclusterizerMI::MakeCluster> ");
486           printf("Found %d clusters in total.\n"
487                 ,nClusters);
488           printf("                                    2pad:  %d\n",nClusters2pad);
489           printf("                                    3pad:  %d\n",nClusters3pad);
490           printf("                                    4pad:  %d\n",nClusters4pad);
491           printf("                                    5pad:  %d\n",nClusters5pad);
492           printf("                                    Large: %d\n",nClustersLarge);
493         }
494
495       }    
496     }      
497   }        
498
499   if (fVerbose > 0) {
500     printf("<AliTRDclusterizerMI::MakeCluster> ");
501     printf("Done.\n");
502   }
503
504   return kTRUE;
505
506 }
507
508 //_____________________________________________________________________________
509 Double_t AliTRDclusterizerMI::Unfold(Double_t eps, Int_t plane, Double_t* padSignal)
510 {
511   //
512   // Method to unfold neighbouring maxima.
513   // The charge ratio on the overlapping pad is calculated
514   // until there is no more change within the range given by eps.
515   // The resulting ratio is then returned to the calling method.
516   //
517
518   Int_t   irc                = 0;
519   Int_t   itStep             = 0;      // Count iteration steps
520
521   Double_t ratio             = 0.5;    // Start value for ratio
522   Double_t prevRatio         = 0;      // Store previous ratio
523
524   Double_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
525   Double_t newRightSignal[3] = {0};    // Array to store right cluster signal
526   Double_t newSignal[3]      = {0};
527
528   // Start the iteration
529   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
530
531     itStep++;
532     prevRatio = ratio;
533
534     // Cluster position according to charge ratio
535     Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
536                       / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
537     Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
538                       / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
539
540     // Set cluster charge ratio
541     irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
542     Double_t ampLeft  = padSignal[1] / newSignal[1];
543     irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
544     Double_t ampRight = padSignal[3] / newSignal[1];
545
546     // Apply pad response to parameters
547     irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
548     irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
549
550     // Calculate new overlapping ratio
551     ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
552                           (newLeftSignal[2] + newRightSignal[0]));
553
554   }
555
556   return ratio;
557
558 }
559
560
561