1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 ////////////////////////////////////////////////////////////////////////////
20 // The TRD offline tracklet
22 // The running horse of the TRD reconstruction. The following tasks are preformed:
23 // 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24 // 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25 // 3. Cluster error parametrization recalculation (see Fit)
26 // 4. Linear track approximation (Fit)
27 // 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28 // 6. Tilt pad correction and systematic effects (GetCovAt)
29 // 7. dEdx calculation (CookdEdx)
30 // 8. PID probabilities estimation (CookPID)
33 // Alex Bercuci <A.Bercuci@gsi.de> //
34 // Markus Fasel <M.Fasel@gsi.de> //
36 ////////////////////////////////////////////////////////////////////////////
39 #include "TLinearFitter.h"
40 #include "TClonesArray.h" // tmp
41 #include <TTreeStream.h>
44 #include "AliMathBase.h"
45 #include "AliCDBManager.h"
46 #include "AliTracker.h"
48 #include "AliTRDpadPlane.h"
49 #include "AliTRDcluster.h"
50 #include "AliTRDseedV1.h"
51 #include "AliTRDtrackV1.h"
52 #include "AliTRDcalibDB.h"
53 #include "AliTRDchamberTimeBin.h"
54 #include "AliTRDtrackingChamber.h"
55 #include "AliTRDtrackerV1.h"
56 #include "AliTRDrecoParam.h"
57 #include "AliTRDCommonParam.h"
59 #include "Cal/AliTRDCalPID.h"
60 #include "Cal/AliTRDCalROC.h"
61 #include "Cal/AliTRDCalDet.h"
63 ClassImp(AliTRDseedV1)
65 TLinearFitter *AliTRDseedV1::fgFitterY = NULL;
66 TLinearFitter *AliTRDseedV1::fgFitterZ = NULL;
68 //____________________________________________________________________
69 AliTRDseedV1::AliTRDseedV1(Int_t det)
71 ,fkReconstructor(NULL)
96 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
97 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
98 memset(fPad, 0, 3*sizeof(Float_t));
99 fYref[0] = 0.; fYref[1] = 0.;
100 fZref[0] = 0.; fZref[1] = 0.;
101 fYfit[0] = 0.; fYfit[1] = 0.;
102 fZfit[0] = 0.; fZfit[1] = 0.;
103 memset(fdEdx, 0, kNslices*sizeof(Float_t));
104 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
105 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
106 fLabels[2]=0; // number of different labels for tracklet
107 memset(fRefCov, 0, 7*sizeof(Double_t));
108 // covariance matrix [diagonal]
109 // default sy = 200um and sz = 2.3 cm
110 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
111 SetStandAlone(kFALSE);
114 //____________________________________________________________________
115 AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
116 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
117 ,fkReconstructor(NULL)
140 // Copy Constructor performing a deep copy
145 SetBit(kOwner, kFALSE);
146 SetStandAlone(ref.IsStandAlone());
150 //____________________________________________________________________
151 AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
154 // Assignment Operator using the copy function
160 SetBit(kOwner, kFALSE);
165 //____________________________________________________________________
166 AliTRDseedV1::~AliTRDseedV1()
169 // Destructor. The RecoParam object belongs to the underlying tracker.
172 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
175 for(int itb=0; itb<kNclusters; itb++){
176 if(!fClusters[itb]) continue;
177 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
178 delete fClusters[itb];
179 fClusters[itb] = NULL;
184 //____________________________________________________________________
185 void AliTRDseedV1::Copy(TObject &ref) const
192 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
194 target.fkReconstructor = fkReconstructor;
195 target.fClusterIter = NULL;
199 target.fS2PRF = fS2PRF;
200 target.fDiffL = fDiffL;
201 target.fDiffT = fDiffT;
202 target.fClusterIdx = 0;
214 target.fChi2 = fChi2;
216 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
217 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
218 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
219 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
220 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
221 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
222 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
223 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
224 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
225 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
226 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
227 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
233 //____________________________________________________________
234 Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
236 // Initialize this tracklet using the track information
239 // track - the TRD track used to initialize the tracklet
241 // Detailed description
242 // The function sets the starting point and direction of the
243 // tracklet according to the information from the TRD track.
246 // The TRD track has to be propagated to the beginning of the
247 // chamber where the tracklet will be constructed
251 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
257 //_____________________________________________________________________________
258 void AliTRDseedV1::Reset()
263 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
269 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
273 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
274 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
275 memset(fPad, 0, 3*sizeof(Float_t));
276 fYref[0] = 0.; fYref[1] = 0.;
277 fZref[0] = 0.; fZref[1] = 0.;
278 fYfit[0] = 0.; fYfit[1] = 0.;
279 fZfit[0] = 0.; fZfit[1] = 0.;
280 memset(fdEdx, 0, kNslices*sizeof(Float_t));
281 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
282 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
283 fLabels[2]=0; // number of different labels for tracklet
284 memset(fRefCov, 0, 7*sizeof(Double_t));
285 // covariance matrix [diagonal]
286 // default sy = 200um and sz = 2.3 cm
287 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
290 //____________________________________________________________________
291 void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
293 // update tracklet reference position from the TRD track
295 Double_t fSnp = trk->GetSnp();
296 Double_t fTgl = trk->GetTgl();
298 Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp);
299 fYref[1] = fSnp*norm;
300 fZref[1] = fTgl*norm;
301 SetCovRef(trk->GetCovariance());
303 Double_t dx = trk->GetX() - fX0;
304 fYref[0] = trk->GetY() - dx*fYref[1];
305 fZref[0] = trk->GetZ() - dx*fZref[1];
308 //_____________________________________________________________________________
309 void AliTRDseedV1::UpdateUsed()
312 // Calculate number of used clusers in the tracklet
315 Int_t nused = 0, nshared = 0;
316 for (Int_t i = kNclusters; i--; ) {
317 if (!fClusters[i]) continue;
318 if(fClusters[i]->IsUsed()){
320 } else if(fClusters[i]->IsShared()){
321 if(IsStandAlone()) nused++;
329 //_____________________________________________________________________________
330 void AliTRDseedV1::UseClusters()
335 // In stand alone mode:
336 // Clusters which are marked as used or shared from another track are
337 // removed from the tracklet
340 // - Clusters which are used by another track become shared
341 // - Clusters which are attached to a kink track become shared
343 AliTRDcluster **c = &fClusters[0];
344 for (Int_t ic=kNclusters; ic--; c++) {
347 if((*c)->IsShared() || (*c)->IsUsed()){
348 if((*c)->IsShared()) SetNShared(GetNShared()-1);
349 else SetNUsed(GetNUsed()-1);
356 if((*c)->IsUsed() || IsKink()){
367 //____________________________________________________________________
368 void AliTRDseedV1::CookdEdx(Int_t nslices)
370 // Calculates average dE/dx for all slices and store them in the internal array fdEdx.
373 // nslices : number of slices for which dE/dx should be calculated
375 // store results in the internal array fdEdx. This can be accessed with the method
376 // AliTRDseedV1::GetdEdx()
378 // Detailed description
379 // Calculates average dE/dx for all slices. Depending on the PID methode
380 // the number of slices can be 3 (LQ) or 8(NN).
381 // The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
383 // The following effects are included in the calculation:
384 // 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
385 // 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
389 Int_t nclusters[kNslices];
390 memset(nclusters, 0, kNslices*sizeof(Int_t));
391 memset(fdEdx, 0, kNslices*sizeof(Float_t));
393 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
395 AliTRDcluster *c = NULL;
396 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
397 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
398 Float_t dx = TMath::Abs(fX0 - c->GetX());
400 // Filter clusters for dE/dx calculation
402 // 1.consider calibration effects for slice determination
404 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
405 slice = Int_t(dx * nslices / kDriftLength);
406 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
409 // 2. take sharing into account
410 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
412 // 3. take into account large clusters TODO
413 //w *= c->GetNPads() > 3 ? .8 : 1.;
416 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
418 } // End of loop over clusters
420 //if(fkReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){
421 if(nslices == AliTRDpidUtil::kLQslices){
422 // calculate mean charge per slice (only LQ PID)
423 for(int is=0; is<nslices; is++){
424 if(nclusters[is]) fdEdx[is] /= nclusters[is];
429 //_____________________________________________________________________________
430 void AliTRDseedV1::CookLabels()
433 // Cook 2 labels for seed
439 for (Int_t i = 0; i < kNclusters; i++) {
440 if (!fClusters[i]) continue;
441 for (Int_t ilab = 0; ilab < 3; ilab++) {
442 if (fClusters[i]->GetLabel(ilab) >= 0) {
443 labels[nlab] = fClusters[i]->GetLabel(ilab);
449 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
451 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
455 //____________________________________________________________________
456 Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
458 // Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
459 // the charge per unit length can be written as:
461 // #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
463 // where qc is the total charge collected in the current time bin and dx is the length
465 // The following correction are applied :
466 // - charge : pad row cross corrections
467 // [diffusion and TRF assymetry] TODO
468 // - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
469 // and AliTRDcluster::GetYloc() for the effects taken into account
472 //<img src="TRD/trackletDQDT.gif">
474 // In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
475 // drift length [right] for different particle species is displayed.
476 // Author : Alex Bercuci <A.Bercuci@gsi.de>
479 // check whether both clusters are inside the chamber
480 Bool_t hasClusterInChamber = kFALSE;
481 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
482 hasClusterInChamber = kTRUE;
483 dq += TMath::Abs(fClusters[ic]->GetQ());
484 }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
485 hasClusterInChamber = kTRUE;
486 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
488 if(!hasClusterInChamber) return 0.;
489 if(dq<1.e-3) return 0.;
492 if(ic-1>=0 && ic+1<kNtb){
493 Float_t x2(0.), x1(0.);
494 // try to estimate upper radial position (find the cluster which is inside the chamber)
495 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
496 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
497 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
498 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
499 // try to estimate lower radial position (find the cluster which is inside the chamber)
500 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
501 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
502 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
503 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
507 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
512 //____________________________________________________________
513 Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
515 // Returns momentum of the track after update with the current tracklet as:
517 // p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
519 // and optionally the momentum error (if err is not null).
520 // The estimated variance of the momentum is given by:
522 // #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
524 // which can be simplified to
526 // #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
530 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
532 Double_t tgl2 = fZref[1]*fZref[1];
533 Double_t pt2 = fPt*fPt;
536 p2*tgl2*pt2*pt2*fRefCov[4]
537 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
539 (*err) = TMath::Sqrt(s2);
545 //____________________________________________________________________
546 Float_t* AliTRDseedV1::GetProbability(Bool_t force)
548 if(!force) return &fProb[0];
549 if(!CookPID()) return NULL;
553 //____________________________________________________________
554 Bool_t AliTRDseedV1::CookPID()
556 // Fill probability array for tracklet from the DB.
561 // returns pointer to the probability array and NULL if missing DB access
563 // Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
564 // - estimated momentum at tracklet reference point
565 // - dE/dx measurements
568 // According to the steering settings specified in the reconstruction one of the following methods are used
569 // - Neural Network [default] - option "nn"
570 // - 2D Likelihood - option "!nn"
572 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
574 AliError("No access to calibration data");
578 if (!fkReconstructor) {
579 AliError("Reconstructor not set.");
583 // Retrieve the CDB container class with the parametric detector response
584 const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod());
586 AliError("No access to AliTRDCalPID object");
589 //AliInfo(Form("Method[%d] : %s", fkReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName()));
591 // calculate tracklet length TO DO
592 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
593 /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane]));
596 CookdEdx(fkReconstructor->GetNdEdxSlices());
598 // Sets the a priori probabilities
599 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
600 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane());
605 //____________________________________________________________________
606 Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
609 // Returns a quality measurement of the current seed
612 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
614 .5 * TMath::Abs(18.0 - GetN())
615 + 10.* TMath::Abs(fYfit[1] - fYref[1])
616 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
617 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
620 //____________________________________________________________________
621 void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
623 // Computes covariance in the y-z plane at radial point x (in tracking coordinates)
624 // and returns the results in the preallocated array cov[3] as :
631 // For the linear transformation
635 // The error propagation has the general form
637 // C_{Y} = T_{x} C_{X} T_{x}^{T}
639 // We apply this formula 2 times. First to calculate the covariance of the tracklet
640 // at point x we consider:
642 // T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
644 // and secondly to take into account the tilt angle
646 // T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
649 // using simple trigonometrics one can write for this last case
651 // C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
653 // which can be aproximated for small alphas (2 deg) with
655 // C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
658 // before applying the tilt rotation we also apply systematic uncertainties to the tracklet
659 // position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
660 // account for extra misalignment/miscalibration uncertainties.
663 // Alex Bercuci <A.Bercuci@gsi.de>
664 // Date : Jan 8th 2009
669 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
671 //GetPadLength()*GetPadLength()/12.;
673 // insert systematic uncertainties
675 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
676 fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
680 // rotate covariance matrix
681 Double_t t2 = GetTilt()*GetTilt();
682 Double_t correction = 1./(1. + t2);
683 cov[0] = (sy2+t2*sz2)*correction;
684 cov[1] = GetTilt()*(sz2 - sy2)*correction;
685 cov[2] = (t2*sy2+sz2)*correction;
687 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
690 //____________________________________________________________
691 Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d)
693 // Helper function to calculate the square root of the covariance matrix.
694 // The input matrix is stored in the vector c and the result in the vector d.
695 // Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
697 // For calculating the square root of the symmetric matrix c
698 // the following relation is used:
700 // C^{1/2} = VD^{1/2}V^{-1}
702 // with V being the matrix with the n eigenvectors as columns.
703 // In case C is symmetric the followings are true:
704 // - matrix D is diagonal with the diagonal given by the eigenvalues of C
707 // Author A.Bercuci <A.Bercuci@gsi.de>
710 Double_t l[2], // eigenvalues
711 v[3]; // eigenvectors
712 // the secular equation and its solution :
713 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
714 // L^2 - L*Tr(c)+DET(c) = 0
715 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
716 Double_t tr = c[0]+c[2], // trace
717 det = c[0]*c[2]-c[1]*c[1]; // determinant
718 if(TMath::Abs(det)<1.e-20) return -1.;
719 Double_t dd = TMath::Sqrt(tr*tr - 4*det);
722 if(l[0]<0. || l[1]<0.) return -1.;
727 Double_t tmp = (l[0]-c[0])/c[1];
728 v[0] = TMath::Sqrt(1./(tmp*tmp+1));
730 v[2] = v[1]*c[1]/(l[1]-c[2]);
732 l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]);
733 d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1];
734 d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1];
735 d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1];
740 //____________________________________________________________
741 Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d)
743 // Helper function to calculate the inverse of the covariance matrix.
744 // The input matrix is stored in the vector c and the result in the vector d.
745 // Both arrays have to be initialized by the user with at least 3 elements
746 // The return value is the determinant or 0 in case of singularity.
748 // Author A.Bercuci <A.Bercuci@gsi.de>
751 Double_t det = c[0]*c[2] - c[1]*c[1];
752 if(TMath::Abs(det)<1.e-20) return 0.;
753 Double_t invDet = 1./det;
760 //____________________________________________________________________
761 UShort_t AliTRDseedV1::GetVolumeId() const
764 while(ic<kNclusters && !fClusters[ic]) ic++;
765 return fClusters[ic] ? fClusters[ic]->GetVolumeId() : 0;
768 //____________________________________________________________________
769 TLinearFitter* AliTRDseedV1::GetFitterY()
771 if(!fgFitterY) fgFitterY = new TLinearFitter(1, "pol1");
772 fgFitterY->ClearPoints();
776 //____________________________________________________________________
777 TLinearFitter* AliTRDseedV1::GetFitterZ()
779 if(!fgFitterZ) fgFitterZ = new TLinearFitter(1, "pol1");
780 fgFitterZ->ClearPoints();
784 //____________________________________________________________________
785 void AliTRDseedV1::Calibrate()
787 // Retrieve calibration and position parameters from OCDB.
788 // The following information are used
790 // - column and row position of first attached cluster. If no clusters are attached
791 // to the tracklet a random central chamber position (c=70, r=7) will be used.
793 // The following information is cached in the tracklet
794 // t0 (trigger delay)
797 // omega*tau = tg(a_L)
798 // diffusion coefficients (longitudinal and transversal)
801 // Alex Bercuci <A.Bercuci@gsi.de>
802 // Date : Jan 8th 2009
805 AliCDBManager *cdb = AliCDBManager::Instance();
806 if(cdb->GetRun() < 0){
807 AliError("OCDB manager not properly initialized");
811 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
812 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
813 *t0ROC = calib->GetT0ROC(fDet);;
814 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
815 const AliTRDCalDet *t0Det = calib->GetT0Det();
817 Int_t col = 70, row = 7;
818 AliTRDcluster **c = &fClusters[0];
821 while (ic<kNclusters && !(*c)){ic++; c++;}
823 col = (*c)->GetPadCol();
824 row = (*c)->GetPadRow();
828 fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row);
829 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
830 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
831 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
832 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
834 SetBit(kCalib, kTRUE);
837 //____________________________________________________________________
838 void AliTRDseedV1::SetOwner()
840 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
842 if(TestBit(kOwner)) return;
843 for(int ic=0; ic<kNclusters; ic++){
844 if(!fClusters[ic]) continue;
845 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
850 //____________________________________________________________
851 void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
853 // Shortcut method to initialize pad geometry.
855 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
856 SetPadLength(p->GetLengthIPad());
857 SetPadWidth(p->GetWidthIPad());
861 //____________________________________________________________________
862 Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt)
865 // Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
866 // 1. Collapse x coordinate for the full detector plane
867 // 2. truncated mean on y (r-phi) direction
869 // 4. truncated mean on z direction
873 // - chamber : pointer to tracking chamber container used to search the tracklet
874 // - tilt : switch for tilt correction during road building [default true]
876 // - true : if tracklet found successfully. Failure can happend because of the following:
878 // Detailed description
880 // We start up by defining the track direction in the xy plane and roads. The roads are calculated based
881 // on tracking information (variance in the r-phi direction) and estimated variance of the standard
882 // clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
884 // r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
885 // r_{z} = 1.5*L_{pad}
888 // Author : Alexandru Bercuci <A.Bercuci@gsi.de>
891 Bool_t kPRINT = kFALSE;
892 if(!fkReconstructor->GetRecoParam() ){
893 AliError("Seed can not be used without a valid RecoParam.");
896 // Initialize reco params for this tracklet
897 // 1. first time bin in the drift region
899 Int_t kClmin = Int_t(fkReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
901 Double_t sysCov[5]; fkReconstructor->GetRecoParam()->GetSysCovMatrix(sysCov);
902 Double_t s2yTrk= fRefCov[0],
904 s2zCl = GetPadLength()*GetPadLength()/12.,
905 syRef = TMath::Sqrt(s2yTrk),
906 t2 = GetTilt()*GetTilt();
908 Double_t kroady = 1., //fkReconstructor->GetRecoParam() ->GetRoad1y();
909 kroadz = GetPadLength() * 1.5 + 1.;
910 // define probing cluster (the perfect cluster) and default calibration
911 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
912 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
913 if(fkReconstructor->IsHLT())cp.SetRPhiMethod(AliTRDcluster::kCOG);
916 if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady);
919 const Int_t kNrows = 16;
920 const Int_t kNcls = 3*kNclusters; // buffer size
921 AliTRDcluster *clst[kNrows][kNcls];
922 Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls];
923 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
924 memset(ncl, 0, kNrows*sizeof(Int_t));
925 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
926 memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*));
928 // Do cluster projection
929 AliTRDcluster *c = NULL;
930 AliTRDchamberTimeBin *layer = NULL;
931 Bool_t kBUFFER = kFALSE;
932 for (Int_t it = 0; it < kNtb; it++) {
933 if(!(layer = chamber->GetTB(it))) continue;
934 if(!Int_t(*layer)) continue;
935 // get track projection at layers position
936 dx = fX0 - layer->GetX();
937 yt = fYref[0] - fYref[1] * dx;
938 zt = fZref[0] - fZref[1] * dx;
939 // get standard cluster error corrected for tilt
940 cp.SetLocalTimeBin(it);
941 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
942 s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2);
943 // get estimated road
944 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
946 if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady);
949 cond[0] = yt; cond[2] = kroady;
950 cond[1] = zt; cond[3] = kroadz;
952 layer->GetClusters(cond, idx, n, 6);
953 for(Int_t ic = n; ic--;){
954 c = (*layer)[idx[ic]];
956 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
957 // select clusters on a 3 sigmaKalman level
958 /* if(tilt && TMath::Abs(dy) > 3.*syRef){
959 printf("too large !!!\n");
962 Int_t r = c->GetPadRow();
963 if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r);
965 idxs[r][ncl[r]] = idx[ic];
966 yres[r][ncl[r]] = dy;
969 if(ncl[r] >= kNcls) {
970 AliWarning(Form("Cluster candidates reached buffer limit %d. Some may be lost.", kNcls));
977 if(kPRINT) printf("Found %d clusters\n", ncls);
978 if(ncls<kClmin) return kFALSE;
980 // analyze each row individualy
981 Double_t mean, syDis;
982 Int_t nrow[] = {0, 0, 0}, nr = 0, lr=-1;
983 for(Int_t ir=kNrows; ir--;){
984 if(!(ncl[ir])) continue;
985 if(lr>0 && lr-ir != 1){
986 if(kPRINT) printf("W - gap in rows attached !!\n");
988 if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]);
989 // Evaluate truncated mean on the y direction
990 if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8));
992 mean = 0.; syDis = 0.;
996 if(fkReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 3){
997 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
998 TVectorD vdy(ncl[ir], yres[ir]);
1000 if(IsKink()) SETBIT(stat, 0);
1001 if(IsStandAlone()) SETBIT(stat, 1);
1002 cstreamer << "AttachClusters"
1013 // TODO check mean and sigma agains cluster resolution !!
1014 if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis);
1015 // select clusters on a 3 sigmaDistr level
1016 Bool_t kFOUND = kFALSE;
1017 for(Int_t ic = ncl[ir]; ic--;){
1018 if(yres[ir][ic] - mean > 3. * syDis){
1019 clst[ir][ic] = NULL; continue;
1021 nrow[nr]++; kFOUND = kTRUE;
1025 lr = ir; if(nr>=3) break;
1027 if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]);
1029 // classify cluster rows
1036 SetBit(kRowCross, kTRUE); // mark pad row crossing
1037 if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;}
1046 SetBit(kRowCross, kTRUE); // mark pad row crossing
1049 if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]);
1050 if(row<0) return kFALSE;
1052 // Select and store clusters
1053 // We should consider here :
1054 // 1. How far is the chamber boundary
1055 // 2. How big is the mean
1057 for (Int_t ir = 0; ir < nr; ir++) {
1058 Int_t jr = row + ir*lr;
1059 if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr);
1060 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1061 if(!(c = clst[jr][ic])) continue;
1062 Int_t it = c->GetPadTime();
1063 // TODO proper indexing of clusters !!
1064 fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1065 fClusters[it+kNtb*ir] = c;
1067 //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]);
1073 // number of minimum numbers of clusters expected for the tracklet
1075 //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin));
1080 // Load calibration parameters for this tracklet
1083 // calculate dx for time bins in the drift region (calibration aware)
1084 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1085 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1086 if(!fClusters[it]) continue;
1087 x[irp] = fClusters[it]->GetX();
1088 tb[irp] = fClusters[it]->GetLocalTimeBin();
1091 Int_t dtb = tb[1] - tb[0];
1092 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1096 //____________________________________________________________
1097 void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1099 // Fill in all derived information. It has to be called after recovery from file or HLT.
1100 // The primitive data are
1101 // - list of clusters
1102 // - detector (as the detector will be removed from clusters)
1103 // - position of anode wire (fX0) - temporary
1104 // - track reference position and direction
1105 // - momentum of the track
1106 // - time bin length [cm]
1108 // A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1110 fkReconstructor = rec;
1112 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
1113 fPad[0] = pp->GetLengthIPad();
1114 fPad[1] = pp->GetWidthIPad();
1115 fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
1116 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1118 Int_t n = 0, nshare = 0, nused = 0;
1119 AliTRDcluster **cit = &fClusters[0];
1120 for(Int_t ic = kNclusters; ic--; cit++){
1123 if((*cit)->IsShared()) nshare++;
1124 if((*cit)->IsUsed()) nused++;
1126 SetN(n); SetNUsed(nused); SetNShared(nshare);
1133 //____________________________________________________________________
1134 Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
1137 // Linear fit of the clusters attached to the tracklet
1140 // - tilt : switch for tilt pad correction of cluster y position based on
1141 // the z, dzdx info from outside [default false].
1142 // - zcorr : switch for using z information to correct for anisochronity
1143 // and a finner error parameterization estimation [default false]
1145 // True if successful
1147 // Detailed description
1149 // Fit in the xy plane
1151 // The fit is performed to estimate the y position of the tracklet and the track
1152 // angle in the bending plane. The clusters are represented in the chamber coordinate
1153 // system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1154 // on how this is set). The x and y position of the cluster and also their variances
1155 // are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1156 // AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1157 // If gaussian approximation is used to calculate y coordinate of the cluster the position
1158 // is recalculated taking into account the track angle. The general formula to calculate the
1159 // error of cluster position in the gaussian approximation taking into account diffusion and track
1160 // inclination is given for TRD by:
1162 // #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1165 // Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1166 // by projection i.e.
1168 // #sigma_{x|y} = tg(#phi) #sigma_{x}
1170 // and also by the lorentz angle correction
1172 // Fit in the xz plane
1174 // The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1175 // If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1178 // There are two methods to estimate the radial position of the pad row cross:
1179 // 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1180 // cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1181 // of the z estimate is given by :
1183 // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1185 // The systematic errors for this estimation are generated by the following sources:
1186 // - no charge sharing between pad rows is considered (sharp cross)
1187 // - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1189 // 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1190 // to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1191 // parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1192 // - no general model for the qx dependence
1193 // - physical fluctuations of the charge deposit
1194 // - gain calibration dependence
1196 // Estimation of the radial position of the tracklet
1198 // For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1199 // interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1200 // in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1202 // #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1204 // and thus the radial position is:
1206 // x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1209 // Estimation of tracklet position error
1211 // The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1212 // direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1214 // #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1215 // #sigma_{z} = Pad_{length}/12
1217 // For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1218 // in z by the width of the crossing region - being a matter of parameterization.
1220 // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1222 // In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1223 // the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1226 // A.Bercuci <A.Bercuci@gsi.de>
1228 if(!IsCalibrated()) Calibrate();
1230 const Int_t kClmin = 8;
1232 // get track direction
1233 Double_t y0 = fYref[0];
1234 Double_t dydx = fYref[1];
1235 Double_t z0 = fZref[0];
1236 Double_t dzdx = fZref[1];
1239 //AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1240 TLinearFitter& fitterY=*GetFitterY();
1241 TLinearFitter& fitterZ=*GetFitterZ();
1243 // book cluster information
1244 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1247 AliTRDcluster *c=NULL, **jc = &fClusters[0];
1248 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
1253 if(!(c = (*jc))) continue;
1254 if(!c->IsInChamber()) continue;
1257 if(c->GetNPads()>4) w = .5;
1258 if(c->GetNPads()>5) w = .2;
1261 qc[n] = TMath::Abs(c->GetQ());
1262 // pad row of leading
1264 // Radial cluster position
1265 //Int_t jc = TMath::Max(fN-3, 0);
1266 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
1267 xc[n] = fX0 - c->GetX();
1269 // extrapolated track to cluster position
1270 yt = y0 - xc[n]*dydx;
1271 zt = z0 - xc[n]*dzdx;
1273 // Recalculate cluster error based on tracking information
1274 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1275 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1277 yc[n] = fkReconstructor->UseGAUS() ?
1278 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1280 //optional tilt correction
1281 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1283 fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n]));
1284 fitterZ.AddPoint(&xc[n], qc[n], 1.);
1288 if (n < kClmin) return kFALSE;
1292 fYfit[0] = fitterY.GetParameter(0);
1293 fYfit[1] = -fitterY.GetParameter(1);
1295 Double_t *p = fitterY.GetCovarianceMatrix();
1296 fCov[0] = p[0]; // variance of y0
1297 fCov[1] = p[1]; // covariance of y0, dydx
1298 fCov[2] = p[3]; // variance of dydx
1299 // the ref radial position is set at the minimum of
1300 // the y variance of the tracklet
1301 fX = -fCov[1]/fCov[2];
1305 /* // THE LEADING CLUSTER METHOD
1307 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1308 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1309 for(; ic>kNtb; ic--, --jc, --kc){
1310 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1311 if(!(c = (*jc))) continue;
1312 if(!c->IsInChamber()) continue;
1313 zc[kNclusters-1] = c->GetZ();
1314 fX = fX0 - c->GetX();
1316 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1317 // Error parameterization
1318 fS2Z = fdX*fZref[1];
1319 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1321 // THE FIT X-Q PLANE METHOD
1322 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1323 for(; ic>kNtb; ic--, --jc){
1324 if(!(c = (*jc))) continue;
1325 if(!c->IsInChamber()) continue;
1326 qc[n] = TMath::Abs(c->GetQ());
1327 xc[n] = fX0 - c->GetX();
1329 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1334 if(fitterZ.GetParameter(1)!=0.){
1335 fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1);
1337 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1339 fX-=.055; // TODO to be understood
1342 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1343 // temporary external error parameterization
1344 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1345 // TODO correct formula
1346 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1348 fZfit[0] = zc[0]; fZfit[1] = 0.;
1349 fS2Z = GetPadLength()*GetPadLength()/12.;
1351 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1357 //_____________________________________________________________________________
1358 void AliTRDseedV1::FitMI()
1362 // Marian Ivanov's version
1364 // linear fit on the y direction with respect to the reference direction.
1365 // The residuals for each x (x = xc - x0) are deduced from:
1367 // the tilting correction is written :
1368 // y = yc + h*(zc-zt) (2)
1369 // yt = y0+dy/dx*x (3)
1370 // zt = z0+dz/dx*x (4)
1371 // from (1),(2),(3) and (4)
1372 // dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1373 // the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1374 // 1. use tilting correction for calculating the y
1375 // 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1376 const Float_t kRatio = 0.8;
1377 const Int_t kClmin = 5;
1378 const Float_t kmaxtan = 2;
1380 if (TMath::Abs(fYref[1]) > kmaxtan){
1381 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1382 return; // Track inclined too much
1385 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
1386 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
1397 // Buffering: Leave it constant fot Performance issues
1398 Int_t zints[kNtb]; // Histograming of the z coordinate
1399 // Get 1 and second max probable coodinates in z
1400 Int_t zouts[2*kNtb];
1401 Float_t allowedz[kNtb]; // Allowed z for given time bin
1402 Float_t yres[kNtb]; // Residuals from reference
1403 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
1405 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1406 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1408 Int_t fN = 0; AliTRDcluster *c = 0x0;
1410 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1412 if (!(c = fClusters[i])) continue;
1413 if(!c->IsInChamber()) continue;
1415 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1416 fX[i] = fX0 - c->GetX();
1419 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1420 zints[fN] = Int_t(fZ[i]);
1425 //printf("Exit fN < kClmin: fN = %d\n", fN);
1428 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1429 Float_t fZProb = zouts[0];
1430 if (nz <= 1) zouts[3] = 0;
1431 if (zouts[1] + zouts[3] < kClmin) {
1432 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1436 // Z distance bigger than pad - length
1437 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1439 Int_t breaktime = -1;
1440 Bool_t mbefore = kFALSE;
1441 Int_t cumul[kNtb][2];
1442 Int_t counts[2] = { 0, 0 };
1444 if (zouts[3] >= 3) {
1447 // Find the break time allowing one chage on pad-rows
1448 // with maximal number of accepted clusters
1451 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1452 cumul[i][0] = counts[0];
1453 cumul[i][1] = counts[1];
1454 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1455 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1458 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1459 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1460 Int_t before = cumul[i][1];
1461 if (after + before > maxcount) {
1462 maxcount = after + before;
1466 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1467 before = cumul[i][0];
1468 if (after + before > maxcount) {
1469 maxcount = after + before;
1477 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1478 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1479 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1482 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1483 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1485 // Tracklet z-direction not in correspondance with track z direction
1488 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1489 allowedz[i] = zouts[0]; // Only longest taken
1495 // Cross pad -row tracklet - take the step change into account
1497 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1498 if (!fClusters[i]) continue;
1499 if(!fClusters[i]->IsInChamber()) continue;
1500 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1502 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1503 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1504 // if (TMath::Abs(fZ[i] - fZProb) > 2) {
1505 // if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1506 // if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
1511 Double_t yres2[kNtb];
1514 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1515 if (!fClusters[i]) continue;
1516 if(!fClusters[i]->IsInChamber()) continue;
1517 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1518 yres2[fN2] = yres[i];
1522 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1526 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1527 if (sigma < sigmaexp * 0.8) {
1530 //Float_t fSigmaY = sigma;
1545 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1546 if (!fClusters[i]) continue;
1547 if (!fClusters[i]->IsInChamber()) continue;
1548 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1549 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1552 fMPads += fClusters[i]->GetNPads();
1553 Float_t weight = 1.0;
1554 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1555 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1559 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1562 sumwx += x * weight;
1563 sumwx2 += x*x * weight;
1564 sumwy += weight * yres[i];
1565 sumwxy += weight * (yres[i]) * x;
1566 sumwz += weight * fZ[i];
1567 sumwxz += weight * fZ[i] * x;
1572 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1576 fMeanz = sumwz / sumw;
1577 Float_t correction = 0;
1579 // Tracklet on boundary
1580 if (fMeanz < fZProb) correction = ycrosscor;
1581 if (fMeanz > fZProb) correction = -ycrosscor;
1584 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1585 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1586 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1589 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1590 if (!TESTBIT(fUsable,i)) continue;
1591 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1592 fS2Y += delta*delta;
1594 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1595 // TEMPORARY UNTIL covariance properly calculated
1596 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1598 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1599 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1600 // fYfitR[0] += fYref[0] + correction;
1601 // fYfitR[1] += fYref[1];
1602 // fYfit[0] = fYfitR[0];
1603 fYfit[1] = -fYfit[1];
1608 //___________________________________________________________________
1609 void AliTRDseedV1::Print(Option_t *o) const
1612 // Printing the seedstatus
1615 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
1616 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
1617 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
1619 Double_t cov[3], x=GetX();
1621 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1622 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
1623 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
1626 if(strcmp(o, "a")!=0) return;
1628 AliTRDcluster* const* jc = &fClusters[0];
1629 for(int ic=0; ic<kNclusters; ic++, jc++) {
1630 if(!(*jc)) continue;
1636 //___________________________________________________________________
1637 Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1639 // Checks if current instance of the class has the same essential members
1642 if(!o) return kFALSE;
1643 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1644 if(!inTracklet) return kFALSE;
1646 for (Int_t i = 0; i < 2; i++){
1647 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1648 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
1651 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
1652 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1653 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
1655 for (Int_t i = 0; i < kNclusters; i++){
1656 // if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1657 // if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1658 // if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1659 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
1661 // if ( fUsable != inTracklet->fUsable ) return kFALSE;
1663 for (Int_t i=0; i < 2; i++){
1664 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1665 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1666 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
1669 /* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1670 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
1671 if ( fN != inTracklet->fN ) return kFALSE;
1672 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
1673 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1674 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
1676 if ( fC != inTracklet->fC ) return kFALSE;
1677 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1678 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
1679 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1681 if ( fDet != inTracklet->fDet ) return kFALSE;
1682 if ( fPt != inTracklet->fPt ) return kFALSE;
1683 if ( fdX != inTracklet->fdX ) return kFALSE;
1685 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
1686 AliTRDcluster *curCluster = fClusters[iCluster];
1687 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
1688 if (curCluster && inCluster){
1689 if (! curCluster->IsEqual(inCluster) ) {
1690 curCluster->Print();
1695 // if one cluster exists, and corresponding
1696 // in other tracklet doesn't - return kFALSE
1697 if(curCluster || inCluster) return kFALSE;