3 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
8 ////////////////////////////////////////////////////////////////////////////
10 // \class AliTRDseedV1
11 // \brief The TRD offline tracklet
12 // \author Alexandru Bercuci
14 ////////////////////////////////////////////////////////////////////////////
16 #ifndef ALITRDTRACKLETBASE_H
17 #include "AliTRDtrackletBase.h"
24 #ifndef ALITRDGEOMETRY_H
25 #include "AliTRDgeometry.h"
33 #ifndef ALITRDCLUSTER_H
34 #include "AliTRDcluster.h"
38 class TTreeSRedirector;
43 class AliTRDReconstructor;
44 class AliTRDtrackingChamber;
47 class AliTRDseedV1 : public AliTRDtrackletBase
49 friend class AliHLTTRDTracklet; // wrapper for HLT
52 enum ETRDtrackletBuffers {
53 kNbits = 6 // bits to store number of clusters
54 ,kMask = 0x3f // bit mask
55 ,kNtb = 31 // max clusters/pad row
56 ,kNclusters = 2*kNtb // max number of clusters/tracklet
57 ,kNslices = 10 // max dEdx slices
60 // bits from 0-13 are reserved by ROOT (see TObject.h)
61 enum ETRDtrackletStatus {
62 kOwner = BIT(14) // owner of its clusters
63 ,kRowCross = BIT(15) // pad row cross tracklet
64 ,kPID = BIT(16) // PID contributor
65 ,kCalib = BIT(17) // calibrated tracklet
66 ,kKink = BIT(18) // kink prolongation tracklet
67 ,kStandAlone = BIT(19) // tracklet build during stand alone track finding
68 ,kPrimary = BIT(20) // tracklet from a primary track candidate
71 enum ETRDtrackletError { // up to 8 bits
72 kAttachClFound = 0 // not enough clusters found
73 ,kAttachRowGap = 1 // found gap attached rows
74 ,kAttachRow = 2 // found 3 rows
75 ,kAttachMultipleCl= 3// multiple clusters attached to time bin
76 ,kAttachClAttach= 4 // not enough clusters attached
77 ,kFitCl = 5 // not enough clusters for fit
78 ,kFitFailedY = 6 // fit failed in XY plane failed
79 ,kFitFailedZ = 7 // fit in the QZ plane failed
82 AliTRDseedV1(Int_t det = -1);
84 AliTRDseedV1(const AliTRDseedV1 &ref);
85 AliTRDseedV1& operator=(const AliTRDseedV1 &ref);
87 Bool_t AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt = kFALSE, Bool_t ChgPlus=kTRUE, Int_t ev=-1);
88 void Bootstrap(const AliTRDReconstructor *rec);
90 void CookdEdx(Int_t nslices);
93 Bool_t Fit(UChar_t opt=0);
94 Bool_t FitRobust(Bool_t ChgPlus=kTRUE);
95 Bool_t Init(AliTRDtrackV1 *track);
96 void Init(const AliRieman *fit);
97 Bool_t IsEqual(const TObject *inTracklet) const;
98 Bool_t IsCalibrated() const { return TestBit(kCalib);}
99 Bool_t IsOwner() const { return TestBit(kOwner);}
100 Bool_t IsKink() const { return TestBit(kKink);}
101 Bool_t IsPrimary() const { return TestBit(kPrimary);}
102 Bool_t HasPID() const { return TestBit(kPID);}
103 Bool_t HasError(ETRDtrackletError err) const
104 { return TESTBIT(fErrorMsg, err);}
105 Bool_t IsOK() const { return GetN() > 4 && GetNUsed() < 4;}
106 Bool_t IsRowCross() const { return TestBit(kRowCross);}
107 Bool_t IsUsable(Int_t i) const { return fClusters[i] && !fClusters[i]->IsUsed();}
108 Bool_t IsStandAlone() const { return TestBit(kStandAlone);}
110 Float_t GetAnodeWireOffset(Float_t zt);
111 Float_t GetC(Int_t typ=0) const { return fC[typ]; }
112 Float_t GetCharge(Bool_t useOutliers=kFALSE) const;
113 Float_t GetChi2() const { return fChi2; }
114 inline Float_t GetChi2Z() const;
115 inline Float_t GetChi2Y() const;
116 inline Float_t GetChi2Phi() const;
117 void GetCovAt(Double_t x, Double_t *cov) const;
118 void GetCovXY(Double_t *cov) const { memcpy(cov, &fCov[0], 3*sizeof(Double_t));}
119 void GetCovRef(Double_t *cov) const { memcpy(cov, &fRefCov, 7*sizeof(Double_t));}
120 static Int_t GetCovSqrt(const Double_t * const c, Double_t *d);
121 static Double_t GetCovInv(const Double_t * const c, Double_t *d);
122 UChar_t GetErrorMsg() const { return fErrorMsg;}
123 Float_t GetdX() const { return fdX;}
124 const Float_t* GetdEdx() const { return &fdEdx[0];}
125 Float_t GetdQdl() const;
126 Float_t GetdQdl(Int_t ic, Float_t *dx=NULL) const;
127 Float_t GetdYdX() const { return fYfit[1];}
128 Float_t GetdZdX() const { return fZfit[1];}
129 Int_t GetdY() const { return Int_t(GetY()/0.014);}
130 Int_t GetDetector() const { return fDet;}
131 void GetCalibParam(Float_t &exb, Float_t &vd, Float_t &t0, Float_t &s2, Float_t &dl, Float_t &dt) const {
132 exb = fExB; vd = fVD; t0 = fT0; s2 = fS2PRF; dl = fDiffL; dt = fDiffT;}
133 AliTRDcluster* GetClusters(Int_t i) const { return i<0 || i>=kNclusters ? NULL: fClusters[i];}
134 Bool_t GetEstimatedCrossPoint(Float_t &x, Float_t &z) const;
135 Int_t GetIndexes(Int_t i) const{ return i<0 || i>=kNclusters ? -1 : fIndexes[i];}
136 Int_t GetLabels(Int_t i) const { return fLabels[i];}
137 Float_t GetMomentum(Float_t *err = NULL) const;
138 Int_t GetN() const { return (Int_t)fN&kMask;}
139 Int_t GetN2() const { return GetN();}
140 Int_t GetNUsed() const { return Int_t((fN>>kNbits)&kMask);}
141 Int_t GetNShared() const { return Int_t(((fN>>kNbits)>>kNbits)&kMask);}
142 Float_t GetOccupancyTB() const;
143 Float_t GetQuality(Bool_t kZcorr) const;
144 Float_t GetPadLength() const { return fPad[0];}
145 Float_t GetPadWidth() const { return fPad[1];}
146 Int_t GetPlane() const { return AliTRDgeometry::GetLayer(fDet); }
148 Float_t* GetProbability(Bool_t force=kFALSE);
149 Float_t GetPt() const { return fPt; }
150 inline Double_t GetPID(Int_t is=-1) const;
151 Float_t GetS2Y() const { return fS2Y;}
152 Float_t GetS2Z() const { return fS2Z;}
153 Float_t GetSigmaY() const { return fS2Y > 0. ? TMath::Sqrt(fS2Y) : 0.2;}
154 Float_t GetSnp() const { return fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);}
155 Float_t GetTgl() const { return fZref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);}
156 Float_t GetTilt() const { return fPad[2];}
157 UInt_t GetTrackletWord() const { return 0;}
158 UShort_t GetVolumeId() const;
159 Float_t GetX0() const { return fX0;}
160 Float_t GetX() const { return fX0 - fX;}
161 Float_t GetY() const { return fYfit[0] - fYfit[1] * fX;}
162 Double_t GetYat(Double_t x) const { return fYfit[0] - fYfit[1] * (fX0-x);}
163 Float_t GetYfit(Int_t id) const { return fYfit[id];}
164 Float_t GetYref(Int_t id) const { return fYref[id];}
165 Float_t GetZ() const { return fZfit[0] - fZfit[1] * fX;}
166 Double_t GetZat(Double_t x) const { return fZfit[0] - fZfit[1] * (fX0-x);}
167 Float_t GetZfit(Int_t id) const { return fZfit[id];}
168 Float_t GetZref(Int_t id) const { return fZref[id];}
169 Int_t GetYbin() const { return Int_t(GetY()/0.016);}
170 Int_t GetZbin() const { return Int_t(GetZ()/fPad[0]);}
172 inline AliTRDcluster* NextCluster();
173 inline AliTRDcluster* PrevCluster();
174 void Print(Option_t *o = "") const;
175 inline void ResetClusterIter(Bool_t forward = kTRUE);
176 void Reset(Option_t *opt="");
178 void SetC(Float_t c, Int_t typ=0) { fC[typ] = c;}
179 void SetChi2(Float_t chi2) { fChi2 = chi2;}
180 inline void SetCovRef(const Double_t *cov);
181 void SetErrorMsg(ETRDtrackletError err) { SETBIT(fErrorMsg, err);}
182 void SetIndexes(Int_t i, Int_t idx) { fIndexes[i] = idx; }
183 void SetLabels(Int_t *lbls) { memcpy(fLabels, lbls, 3*sizeof(Int_t)); }
184 void SetKink(Bool_t k = kTRUE){ SetBit(kKink, k);}
185 void SetPrimary(Bool_t k = kTRUE){ SetBit(kPrimary, k);}
186 void SetPID(Bool_t k = kTRUE) { SetBit(kPID, k);}
187 void SetStandAlone(Bool_t st) { SetBit(kStandAlone, st); }
188 void SetPt(Double_t pt) { fPt = pt;}
190 void SetPadPlane(AliTRDpadPlane * const p);
191 void SetPadLength(Float_t l) { fPad[0] = l;}
192 void SetPadWidth(Float_t w) { fPad[1] = w;}
193 void SetTilt(Float_t tilt) { fPad[2] = tilt; }
194 void SetDetector(Int_t d) { fDet = d; }
195 void SetDX(Float_t inDX) { fdX = inDX;}
196 void SetReconstructor(const AliTRDReconstructor *rec) {fkReconstructor = rec;}
197 void SetX0(Float_t x0) { fX0 = x0; }
198 void SetYref(Int_t i, Float_t y) { fYref[i] = y;}
199 void SetZref(Int_t i, Float_t z) { fZref[i] = z;}
200 // void SetUsabilityMap(Long_t um) { fUsable = um; }
201 void Update(const AliTRDtrackV1* trk);
206 void Copy(TObject &ref) const;
209 inline void SetN(Int_t n);
210 inline void SetNUsed(Int_t n);
211 inline void SetNShared(Int_t n);
212 inline void Swap(Int_t &n1, Int_t &n2) const;
213 inline void Swap(Double_t &d1, Double_t &d2) const;
215 const AliTRDReconstructor *fkReconstructor;//! local reconstructor
216 AliTRDcluster **fClusterIter; //! clusters iterator
217 Int_t fIndexes[kNclusters]; //! Indexes
218 Float_t fExB; // tg(a_L) @ tracklet location
219 Float_t fVD; // drift velocity @ tracklet location
220 Float_t fT0; // time 0 @ tracklet location
221 Float_t fS2PRF; // sigma^2 PRF for xd->0 and phi=a_L
222 Float_t fDiffL; // longitudinal diffusion coefficient
223 Float_t fDiffT; // transversal diffusion coefficient
224 Char_t fClusterIdx; //! clusters iterator
225 UChar_t fErrorMsg; // processing error
226 UInt_t fN; // number of clusters attached/used/shared
227 Short_t fDet; // TRD detector
228 AliTRDcluster *fClusters[kNclusters]; // Clusters
229 Float_t fPad[4]; // local pad definition : length/width/tilt/anode wire offset
230 Float_t fYref[2]; // Reference y, dydx
231 Float_t fZref[2]; // Reference z, dz/dx
232 Float_t fYfit[2]; // Fit y, dy/dx
233 Float_t fZfit[2]; // Fit z
234 Float_t fPt; // Pt estimate @ tracklet [GeV/c]
235 Float_t fdX; // length of time bin
236 Float_t fX0; // anode wire position
237 Float_t fX; // radial position of the tracklet
238 Float_t fY; // r-phi position of the tracklet
239 Float_t fZ; // z position of the tracklet
240 Float_t fS2Y; // estimated resolution in the r-phi direction
241 Float_t fS2Z; // estimated resolution in the z direction
242 Float_t fC[2]; // Curvature for standalone [0] rieman [1] vertex constrained
243 Float_t fChi2; // Global chi2
244 Float_t fdEdx[kNslices]; // dE/dx measurements for tracklet
245 Float_t fProb[AliPID::kSPECIES]; // PID probabilities
246 Int_t fLabels[3]; // most frequent MC labels and total number of different labels
247 Double_t fRefCov[7]; // covariance matrix of the track in the yz plane + the rest of the diagonal elements
248 Double_t fCov[3]; // covariance matrix of the tracklet in the xy plane
250 ClassDef(AliTRDseedV1, 12) // The offline TRD tracklet
253 //____________________________________________________________
254 inline Float_t AliTRDseedV1::GetChi2Z() const
256 Double_t dz = fZref[0]-fZfit[0]; dz*=dz;
257 Double_t cov[3]; GetCovAt(fX, cov);
258 Double_t s2 = fRefCov[2]+cov[2];
259 return s2 > 0. ? dz/s2 : 0.;
262 //____________________________________________________________
263 inline Float_t AliTRDseedV1::GetChi2Y() const
265 Double_t dy = fYref[0]-fYfit[0]; dy*=dy;
266 Double_t cov[3]; GetCovAt(fX, cov);
267 Double_t s2 = fRefCov[0]+cov[0];
268 return s2 > 0. ? dy/s2 : 0.;
271 //____________________________________________________________
272 inline Float_t AliTRDseedV1::GetChi2Phi() const
274 Double_t dphi = fYref[1]-fYfit[1]; dphi*=dphi;
275 Double_t cov[3]; GetCovAt(fX, cov);
276 Double_t s2 = fRefCov[2]+cov[2];
277 return s2 > 0. ? dphi/s2 : 0.;
282 //____________________________________________________________
283 inline Double_t AliTRDseedV1::GetPID(Int_t is) const
285 if(is<0) return fProb[AliPID::kElectron];
286 if(is<AliPID::kSPECIES) return fProb[is];
290 //____________________________________________________________
291 inline AliTRDcluster* AliTRDseedV1::NextCluster()
293 // Mimic the usage of STL iterators.
296 fClusterIdx++; fClusterIter++;
297 while(fClusterIdx < kNclusters){
298 if(!(*fClusterIter)){
303 return *fClusterIter;
308 //____________________________________________________________
309 inline AliTRDcluster* AliTRDseedV1::PrevCluster()
311 // Mimic the usage of STL iterators.
314 fClusterIdx--; fClusterIter--;
315 while(fClusterIdx >= 0){
316 if(!(*fClusterIter)){
321 return *fClusterIter;
326 //____________________________________________________________
327 inline void AliTRDseedV1::ResetClusterIter(Bool_t forward)
329 // Mimic the usage of STL iterators.
330 // Facilitate the usage of NextCluster for forward like
331 // iterator (kTRUE) and PrevCluster for backward like iterator (kFALSE)
334 fClusterIter = &fClusters[0]; fClusterIter--;
337 fClusterIter = &fClusters[kNclusters-1]; fClusterIter++;
338 fClusterIdx=kNclusters;
342 //____________________________________________________________
343 inline void AliTRDseedV1::SetCovRef(const Double_t *cov)
345 // Copy some "important" covariance matrix elements
350 // cov(tgl, 1/pt) var(1/pt)
352 memcpy(&fRefCov[0], cov, 3*sizeof(Double_t)); // yz full covariance
353 fRefCov[3] = cov[ 5]; // snp variance
354 fRefCov[4] = cov[ 9]; // tgl variance
355 fRefCov[5] = cov[13]; // cov(tgl, 1/pt)
356 fRefCov[6] = cov[14]; // 1/pt variance
360 //____________________________________________________________
361 inline void AliTRDseedV1::SetN(Int_t n)
363 if(n<0 || n>kNclusters) return;
368 //____________________________________________________________
369 inline void AliTRDseedV1::SetNUsed(Int_t n)
371 if(n<0 || n>kNclusters) return;
372 UInt_t mask(kMask<<kNbits);
374 n=n<<kNbits; fN |= (n&mask);
377 //____________________________________________________________
378 inline void AliTRDseedV1::SetNShared(Int_t n)
380 if(n<0 || n>kNclusters) return;
381 UInt_t mask((kMask<<kNbits)<<kNbits);
383 n = (n<<kNbits)<<kNbits; fN|=(n&mask);
386 //____________________________________________________________
387 inline void AliTRDseedV1::Swap(Int_t &n1, Int_t &n2) const
389 // swap values of n1 with n2
394 //____________________________________________________________
395 inline void AliTRDseedV1::Swap(Double_t &d1, Double_t &d2) const
397 // swap values of d1 with d2