]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
Coding conventions
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1
2 /**************************************************************************
3  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4  *                                                                        *
5  * Author: The ALICE Off-line Project.                                    *
6  * Contributors are mentioned in the code where appropriate.              *
7  *                                                                        *
8  * Permission to use, copy, modify and distribute this software and its   *
9  * documentation strictly for non-commercial purposes is hereby granted   *
10  * without fee, provided that the above copyright notice appears in all   *
11  * copies and that both the copyright notice and this permission notice   *
12  * appear in the supporting documentation. The authors make no claims     *
13  * about the suitability of this software for any purpose. It is          *
14  * provided "as is" without express or implied warranty.                  *
15  **************************************************************************/
16
17 /* $Id$ */
18
19 ///////////////////////////////////////////////////////////////////////////////
20 //                                                                           //
21 // TRD cluster finder                                                        //
22 //                                                                           //
23 ///////////////////////////////////////////////////////////////////////////////
24
25 #include <TF1.h>
26 #include <TTree.h>
27 #include <TH1.h>
28 #include <TFile.h>
29
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32 #include "AliRawReader.h"
33 #include "AliLog.h"
34 #include "AliAlignObj.h"
35
36 #include "AliTRDclusterizerV1.h"
37 #include "AliTRDgeometry.h"
38 #include "AliTRDdataArrayF.h"
39 #include "AliTRDdataArrayI.h"
40 #include "AliTRDdigitsManager.h"
41 #include "AliTRDpadPlane.h"
42 #include "AliTRDrawData.h"
43 #include "AliTRDcalibDB.h"
44 #include "AliTRDSimParam.h"
45 #include "AliTRDRecParam.h"
46 #include "AliTRDcluster.h"
47
48 #include "Cal/AliTRDCalROC.h"
49 #include "Cal/AliTRDCalDet.h"
50
51 ClassImp(AliTRDclusterizerV1)
52
53 //_____________________________________________________________________________
54 AliTRDclusterizerV1::AliTRDclusterizerV1()
55   :AliTRDclusterizer()
56   ,fDigitsManager(NULL)
57 {
58   //
59   // AliTRDclusterizerV1 default constructor
60   //
61
62 }
63
64 //_____________________________________________________________________________
65 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title)
66   :AliTRDclusterizer(name,title)
67   ,fDigitsManager(new AliTRDdigitsManager())
68 {
69   //
70   // AliTRDclusterizerV1 constructor
71   //
72
73   fDigitsManager->CreateArrays();
74
75 }
76
77 //_____________________________________________________________________________
78 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
79   :AliTRDclusterizer(c)
80   ,fDigitsManager(NULL)
81 {
82   //
83   // AliTRDclusterizerV1 copy constructor
84   //
85
86 }
87
88 //_____________________________________________________________________________
89 AliTRDclusterizerV1::~AliTRDclusterizerV1()
90 {
91   //
92   // AliTRDclusterizerV1 destructor
93   //
94
95   if (fDigitsManager) {
96     delete fDigitsManager;
97     fDigitsManager = NULL;
98   }
99
100 }
101
102 //_____________________________________________________________________________
103 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
104 {
105   //
106   // Assignment operator
107   //
108
109   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
110   return *this;
111
112 }
113
114 //_____________________________________________________________________________
115 void AliTRDclusterizerV1::Copy(TObject &c) const
116 {
117   //
118   // Copy function
119   //
120
121   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
122
123   AliTRDclusterizer::Copy(c);
124
125 }
126
127 //_____________________________________________________________________________
128 Bool_t AliTRDclusterizerV1::ReadDigits()
129 {
130   //
131   // Reads the digits arrays from the input aliroot file
132   //
133
134   if (!fRunLoader) {
135     AliError("No run loader available");
136     return kFALSE;
137   }
138
139   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
140   if (!loader->TreeD()) {
141     loader->LoadDigits();
142   }
143
144   // Read in the digit arrays
145   return (fDigitsManager->ReadDigits(loader->TreeD()));
146
147 }
148
149 //_____________________________________________________________________________
150 Bool_t AliTRDclusterizerV1::ReadDigits(TTree *digitsTree)
151 {
152   //
153   // Reads the digits arrays from the input tree
154   //
155
156   // Read in the digit arrays
157   return (fDigitsManager->ReadDigits(digitsTree));
158
159 }
160
161 //_____________________________________________________________________________
162 Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader)
163 {
164   //
165   // Reads the digits arrays from the ddl file
166   //
167
168   AliTRDrawData raw;
169   fDigitsManager = raw.Raw2Digits(rawReader);
170
171   return kTRUE;
172
173 }
174
175 //_____________________________________________________________________________
176 Bool_t AliTRDclusterizerV1::MakeClusters()
177 {
178   //
179   // Generates the cluster.
180   //
181
182   Int_t row   = 0;
183   Int_t col   = 0;
184   Int_t time  = 0;
185   Int_t icham = 0;
186   Int_t iplan = 0;
187   Int_t isect = 0;
188   Int_t iPad  = 0;
189     
190   AliTRDdataArrayI *digitsIn;
191   AliTRDdataArrayI *tracksIn;
192
193   AliTRDgeometry geo;
194
195   AliTRDcalibDB  *calibration    = AliTRDcalibDB::Instance();
196   if (!calibration) {
197     AliFatal("No AliTRDcalibDB instance available\n");
198     return kFALSE;  
199   }
200   
201   AliTRDSimParam *simParam       = AliTRDSimParam::Instance();
202   if (!simParam) {
203     AliError("No AliTRDSimParam instance available\n");
204     return kFALSE;  
205   }
206   
207   AliTRDRecParam *recParam       = AliTRDRecParam::Instance();
208   if (!recParam) {
209     AliError("No AliTRDRecParam instance available\n");
210     return kFALSE;  
211   }
212
213   // ADC thresholds
214   Float_t ADCthreshold   = simParam->GetADCthreshold();
215   // Threshold value for the maximum
216   Float_t maxThresh      = recParam->GetClusMaxThresh();
217   // Threshold value for the digit signal
218   Float_t sigThresh      = recParam->GetClusSigThresh();
219
220   // Detector wise calibration object for t0
221   const AliTRDCalDet *calT0Det         = calibration->GetT0Det();
222   // Detector wise calibration object for the gain factors
223   const AliTRDCalDet *calGainFactorDet = calibration->GetGainFactorDet();
224
225   // Iteration limit for unfolding procedure
226   const Float_t kEpsilon = 0.01;             
227   const Int_t   kNclus   = 3;  
228   const Int_t   kNsig    = 5;
229   const Int_t   kNdict   = AliTRDdigitsManager::kNDict;
230   const Int_t   kNtrack  = kNdict * kNclus;
231
232   Int_t    iUnfold       = 0;  
233   Double_t ratioLeft     = 1.0;
234   Double_t ratioRight    = 1.0;
235
236   Int_t    iClusterROC   = 0;
237
238   Double_t padSignal[kNsig];   
239   Double_t clusterSignal[kNclus];
240   Double_t clusterPads[kNclus];   
241
242   Int_t    chamBeg    = 0;
243   Int_t    chamEnd    = AliTRDgeometry::Ncham();
244   Int_t    planBeg    = 0;
245   Int_t    planEnd    = AliTRDgeometry::Nplan();
246   Int_t    sectBeg    = 0;
247   Int_t    sectEnd    = AliTRDgeometry::Nsect();
248   Int_t    nTimeTotal = calibration->GetNumberOfTimeBins();
249
250   AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal));
251
252   // Start clustering in every chamber
253   for (icham = chamBeg; icham < chamEnd; icham++) {
254     for (iplan = planBeg; iplan < planEnd; iplan++) {
255       for (isect = sectBeg; isect < sectEnd; isect++) {
256
257         Int_t    idet    = geo.GetDetector(iplan,icham,isect);
258         Int_t    ilayer  = AliGeomManager::kTRD1 + iplan;
259         Int_t    imodule = icham + chamEnd * isect;
260         UShort_t volid   = AliGeomManager::LayerToVolUID(ilayer,imodule); 
261
262         // Get the digits
263         digitsIn = fDigitsManager->GetDigits(idet);
264         // This is to take care of switched off super modules
265         if (digitsIn->GetNtime() == 0) {
266           continue;
267         }
268         digitsIn->Expand();
269         AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0);
270         tracksTmp->Expand();
271
272         Int_t nRowMax = geo.GetRowMax(iplan,icham,isect);
273         Int_t nColMax = geo.GetColMax(iplan);
274
275         AliTRDpadPlane *padPlane = geo.GetPadPlane(iplan,icham);
276
277         // Calibration object with pad wise values for t0
278         AliTRDCalROC *calT0ROC              = calibration->GetT0ROC(idet);
279         // Calibration object with pad wise values for the gain factors
280         AliTRDCalROC *calGainFactorROC      = calibration->GetGainFactorROC(idet);
281         // Calibration value for chamber wise t0
282         Float_t       calT0DetValue         = calT0Det->GetValue(idet);
283         // Calibration value for chamber wise gain factor
284         Float_t       calGainFactorDetValue = calGainFactorDet->GetValue(idet);
285
286         Int_t nClusters      = 0;
287
288         // Apply the gain and the tail cancelation via digital filter
289         AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow()
290                                                           ,digitsIn->GetNcol()
291                                                           ,digitsIn->GetNtime()); 
292         Transform(digitsIn
293                  ,digitsOut
294                  ,nRowMax,nColMax,nTimeTotal
295                  ,ADCthreshold
296                  ,calGainFactorROC
297                  ,calGainFactorDetValue);
298
299         // Input digits are not needed any more
300         digitsIn->Compress(1,0);
301
302         // Loop through the chamber and find the maxima 
303         for ( row = 0;  row <  nRowMax;    row++) {
304           for ( col = 2;  col <  nColMax;    col++) {
305             for (time = 0; time < nTimeTotal; time++) {
306
307               Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time));
308  
309               // Look for the maximum
310               if (signalM >= maxThresh) {
311
312                 Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time));
313                 Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
314
315                 if ((TMath::Abs(signalL) <= signalM) && 
316                     (TMath::Abs(signalR) <  signalM)) {
317                   if ((TMath::Abs(signalL) >= sigThresh) ||
318                       (TMath::Abs(signalR) >= sigThresh)) {
319                     // Maximum found, mark the position by a negative signal
320                     digitsOut->SetDataUnchecked(row,col-1,time,-signalM);
321                   }
322                 }
323
324               }
325
326             }
327           }
328         }
329         tracksTmp->Compress(1,0);
330
331         // The index to the first cluster of a given ROC
332         Int_t firstClusterROC = -1;
333         // The number of cluster in a given ROC
334         Int_t nClusterROC     =  0;
335
336         // Now check the maxima and calculate the cluster position
337         for ( row = 0;  row <  nRowMax  ;  row++) {
338           for (time = 0; time < nTimeTotal; time++) {
339             for ( col = 1;  col <  nColMax-1;  col++) {
340
341               // Maximum found ?             
342               if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) {
343
344                 for (iPad = 0; iPad < kNclus; iPad++) {
345                   Int_t iPadCol = col - 1 + iPad;
346                   clusterSignal[iPad] = 
347                     TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time));
348                 }
349
350                 // Count the number of pads in the cluster
351                 Int_t nPadCount = 0;
352                 Int_t ii;
353                 // Look to the left
354                 ii = 0;
355                 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii  ,time)) >= sigThresh) {
356                   nPadCount++;
357                   ii++;
358                   if (col-ii   <        0) break;
359                 }
360                 // Look to the right
361                 ii = 0;
362                 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) {
363                   nPadCount++;
364                   ii++;
365                   if (col+ii+1 >= nColMax) break;
366                 }
367                 nClusters++;
368
369                 // Look for 5 pad cluster with minimum in the middle
370                 Bool_t fivePadCluster = kFALSE;
371                 if (col < (nColMax - 3)) {
372                   if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) {
373                     fivePadCluster = kTRUE;
374                   }
375                   if ((fivePadCluster) && (col < (nColMax - 5))) {
376                     if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) {
377                       fivePadCluster = kFALSE;
378                     }
379                   }
380                   if ((fivePadCluster) && (col >             1)) {
381                     if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) {
382                       fivePadCluster = kFALSE;
383                     }
384                   }
385                 }
386
387                 // 5 pad cluster
388                 // Modify the signal of the overlapping pad for the left part 
389                 // of the cluster which remains from a previous unfolding
390                 if (iUnfold) {
391                   clusterSignal[0] *= ratioLeft;
392                   iUnfold = 0;
393                 }
394
395                 // Unfold the 5 pad cluster
396                 if (fivePadCluster) {
397                   for (iPad = 0; iPad < kNsig; iPad++) {
398                     padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row
399                                                                             ,col-1+iPad
400                                                                             ,time));
401                   }
402                   // Unfold the two maxima and set the signal on 
403                   // the overlapping pad to the ratio
404                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
405                   ratioLeft         = 1.0 - ratioRight; 
406                   clusterSignal[2] *= ratioRight;
407                   iUnfold = 1;
408                 }
409
410                 Double_t clusterCharge = clusterSignal[0]
411                                        + clusterSignal[1]
412                                        + clusterSignal[2];
413                 
414                 // The position of the cluster
415                 clusterPads[0] =  row + 0.5;
416                 // Take the shift of the additional time bins into account
417                 clusterPads[2] = time + 0.5;
418
419                 if (recParam->LUTOn()) {
420                   // Calculate the position of the cluster by using the
421                   // lookup table method
422                   clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0]
423                                                               ,clusterSignal[1]
424                                                               ,clusterSignal[2]);
425                 }
426                 else {
427                   // Calculate the position of the cluster by using the
428                   // center of gravity method
429                   for (Int_t i = 0; i < kNsig; i++) {
430                     padSignal[i] = 0.0;
431                   }
432                   padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time)); // Central pad
433                   padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left    pad
434                   padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right   pad
435                   if ((col >           2) && 
436                       (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) {
437                     padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
438                   }
439                   if ((col < nColMax - 3) &&
440                       (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) {
441                     padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time));
442                   }               
443                   clusterPads[1] = GetCOG(padSignal);
444                 }
445
446                 Double_t q0 = clusterSignal[0];
447                 Double_t q1 = clusterSignal[1];
448                 Double_t q2 = clusterSignal[2];
449                 Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2)
450                                         / (clusterCharge*clusterCharge);
451
452                 //
453                 // Calculate the position and the error
454                 //              
455
456                 // Correct for t0 (sum of chamber and pad wise values !!!)
457                 Float_t  calT0ROCValue  = calT0ROC->GetValue(col,row);
458                 Char_t   clusterTimeBin = ((Char_t) TMath::Nint(time - (calT0DetValue + calT0ROCValue)));
459                 Double_t colSize        = padPlane->GetColSize(col);
460                 Double_t rowSize        = padPlane->GetRowSize(row);
461
462                 Float_t clusterPos[3];
463                 clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize;
464                 clusterPos[1] = padPlane->GetRowPos(row) - 0.5                    * rowSize;
465                 clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row);
466                 Float_t clusterSig[2];
467                 clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize;
468                 clusterSig[1] = rowSize * rowSize / 12.0;                                       
469                 
470                 // Store the amplitudes of the pads in the cluster for later analysis
471                 Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 };
472                 for (Int_t jPad = col-3; jPad <= col+3; jPad++) {
473                   if ((jPad <          0) || 
474                       (jPad >= nColMax-1)) {
475                     continue;
476                   }
477                   signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time)));
478                 }
479
480                 // Add the cluster to the output array
481                 // The track indices will be stored later 
482                 AliTRDcluster *cluster = new AliTRDcluster(idet
483                                                           ,clusterCharge
484                                                           ,clusterPos
485                                                           ,clusterSig
486                                                           ,0x0
487                                                           ,((Char_t) nPadCount)
488                                                           ,signals
489                                                           ,((UChar_t) col)
490                                                           ,clusterTimeBin
491                                                           ,clusterPads[1]
492                                                           ,volid);
493                 // Temporarily store the row, column and time bin of the center pad
494                 // Used to later on assign the track indices
495                 cluster->SetLabel( row,0);
496                 cluster->SetLabel( col,1);
497                 cluster->SetLabel(time,2);
498                 RecPoints()->Add(cluster);
499
500                 // Store the index of the first cluster in the current ROC
501                 if (firstClusterROC < 0) {
502                   firstClusterROC = RecPoints()->GetEntriesFast() - 1;
503                 }
504                 // Count the number of cluster in the current ROC
505                 nClusterROC++;
506
507               } // if: Maximum found ?
508
509             } // loop: pad columns
510           } // loop: time bins
511         } // loop: pad rows
512
513         delete digitsOut;
514
515         //
516         // Add the track indices to the found clusters
517         //
518
519         // Temporary array to collect the track indices
520         Int_t *idxTracks = new Int_t[kNtrack*nClusterROC];
521
522         // Loop through the dictionary arrays one-by-one
523         // to keep memory consumption low
524         for (Int_t iDict = 0; iDict < kNdict; iDict++) {
525
526           tracksIn = fDigitsManager->GetDictionary(idet,iDict);
527           tracksIn->Expand();
528
529           // Loop though the clusters found in this ROC
530           for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
531  
532             AliTRDcluster *cluster = (AliTRDcluster *)
533                                      RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
534             row  = cluster->GetLabel(0);
535             col  = cluster->GetLabel(1);
536             time = cluster->GetLabel(2);
537
538             for (iPad = 0; iPad < kNclus; iPad++) {
539               Int_t iPadCol = col - 1 + iPad;
540               Int_t index   = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1;
541               idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index;     
542             }
543
544           }
545
546           // Compress the arrays
547           tracksIn->Compress(1,0);
548
549         }
550
551         // Copy the track indices into the cluster
552         // Loop though the clusters found in this ROC
553         for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
554  
555           AliTRDcluster *cluster = (AliTRDcluster *)
556                                    RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
557           cluster->SetLabel(-9999,0);
558           cluster->SetLabel(-9999,1);
559           cluster->SetLabel(-9999,2);
560   
561           cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]);
562
563         }
564
565         delete [] idxTracks;
566
567         // Write the cluster and reset the array
568         WriteClusters(idet);
569         ResetRecPoints();
570
571       } // loop: Sectors
572     } // loop: Planes
573   } // loop: Chambers
574
575   return kTRUE;
576
577 }
578
579 //_____________________________________________________________________________
580 Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
581 {
582   //
583   // Get COG position
584   // Used for clusters with more than 3 pads - where LUT not applicable
585   //
586
587   Double_t sum = signal[0]
588                + signal[1]
589                + signal[2] 
590                + signal[3]
591                + signal[4];
592
593   Double_t res = (0.0 * (-signal[0] + signal[4])
594                       + (-signal[1] + signal[3])) / sum;
595
596   return res;             
597
598 }
599
600 //_____________________________________________________________________________
601 Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal)
602 {
603   //
604   // Method to unfold neighbouring maxima.
605   // The charge ratio on the overlapping pad is calculated
606   // until there is no more change within the range given by eps.
607   // The resulting ratio is then returned to the calling method.
608   //
609
610   AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
611   if (!calibration) {
612     AliError("No AliTRDcalibDB instance available\n");
613     return kFALSE;  
614   }
615   
616   Int_t   irc                = 0;
617   Int_t   itStep             = 0;                 // Count iteration steps
618
619   Double_t ratio             = 0.5;               // Start value for ratio
620   Double_t prevRatio         = 0.0;               // Store previous ratio
621
622   Double_t newLeftSignal[3]  = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal
623   Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal
624   Double_t newSignal[3]      = { 0.0, 0.0, 0.0 };
625
626   // Start the iteration
627   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
628
629     itStep++;
630     prevRatio = ratio;
631
632     // Cluster position according to charge ratio
633     Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
634                       / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
635     Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
636                       / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
637
638     // Set cluster charge ratio
639     irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal);
640     Double_t ampLeft  = padSignal[1] / newSignal[1];
641     irc = calibration->PadResponse(1.0,maxRight,plane,newSignal);
642     Double_t ampRight = padSignal[3] / newSignal[1];
643
644     // Apply pad response to parameters
645     irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
646     irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal);
647
648     // Calculate new overlapping ratio
649     ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
650                                     (newLeftSignal[2] + newRightSignal[0]));
651
652   }
653
654   return ratio;
655
656 }
657
658 //_____________________________________________________________________________
659 void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn
660                                   , AliTRDdataArrayF *digitsOut
661                                   , Int_t nRowMax, Int_t nColMax, Int_t nTimeTotal
662                                   , Float_t ADCthreshold
663                                   , AliTRDCalROC *calGainFactorROC
664                                   , Float_t calGainFactorDetValue)
665 {
666   //
667   // Apply gain factor
668   // Apply tail cancelation: Transform digitsIn to digitsOut
669   //
670
671   Int_t iRow  = 0;
672   Int_t iCol  = 0;
673   Int_t iTime = 0;
674
675   AliTRDRecParam *recParam = AliTRDRecParam::Instance();
676   if (!recParam) {
677     AliError("No AliTRDRecParam instance available\n");
678     return;
679   }
680
681   Double_t *inADC  = new Double_t[nTimeTotal];  // ADC data before tail cancellation
682   Double_t *outADC = new Double_t[nTimeTotal];  // ADC data after tail cancellation
683
684   for (iRow  = 0; iRow  <  nRowMax;   iRow++ ) {
685     for (iCol  = 0; iCol  <  nColMax;   iCol++ ) {
686
687       Float_t  calGainFactorROCValue = calGainFactorROC->GetValue(iCol,iRow);
688       Double_t gain                  = calGainFactorDetValue 
689                                      * calGainFactorROCValue;
690
691       for (iTime = 0; iTime < nTimeTotal; iTime++) {
692
693         //
694         // Add gain
695         //
696         inADC[iTime]   = digitsIn->GetDataUnchecked(iRow,iCol,iTime);
697         inADC[iTime]  /= gain;
698         outADC[iTime]  = inADC[iTime];
699
700       }
701
702       // Apply the tail cancelation via the digital filter
703       if (recParam->TCOn()) {
704         DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp());
705       }
706
707       for (iTime = 0; iTime < nTimeTotal; iTime++) {
708
709         // Store the amplitude of the digit if above threshold
710         if (outADC[iTime] > ADCthreshold) {
711           digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]);
712         }
713
714       }
715
716     }
717   }
718
719   delete [] inADC;
720   delete [] outADC;
721
722   return;
723
724 }
725
726 //_____________________________________________________________________________
727 void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target
728                                   , Int_t n, Int_t nexp) 
729 {
730   //
731   // Tail cancellation by deconvolution for PASA v4 TRF
732   //
733
734   Double_t rates[2];
735   Double_t coefficients[2];
736
737   // Initialization (coefficient = alpha, rates = lambda)
738   Double_t R1 = 1.0;
739   Double_t R2 = 1.0;
740   Double_t C1 = 0.5;
741   Double_t C2 = 0.5;
742
743   if (nexp == 1) {   // 1 Exponentials
744     R1 = 1.156;
745     R2 = 0.130;
746     C1 = 0.066;
747     C2 = 0.000;
748   }
749   if (nexp == 2) {   // 2 Exponentials
750     R1 = 1.156;
751     R2 = 0.130;
752     C1 = 0.114;
753     C2 = 0.624;
754   }
755
756   coefficients[0] = C1;
757   coefficients[1] = C2;
758
759   Double_t Dt = 0.1;
760
761   rates[0] = TMath::Exp(-Dt/(R1));
762   rates[1] = TMath::Exp(-Dt/(R2));
763   
764   Int_t i = 0;
765   Int_t k = 0;
766
767   Double_t reminder[2];
768   Double_t correction;
769   Double_t result;
770
771   // Attention: computation order is important
772   correction = 0.0;
773   for (k = 0; k < nexp; k++) {
774     reminder[k] = 0.0;
775   }
776   for (i = 0; i < n; i++) {
777     result    = (source[i] - correction);    // No rescaling
778     target[i] = result;
779
780     for (k = 0; k < nexp; k++) {
781       reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result);
782     }
783     correction = 0.0;
784     for (k = 0; k < nexp; k++) {
785       correction += reminder[k];
786     }
787   }
788
789 }