1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 ///////////////////////////////////////////////////////////////////////////////
23 // Alex Bercuci <A.Bercuci@gsi.de> //
24 // Markus Fasel <M.Fasel@gsi.de> //
26 ///////////////////////////////////////////////////////////////////////////////
29 #include <TDirectory.h>
30 #include <TLinearFitter.h>
32 #include <TClonesArray.h>
33 #include <TTreeStream.h>
34 #include <TGeoMatrix.h>
35 #include <TGeoManager.h>
38 #include "AliMathBase.h"
39 #include "AliESDEvent.h"
40 #include "AliGeomManager.h"
41 #include "AliRieman.h"
42 #include "AliTrackPointArray.h"
44 #include "AliTRDgeometry.h"
45 #include "AliTRDpadPlane.h"
46 #include "AliTRDcalibDB.h"
47 #include "AliTRDReconstructor.h"
48 #include "AliTRDCalibraFillHisto.h"
49 #include "AliTRDrecoParam.h"
51 #include "AliTRDcluster.h"
52 #include "AliTRDdigitsParam.h"
53 #include "AliTRDseedV1.h"
54 #include "AliTRDtrackV1.h"
55 #include "AliTRDtrackerV1.h"
56 #include "AliTRDtrackerDebug.h"
57 #include "AliTRDtrackingChamber.h"
58 #include "AliTRDchamberTimeBin.h"
60 ClassImp(AliTRDtrackerV1)
61 ClassImp(AliTRDtrackerV1::AliTRDLeastSquare)
62 ClassImp(AliTRDtrackerV1::AliTRDtrackFitterRieman)
64 Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = {
65 0.5112, 0.5112, 0.5112, 0.0786, 0.0786,
66 0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
67 0.0474, 0.0408, 0.0335, 0.0335, 0.0335
69 const Double_t AliTRDtrackerV1::fgkX0[kNPlanes] = {
70 300.2, 312.8, 325.4, 338.0, 350.6, 363.2};
71 // Number of Time Bins/chamber should be also stored independently by the traker
72 // (also in AliTRDReconstructor) in oder to be able to run HLT. Fix TODO
73 Int_t AliTRDtrackerV1::fgNTimeBins = 0;
74 AliRieman* AliTRDtrackerV1::fgRieman = NULL;
75 TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = NULL;
76 TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = NULL;
78 //____________________________________________________________________
79 AliTRDtrackerV1::AliTRDtrackerV1(AliTRDReconstructor *rec)
81 ,fkReconstructor(NULL)
92 // Default constructor.
95 SetReconstructor(rec); // initialize reconstructor
97 // initialize geometry
98 if(!AliGeomManager::GetGeometry()){
99 AliFatal("Could not get geometry.");
101 fGeom = new AliTRDgeometry();
102 fGeom->CreateClusterMatrixArray();
103 TGeoHMatrix *matrix = NULL;
104 Double_t loc[] = {0., 0., 0.};
105 Double_t glb[] = {0., 0., 0.};
106 for(Int_t ily=kNPlanes; ily--;){
108 while(!(matrix = fGeom->GetClusterMatrix(AliTRDgeometry::GetDetector(ily, 2, ism)))) ism++;
110 AliError(Form("Could not get transformation matrix for layer %d. Use default.", ily));
111 fR[ily] = fgkX0[ily];
114 matrix->LocalToMaster(loc, glb);
115 fR[ily] = glb[0]+ AliTRDgeometry::AnodePos()-.5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick();
118 // initialize cluster containers
119 for (Int_t isector = 0; isector < AliTRDgeometry::kNsector; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
122 memset(fTrackQuality, 0, kMaxTracksStack*sizeof(Double_t));
123 memset(fSeedLayer, 0, kMaxTracksStack*sizeof(Int_t));
124 memset(fSeedTB, 0, kNSeedPlanes*sizeof(AliTRDchamberTimeBin*));
125 fTracksESD = new TClonesArray("AliESDtrack", 2*kMaxTracksStack);
126 fTracksESD->SetOwner();
129 //____________________________________________________________________
130 AliTRDtrackerV1::~AliTRDtrackerV1()
136 if(fgRieman) delete fgRieman; fgRieman = NULL;
137 if(fgTiltedRieman) delete fgTiltedRieman; fgTiltedRieman = NULL;
138 if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained; fgTiltedRiemanConstrained = NULL;
139 for(Int_t isl =0; isl<kNSeedPlanes; isl++) if(fSeedTB[isl]) delete fSeedTB[isl];
140 if(fTracksESD){ fTracksESD->Delete(); delete fTracksESD; }
141 if(fTracks) {fTracks->Delete(); delete fTracks;}
142 if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
144 fClusters->Delete(); delete fClusters;
146 if(fGeom) delete fGeom;
149 //____________________________________________________________________
150 Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd)
153 // Steering stand alone tracking for full TRD detector
156 // esd : The ESD event. On output it contains
157 // the ESD tracks found in TRD.
160 // Number of tracks found in the TRD detector.
162 // Detailed description
163 // 1. Launch individual SM trackers.
164 // See AliTRDtrackerV1::Clusters2TracksSM() for details.
168 AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
172 //AliInfo("Start Track Finder ...");
174 for(int ism=0; ism<AliTRDgeometry::kNsector; ism++){
175 // for(int ism=1; ism<2; ism++){
176 //AliInfo(Form("Processing supermodule %i ...", ism));
177 ntracks += Clusters2TracksSM(ism, esd);
179 AliInfo(Form("Number of tracks: !TRDin[%d]", ntracks));
184 //_____________________________________________________________________________
185 Bool_t AliTRDtrackerV1::GetTrackPoint(Int_t index, AliTrackPoint &p) const
187 //AliInfo(Form("Asking for tracklet %d", index));
189 // reset position of the point before using it
190 p.SetXYZ(0., 0., 0.);
191 AliTRDseedV1 *tracklet = GetTracklet(index);
192 if (!tracklet) return kFALSE;
194 // get detector for this tracklet
195 Int_t det = tracklet->GetDetector();
196 Int_t sec = fGeom->GetSector(det);
197 Double_t alpha = (sec+.5)*AliTRDgeometry::GetAlpha(),
198 sinA = TMath::Sin(alpha),
199 cosA = TMath::Cos(alpha);
201 local[0] = tracklet->GetX();
202 local[1] = tracklet->GetY();
203 local[2] = tracklet->GetZ();
205 fGeom->RotateBack(det, local, global);
207 Double_t cov2D[3]; Float_t cov[6];
208 tracklet->GetCovAt(local[0], cov2D);
209 cov[0] = cov2D[0]*sinA*sinA;
210 cov[1] =-cov2D[0]*sinA*cosA;
211 cov[2] =-cov2D[1]*sinA;
212 cov[3] = cov2D[0]*cosA*cosA;
213 cov[4] = cov2D[1]*cosA;
215 // store the global position of the tracklet and its covariance matrix in the track point
216 p.SetXYZ(global[0],global[1],global[2], cov);
219 AliGeomManager::ELayerID iLayer = AliGeomManager::ELayerID(AliGeomManager::kTRD1+fGeom->GetLayer(det));
220 Int_t modId = fGeom->GetSector(det) * AliTRDgeometry::kNstack + fGeom->GetStack(det);
221 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
222 p.SetVolumeID(volid);
227 //____________________________________________________________________
228 TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter()
230 if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
231 return fgTiltedRieman;
234 //____________________________________________________________________
235 TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint()
237 if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
238 return fgTiltedRiemanConstrained;
241 //____________________________________________________________________
242 AliRieman* AliTRDtrackerV1::GetRiemanFitter()
244 if(!fgRieman) fgRieman = new AliRieman(AliTRDseedV1::kNtb * AliTRDgeometry::kNlayer);
248 //_____________________________________________________________________________
249 Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event)
251 // Propagation of ESD tracks from TPC to TOF detectors and building of the TRD track. For building
252 // a TRD track an ESD track is used as seed. The informations obtained on the TRD track (measured points,
253 // covariance, PID, etc.) are than used to update the corresponding ESD track.
254 // Each track seed is first propagated to the geometrical limit of the TRD detector.
255 // Its prolongation is searched in the TRD and if corresponding clusters are found tracklets are
256 // constructed out of them (see AliTRDseedV1::AttachClusters()) and the track is updated.
257 // Otherwise the ESD track is left unchanged.
259 // The following steps are performed:
260 // 1. Selection of tracks based on the variance in the y-z plane.
261 // 2. Propagation to the geometrical limit of the TRD volume. If track propagation fails the AliESDtrack::kTRDStop is set.
262 // 3. Prolongation inside the fiducial volume (see AliTRDtrackerV1::FollowBackProlongation()) and marking
263 // the following status bits:
264 // - AliESDtrack::kTRDin - if the tracks enters the TRD fiducial volume
265 // - AliESDtrack::kTRDStop - if the tracks fails propagation
266 // - AliESDtrack::kTRDbackup - if the tracks fulfills chi2 conditions and qualify for refitting
267 // 4. Writting to friends, PID, MC label, quality etc. Setting status bit AliESDtrack::kTRDout.
268 // 5. Propagation to TOF. If track propagation fails the AliESDtrack::kTRDStop is set.
271 if(!fClusters || !fClusters->GetEntriesFast()){
272 AliInfo("No TRD clusters");
275 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance(); // Calibration monitor
276 if (!calibra) AliInfo("Could not get Calibra instance");
277 if (!fgNTimeBins) fgNTimeBins = fkReconstructor->GetNTimeBins();
280 Int_t nFound = 0, // number of tracks found
281 nBacked = 0, // number of tracks backed up for refit
282 nSeeds = 0, // total number of ESD seeds
283 nTRDseeds= 0, // number of seeds in the TRD acceptance
284 nTPCseeds= 0; // number of TPC seeds
285 Float_t foundMin = 20.0;
287 Float_t *quality = NULL;
289 fEventInFile = event->GetEventNumberInFile();
290 nSeeds = event->GetNumberOfTracks();
291 // Sort tracks according to quality
292 // (covariance in the yz plane)
294 quality = new Float_t[nSeeds];
295 index = new Int_t[4*nSeeds];
296 for (Int_t iSeed = nSeeds; iSeed--;) {
297 AliESDtrack *seed = event->GetTrack(iSeed);
298 Double_t covariance[15];
299 seed->GetExternalCovariance(covariance);
300 quality[iSeed] = covariance[0] + covariance[2];
302 TMath::Sort(nSeeds, quality, index,kFALSE);
305 // Propagate all seeds
308 for (Int_t iSeed = 0; iSeed < nSeeds; iSeed++) {
310 // Get the seeds in sorted sequence
311 AliESDtrack *seed = event->GetTrack(index[iSeed]);
312 Float_t p4 = seed->GetC(seed->GetBz());
314 // Check the seed status
315 ULong_t status = seed->GetStatus();
316 if ((status & AliESDtrack::kTPCout) == 0) continue;
317 if ((status & AliESDtrack::kTRDout) != 0) continue;
319 // Propagate to the entrance in the TRD mother volume
320 track.~AliTRDtrackV1();
321 new(&track) AliTRDtrackV1(*seed);
322 if(AliTRDgeometry::GetXtrdBeg() > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, AliTRDgeometry::GetXtrdBeg(), AliTRDReconstructor::GetMaxStep())){
323 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
326 if(!AdjustSector(&track)){
327 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
330 if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
331 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
335 AliDebug(2, Form("TRD propagate TPC seed[%d] = %d.", iSeed, index[iSeed]));
336 // store track status at TRD entrance
337 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
339 // prepare track and do propagation in the TRD
340 track.SetReconstructor(fkReconstructor);
341 track.SetKink(Bool_t(seed->GetKinkIndex(0)));
342 track.SetPrimary(status & AliESDtrack::kTPCin);
343 expectedClr = FollowBackProlongation(track);
344 // check if track entered the TRD fiducial volume
345 if(track.GetTrackIn()){
346 seed->UpdateTrackParams(&track, AliESDtrack::kTRDin);
349 // check if track was stopped in the TRD
351 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
357 // computes PID for track
359 // update calibration references using this track
360 if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
361 // save calibration object
362 if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0) {
363 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
364 calibTrack->SetOwner();
365 seed->AddCalibObject(calibTrack);
368 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
369 track.UpdateESDtrack(seed);
372 if ((TMath::Abs(track.GetC(track.GetBz()) - p4) / TMath::Abs(p4) < 0.2) ||(track.Pt() > 0.8)) {
374 // Make backup for back propagation
375 Int_t foundClr = track.GetNumberOfClusters();
376 if (foundClr >= foundMin) {
377 track.CookLabel(1. - AliTRDReconstructor::GetLabelFraction());
378 //if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
380 // Sign only gold tracks
381 if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
382 //if ((seed->GetKinkIndex(0) == 0) && (track.Pt() < 1.5)) UseClusters(&track);
384 Bool_t isGold = kFALSE;
387 if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
388 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
394 if ((!isGold) && (track.GetNCross() == 0) && (track.GetChi2() / track.GetNumberOfClusters() < 7)) {
395 //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
396 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
401 if ((!isGold) && (track.GetBackupTrack())) {
402 if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
403 seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
411 // Propagation to the TOF
412 if(!(seed->GetStatus()&AliESDtrack::kTRDStop)) {
413 Int_t sm = track.GetSector();
414 // default value in case we have problems with the geometry.
415 Double_t xtof = 371.;
416 //Calculate radial position of the beginning of the TOF
417 //mother volume. In order to avoid mixing of the TRD
418 //and TOF modules some hard values are needed. This are:
419 //1. The path to the TOF module.
420 //2. The width of the TOF (29.05 cm)
421 //(with the help of Annalisa de Caro Mar-17-2009)
423 gGeoManager->cd(Form("/ALIC_1/B077_1/BSEGMO%d_1/BTOF%d_1", sm, sm));
424 TGeoHMatrix *m = NULL;
425 Double_t loc[]={0., 0., -.5*29.05}, glob[3];
427 if((m=gGeoManager->GetCurrentMatrix())){
428 m->LocalToMaster(loc, glob);
429 xtof = TMath::Sqrt(glob[0]*glob[0]+glob[1]*glob[1]);
432 if(xtof > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, xtof, AliTRDReconstructor::GetMaxStep())){
433 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
436 if(!AdjustSector(&track)){
437 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
440 if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){
441 seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
444 //seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
445 // TODO obsolete - delete
446 seed->SetTRDQuality(track.StatusForTOF());
448 seed->SetTRDBudget(track.GetBudget(0));
450 if(index) delete [] index;
451 if(quality) delete [] quality;
453 AliInfo(Form("Number of seeds: TPCout[%d] TRDin[%d]", nTPCseeds, nTRDseeds));
454 AliInfo(Form("Number of tracks: TRDout[%d] TRDbackup[%d]", nFound, nBacked));
456 // run stand alone tracking
457 if (fkReconstructor->IsSeeding()) Clusters2Tracks(event);
463 //____________________________________________________________________
464 Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event)
467 // Refits tracks within the TRD. The ESD event is expected to contain seeds
468 // at the outer part of the TRD.
469 // The tracks are propagated to the innermost time bin
470 // of the TRD and the ESD event is updated
471 // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
474 Int_t nseed = 0; // contor for loaded seeds
475 Int_t found = 0; // contor for updated TRD tracks
478 if(!fClusters || !fClusters->GetEntriesFast()){
479 AliInfo("No TRD clusters");
483 for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
484 AliESDtrack *seed = event->GetTrack(itrack);
485 ULong_t status = seed->GetStatus();
487 new(&track) AliTRDtrackV1(*seed);
488 if (track.GetX() < 270.0) {
489 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
493 // reject tracks which failed propagation in the TRD or
494 // are produced by the TRD stand alone tracker
495 if(!(status & AliESDtrack::kTRDout)) continue;
496 if(!(status & AliESDtrack::kTRDin)) continue;
499 track.ResetCovariance(50.0);
501 // do the propagation and processing
502 Bool_t kUPDATE = kFALSE;
503 Double_t xTPC = 250.0;
504 if(FollowProlongation(track)){
505 // Update the friend track
506 if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0){
507 TObject *o = NULL; Int_t ic = 0;
508 AliTRDtrackV1 *calibTrack = NULL;
509 while((o = seed->GetCalibObject(ic++))){
510 if(!(calibTrack = dynamic_cast<AliTRDtrackV1*>(o))) continue;
511 calibTrack->SetTrackOut(&track);
516 if (PropagateToX(track, xTPC, AliTRDReconstructor::GetMaxStep())) { // -with update
517 seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
523 // Prolongate to TPC without update
525 AliTRDtrackV1 tt(*seed);
526 if (PropagateToX(tt, xTPC, AliTRDReconstructor::GetMaxStep())) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDbackup);
529 AliInfo(Form("Number of seeds: TRDout[%d]", nseed));
530 AliInfo(Form("Number of tracks: TRDrefit[%d]", found));
535 //____________________________________________________________________
536 Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t)
538 // Extrapolates the TRD track in the TPC direction.
541 // t : the TRD track which has to be extrapolated
544 // number of clusters attached to the track
546 // Detailed description
548 // Starting from current radial position of track <t> this function
549 // extrapolates the track through the 6 TRD layers. The following steps
550 // are being performed for each plane:
552 // a. get plane limits in the local x direction
553 // b. check crossing sectors
554 // c. check track inclination
555 // 2. search tracklet in the tracker list (see GetTracklet() for details)
556 // 3. evaluate material budget using the geo manager
557 // 4. propagate and update track using the tracklet information.
562 Int_t nClustersExpected = 0;
563 for (Int_t iplane = kNPlanes; iplane--;) {
565 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
566 AliDebug(2, Form("Tracklet[%p] ly[%d] idx[%d]", (void*)tracklet, iplane, index));
567 if(!tracklet) continue;
568 if(!tracklet->IsOK()){
569 AliDebug(1, Form("Tracklet Det[%d] !OK", tracklet->GetDetector()));
572 Double_t x = tracklet->GetX();//GetX0();
573 // reject tracklets which are not considered for inward refit
574 if(x > t.GetX()+AliTRDReconstructor::GetMaxStep()) continue;
576 // append tracklet to track
577 t.SetTracklet(tracklet, index);
579 if (x < (t.GetX()-AliTRDReconstructor::GetMaxStep()) && !PropagateToX(t, x+AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) break;
580 if (!AdjustSector(&t)) break;
582 // Start global position
586 // End global position
587 Double_t alpha = t.GetAlpha(), y, z;
588 if (!t.GetProlongation(x,y,z)) break;
590 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
591 xyz1[1] = x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
594 Double_t length = TMath::Sqrt(
595 (xyz0[0]-xyz1[0])*(xyz0[0]-xyz1[0]) +
596 (xyz0[1]-xyz1[1])*(xyz0[1]-xyz1[1]) +
597 (xyz0[2]-xyz1[2])*(xyz0[2]-xyz1[2])
600 // Get material budget
602 if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) break;
603 Double_t xrho= param[0]*param[4];
604 Double_t xx0 = param[1]; // Get mean propagation parameters
606 // Propagate and update
607 t.PropagateTo(x, xx0, xrho);
608 if (!AdjustSector(&t)) break;
611 Double_t cov[3]; tracklet->GetCovAt(x, cov);
612 Double_t p[2] = { tracklet->GetY(), tracklet->GetZ()};
613 Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
614 if (chi2 < 1e+10 && ((AliExternalTrackParam&)t).Update(p, cov)){
615 // Register info to track
616 t.SetNumberOfClusters();
618 nClustersExpected += tracklet->GetN();
622 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1){
624 for(int iplane=0; iplane<AliTRDgeometry::kNlayer; iplane++){
625 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
626 if(!tracklet) continue;
627 t.SetTracklet(tracklet, index);
630 if(fkReconstructor->IsDebugStreaming()){
631 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
632 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
633 AliTRDtrackV1 track(t);
635 cstreamer << "FollowProlongation"
636 << "EventNumber=" << eventNumber
637 << "ncl=" << nClustersExpected
638 << "track.=" << &track
642 return nClustersExpected;
646 //_____________________________________________________________________________
647 Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t)
649 // Extrapolates/Build the TRD track in the TOF direction.
652 // t : the TRD track which has to be extrapolated
655 // number of clusters attached to the track
657 // Starting from current radial position of track <t> this function
658 // extrapolates the track through the 6 TRD layers. The following steps
659 // are being performed for each plane:
660 // 1. Propagate track to the entrance of the next chamber:
661 // - get chamber limits in the radial direction
662 // - check crossing sectors
663 // - check track inclination
664 // - check track prolongation against boundary conditions (see exclusion boundaries on AliTRDgeometry::IsOnBoundary())
665 // 2. Build tracklet (see AliTRDseed::AttachClusters() for details) for this layer if needed. If only
666 // Kalman filter is needed and tracklets are already linked to the track this step is skipped.
667 // 3. Fit tracklet using the information from the Kalman filter.
668 // 4. Propagate and update track at reference radial position of the tracklet.
669 // 5. Register tracklet with the tracker and track; update pulls monitoring.
672 // 1. During the propagation a bit map is filled detailing the status of the track in each TRD chamber. The following errors are being registered for each tracklet:
673 // - AliTRDtrackV1::kProlongation : track prolongation failed
674 // - AliTRDtrackV1::kPropagation : track prolongation failed
675 // - AliTRDtrackV1::kAdjustSector : failed during sector crossing
676 // - AliTRDtrackV1::kSnp : too large bending
677 // - AliTRDtrackV1::kTrackletInit : fail to initialize tracklet
678 // - AliTRDtrackV1::kUpdate : fail to attach clusters or fit the tracklet
679 // - AliTRDtrackV1::kUnknown : anything which is not covered before
680 // 2. By default the status of the track before first TRD update is saved.
685 // Alexandru Bercuci <A.Bercuci@gsi.de>
689 Double_t driftLength = .5*AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
690 AliTRDtrackingChamber *chamber = NULL;
692 Int_t debugLevel = fkReconstructor->IsDebugStreaming() ? fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) : 0;
693 TTreeSRedirector *cstreamer = fkReconstructor->IsDebugStreaming() ? fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker) : 0x0;
695 Bool_t kStoreIn(kTRUE), // toggel store track params. at TRD entry
696 kStandAlone(kFALSE), // toggle tracker awarness of stand alone seeding
697 kUseTRD(fkRecoParam->IsOverPtThreshold(t.Pt()));// use TRD measurment to update Kalman
700 AliTRDseedV1 tracklet, *ptrTracklet = NULL;
701 // Special case for stand alone tracking
702 // - store all tracklets found by seeding
703 // - start propagation from first tracklet found
704 AliTRDseedV1 *tracklets[kNPlanes];
705 memset(tracklets, 0, sizeof(AliTRDseedV1 *) * kNPlanes);
706 for(Int_t ip(kNPlanes); ip--;){
707 if(!(tracklets[ip] = t.GetTracklet(ip))) continue;
709 if(tracklets[ip]->IsOK()) startLayer=ip;
713 AliDebug(4, Form("SA[%c] Start[%d]\n"
714 " [0]idx[%d] traklet[%p]\n"
715 " [1]idx[%d] traklet[%p]\n"
716 " [2]idx[%d] traklet[%p]\n"
717 " [3]idx[%d] traklet[%p]\n"
718 " [4]idx[%d] traklet[%p]\n"
719 " [5]idx[%d] traklet[%p]"
720 , kStandAlone?'y':'n', startLayer
721 , t.GetTrackletIndex(0), (void*)tracklets[0]
722 , t.GetTrackletIndex(1), (void*)tracklets[1]
723 , t.GetTrackletIndex(2), (void*)tracklets[2]
724 , t.GetTrackletIndex(3), (void*)tracklets[3]
725 , t.GetTrackletIndex(4), (void*)tracklets[4]
726 , t.GetTrackletIndex(5), (void*)tracklets[5]));
728 // Loop through the TRD layers
729 TGeoHMatrix *matrix = NULL;
730 Double_t x(0.), y(0.), z(0.);
731 for (Int_t ily=startLayer, sm=-1, stk=-1, det=-1; ily < AliTRDgeometry::kNlayer; ily++) {
732 AliDebug(2, Form("Propagate to x[%d] = %7.2f", ily, fR[ily]));
734 // rough estimate of the entry point
735 if (!t.GetProlongation(fR[ily], y, z)){
737 t.SetStatus(AliTRDtrackV1::kProlongation);
738 AliDebug(4, Form("Failed Rough Prolongation to ly[%d] x[%7.2f] y[%7.2f] z[%7.2f]", ily, fR[ily], y, z));
742 // find sector / stack / detector
744 // TODO cross check with y value !
745 stk = fGeom->GetStack(z, ily);
746 det = stk>=0 ? AliTRDgeometry::GetDetector(ily, stk, sm) : -1;
747 matrix = det>=0 ? fGeom->GetClusterMatrix(det) : NULL;
748 AliDebug(3, Form("Propagate to det[%3d]", det));
750 // check if supermodule/chamber is installed
751 if( !fGeom->GetSMstatus(sm) ||
753 fGeom->IsHole(ily, stk, sm) ||
755 AliDebug(4, Form("Missing Geometry ly[%d]. Guess radial position", ily));
756 // propagate to the default radial position
757 if(fR[ily] > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, fR[ily], AliTRDReconstructor::GetMaxStep())){
759 t.SetStatus(AliTRDtrackV1::kPropagation);
760 AliDebug(4, "Failed Propagation [Missing Geometry]");
763 if(!AdjustSector(&t)){
765 t.SetStatus(AliTRDtrackV1::kAdjustSector);
766 AliDebug(4, "Failed Adjust Sector [Missing Geometry]");
769 if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){
771 t.SetStatus(AliTRDtrackV1::kSnp);
772 AliDebug(4, "Failed Max Snp [Missing Geometry]");
775 t.SetStatus(AliTRDtrackV1::kGeometry, ily);
779 // retrieve rotation matrix for the current chamber
780 Double_t loc[] = {AliTRDgeometry::AnodePos()- driftLength, 0., 0.};
781 Double_t glb[] = {0., 0., 0.};
782 matrix->LocalToMaster(loc, glb);
784 // Propagate to the radial distance of the current layer
785 x = glb[0] - AliTRDReconstructor::GetMaxStep();
786 if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())){
788 t.SetStatus(AliTRDtrackV1::kPropagation);
789 AliDebug(4, Form("Failed Initial Propagation to x[%7.2f]", x));
792 if(!AdjustSector(&t)){
794 t.SetStatus(AliTRDtrackV1::kAdjustSector);
795 AliDebug(4, "Failed Adjust Sector Start");
798 if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
800 t.SetStatus(AliTRDtrackV1::kSnp);
801 AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp()));
804 Bool_t doRecalculate = kFALSE;
805 if(sm != t.GetSector()){
807 doRecalculate = kTRUE;
809 if(stk != fGeom->GetStack(z, ily)){
810 stk = fGeom->GetStack(z, ily);
811 doRecalculate = kTRUE;
814 det = AliTRDgeometry::GetDetector(ily, stk, sm);
815 if(!(matrix = fGeom->GetClusterMatrix(det))){
816 t.SetStatus(AliTRDtrackV1::kGeometry, ily);
817 AliDebug(4, Form("Failed Geometry Matrix ly[%d]", ily));
820 matrix->LocalToMaster(loc, glb);
821 x = glb[0] - AliTRDReconstructor::GetMaxStep();
824 // check if track is well inside fiducial volume
825 if (!t.GetProlongation(x+AliTRDReconstructor::GetMaxStep(), y, z)) {
827 t.SetStatus(AliTRDtrackV1::kProlongation);
828 AliDebug(4, Form("Failed Prolongation to x[%7.2f] y[%7.2f] z[%7.2f]", x+AliTRDReconstructor::GetMaxStep(), y, z));
831 if(fGeom->IsOnBoundary(det, y, z, .5)){
832 t.SetStatus(AliTRDtrackV1::kBoundary, ily);
833 AliDebug(4, "Failed Track on Boundary");
837 ptrTracklet = tracklets[ily];
838 if(!ptrTracklet){ // BUILD TRACKLET
839 AliDebug(3, Form("Building tracklet det[%d]", det));
840 // check data in supermodule
841 if(!fTrSec[sm].GetNChambers()){
842 t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
843 AliDebug(4, "Failed NoClusters");
846 if(fTrSec[sm].GetX(ily) < 1.){
847 t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
848 AliDebug(4, "Failed NoX");
852 // check data in chamber
853 if(!(chamber = fTrSec[sm].GetChamber(stk, ily))){
854 t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
855 AliDebug(4, "Failed No Detector");
858 if(chamber->GetNClusters() < fgNTimeBins*fkRecoParam ->GetFindableClusters()){
859 t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
860 AliDebug(4, "Failed Not Enough Clusters in Detector");
864 tracklet.~AliTRDseedV1();
865 ptrTracklet = new(&tracklet) AliTRDseedV1(det);
866 ptrTracklet->SetReconstructor(fkReconstructor);
867 ptrTracklet->SetKink(t.IsKink());
868 ptrTracklet->SetPrimary(t.IsPrimary());
869 ptrTracklet->SetPadPlane(fGeom->GetPadPlane(ily, stk));
870 ptrTracklet->SetX0(glb[0]+driftLength);
871 if(!ptrTracklet->Init(&t)){
873 t.SetStatus(AliTRDtrackV1::kTrackletInit);
874 AliDebug(4, "Failed Tracklet Init");
877 if(!ptrTracklet->AttachClusters(chamber, kTRUE, t.Charge()>0?kTRUE:kFALSE, fEventInFile)){
878 t.SetStatus(AliTRDtrackV1::kNoAttach, ily);
880 AliTRDseedV1 trackletCp(*ptrTracklet);
881 UChar_t status(t.GetStatusTRD(ily));
882 (*cstreamer) << "FollowBackProlongation4"
883 <<"status=" << status
884 <<"tracklet.=" << &trackletCp
887 AliDebug(4, "Failed Attach Clusters");
890 AliDebug(3, Form("Number of Clusters in Tracklet: %d", ptrTracklet->GetN()));
891 if(ptrTracklet->GetN() < fgNTimeBins*fkRecoParam->GetFindableClusters()){
892 t.SetStatus(AliTRDtrackV1::kNoClustersTracklet, ily);
894 AliTRDseedV1 trackletCp(*ptrTracklet);
895 UChar_t status(t.GetStatusTRD(ily));
896 (*cstreamer) << "FollowBackProlongation4"
897 <<"status=" << status
898 <<"tracklet.=" << &trackletCp
901 AliDebug(4, "Failed N Clusters Attached");
904 ptrTracklet->UpdateUsed();
905 } else AliDebug(2, Form("Use external tracklet ly[%d]", ily));
906 // propagate track to the radial position of the tracklet
909 // tilt correction options
911 // 2 : pseudo tilt correction
912 if(!ptrTracklet->FitRobust(t.Charge()>0?kTRUE:kFALSE)){
913 t.SetStatus(AliTRDtrackV1::kNoFit, ily);
914 AliDebug(4, "Failed Tracklet Fit");
917 x = ptrTracklet->GetX(); //GetX0();
918 if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())) {
920 t.SetStatus(AliTRDtrackV1::kPropagation);
921 AliDebug(4, Form("Failed Propagation to Tracklet x[%7.2f]", x));
924 if(!AdjustSector(&t)) {
926 t.SetStatus(AliTRDtrackV1::kAdjustSector);
927 AliDebug(4, "Failed Adjust Sector");
930 if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
932 t.SetStatus(AliTRDtrackV1::kSnp);
933 AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp()));
936 Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
937 Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
938 Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
939 // update Kalman with the TRD measurement
940 if(chi2>1e+10){ // TODO
941 t.SetStatus(AliTRDtrackV1::kChi2, ily);
943 UChar_t status(t.GetStatusTRD());
944 AliTRDseedV1 trackletCp(*ptrTracklet);
945 AliTRDtrackV1 trackCp(t);
947 (*cstreamer) << "FollowBackProlongation3"
948 << "status=" << status
949 << "tracklet.=" << &trackletCp
950 << "track.=" << &trackCp
953 AliDebug(4, Form("Failed Chi2[%f]", chi2));
956 // mark track as entering the FIDUCIAL volume of TRD
962 if(!((AliExternalTrackParam&)t).Update(p, cov)) {
964 t.SetStatus(AliTRDtrackV1::kUpdate);
966 UChar_t status(t.GetStatusTRD());
967 AliTRDseedV1 trackletCp(*ptrTracklet);
968 AliTRDtrackV1 trackCp(t);
970 (*cstreamer) << "FollowBackProlongation3"
971 << "status=" << status
972 << "tracklet.=" << &trackletCp
973 << "track.=" << &trackCp
976 AliDebug(4, Form("Failed Track Update @ y[%7.2f] z[%7.2f] s2y[%f] s2z[%f] covyz[%f]", p[0], p[1], cov[0], cov[2], cov[1]));
980 if(!kStandAlone) ptrTracklet->UseClusters();
982 AliTracker::FillResiduals(&t, p, cov, ptrTracklet->GetVolumeId());
985 // register tracklet with the tracker and track
986 ptrTracklet->Update(&t);
987 ptrTracklet = SetTracklet(ptrTracklet);
988 Int_t index(fTracklets->GetEntriesFast()-1);
989 t.SetTracklet(ptrTracklet, index);
990 // Register info to track
991 t.SetNumberOfClusters();
994 n += ptrTracklet->GetN();
995 AliDebug(2, Form("Setting Tracklet[%d] @ Idx[%d]", ily, index));
997 // Reset material budget if 2 consecutive gold
998 // if(ilayer>0 && t.GetTracklet(ilayer-1) && ptrTracklet->GetN() + t.GetTracklet(ilayer-1)->GetN() > 20) t.SetBudget(2, 0.);
1000 // Make backup of the track until is gold
1002 if(!kStandAlone && (failed = t.MakeBackupTrack())) AliDebug(2, Form("Failed backup on cut[%d]", failed));
1004 } // end layers loop
1005 //printf("clusters[%d] chi2[%f] x[%f] status[%d ", n, t.GetChi2(), t.GetX(), t.GetStatusTRD());
1006 //for(int i=0; i<6; i++) printf("%d ", t.GetStatusTRD(i)); printf("]\n");
1008 if(n && debugLevel > 1){
1009 //Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1010 AliTRDtrackV1 track(t);
1012 (*cstreamer) << "FollowBackProlongation2"
1013 << "EventNumber=" << fEventInFile
1014 << "track.=" << &track
1021 //_________________________________________________________________________
1022 Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *const planes){
1024 // Fits a Riemann-circle to the given points without tilting pad correction.
1025 // The fit is performed using an instance of the class AliRieman (equations
1026 // and transformations see documentation of this class)
1027 // Afterwards all the tracklets are Updated
1029 // Parameters: - Array of tracklets (AliTRDseedV1)
1030 // - Storage for the chi2 values (beginning with direction z)
1031 // - Seeding configuration
1032 // Output: - The curvature
1034 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
1036 Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
1037 Int_t *ppl = &allplanes[0];
1038 Int_t maxLayers = 6;
1043 for(Int_t il = 0; il < maxLayers; il++){
1044 if(!tracklets[ppl[il]].IsOK()) continue;
1045 fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfit(0), tracklets[ppl[il]].GetZfit(0),1,10);
1048 // Set the reference position of the fit and calculate the chi2 values
1049 memset(chi2, 0, sizeof(Double_t) * 2);
1050 for(Int_t il = 0; il < maxLayers; il++){
1051 // Reference positions
1052 tracklets[ppl[il]].Init(fitter);
1055 if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
1056 chi2[0] += tracklets[ppl[il]].GetChi2Y();
1057 chi2[1] += tracklets[ppl[il]].GetChi2Z();
1059 return fitter->GetC();
1062 //_________________________________________________________________________
1063 void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2])
1066 // Performs a Riemann helix fit using the seedclusters as spacepoints
1067 // Afterwards the chi2 values are calculated and the seeds are updated
1069 // Parameters: - The four seedclusters
1070 // - The tracklet array (AliTRDseedV1)
1071 // - The seeding configuration
1076 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
1078 for(Int_t i = 0; i < 4; i++){
1079 fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1., 10.);
1084 // Update the seed and calculated the chi2 value
1085 chi2[0] = 0; chi2[1] = 0;
1086 for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
1088 chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
1089 chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
1094 //_________________________________________________________________________
1095 Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex)
1098 // Fits a helix to the clusters. Pad tilting is considered. As constraint it is
1099 // assumed that the vertex position is set to 0.
1100 // This method is very usefull for high-pt particles
1101 // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
1102 // x0, y0: Center of the circle
1103 // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
1104 // zc: center of the pad row
1105 // Equation which has to be fitted (after transformation):
1106 // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
1108 // t = 1/(x^2 + y^2)
1110 // v = 2 * x * tan(phiT) * t
1111 // Parameters in the equation:
1112 // a = -1/y0, b = x0/y0, e = dz/dx
1114 // The Curvature is calculated by the following equation:
1115 // - curv = a/Sqrt(b^2 + 1) = 1/R
1116 // Parameters: - the 6 tracklets
1117 // - the Vertex constraint
1118 // Output: - the Chi2 value of the track
1123 TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
1124 fitter->StoreData(kTRUE);
1125 fitter->ClearPoints();
1126 AliTRDcluster *cl = NULL;
1128 Float_t x, y, z, w, t, error, tilt;
1131 for(Int_t ilr = 0; ilr < AliTRDgeometry::kNlayer; ilr++){
1132 if(!tracklets[ilr].IsOK()) continue;
1133 for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1134 if(!tracklets[ilr].IsUsable(itb)) continue;
1135 if(!(cl = tracklets[ilr].GetClusters(itb))) continue;
1136 if(!cl->IsInChamber()) continue;
1140 tilt = tracklets[ilr].GetTilt();
1142 t = 1./(x * x + y * y);
1143 uvt[0] = 2. * x * t;
1144 uvt[1] = 2. * x * t * tilt ;
1145 w = 2. * (y + tilt * (z - zVertex)) * t;
1146 error = 2. * TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) * t;
1147 fitter->AddPoint(uvt, w, error);
1153 // Calculate curvature
1154 Double_t a = fitter->GetParameter(0);
1155 Double_t b = fitter->GetParameter(1);
1156 Double_t curvature = a/TMath::Sqrt(b*b + 1);
1158 Float_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
1159 for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
1160 tracklets[ip].SetC(curvature, 1);
1162 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRiemanConstraint: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature);
1164 /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker()) >= 5){
1165 //Linear Model on z-direction
1166 Double_t xref = CalculateReferenceX(tracklets); // Relative to the middle of the stack
1167 Double_t slope = fitter->GetParameter(2);
1168 Double_t zref = slope * xref;
1169 Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
1170 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1171 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1172 TTreeSRedirector &treeStreamer = *fkReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
1173 treeStreamer << "FitTiltedRiemanConstraint"
1174 << "EventNumber=" << eventNumber
1175 << "CandidateNumber=" << candidateNumber
1176 << "Curvature=" << curvature
1177 << "Chi2Track=" << chi2track
1178 << "Chi2Z=" << chi2Z
1185 //_________________________________________________________________________
1186 Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError)
1189 // Performs a Riemann fit taking tilting pad correction into account
1190 // The equation of a Riemann circle, where the y position is substituted by the
1191 // measured y-position taking pad tilting into account, has to be transformed
1192 // into a 4-dimensional hyperplane equation
1193 // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
1194 // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
1195 // zc: center of the pad row
1196 // zt: z-position of the track
1197 // The z-position of the track is assumed to be linear dependent on the x-position
1198 // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
1199 // Transformation: u = 2 * x * t
1200 // v = 2 * tan(phiT) * t
1201 // w = 2 * tan(phiT) * (x - xref) * t
1202 // t = 1 / (x^2 + ymeas^2)
1203 // Parameters: a = -1/y0
1205 // c = (R^2 -x0^2 - y0^2)/y0
1208 // If the offset respectively the slope in z-position is impossible, the parameters are fixed using
1209 // results from the simple riemann fit. Afterwards the fit is redone.
1210 // The curvature is calculated according to the formula:
1211 // curv = a/(1 + b^2 + c*a) = 1/R
1213 // Paramters: - Array of tracklets (connected to the track candidate)
1214 // - Flag selecting the error definition
1215 // Output: - Chi2 values of the track (in Parameter list)
1217 TLinearFitter *fitter = GetTiltedRiemanFitter();
1218 fitter->StoreData(kTRUE);
1219 fitter->ClearPoints();
1220 AliTRDLeastSquare zfitter;
1221 AliTRDcluster *cl = NULL;
1223 Double_t xref = CalculateReferenceX(tracklets);
1224 Double_t x, y, z, t, tilt, dx, w, we, erry, errz;
1225 Double_t uvt[4], sumPolY[5], sumPolZ[3];
1226 memset(sumPolY, 0, sizeof(Double_t) * 5);
1227 memset(sumPolZ, 0, sizeof(Double_t) * 3);
1229 // Containers for Least-square fitter
1230 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1231 if(!tracklets[ipl].IsOK()) continue;
1232 tilt = tracklets[ipl].GetTilt();
1233 for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1234 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1235 if(!cl->IsInChamber()) continue;
1236 if (!tracklets[ipl].IsUsable(itb)) continue;
1243 uvt[0] = 2. * x * t;
1245 uvt[2] = 2. * tilt * t;
1246 uvt[3] = 2. * tilt * dx * t;
1247 w = 2. * (y + tilt*z) * t;
1248 // error definition changes for the different calls
1250 we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) : 0.2;
1251 fitter->AddPoint(uvt, w, we);
1252 zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1253 // adding points for covariance matrix estimation
1254 erry = 1./(TMath::Sqrt(cl->GetSigmaY2()) + 0.1); // 0.1 is a systematic error (due to misalignment and miscalibration)
1256 errz = 1./cl->GetSigmaZ2();
1257 for(Int_t ipol = 0; ipol < 5; ipol++){
1258 sumPolY[ipol] += erry;
1261 sumPolZ[ipol] += errz;
1268 if (fitter->Eval()) return 1.e10;
1271 Double_t offset = fitter->GetParameter(3);
1272 Double_t slope = fitter->GetParameter(4);
1274 // Linear fitter - not possible to make boundaries
1275 // Do not accept non possible z and dzdx combinations
1276 Bool_t acceptablez = kTRUE;
1277 Double_t zref = 0.0;
1278 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
1279 if(!tracklets[iLayer].IsOK()) continue;
1280 zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
1281 if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
1282 acceptablez = kFALSE;
1285 Double_t dzmf = zfitter.GetFunctionParameter(1);
1286 Double_t zmf = zfitter.GetFunctionValue(&xref);
1287 fgTiltedRieman->FixParameter(3, zmf);
1288 fgTiltedRieman->FixParameter(4, dzmf);
1290 fitter->ReleaseParameter(3);
1291 fitter->ReleaseParameter(4);
1292 offset = fitter->GetParameter(3);
1293 slope = fitter->GetParameter(4);
1296 // Calculate Curvarture
1297 Double_t a = fitter->GetParameter(0);
1298 Double_t b = fitter->GetParameter(1);
1299 Double_t c = fitter->GetParameter(2);
1300 Double_t curvature = 1.0 + b*b - c*a;
1301 if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature);
1303 Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
1305 // Prepare error calculation
1306 TMatrixD covarPolY(3,3);
1307 covarPolY(0,0) = sumPolY[0]; covarPolY(1,1) = sumPolY[2]; covarPolY(2,2) = sumPolY[4];
1308 covarPolY(0,1) = covarPolY(1,0) = sumPolY[1];
1309 covarPolY(0,2) = covarPolY(2,0) = sumPolY[2];
1310 covarPolY(2,1) = covarPolY(1,2) = sumPolY[3];
1312 TMatrixD covarPolZ(2,2);
1313 covarPolZ(0,0) = sumPolZ[0]; covarPolZ(1,1) = sumPolZ[2];
1314 covarPolZ(1,0) = covarPolZ(0,1) = sumPolZ[1];
1317 // Update the tracklets
1318 Double_t x1, dy, dz;
1320 memset(cov, 0, sizeof(Double_t) * 15);
1321 for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
1323 x = tracklets[iLayer].GetX0();
1329 memset(cov, 0, sizeof(Double_t) * 3);
1330 TMatrixD transform(3,3);
1333 transform(0,2) = x*x;
1337 TMatrixD covariance(transform, TMatrixD::kMult, covarPolY);
1338 covariance *= transform.T();
1339 TMatrixD transformZ(2,2);
1340 transformZ(0,0) = transformZ(1,1) = 1;
1341 transformZ(0,1) = x;
1342 TMatrixD covarZ(transformZ, TMatrixD::kMult, covarPolZ);
1343 covarZ *= transformZ.T();
1344 // y: R^2 = (x - x0)^2 + (y - y0)^2
1345 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1346 // R = Sqrt() = 1/Curvature
1347 // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
1348 Double_t res = (x * a + b); // = (x - x0)/y0
1350 res = 1.0 - c * a + b * b - res; // = (R^2 - (x - x0)^2)/y0^2
1352 res = TMath::Sqrt(res);
1353 y = (1.0 - res) / a;
1355 cov[0] = covariance(0,0);
1356 cov[2] = covarZ(0,0);
1359 // dy: R^2 = (x - x0)^2 + (y - y0)^2
1360 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
1361 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1362 // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
1363 // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
1364 Double_t x0 = -b / a;
1365 if (-c * a + b * b + 1 > 0) {
1366 if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
1367 Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
1368 if (a < 0) yderiv *= -1.0;
1372 z = offset + slope * (x - xref);
1374 tracklets[iLayer].SetYref(0, y);
1375 tracklets[iLayer].SetYref(1, dy);
1376 tracklets[iLayer].SetZref(0, z);
1377 tracklets[iLayer].SetZref(1, dz);
1378 tracklets[iLayer].SetC(curvature);
1379 tracklets[iLayer].SetCovRef(cov);
1380 tracklets[iLayer].SetChi2(chi2track);
1382 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRieman: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature);
1384 /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) >=5){
1385 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1386 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1387 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1388 Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
1389 cstreamer << "FitTiltedRieman0"
1390 << "EventNumber=" << eventNumber
1391 << "CandidateNumber=" << candidateNumber
1393 << "Chi2Z=" << chi2z
1400 //____________________________________________________________________
1401 Double_t AliTRDtrackerV1::FitLine(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t err, Int_t np, AliTrackPoint *points)
1404 // Fit track with a staight line
1405 // Fills an AliTrackPoint array with np points
1406 // Function should be used to refit tracks when no magnetic field was on
1408 AliTRDLeastSquare yfitter, zfitter;
1409 AliTRDcluster *cl = NULL;
1411 AliTRDseedV1 work[kNPlanes], *tracklet = NULL;
1413 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1414 if(!(tracklet = track->GetTracklet(ipl))) continue;
1415 if(!tracklet->IsOK()) continue;
1416 new(&work[ipl]) AliTRDseedV1(*tracklet);
1418 tracklets = &work[0];
1421 Double_t xref = CalculateReferenceX(tracklets);
1422 Double_t x, y, z, dx, ye, yr, tilt;
1423 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1424 if(!tracklets[ipl].IsOK()) continue;
1425 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
1426 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1427 if (!tracklets[ipl].IsUsable(itb)) continue;
1431 zfitter.AddPoint(&dx, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1435 Double_t z0 = zfitter.GetFunctionParameter(0);
1436 Double_t dzdx = zfitter.GetFunctionParameter(1);
1437 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1438 if(!tracklets[ipl].IsOK()) continue;
1439 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
1440 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1441 if (!tracklets[ipl].IsUsable(itb)) continue;
1445 tilt = tracklets[ipl].GetTilt();
1447 yr = y + tilt*(z - z0 - dzdx*dx);
1448 // error definition changes for the different calls
1449 ye = tilt*TMath::Sqrt(cl->GetSigmaZ2());
1450 ye += err ? tracklets[ipl].GetSigmaY() : 0.2;
1451 yfitter.AddPoint(&dx, yr, ye);
1455 Double_t y0 = yfitter.GetFunctionParameter(0);
1456 Double_t dydx = yfitter.GetFunctionParameter(1);
1457 Double_t chi2 = 0.;//yfitter.GetChisquare()/Double_t(nPoints);
1459 //update track points array
1462 for(int ip=0; ip<np; ip++){
1463 points[ip].GetXYZ(xyz);
1464 xyz[1] = y0 + dydx * (xyz[0] - xref);
1465 xyz[2] = z0 + dzdx * (xyz[0] - xref);
1466 points[ip].SetXYZ(xyz);
1473 //_________________________________________________________________________
1474 Double_t AliTRDtrackerV1::FitRiemanTilt(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t sigError, Int_t np, AliTrackPoint *points)
1477 // Performs a Riemann fit taking tilting pad correction into account
1479 // Paramters: - Array of tracklets (connected to the track candidate)
1480 // - Flag selecting the error definition
1481 // Output: - Chi2 values of the track (in Parameter list)
1483 // The equations which has to be solved simultaneously are:
1485 // R^{2} = (x-x_{0})^{2} + (y^{*}-y_{0})^{2}
1486 // y^{*} = y - tg(h)(z - z_{t})
1487 // z_{t} = z_{0}+dzdx*(x-x_{r})
1489 // with (x, y, z) the coordinate of the cluster, (x_0, y_0, z_0) the coordinate of the center of the Riemann circle,
1490 // R its radius, x_r a constant refrence radial position in the middle of the TRD stack and dzdx the slope of the
1491 // track in the x-z plane. Using the following transformations
1493 // t = 1 / (x^{2} + y^{2})
1495 // v = 2 * tan(h) * t
1496 // w = 2 * tan(h) * (x - x_{r}) * t
1498 // One gets the following linear equation
1500 // a + b * u + c * t + d * v + e * w = 2 * (y + tg(h) * z) * t
1502 // where the coefficients have the following meaning
1506 // c = (R^{2} -x_{0}^{2} - y_{0}^{2})/y_{0}
1510 // The error calculation for the free term is thus
1512 // #sigma = 2 * #sqrt{#sigma^{2}_{y} + (tilt corr ...) + tg^{2}(h) * #sigma^{2}_{z}} * t
1515 // From this simple model one can compute chi^2 estimates and a rough approximation of pt from the curvature according
1518 // C = 1/R = a/(1 + b^{2} + c*a)
1522 // M.Ivanov <M.Ivanov@gsi.de>
1523 // A.Bercuci <A.Bercuci@gsi.de>
1524 // M.Fasel <M.Fasel@gsi.de>
1526 TLinearFitter *fitter = GetTiltedRiemanFitter();
1527 fitter->StoreData(kTRUE);
1528 fitter->ClearPoints();
1529 AliTRDLeastSquare zfitter;
1530 AliTRDcluster *cl = NULL;
1532 AliTRDseedV1 work[kNPlanes], *tracklet = NULL;
1534 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1535 if(!(tracklet = track->GetTracklet(ipl))) continue;
1536 if(!tracklet->IsOK()) continue;
1537 new(&work[ipl]) AliTRDseedV1(*tracklet);
1539 tracklets = &work[0];
1542 Double_t xref = CalculateReferenceX(tracklets);
1543 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:\nx0[(0)%6.2f (1)%6.2f (2)%6.2f (3)%6.2f (4)%6.2f (5)%6.2f] xref[%6.2f]", tracklets[0].GetX0(), tracklets[1].GetX0(), tracklets[2].GetX0(), tracklets[3].GetX0(), tracklets[4].GetX0(), tracklets[5].GetX0(), xref);
1544 Double_t x, y, z, t, tilt, dx, w, we;
1547 // Containers for Least-square fitter
1548 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1549 if(!tracklets[ipl].IsOK()) continue;
1550 for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1551 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1552 //if (!tracklets[ipl].IsUsable(itb)) continue;
1556 tilt = tracklets[ipl].GetTilt();
1560 uvt[0] = 2. * x * t;
1562 uvt[2] = 2. * tilt * t;
1563 uvt[3] = 2. * tilt * dx * t;
1564 w = 2. * (y + tilt*z) * t;
1565 // error definition changes for the different calls
1567 we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()) : 0.2;
1568 fitter->AddPoint(uvt, w, we);
1569 zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1573 if(fitter->Eval()) return 1.E10;
1575 Double_t z0 = fitter->GetParameter(3);
1576 Double_t dzdx = fitter->GetParameter(4);
1579 // Linear fitter - not possible to make boundaries
1580 // Do not accept non possible z and dzdx combinations
1581 Bool_t accept = kTRUE;
1582 Double_t zref = 0.0;
1583 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
1584 if(!tracklets[iLayer].IsOK()) continue;
1585 zref = z0 + dzdx * (tracklets[iLayer].GetX0() - xref);
1586 if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
1591 Double_t dzmf = zfitter.GetFunctionParameter(1);
1592 Double_t zmf = zfitter.GetFunctionValue(&xref);
1593 fitter->FixParameter(3, zmf);
1594 fitter->FixParameter(4, dzmf);
1596 fitter->ReleaseParameter(3);
1597 fitter->ReleaseParameter(4);
1598 z0 = fitter->GetParameter(3); // = zmf ?
1599 dzdx = fitter->GetParameter(4); // = dzmf ?
1602 // Calculate Curvature
1603 Double_t a = fitter->GetParameter(0);
1604 Double_t b = fitter->GetParameter(1);
1605 Double_t c = fitter->GetParameter(2);
1606 Double_t y0 = 1. / a;
1607 Double_t x0 = -b * y0;
1608 Double_t tmp = y0*y0 + x0*x0 - c*y0;
1609 if(tmp<=0.) return 1.E10;
1610 Double_t radius = TMath::Sqrt(tmp);
1611 Double_t curvature = 1.0 + b*b - c*a;
1612 if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature);
1614 // Calculate chi2 of the fit
1615 Double_t chi2 = fitter->GetChisquare()/Double_t(nPoints);
1616 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:x0[%6.2f] y0[%6.2f] R[%6.2f] chi2[%f]\n", x0, y0, radius, chi2);
1618 // Update the tracklets
1620 for(Int_t ip = 0; ip < kNPlanes; ip++) {
1621 x = tracklets[ip].GetX0();
1622 tmp = radius*radius-(x-x0)*(x-x0);
1623 if(tmp <= 0.) continue;
1624 tmp = TMath::Sqrt(tmp);
1626 // y: R^2 = (x - x0)^2 + (y - y0)^2
1627 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1628 tracklets[ip].SetYref(0, y0 - (y0>0.?1.:-1)*tmp);
1629 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1630 tracklets[ip].SetYref(1, (x - x0) / tmp);
1631 tracklets[ip].SetZref(0, z0 + dzdx * (x - xref));
1632 tracklets[ip].SetZref(1, dzdx);
1633 tracklets[ip].SetC(curvature);
1634 tracklets[ip].SetChi2(chi2);
1637 //update track points array
1640 for(int ip=0; ip<np; ip++){
1641 points[ip].GetXYZ(xyz);
1642 xyz[1] = TMath::Abs(xyz[0] - x0) > radius ? 100. : y0 - (y0>0.?1.:-1.)*TMath::Sqrt((radius-(xyz[0]-x0))*(radius+(xyz[0]-x0)));
1643 xyz[2] = z0 + dzdx * (xyz[0] - xref);
1644 points[ip].SetXYZ(xyz);
1652 //____________________________________________________________________
1653 Double_t AliTRDtrackerV1::FitKalman(AliTRDtrackV1 *track, AliTRDseedV1 * const tracklets, Bool_t up, Int_t np, AliTrackPoint *points)
1655 // Kalman filter implementation for the TRD.
1656 // It returns the positions of the fit in the array "points"
1658 // Author : A.Bercuci@gsi.de
1660 // printf("Start track @ x[%f]\n", track->GetX());
1662 //prepare marker points along the track
1663 Int_t ip = np ? 0 : 1;
1665 if((up?-1:1) * (track->GetX() - points[ip].GetX()) > 0.) break;
1666 //printf("AliTRDtrackerV1::FitKalman() : Skip track marker x[%d] = %7.3f. Before track start ( %7.3f ).\n", ip, points[ip].GetX(), track->GetX());
1669 //if(points) printf("First marker point @ x[%d] = %f\n", ip, points[ip].GetX());
1672 AliTRDseedV1 tracklet;
1673 AliTRDseedV1 *ptrTracklet = NULL;
1675 //Loop through the TRD planes
1676 for (Int_t jplane = 0; jplane < kNPlanes; jplane++) {
1677 // GET TRACKLET OR BUILT IT
1678 Int_t iplane = up ? jplane : kNPlanes - 1 - jplane;
1680 if(!(ptrTracklet = &tracklets[iplane])) continue;
1682 if(!(ptrTracklet = track->GetTracklet(iplane))){
1683 /*AliTRDtrackerV1 *tracker = NULL;
1684 if(!(tracker = dynamic_cast<AliTRDtrackerV1*>( AliTRDrecoParam:Tracker()))) continue;
1685 ptrTracklet = new(&tracklet) AliTRDseedV1(iplane);
1686 if(!tracker->MakeTracklet(ptrTracklet, track)) */
1690 if(!ptrTracklet->IsOK()) continue;
1692 Double_t x = ptrTracklet->GetX0();
1695 //don't do anything if next marker is after next update point.
1696 if((up?-1:1) * (points[ip].GetX() - x) - AliTRDReconstructor::GetMaxStep() < 0) break;
1697 if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.;
1699 Double_t xyz[3]; // should also get the covariance
1701 track->Global2LocalPosition(xyz, track->GetAlpha());
1702 points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
1705 // printf("plane[%d] tracklet[%p] x[%f]\n", iplane, ptrTracklet, x);
1707 // Propagate closer to the next update point
1708 if(((up?-1:1) * (x - track->GetX()) + AliTRDReconstructor::GetMaxStep() < 0) && !PropagateToX(*track, x + (up?-1:1)*AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) return -1.;
1710 if(!AdjustSector(track)) return -1;
1711 if(TMath::Abs(track->GetSnp()) > AliTRDReconstructor::GetMaxSnp()) return -1;
1713 //load tracklet to the tracker and the track
1715 if((index = FindTracklet(ptrTracklet)) < 0){
1716 ptrTracklet = SetTracklet(&tracklet);
1717 index = fTracklets->GetEntriesFast()-1;
1719 track->SetTracklet(ptrTracklet, index);*/
1722 // register tracklet to track with tracklet creation !!
1723 // PropagateBack : loaded tracklet to the tracker and update index
1724 // RefitInward : update index
1725 // MakeTrack : loaded tracklet to the tracker and update index
1726 if(!tracklets) track->SetTracklet(ptrTracklet, -1);
1729 //Calculate the mean material budget along the path inside the chamber
1730 Double_t xyz0[3]; track->GetXYZ(xyz0);
1731 Double_t alpha = track->GetAlpha();
1732 Double_t xyz1[3], y, z;
1733 if(!track->GetProlongation(x, y, z)) return -1;
1734 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
1735 xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
1737 if(TMath::Abs(xyz0[0] - xyz1[0]) < 1e-3 && TMath::Abs(xyz0[1] - xyz1[1]) < 1e-3) continue; // check wheter we are at the same global x position
1739 if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param) <=0.) break;
1740 Double_t xrho = param[0]*param[4]; // density*length
1741 Double_t xx0 = param[1]; // radiation length
1743 //Propagate the track
1744 track->PropagateTo(x, xx0, xrho);
1745 if (!AdjustSector(track)) break;
1748 Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
1749 Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
1750 Double_t chi2 = ((AliExternalTrackParam*)track)->GetPredictedChi2(p, cov);
1751 if(chi2<1e+10) ((AliExternalTrackParam*)track)->Update(p, cov);
1754 //Reset material budget if 2 consecutive gold
1755 if(iplane>0 && track->GetTracklet(iplane-1) && ptrTracklet->GetN() + track->GetTracklet(iplane-1)->GetN() > 20) track->SetBudget(2, 0.);
1756 } // end planes loop
1760 if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.;
1762 Double_t xyz[3]; // should also get the covariance
1764 track->Global2LocalPosition(xyz, track->GetAlpha());
1765 points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
1769 return track->GetChi2();
1772 //_________________________________________________________________________
1773 Float_t AliTRDtrackerV1::CalculateChi2Z(const AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref)
1776 // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
1777 // A linear dependence on the x-value serves as a model.
1778 // The parameters are related to the tilted Riemann fit.
1779 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
1780 // - the offset for the reference x
1782 // - the reference x position
1783 // Output: - The Chi2 value of the track in z-Direction
1785 Float_t chi2Z = 0, nLayers = 0;
1786 for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNlayer; iLayer++) {
1787 if(!tracklets[iLayer].IsOK()) continue;
1788 Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
1789 chi2Z += TMath::Abs(tracklets[iLayer].GetZfit(0) - z);
1792 chi2Z /= TMath::Max((nLayers - 3.0),1.0);
1796 //_____________________________________________________________________________
1797 Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep)
1800 // Starting from current X-position of track <t> this function
1801 // extrapolates the track up to radial position <xToGo>.
1802 // Returns 1 if track reaches the plane, and 0 otherwise
1805 // Current track X-position
1806 Double_t xpos = t.GetX();
1808 // Direction: inward or outward
1809 Double_t dir = (xpos < xToGo) ? 1.0 : -1.0;
1811 while (((xToGo - xpos) * dir) > AliTRDReconstructor::GetEpsilon()) {
1820 // The next step size
1821 Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
1823 // Get the global position of the starting point
1826 // X-position after next step
1829 // Get local Y and Z at the X-position of the next step
1830 if(t.GetProlongation(x,y,z)<0) return 0; // No prolongation possible
1832 // The global position of the end point of this prolongation step
1833 xyz1[0] = x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha());
1834 xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
1837 // Calculate the mean material budget between start and
1838 // end point of this prolongation step
1839 if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) return 0;
1841 // Propagate the track to the X-position after the next step
1842 if (!t.PropagateTo(x, param[1], param[0]*param[4])) return 0;
1844 // Rotate the track if necessary
1845 if(!AdjustSector(&t)) return 0;
1847 // New track X-position
1857 //_____________________________________________________________________________
1858 Bool_t AliTRDtrackerV1::ReadClusters(TTree *clusterTree)
1861 // Reads AliTRDclusters from the file.
1862 // The names of the cluster tree and branches
1863 // should match the ones used in AliTRDclusterizer::WriteClusters()
1866 Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster)));
1867 TObjArray *clusterArray = new TObjArray(nsize+1000);
1869 TBranch *branch = clusterTree->GetBranch("TRDcluster");
1871 AliError("Can't get the branch !");
1874 branch->SetAddress(&clusterArray);
1877 Float_t nclusters = fkRecoParam->GetNClusters();
1878 if(fkReconstructor->IsHLT()) nclusters /= AliTRDgeometry::kNsector;
1879 fClusters = new TClonesArray("AliTRDcluster", Int_t(nclusters));
1880 fClusters->SetOwner(kTRUE);
1883 // Loop through all entries in the tree
1884 Int_t nEntries = (Int_t) clusterTree->GetEntries();
1887 AliTRDcluster *c = NULL;
1888 for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
1890 nbytes += clusterTree->GetEvent(iEntry);
1892 // Get the number of points in the detector
1893 Int_t nCluster = clusterArray->GetEntriesFast();
1894 for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) {
1895 if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
1896 new((*fClusters)[ncl++]) AliTRDcluster(*c);
1897 delete (clusterArray->RemoveAt(iCluster));
1900 delete clusterArray;
1905 //_____________________________________________________________________________
1906 Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree)
1909 // Fills clusters into TRD tracking sectors
1912 fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event
1914 if(!fkReconstructor->IsWritingClusters()){
1915 fClusters = AliTRDReconstructor::GetClusters();
1917 if(!ReadClusters(cTree)) {
1918 AliError("Problem with reading the clusters !");
1924 if(!fClusters || !fClusters->GetEntriesFast()){
1925 AliInfo("No TRD clusters");
1930 BuildTrackingContainers();
1932 //Int_t ncl = fClusters->GetEntriesFast();
1933 //AliInfo(Form("Clusters %d [%6.2f %% in the active volume]", ncl, 100.*float(nin)/ncl));
1938 //_____________________________________________________________________________
1939 Int_t AliTRDtrackerV1::LoadClusters(TClonesArray * const clusters)
1942 // Fills clusters into TRD tracking sectors
1943 // Function for use in the HLT
1945 if(!clusters || !clusters->GetEntriesFast()){
1946 AliInfo("No TRD clusters");
1950 fClusters = clusters;
1953 fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event
1954 BuildTrackingContainers();
1956 //Int_t ncl = fClusters->GetEntriesFast();
1957 //AliInfo(Form("Clusters %d [%6.2f %% in the active volume]", ncl, 100.*float(nin)/ncl));
1963 //____________________________________________________________________
1964 Int_t AliTRDtrackerV1::BuildTrackingContainers()
1966 // Building tracking containers for clusters
1968 Int_t nin(0), ncl(fClusters->GetEntriesFast());
1970 AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(ncl);
1971 if(c->IsInChamber()) nin++;
1972 if(fkReconstructor->IsHLT()) c->SetRPhiMethod(AliTRDcluster::kCOG);
1973 Int_t detector = c->GetDetector();
1974 Int_t sector = fGeom->GetSector(detector);
1975 Int_t stack = fGeom->GetStack(detector);
1976 Int_t layer = fGeom->GetLayer(detector);
1978 fTrSec[sector].GetChamber(stack, layer, kTRUE)->InsertCluster(c, ncl);
1981 for(int isector =0; isector<AliTRDgeometry::kNsector; isector++){
1982 if(!fTrSec[isector].GetNChambers()) continue;
1983 fTrSec[isector].Init(fkReconstructor);
1991 //____________________________________________________________________
1992 void AliTRDtrackerV1::UnloadClusters()
1995 // Clears the arrays of clusters and tracks. Resets sectors and timebins
1996 // If option "force" is also set the containers are also deleted. This is useful
2001 if(HasRemoveContainers()){delete fTracks; fTracks = NULL;}
2004 fTracklets->Delete();
2005 if(HasRemoveContainers()){delete fTracklets; fTracklets = NULL;}
2008 if(IsClustersOwner()) fClusters->Delete();
2010 // save clusters array in the reconstructor for further use.
2011 if(!fkReconstructor->IsWritingClusters()){
2012 AliTRDReconstructor::SetClusters(fClusters);
2013 SetClustersOwner(kFALSE);
2014 } else AliTRDReconstructor::SetClusters(NULL);
2017 for (int i = 0; i < AliTRDgeometry::kNsector; i++) fTrSec[i].Clear();
2019 // Increment the Event Number
2020 AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber() + 1);
2023 // //____________________________________________________________________
2024 // void AliTRDtrackerV1::UseClusters(const AliKalmanTrack *t, Int_t) const
2026 // const AliTRDtrackV1 *track = dynamic_cast<const AliTRDtrackV1*>(t);
2027 // if(!track) return;
2029 // AliTRDseedV1 *tracklet = NULL;
2030 // for(Int_t ily=AliTRDgeometry::kNlayer; ily--;){
2031 // if(!(tracklet = track->GetTracklet(ily))) continue;
2032 // AliTRDcluster *c = NULL;
2033 // for(Int_t ic=AliTRDseed::kNclusters; ic--;){
2034 // if(!(c=tracklet->GetClusters(ic))) continue;
2041 //_____________________________________________________________________________
2042 Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *const track)
2045 // Rotates the track when necessary
2048 Double_t alpha = AliTRDgeometry::GetAlpha();
2049 Double_t y = track->GetY();
2050 Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha);
2053 if (!track->Rotate( alpha)) {
2057 else if (y < -ymax) {
2058 if (!track->Rotate(-alpha)) {
2068 //____________________________________________________________________
2069 AliTRDseedV1* AliTRDtrackerV1::GetTracklet(AliTRDtrackV1 *const track, Int_t p, Int_t &idx)
2071 // Find tracklet for TRD track <track>
2080 // Detailed description
2082 idx = track->GetTrackletIndex(p);
2083 AliTRDseedV1 *tracklet = (idx<0) ? NULL : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
2088 //____________________________________________________________________
2089 AliTRDseedV1* AliTRDtrackerV1::SetTracklet(const AliTRDseedV1 * const tracklet)
2091 // Add this tracklet to the list of tracklets stored in the tracker
2094 // - tracklet : pointer to the tracklet to be added to the list
2097 // - the index of the new tracklet in the tracker tracklets list
2099 // Detailed description
2100 // Build the tracklets list if it is not yet created (late initialization)
2101 // and adds the new tracklet to the list.
2104 fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
2105 fTracklets->SetOwner(kTRUE);
2107 Int_t nentries = fTracklets->GetEntriesFast();
2108 return new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
2111 //____________________________________________________________________
2112 AliTRDtrackV1* AliTRDtrackerV1::SetTrack(const AliTRDtrackV1 * const track)
2114 // Add this track to the list of tracks stored in the tracker
2117 // - track : pointer to the track to be added to the list
2120 // - the pointer added
2122 // Detailed description
2123 // Build the tracks list if it is not yet created (late initialization)
2124 // and adds the new track to the list.
2127 fTracks = new TClonesArray("AliTRDtrackV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
2128 fTracks->SetOwner(kTRUE);
2130 Int_t nentries = fTracks->GetEntriesFast();
2131 return new ((*fTracks)[nentries]) AliTRDtrackV1(*track);
2136 //____________________________________________________________________
2137 Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd)
2140 // Steer tracking for one SM.
2143 // sector : Array of (SM) propagation layers containing clusters
2144 // esd : The current ESD event. On output it contains the also
2145 // the ESD (TRD) tracks found in this SM.
2148 // Number of tracks found in this TRD supermodule.
2150 // Detailed description
2152 // 1. Unpack AliTRDpropagationLayers objects for each stack.
2153 // 2. Launch stack tracking.
2154 // See AliTRDtrackerV1::Clusters2TracksStack() for details.
2155 // 3. Pack results in the ESD event.
2159 Int_t nChambers = 0;
2160 AliTRDtrackingChamber **stack = NULL, *chamber = NULL;
2161 for(int istack = 0; istack<AliTRDgeometry::kNstack; istack++){
2162 if(!(stack = fTrSec[sector].GetStack(istack))) continue;
2164 for(int ilayer=0; ilayer<AliTRDgeometry::kNlayer; ilayer++){
2165 if(!(chamber = stack[ilayer])) continue;
2166 if(chamber->GetNClusters() < fgNTimeBins * fkRecoParam->GetFindableClusters()) continue;
2168 //AliInfo(Form("sector %d stack %d layer %d clusters %d", sector, istack, ilayer, chamber->GetNClusters()));
2170 if(nChambers < 4) continue;
2171 //AliInfo(Form("Doing stack %d", istack));
2172 nTracks += Clusters2TracksStack(stack, fTracksESD);
2174 if(nTracks) AliDebug(2, Form("Number of tracks: SM_%02d[%d]", sector, nTracks));
2176 for(int itrack=0; itrack<nTracks; itrack++){
2177 AliESDtrack *esdTrack((AliESDtrack*)(fTracksESD->operator[](itrack)));
2178 Int_t id = esd->AddTrack(esdTrack);
2180 // set ESD id to stand alone TRD tracks
2181 if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0){
2182 esdTrack=esd->GetTrack(id);
2183 TObject *o(NULL); Int_t ic(0);
2184 AliTRDtrackV1 *calibTrack(NULL);
2185 while((o = esdTrack->GetCalibObject(ic++))){
2186 if(!(calibTrack = dynamic_cast<AliTRDtrackV1*>(o))) continue;
2187 calibTrack->SetESDid(esdTrack->GetID());
2193 // Reset Track and Candidate Number
2194 AliTRDtrackerDebug::SetCandidateNumber(0);
2195 AliTRDtrackerDebug::SetTrackNumber(0);
2197 // delete ESD tracks in the array
2198 fTracksESD->Delete();
2202 //____________________________________________________________________
2203 Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray * const esdTrackList)
2206 // Make tracks in one TRD stack.
2209 // layer : Array of stack propagation layers containing clusters
2210 // esdTrackList : Array of ESD tracks found by the stand alone tracker.
2211 // On exit the tracks found in this stack are appended.
2214 // Number of tracks found in this stack.
2216 // Detailed description
2218 // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
2219 // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations.
2220 // See AliTRDtrackerV1::MakeSeeds() for more details.
2221 // 3. Arrange track candidates in decreasing order of their quality
2222 // 4. Classify tracks in 5 categories according to:
2223 // a) number of layers crossed
2225 // 5. Sign clusters by tracks in decreasing order of track quality
2226 // 6. Build AliTRDtrack out of seeding tracklets
2228 // 8. Build ESD track and register it to the output list
2231 AliTRDtrackingChamber *chamber = NULL;
2232 AliTRDtrackingChamber **ci = NULL;
2233 AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
2234 Int_t pars[4]; // MakeSeeds parameters
2236 //Double_t alpha = AliTRDgeometry::GetAlpha();
2237 //Double_t shift = .5 * alpha;
2238 Int_t configs[kNConfigs];
2240 // Purge used clusters from the containers
2242 for(Int_t ic = kNPlanes; ic--; ci++){
2243 if(!(*ci)) continue;
2247 // Build initial seeding configurations
2248 Double_t quality = BuildSeedingConfigs(stack, configs);
2249 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10){
2250 AliInfo(Form("Plane config %d %d %d Quality %f"
2251 , configs[0], configs[1], configs[2], quality));
2255 // Initialize contors
2256 Int_t ntracks, // number of TRD track candidates
2257 ntracks1, // number of registered TRD tracks/iter
2258 ntracks2 = 0; // number of all registered TRD tracks in stack
2262 Int_t ic = 0; ci = &stack[0];
2263 while(ic<kNPlanes && !(*ci)){ic++; ci++;}
2264 if(!(*ci)) return ntracks2;
2265 Int_t istack = fGeom->GetStack((*ci)->GetDetector());
2268 // Loop over seeding configurations
2269 ntracks = 0; ntracks1 = 0;
2270 for (Int_t iconf = 0; iconf<fkRecoParam->GetNumberOfSeedConfigs(); iconf++) {
2271 pars[0] = configs[iconf];
2274 ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
2275 //AliInfo(Form("Number of Tracks after iteration step %d: %d\n", iconf, ntracks));
2276 if(ntracks == kMaxTracksStack) break;
2278 AliDebug(2, Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
2281 // Sort the seeds according to their quality
2282 Int_t sort[kMaxTracksStack+1];
2283 TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
2284 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 2){
2285 AliDebug(3, "Track candidates classification:");
2286 for (Int_t it(0); it < ntracks; it++) {
2288 printf(" %2d idx[%d] Quality[%e]\n", it, jt, fTrackQuality[jt]);
2292 // Initialize number of tracks so far and logic switches
2293 Int_t ntracks0 = esdTrackList->GetEntriesFast();
2294 Bool_t signedTrack[kMaxTracksStack];
2295 Bool_t fakeTrack[kMaxTracksStack];
2296 for (Int_t i=0; i<ntracks; i++){
2297 signedTrack[i] = kFALSE;
2298 fakeTrack[i] = kFALSE;
2300 //AliInfo("Selecting track candidates ...");
2302 // Sieve clusters in decreasing order of track quality
2303 Int_t jSieve(0), rejectedCandidates(0);
2305 // Check track candidates
2306 rejectedCandidates=0;
2307 for (Int_t itrack = 0; itrack < ntracks; itrack++) {
2308 Int_t trackIndex = sort[itrack];
2309 if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
2311 // Calculate track parameters from tracklets seeds
2316 for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
2317 Int_t jseed = kNPlanes*trackIndex+jLayer;
2318 sseed[jseed].UpdateUsed();
2319 if(!sseed[jseed].IsOK()) continue;
2320 // check if primary candidate
2321 if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.158) findable++;
2322 ncl += sseed[jseed].GetN();
2323 nused += sseed[jseed].GetNUsed();
2327 // Filter duplicated tracks
2329 AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2330 fakeTrack[trackIndex] = kTRUE;
2333 if (ncl>0 && Float_t(nused)/ncl >= .25){
2334 AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d] used/ncl[%f]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused, Float_t(nused)/ncl));
2335 fakeTrack[trackIndex] = kTRUE;
2339 AliDebug(4, Form("Candidate[%d] Quality[%e] Tracklets[%d] Findable[%d] Ncl[%d] Nused[%d]", trackIndex, fTrackQuality[trackIndex], nlayers, findable, ncl, nused));
2342 Bool_t skip = kFALSE;
2344 case 0: // select 6 tracklets primary tracks, good quality
2345 if(nlayers > findable || nlayers < kNPlanes) {skip = kTRUE; break;}
2346 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
2349 case 1: // select shorter primary tracks, good quality
2350 //if(findable<4){skip = kTRUE; break;}
2351 if(nlayers < findable){skip = kTRUE; break;}
2352 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
2355 case 2: // select 6 tracklets secondary tracks
2356 if(nlayers < kNPlanes) { skip = kTRUE; break;}
2357 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
2360 case 3: // select shorter tracks, good quality
2361 if (nlayers<4){skip = kTRUE; break;}
2362 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
2365 case 4: // select anything with at least 4 tracklets
2366 if (nlayers<4){skip = kTRUE; break;}
2367 //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
2371 rejectedCandidates++;
2372 AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2374 } else AliDebug(4, Form("ACCEPTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2376 signedTrack[trackIndex] = kTRUE;
2378 AliTRDseedV1 *lseed =&sseed[trackIndex*kNPlanes];
2379 AliTRDtrackV1 *track = MakeTrack(lseed);
2381 AliDebug(1, "Track building failed.");
2384 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 1){
2385 Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
2386 AliDebug(2, Form("Track pt=%7.2fGeV/c SM[%2d] Done.", track->Pt(), fGeom->GetSector(chamber->GetDetector())));
2390 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()){
2391 //AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
2393 AliTRDseedV1 *dseed[6];
2394 for(Int_t iseed = AliTRDgeometry::kNlayer; iseed--;) dseed[iseed] = new AliTRDseedV1(lseed[iseed]);
2396 //Int_t eventNrInFile = esd->GetEventNumberInFile();
2397 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2398 Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
2399 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2400 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2401 cstreamer << "Clusters2TracksStack"
2402 << "EventNumber=" << eventNumber
2403 << "TrackNumber=" << trackNumber
2404 << "CandidateNumber=" << candidateNumber
2405 << "Iter=" << fSieveSeeding
2406 << "Like=" << fTrackQuality[trackIndex]
2407 << "S0.=" << dseed[0]
2408 << "S1.=" << dseed[1]
2409 << "S2.=" << dseed[2]
2410 << "S3.=" << dseed[3]
2411 << "S4.=" << dseed[4]
2412 << "S5.=" << dseed[5]
2414 << "NLayers=" << nlayers
2415 << "Findable=" << findable
2416 << "NUsed=" << nused
2421 AliESDtrack *esdTrack = new ((*esdTrackList)[ntracks0++]) AliESDtrack();
2422 esdTrack->UpdateTrackParams(track, AliESDtrack::kTRDout);
2423 esdTrack->SetLabel(track->GetLabel());
2424 track->UpdateESDtrack(esdTrack);
2425 // write ESD-friends if neccessary
2426 if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0){
2427 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
2428 calibTrack->SetOwner();
2429 esdTrack->AddCalibObject(calibTrack);
2432 AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
2436 } while(jSieve<5 && rejectedCandidates); // end track candidates sieve
2437 if(!ntracks1) break;
2439 // increment counters
2440 ntracks2 += ntracks1;
2442 if(fkReconstructor->IsHLT()) break;
2445 // Rebuild plane configurations and indices taking only unused clusters into account
2446 quality = BuildSeedingConfigs(stack, configs);
2447 if(quality < 1.E-7) break; //fkReconstructor->GetRecoParam() ->GetPlaneQualityThreshold()) break;
2449 for(Int_t ip = 0; ip < kNPlanes; ip++){
2450 if(!(chamber = stack[ip])) continue;
2451 chamber->Build(fGeom);//Indices(fSieveSeeding);
2454 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10){
2455 AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
2457 } while(fSieveSeeding<10); // end stack clusters sieve
2461 //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
2466 //___________________________________________________________________
2467 Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs)
2470 // Assign probabilities to chambers according to their
2471 // capability of producing seeds.
2475 // layers : Array of stack propagation layers for all 6 chambers in one stack
2476 // configs : On exit array of configuration indexes (see GetSeedingConfig()
2477 // for details) in the decreasing order of their seeding probabilities.
2481 // Return top configuration quality
2483 // Detailed description:
2485 // To each chamber seeding configuration (see GetSeedingConfig() for
2486 // the list of all configurations) one defines 2 quality factors:
2487 // - an apriori topological quality (see GetSeedingConfig() for details) and
2488 // - a data quality based on the uniformity of the distribution of
2489 // clusters over the x range (time bins population). See CookChamberQA() for details.
2490 // The overall chamber quality is given by the product of this 2 contributions.
2493 Double_t chamberQ[kNPlanes];memset(chamberQ, 0, kNPlanes*sizeof(Double_t));
2494 AliTRDtrackingChamber *chamber = NULL;
2495 for(int iplane=0; iplane<kNPlanes; iplane++){
2496 if(!(chamber = stack[iplane])) continue;
2497 chamberQ[iplane] = (chamber = stack[iplane]) ? chamber->GetQuality() : 0.;
2500 Double_t tconfig[kNConfigs];memset(tconfig, 0, kNConfigs*sizeof(Double_t));
2501 Int_t planes[] = {0, 0, 0, 0};
2502 for(int iconf=0; iconf<kNConfigs; iconf++){
2503 GetSeedingConfig(iconf, planes);
2504 tconfig[iconf] = fgTopologicQA[iconf];
2505 for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]];
2508 TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
2509 // AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
2510 // AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
2511 // AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
2513 return tconfig[configs[0]];
2516 //____________________________________________________________________
2517 Int_t AliTRDtrackerV1::MakeSeeds(AliTRDtrackingChamber **stack, AliTRDseedV1 * const sseed, const Int_t * const ipar)
2520 // Seed tracklets and build candidate TRD tracks. The procedure is used during barrel tracking to account for tracks which are
2521 // either missed by TPC prolongation or conversions inside the TRD volume.
2522 // For stand alone tracking the procedure is used to estimate all tracks measured by TRD.
2525 // layers : Array of stack propagation layers containing clusters
2526 // sseed : Array of empty tracklet seeds. On exit they are filled.
2527 // ipar : Control parameters:
2528 // ipar[0] -> seeding chambers configuration
2529 // ipar[1] -> stack index
2530 // ipar[2] -> number of track candidates found so far
2533 // Number of tracks candidates found.
2535 // The following steps are performed:
2536 // 1. Build seeding layers by collapsing all time bins from each of the four seeding chambers along the
2537 // radial coordinate. See AliTRDtrackingChamber::GetSeedingLayer() for details. The chambers selection for seeding
2538 // is described in AliTRDtrackerV1::Clusters2TracksStack().
2539 // 2. Using the seeding clusters from the seeding layer (step 1) build combinatorics using the following algorithm:
2540 // - for each seeding cluster in the lower seeding layer find
2541 // - all seeding clusters in the upper seeding layer inside a road defined by a given phi angle. The angle
2542 // is calculated on the minimum pt of tracks from vertex accesible to the stand alone tracker.
2543 // - for each pair of two extreme seeding clusters select middle upper cluster using roads defined externally by the
2545 // - select last seeding cluster as the nearest to the linear approximation of the track described by the first three
2546 // seeding clusters.
2547 // The implementation of road calculation and cluster selection can be found in the functions AliTRDchamberTimeBin::BuildCond()
2548 // and AliTRDchamberTimeBin::GetClusters().
2549 // 3. Helix fit of the seeding clusters set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**)). No tilt correction is
2550 // performed at this level
2551 // 4. Initialize seeding tracklets in the seeding chambers.
2552 // 5. *Filter 0* Chi2 cut on the Y and Z directions. The threshold is set externally by the reco params.
2553 // 6. Attach (true) clusters to seeding tracklets (see AliTRDseedV1::AttachClusters()) and fit tracklet (see
2554 // AliTRDseedV1::Fit()). The number of used clusters used by current seeds should not exceed ... (25).
2555 // 7. *Filter 1* Check if all 4 seeding tracklets are correctly constructed.
2556 // 8. Helix fit of the clusters from the seeding tracklets with tilt correction. Refit tracklets using the new
2557 // approximation of the track.
2558 // 9. *Filter 2* Calculate likelihood of the track. (See AliTRDtrackerV1::CookLikelihood()). The following quantities are
2559 // checked against the Riemann fit:
2560 // - position resolution in y
2561 // - angular resolution in the bending plane
2562 // - likelihood of the number of clusters attached to the tracklet
2563 // 10. Extrapolation of the helix fit to the other 2 chambers *non seeding* chambers:
2564 // - Initialization of extrapolation tracklets with the fit parameters
2565 // - Attach clusters to extrapolated tracklets
2566 // - Helix fit of tracklets
2567 // 11. Improve seeding tracklets quality by reassigning clusters based on the last parameters of the track
2568 // See AliTRDtrackerV1::ImproveSeedQuality() for details.
2569 // 12. Helix fit of all 6 seeding tracklets and chi2 calculation
2570 // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
2571 // 14. Cooking labels for tracklets. Should be done only for MC
2572 // 15. Register seeds.
2575 // Marian Ivanov <M.Ivanov@gsi.de>
2576 // Alexandru Bercuci <A.Bercuci@gsi.de>
2577 // Markus Fasel <M.Fasel@gsi.de>
2579 AliTRDtrackingChamber *chamber = NULL;
2580 AliTRDcluster *c[kNSeedPlanes] = {NULL, NULL, NULL, NULL}; // initilize seeding clusters
2581 AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
2582 Int_t ncl, mcl; // working variable for looping over clusters
2583 Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
2585 // chi2[0] = tracklet chi2 on the Z direction
2586 // chi2[1] = tracklet chi2 on the R direction
2589 // this should be data member of AliTRDtrack TODO
2590 Double_t seedQuality[kMaxTracksStack];
2592 // unpack control parameters
2593 Int_t config = ipar[0];
2594 Int_t ntracks = ipar[1];
2595 Int_t istack = ipar[2];
2596 Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);
2597 Int_t planesExt[kNPlanes-kNSeedPlanes]; GetExtrapolationConfig(config, planesExt);
2600 // Init chambers geometry
2601 Double_t hL[kNPlanes]; // Tilting angle
2602 Float_t padlength[kNPlanes]; // pad lenghts
2603 Float_t padwidth[kNPlanes]; // pad widths
2604 AliTRDpadPlane *pp = NULL;
2605 for(int iplane=0; iplane<kNPlanes; iplane++){
2606 pp = fGeom->GetPadPlane(iplane, istack);
2607 hL[iplane] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
2608 padlength[iplane] = pp->GetLengthIPad();
2609 padwidth[iplane] = pp->GetWidthIPad();
2612 // Init anode wire position for chambers
2613 Double_t x0[kNPlanes], // anode wire position
2614 driftLength = .5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick(); // drift length
2615 TGeoHMatrix *matrix = NULL;
2616 Double_t loc[] = {AliTRDgeometry::AnodePos(), 0., 0.};
2617 Double_t glb[] = {0., 0., 0.};
2618 AliTRDtrackingChamber **cIter = &stack[0];
2619 for(int iLayer=0; iLayer<kNPlanes; iLayer++,cIter++){
2620 if(!(*cIter)) continue;
2621 if(!(matrix = fGeom->GetClusterMatrix((*cIter)->GetDetector()))){
2622 x0[iLayer] = fgkX0[iLayer];
2625 matrix->LocalToMaster(loc, glb);
2626 x0[iLayer] = glb[0];
2629 AliDebug(2, Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
2631 // Build seeding layers
2634 for(int isl=0; isl<kNSeedPlanes; isl++){
2635 if(!(chamber = stack[planes[isl]])) continue;
2636 if(!chamber->GetSeedingLayer(fSeedTB[isl], fGeom, fkReconstructor)) continue;
2639 if(nlayers < kNSeedPlanes) return ntracks;
2642 // Start finding seeds
2643 Double_t cond0[4], cond1[4], cond2[4];
2645 while((c[3] = (*fSeedTB[3])[icl++])){
2647 fSeedTB[0]->BuildCond(c[3], cond0, 0);
2648 fSeedTB[0]->GetClusters(cond0, index, ncl);
2649 //printf("Found c[3] candidates 0 %d\n", ncl);
2652 c[0] = (*fSeedTB[0])[index[jcl++]];
2654 Double_t dx = c[3]->GetX() - c[0]->GetX();
2655 Double_t dzdx = (c[3]->GetZ() - c[0]->GetZ())/dx;
2656 Double_t dydx = (c[3]->GetY() - c[0]->GetY())/dx;
2657 fSeedTB[1]->BuildCond(c[0], cond1, 1, dzdx, dydx);
2658 fSeedTB[1]->GetClusters(cond1, jndex, mcl);
2659 //printf("Found c[0] candidates 1 %d\n", mcl);
2663 c[1] = (*fSeedTB[1])[jndex[kcl++]];
2665 fSeedTB[2]->BuildCond(c[1], cond2, 2, dzdx, dydx);
2666 c[2] = fSeedTB[2]->GetNearestCluster(cond2);
2667 //printf("Found c[1] candidate 2 %p\n", c[2]);
2670 AliDebug(3, Form("Seeding clusters\n 0[%6.3f %6.3f %6.3f]\n 1[%6.3f %6.3f %6.3f]\n 2[%6.3f %6.3f %6.3f]\n 3[%6.3f %6.3f %6.3f].",
2671 c[0]->GetX(), c[0]->GetY(), c[0]->GetZ(),
2672 c[1]->GetX(), c[1]->GetY(), c[1]->GetZ(),
2673 c[2]->GetX(), c[2]->GetY(), c[2]->GetZ(),
2674 c[3]->GetX(), c[3]->GetY(), c[3]->GetZ()));
2676 for (Int_t il = 0; il < kNPlanes; il++) cseed[il].Reset();
2680 AliTRDseedV1 *tseed = &cseed[0];
2682 for(int iLayer=0; iLayer<kNPlanes; iLayer++, tseed++, cIter++){
2683 Int_t det = (*cIter) ? (*cIter)->GetDetector() : -1;
2684 tseed->SetDetector(det);
2685 tseed->SetTilt(hL[iLayer]);
2686 tseed->SetPadLength(padlength[iLayer]);
2687 tseed->SetPadWidth(padwidth[iLayer]);
2688 tseed->SetReconstructor(fkReconstructor);
2689 tseed->SetX0(det<0 ? fR[iLayer]+driftLength : x0[iLayer]);
2690 tseed->Init(GetRiemanFitter());
2691 tseed->SetStandAlone(kTRUE);
2694 Bool_t isFake = kFALSE;
2695 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()){
2696 if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2697 if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2698 if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2701 for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = fSeedTB[l]->GetX();
2703 for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
2704 Int_t ll = c[3]->GetLabel(0);
2705 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2706 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2707 AliRieman *rim = GetRiemanFitter();
2708 TTreeSRedirector &cs0 = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2710 <<"EventNumber=" << eventNumber
2711 <<"CandidateNumber=" << candidateNumber
2712 <<"isFake=" << isFake
2713 <<"config=" << config
2715 <<"chi2z=" << chi2[0]
2716 <<"chi2y=" << chi2[1]
2717 <<"Y2exp=" << cond2[0]
2718 <<"Z2exp=" << cond2[1]
2719 <<"X0=" << xpos[0] //layer[sLayer]->GetX()
2720 <<"X1=" << xpos[1] //layer[sLayer + 1]->GetX()
2721 <<"X2=" << xpos[2] //layer[sLayer + 2]->GetX()
2722 <<"X3=" << xpos[3] //layer[sLayer + 3]->GetX()
2723 <<"yref0=" << yref[0]
2724 <<"yref1=" << yref[1]
2725 <<"yref2=" << yref[2]
2726 <<"yref3=" << yref[3]
2731 <<"Seed0.=" << &cseed[planes[0]]
2732 <<"Seed1.=" << &cseed[planes[1]]
2733 <<"Seed2.=" << &cseed[planes[2]]
2734 <<"Seed3.=" << &cseed[planes[3]]
2735 <<"RiemanFitter.=" << rim
2738 if(chi2[0] > fkRecoParam->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
2739 AliDebug(3, Form("Filter on chi2Z [%f].", chi2[0]));
2740 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2743 if(chi2[1] > fkRecoParam->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
2744 AliDebug(3, Form("Filter on chi2Y [%f].", chi2[1]));
2745 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2748 //AliInfo("Passed chi2 filter.");
2750 // try attaching clusters to tracklets
2752 AliTRDcluster *cl = NULL;
2753 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
2754 Int_t jLayer = planes[iLayer];
2755 Int_t nNotInChamber = 0;
2756 if(!cseed[jLayer].AttachClusters(stack[jLayer], kTRUE)) continue;
2757 if(/*fkReconstructor->IsHLT()*/kFALSE){
2758 cseed[jLayer].UpdateUsed();
2759 if(!cseed[jLayer].IsOK()) continue;
2761 cseed[jLayer].Fit();
2762 cseed[jLayer].UpdateUsed();
2763 cseed[jLayer].ResetClusterIter();
2764 while((cl = cseed[jLayer].NextCluster())){
2765 if(!cl->IsInChamber()) nNotInChamber++;
2767 //printf("clusters[%d], used[%d], not in chamber[%d]\n", cseed[jLayer].GetN(), cseed[jLayer].GetNUsed(), nNotInChamber);
2768 if(cseed[jLayer].GetN() - (cseed[jLayer].GetNUsed() + nNotInChamber) < 5) continue; // checking for Cluster which are not in chamber is a much stronger restriction on real data
2773 if(mlayers < kNSeedPlanes){
2774 AliDebug(2, Form("Found only %d tracklets out of %d. Skip.", mlayers, kNSeedPlanes));
2775 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2779 // temporary exit door for the HLT
2780 if(fkReconstructor->IsHLT()){
2781 // attach clusters to extrapolation chambers
2782 for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
2783 Int_t jLayer = planesExt[iLayer];
2784 if(!(chamber = stack[jLayer])) continue;
2785 if(!cseed[jLayer].AttachClusters(chamber, kTRUE)) continue;
2786 cseed[jLayer].Fit();
2788 //FitTiltedRiemanConstraint(&cseed[0], GetZ());
2789 fTrackQuality[ntracks] = 1.; // dummy value
2791 if(ntracks == kMaxTracksStack) return ntracks;
2797 // Update Seeds and calculate Likelihood
2798 // fit tracklets and cook likelihood
2799 Double_t chi2Vals[4];
2800 chi2Vals[0] = FitTiltedRieman(&cseed[0], kTRUE);
2801 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
2802 Int_t jLayer = planes[iLayer];
2803 cseed[jLayer].Fit(1);
2805 Double_t like = CookLikelihood(&cseed[0], planes); // to be checked
2807 if (TMath::Log(1.E-9 + like) < fkRecoParam->GetTrackLikelihood()){
2808 AliDebug(3, Form("Filter on likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2809 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2812 //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2814 // book preliminary results
2815 seedQuality[ntracks] = like;
2816 fSeedLayer[ntracks] = config;/*sLayer;*/
2818 // attach clusters to the extrapolation seeds
2820 for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
2821 Int_t jLayer = planesExt[iLayer];
2822 if(!(chamber = stack[jLayer])) continue;
2824 // fit extrapolated seed
2825 if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
2826 if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
2827 AliTRDseedV1 pseed = cseed[jLayer];
2828 if(!pseed.AttachClusters(chamber, kTRUE)) continue;
2830 cseed[jLayer] = pseed;
2831 chi2Vals[0] = FitTiltedRieman(cseed, kTRUE);
2832 cseed[jLayer].Fit(1);
2836 // AliInfo("Extrapolation done.");
2837 // Debug Stream containing all the 6 tracklets
2838 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()){
2839 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2840 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2841 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2842 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2843 cstreamer << "MakeSeeds1"
2844 << "EventNumber=" << eventNumber
2845 << "CandidateNumber=" << candidateNumber
2846 << "S0.=" << &cseed[0]
2847 << "S1.=" << &cseed[1]
2848 << "S2.=" << &cseed[2]
2849 << "S3.=" << &cseed[3]
2850 << "S4.=" << &cseed[4]
2851 << "S5.=" << &cseed[5]
2852 << "FitterT.=" << tiltedRieman
2856 if(fkRecoParam->HasImproveTracklets()){
2857 if(!ImproveSeedQuality(stack, cseed, chi2Vals[0])){
2858 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2859 AliDebug(3, "ImproveSeedQuality() failed.");
2863 // do track fitting with vertex constraint
2864 if(fkRecoParam->IsVertexConstrained()) chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ());
2865 else chi2Vals[1] = -1.;
2866 chi2Vals[2] = GetChi2Z(&cseed[0]);
2867 chi2Vals[3] = GetChi2Phi(&cseed[0]);
2869 // calculate track quality
2870 fTrackQuality[ntracks] = CalculateTrackLikelihood(&chi2Vals[0]);
2872 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()){
2873 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2874 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2875 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2876 TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
2877 TLinearFitter *fitterT = GetTiltedRiemanFitter();
2879 for(Int_t iseed = 0; iseed < kNPlanes; iseed++){
2880 ncls += cseed[iseed].IsOK() ? cseed[iseed].GetN2() : 0;
2882 cstreamer << "MakeSeeds2"
2883 << "EventNumber=" << eventNumber
2884 << "CandidateNumber=" << candidateNumber
2885 << "Chi2TR=" << chi2Vals[0]
2886 << "Chi2TC=" << chi2Vals[1]
2887 << "Nlayers=" << mlayers
2888 << "NClusters=" << ncls
2890 << "S0.=" << &cseed[0]
2891 << "S1.=" << &cseed[1]
2892 << "S2.=" << &cseed[2]
2893 << "S3.=" << &cseed[3]
2894 << "S4.=" << &cseed[4]
2895 << "S5.=" << &cseed[5]
2896 << "FitterT.=" << fitterT
2897 << "FitterTC.=" << fitterTC
2900 if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")){
2901 Double_t pt[]={0., 0.};
2902 for(Int_t il(0); il<kNPlanes; il++){
2903 if(!cseed[il].IsOK()) continue;
2904 pt[0] = GetBz()*kB2C/cseed[il].GetC();
2905 pt[1] = GetBz()*kB2C/cseed[il].GetC(1);
2908 AliDebug(2, Form("Candidate[%2d] pt[%7.3f %7.3f] Q[%e]\n"
2909 " [0] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
2910 " [1] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
2911 " [2] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
2912 " [3] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
2913 " [4] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
2914 " [5] x[%6.2f] n[%2d] nu[%d] OK[%c]"
2915 , ntracks, pt[0], pt[1], fTrackQuality[ntracks]
2916 ,cseed[0].GetX(), cseed[0].GetN(), cseed[0].GetNUsed(), cseed[0].IsOK()?'y':'n'
2917 ,cseed[1].GetX(), cseed[1].GetN(), cseed[1].GetNUsed(), cseed[1].IsOK()?'y':'n'
2918 ,cseed[2].GetX(), cseed[2].GetN(), cseed[2].GetNUsed(), cseed[2].IsOK()?'y':'n'
2919 ,cseed[3].GetX(), cseed[3].GetN(), cseed[3].GetNUsed(), cseed[3].IsOK()?'y':'n'
2920 ,cseed[4].GetX(), cseed[4].GetN(), cseed[4].GetNUsed(), cseed[4].IsOK()?'y':'n'
2921 ,cseed[5].GetX(), cseed[5].GetN(), cseed[5].GetNUsed(), cseed[5].IsOK()?'y':'n'));
2924 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2925 if(ntracks == kMaxTracksStack){
2926 AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
2937 //_____________________________________________________________________________
2938 AliTRDtrackV1* AliTRDtrackerV1::MakeTrack(AliTRDseedV1 * const tracklet)
2941 // Build a TRD track out of tracklet candidates
2944 // seeds : array of tracklets
2945 // params : array of track parameters as they are estimated by stand alone tracker. 7 elements.
2946 // [0] - radial position of the track at reference point
2947 // [1] - y position of the fit at [0]
2948 // [2] - z position of the fit at [0]
2949 // [3] - snp of the first tracklet
2950 // [4] - tgl of the first tracklet
2951 // [5] - curvature of the Riemann fit - 1/pt
2952 // [6] - sector rotation angle
2957 // Initialize the TRD track based on the parameters of the fit and a parametric covariance matrix
2958 // (diagonal with constant variance terms TODO - correct parameterization)
2960 // In case of HLT just register the tracklets in the tracker and return values of the Riemann fit. For the
2961 // offline case perform a full Kalman filter on the already found tracklets (see AliTRDtrackerV1::FollowBackProlongation()
2962 // for details). Do also MC label calculation and PID if propagation successfully.
2964 if(fkReconstructor->IsHLT()) FitTiltedRiemanConstraint(tracklet, 0);
2965 Double_t alpha = AliTRDgeometry::GetAlpha();
2966 Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
2968 // find first good tracklet
2969 Int_t idx(0); while(idx<kNPlanes && !tracklet[idx].IsOK()) idx++;
2970 if(idx>2){ AliDebug(1, Form("Found suspect track start @ layer idx[%d]\n"
2971 " %c[0] x0[%f] n[%d] nu[%d] OK[%c]\n"
2972 " %c[1] x0[%f] n[%d] nu[%d] OK[%c]\n"
2973 " %c[2] x0[%f] n[%d] nu[%d] OK[%c]\n"
2974 " %c[3] x0[%f] n[%d] nu[%d] OK[%c]\n"
2975 " %c[4] x0[%f] n[%d] nu[%d] OK[%c]\n"
2976 " %c[5] x0[%f] n[%d] nu[%d] OK[%c]"
2978 ,idx==0?'*':' ', tracklet[0].GetX0(), tracklet[0].GetN(), tracklet[0].GetNUsed(), tracklet[0].IsOK()?'y':'n'
2979 ,idx==1?'*':' ', tracklet[1].GetX0(), tracklet[1].GetN(), tracklet[1].GetNUsed(), tracklet[1].IsOK()?'y':'n'
2980 ,idx==2?'*':' ', tracklet[2].GetX0(), tracklet[2].GetN(), tracklet[2].GetNUsed(), tracklet[2].IsOK()?'y':'n'
2981 ,idx==3?'*':' ', tracklet[3].GetX0(), tracklet[3].GetN(), tracklet[3].GetNUsed(), tracklet[3].IsOK()?'y':'n'
2982 ,idx==4?'*':' ', tracklet[4].GetX0(), tracklet[4].GetN(), tracklet[4].GetNUsed(), tracklet[4].IsOK()?'y':'n'
2983 ,idx==5?'*':' ', tracklet[5].GetX0(), tracklet[5].GetN(), tracklet[5].GetNUsed(), tracklet[5].IsOK()?'y':'n'));
2988 Double_t x(tracklet[idx].GetX0() - dx);
2989 // Build track parameters
2990 Double_t params[] = {
2991 tracklet[idx].GetYref(0) - dx*tracklet[idx].GetYref(1) // y
2992 ,tracklet[idx].GetZref(0) - dx*tracklet[idx].GetZref(1) // z
2993 ,TMath::Sin(TMath::ATan(tracklet[idx].GetYref(1))) // snp
2994 ,tracklet[idx].GetZref(1) / TMath::Sqrt(1. + tracklet[idx].GetYref(1) * tracklet[idx].GetYref(1)) // tgl
2995 ,tracklet[idx].GetC(fkReconstructor->IsHLT()?1:0) // curvature -> 1/pt
2997 Int_t sector(fGeom->GetSector(tracklet[idx].GetDetector()));
3000 c[ 0] = 0.2; // s^2_y
3001 c[ 1] = 0.0; c[ 2] = 2.0; // s^2_z
3002 c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02; // s^2_snp
3003 c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0; c[ 9] = 0.1; // s^2_tgl
3004 c[10] = 0.0; c[11] = 0.0; c[12] = 0.0; c[13] = 0.0; c[14] = params[4]*params[4]*0.01; // s^2_1/pt
3006 AliTRDtrackV1 track(tracklet, params, c, x, sector*alpha+shift);
3008 AliTRDseedV1 *ptrTracklet = NULL;
3010 // skip Kalman filter for HLT
3011 if(/*fkReconstructor->IsHLT()*/kFALSE){
3012 for (Int_t jLayer = 0; jLayer < AliTRDgeometry::kNlayer; jLayer++) {
3013 track.UnsetTracklet(jLayer);
3014 ptrTracklet = &tracklet[jLayer];
3015 if(!ptrTracklet->IsOK()) continue;
3016 if(TMath::Abs(ptrTracklet->GetYref(1) - ptrTracklet->GetYfit(1)) >= .2) continue; // check this condition with Marian
3017 ptrTracklet = SetTracklet(ptrTracklet);
3018 ptrTracklet->UseClusters();
3019 track.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1);
3021 AliTRDtrackV1 *ptrTrack = SetTrack(&track);
3022 ptrTrack->CookPID();
3023 ptrTrack->CookLabel(.9);
3024 ptrTrack->SetReconstructor(fkReconstructor);
3028 // prevent the error message in AliTracker::MeanMaterialBudget: "start point out of geometry"
3029 if(TMath::Abs(track.GetX()) + TMath::Abs(track.GetY()) + TMath::Abs(track.GetZ()) > 10000) return NULL;
3031 track.ResetCovariance(1);
3032 Int_t nc = TMath::Abs(FollowBackProlongation(track));
3033 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 5 && fkReconstructor->IsDebugStreaming()){
3034 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3035 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3036 Double_t p[5]; // Track Params for the Debug Stream
3037 track.GetExternalParameters(x, p);
3038 TTreeSRedirector &cs = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3040 << "EventNumber=" << eventNumber
3041 << "CandidateNumber=" << candidateNumber
3049 << "Yin=" << params[0]
3050 << "Zin=" << params[1]
3051 << "snpin=" << params[2]
3052 << "tndin=" << params[3]
3053 << "crvin=" << params[4]
3054 << "track.=" << &track
3058 UnsetTrackletsTrack(&track);
3061 AliTRDtrackV1 *ptrTrack = SetTrack(&track);
3062 ptrTrack->SetReconstructor(fkReconstructor);
3063 ptrTrack->CookLabel(.9);
3064 for(Int_t il(kNPlanes); il--;){
3065 if(!(ptrTracklet = ptrTrack->GetTracklet(il))) continue;
3066 ptrTracklet->UseClusters();
3069 // computes PID for track
3070 ptrTrack->CookPID();
3071 // update calibration references using this track
3072 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
3074 AliInfo("Could not get Calibra instance.");
3075 } else if(calibra->GetHisto2d()){
3076 calibra->UpdateHistogramsV1(ptrTrack);
3082 //____________________________________________________________________
3083 Bool_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed, Double_t &chi2)
3086 // Sort tracklets according to "quality" and try to "improve" the first 4 worst
3089 // layers : Array of propagation layers for a stack/supermodule
3090 // cseed : Array of 6 seeding tracklets which has to be improved
3093 // cssed : Improved seeds
3095 // Detailed description
3097 // Iterative procedure in which new clusters are searched for each
3098 // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
3099 // can be maximized. If some optimization is found the old seeds are replaced.
3104 // make a local working copy
3105 AliTRDtrackingChamber *chamber = NULL;
3106 AliTRDseedV1 bseed[AliTRDgeometry::kNlayer];
3108 Float_t quality(1.e3),
3109 lQuality[AliTRDgeometry::kNlayer] = {1.e3, 1.e3, 1.e3, 1.e3, 1.e3, 1.e3};
3111 for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;){
3112 bseed[jLayer] = cseed[jLayer];
3113 if(!bseed[jLayer].IsOK()) continue;
3115 lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE);
3116 quality += lQuality[jLayer];
3119 AliDebug(2, Form("Start N[%d] Q[%f] chi2[%f]", rLayers, quality, chi2));
3121 for (Int_t iter = 0; iter < 4; iter++) {
3122 // Try better cluster set
3123 Int_t nLayers(0); Float_t qualitynew(0.);
3124 Int_t indexes[4*AliTRDgeometry::kNlayer];
3125 TMath::Sort(Int_t(AliTRDgeometry::kNlayer), lQuality, indexes, kFALSE);
3126 for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) {
3127 Int_t bLayer = indexes[jLayer];
3128 bseed[bLayer].Reset("c");
3129 if(!(chamber = stack[bLayer])) continue;
3130 if(!bseed[bLayer].AttachClusters(chamber, kTRUE)) continue;
3131 bseed[bLayer].Fit(1);
3132 if(!bseed[bLayer].IsOK()) continue;
3134 lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE);
3135 qualitynew += lQuality[jLayer];
3137 if(rLayers > nLayers){
3138 AliDebug(1, Form("Lost %d tracklets while improving.", rLayers-nLayers));
3139 return iter>0?kTRUE:kFALSE;
3140 } else rLayers=nLayers;
3141 qualitynew /= rLayers;
3143 if(qualitynew > quality){
3144 AliDebug(4, Form("Quality[%f] worsen in iter[%d] to ref[%f].", qualitynew, iter, quality));
3145 return iter>0?kTRUE:kFALSE;
3146 } else quality = qualitynew;
3148 // try improve track parameters
3149 Float_t chi2new = FitTiltedRieman(bseed, kTRUE);
3151 AliDebug(4, Form("Chi2[%f] worsen in iter[%d] to ref[%f].", chi2new, iter, chi2));
3152 return iter>0?kTRUE:kFALSE;
3153 } else chi2 = chi2new;
3155 // store better tracklets
3156 for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) cseed[jLayer]=bseed[jLayer];
3157 AliDebug(2, Form("Iter[%d] Q[%f] chi2[%f]", iter, quality, chi2));
3160 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 7 && fkReconstructor->IsDebugStreaming()){
3161 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3162 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3163 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
3164 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3165 cstreamer << "ImproveSeedQuality"
3166 << "EventNumber=" << eventNumber
3167 << "CandidateNumber=" << candidateNumber
3168 << "Iteration=" << iter
3169 << "S0.=" << &cseed[0]
3170 << "S1.=" << &cseed[1]
3171 << "S2.=" << &cseed[2]
3172 << "S3.=" << &cseed[3]
3173 << "S4.=" << &cseed[4]
3174 << "S5.=" << &cseed[5]
3175 << "FitterT.=" << tiltedRieman
3180 // we are sure that at least 4 tracklets are OK !
3184 //_________________________________________________________________________
3185 Double_t AliTRDtrackerV1::CalculateTrackLikelihood(Double_t *chi2){
3187 // Calculates the Track Likelihood value. This parameter serves as main quality criterion for
3188 // the track selection
3189 // The likelihood value containes:
3190 // - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
3191 // - The Sum of the Parameter |slope_ref - slope_fit|/Sigma of the tracklets
3192 // For all Parameters an exponential dependency is used
3194 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
3195 // - Array of chi2 values:
3196 // * Non-Constrained Tilted Riemann fit
3197 // * Vertex-Constrained Tilted Riemann fit
3198 // * z-Direction from Linear fit
3199 // Output: - The calculated track likelihood
3204 // Non-constrained Tilted Riemann
3205 Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.0078);
3206 // Constrained Tilted Riemann
3207 Double_t likeChi2TC(1.);
3209 likeChi2TC = TMath::Exp(-chi2[1] * 0.677);
3210 Double_t r = likeChi2TC/likeChi2TR;
3211 if(r>1.e2){;} // -> a primary track use TC
3212 else if(r<1.e2) // -> a secondary track use TR
3214 else{;} // -> test not conclusive
3216 // Chi2 only on Z direction
3217 Double_t likeChi2Z = TMath::Exp(-chi2[2] * 0.14);
3218 // Chi2 angular resolution
3219 Double_t likeChi2Phi= TMath::Exp(-chi2[3] * 3.23);
3221 Double_t trackLikelihood = likeChi2Z * likeChi2TR * likeChi2TC * likeChi2Phi;
3223 AliDebug(2, Form("Likelihood [%e]\n"
3224 " Rieman : chi2[%f] likelihood[%6.2e]\n"
3225 " Vertex : chi2[%f] likelihood[%6.2e]\n"
3226 " Z : chi2[%f] likelihood[%6.2e]\n"
3227 " Phi : chi2[%f] likelihood[%6.2e]"
3229 , chi2[0], likeChi2TR
3230 , chi2[1], likeChi2TC
3231 , chi2[2], likeChi2Z
3232 , chi2[3], likeChi2Phi
3235 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()){
3236 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3237 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3238 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3239 cstreamer << "CalculateTrackLikelihood0"
3240 << "EventNumber=" << eventNumber
3241 << "CandidateNumber=" << candidateNumber
3242 << "LikeChi2Z=" << likeChi2Z
3243 << "LikeChi2TR=" << likeChi2TR
3244 << "LikeChi2TC=" << likeChi2TC
3245 << "LikeChi2Phi=" << likeChi2Phi
3246 << "TrackLikelihood=" << trackLikelihood
3250 return trackLikelihood;
3253 //____________________________________________________________________
3254 Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4])
3257 // Calculate the probability of this track candidate.
3260 // cseeds : array of candidate tracklets
3261 // planes : array of seeding planes (see seeding configuration)
3262 // chi2 : chi2 values (on the Z and Y direction) from the rieman fit of the track.
3267 // Detailed description
3269 // The track quality is estimated based on the following 4 criteria:
3270 // 1. precision of the rieman fit on the Y direction (likea)
3271 // 2. chi2 on the Y direction (likechi2y)
3272 // 3. chi2 on the Z direction (likechi2z)
3273 // 4. number of attached clusters compared to a reference value
3274 // (see AliTRDrecoParam::fkFindable) (likeN)
3276 // The distributions for each type of probabilities are given below as of
3277 // (date). They have to be checked to assure consistency of estimation.
3280 // ratio of the total number of clusters/track which are expected to be found by the tracker.
3281 Double_t chi2y = GetChi2Y(&cseed[0]);
3282 Double_t chi2z = GetChi2Z(&cseed[0]);
3284 Float_t nclusters = 0.;
3285 Double_t sumda = 0.;
3286 for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
3287 Int_t jlayer = planes[ilayer];
3288 nclusters += cseed[jlayer].GetN2();
3289 sumda += TMath::Abs(cseed[jlayer].GetYfit(1) - cseed[jlayer].GetYref(1));
3293 Double_t likea = TMath::Exp(-sumda * fkRecoParam->GetPhiSlope());
3294 Double_t likechi2y = 0.0000000001;
3295 if (fkReconstructor->IsCosmic() || chi2y < fkRecoParam->GetChi2YCut()) likechi2y += TMath::Exp(-TMath::Sqrt(chi2y) * fkRecoParam->GetChi2YSlope());
3296 Double_t likechi2z = TMath::Exp(-chi2z * fkRecoParam->GetChi2ZSlope());
3297 Double_t likeN = TMath::Exp(-(fkRecoParam->GetNMeanClusters() - nclusters) / fkRecoParam->GetNSigmaClusters());
3298 Double_t like = likea * likechi2y * likechi2z * likeN;
3300 if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()){
3301 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3302 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3303 Int_t nTracklets = 0; Float_t meanNcls = 0;
3304 for(Int_t iseed=0; iseed < kNPlanes; iseed++){
3305 if(!cseed[iseed].IsOK()) continue;
3307 meanNcls += cseed[iseed].GetN2();
3309 if(nTracklets) meanNcls /= nTracklets;
3310 // The Debug Stream contains the seed
3311 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3312 cstreamer << "CookLikelihood"
3313 << "EventNumber=" << eventNumber
3314 << "CandidateNumber=" << candidateNumber
3315 << "tracklet0.=" << &cseed[0]
3316 << "tracklet1.=" << &cseed[1]
3317 << "tracklet2.=" << &cseed[2]
3318 << "tracklet3.=" << &cseed[3]
3319 << "tracklet4.=" << &cseed[4]
3320 << "tracklet5.=" << &cseed[5]
3321 << "sumda=" << sumda
3322 << "chi2y=" << chi2y
3323 << "chi2z=" << chi2z
3324 << "likea=" << likea
3325 << "likechi2y=" << likechi2y
3326 << "likechi2z=" << likechi2z
3327 << "nclusters=" << nclusters
3328 << "likeN=" << likeN
3330 << "meanncls=" << meanNcls
3337 //____________________________________________________________________
3338 void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4])
3341 // Map seeding configurations to detector planes.
3344 // iconfig : configuration index
3345 // planes : member planes of this configuration. On input empty.
3348 // planes : contains the planes which are defining the configuration
3350 // Detailed description
3352 // Here is the list of seeding planes configurations together with
3353 // their topological classification:
3371 // The topologic quality is modeled as follows:
3372 // 1. The general model is define by the equation:
3373 // p(conf) = exp(-conf/2)
3374 // 2. According to the topologic classification, configurations from the same
3375 // class are assigned the agerage value over the model values.
3376 // 3. Quality values are normalized.
3378 // The topologic quality distribution as function of configuration is given below:
3380 // <img src="gif/topologicQA.gif">
3385 case 0: // 5432 TQ 0
3391 case 1: // 4321 TQ 0
3397 case 2: // 3210 TQ 0
3403 case 3: // 5321 TQ 1
3409 case 4: // 4210 TQ 1
3415 case 5: // 5431 TQ 1
3421 case 6: // 4320 TQ 1
3427 case 7: // 5430 TQ 2
3433 case 8: // 5210 TQ 2
3439 case 9: // 5421 TQ 3
3445 case 10: // 4310 TQ 3
3451 case 11: // 5410 TQ 4
3457 case 12: // 5420 TQ 5
3463 case 13: // 5320 TQ 5
3469 case 14: // 5310 TQ 5
3478 //____________________________________________________________________
3479 void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2])
3482 // Returns the extrapolation planes for a seeding configuration.
3485 // iconfig : configuration index
3486 // planes : planes which are not in this configuration. On input empty.
3489 // planes : contains the planes which are not in the configuration
3491 // Detailed description
3495 case 0: // 5432 TQ 0
3499 case 1: // 4321 TQ 0
3503 case 2: // 3210 TQ 0
3507 case 3: // 5321 TQ 1
3511 case 4: // 4210 TQ 1
3515 case 5: // 5431 TQ 1
3519 case 6: // 4320 TQ 1
3523 case 7: // 5430 TQ 2
3527 case 8: // 5210 TQ 2
3531 case 9: // 5421 TQ 3
3535 case 10: // 4310 TQ 3
3539 case 11: // 5410 TQ 4
3543 case 12: // 5420 TQ 5
3547 case 13: // 5320 TQ 5
3551 case 14: // 5310 TQ 5
3558 //____________________________________________________________________
3559 AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const
3561 if(!fClusters) return NULL;
3562 Int_t ncls = fClusters->GetEntriesFast();
3563 return idx >= 0 && idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : NULL;
3566 //____________________________________________________________________
3567 AliTRDseedV1* AliTRDtrackerV1::GetTracklet(Int_t idx) const
3569 if(!fTracklets) return NULL;
3570 Int_t ntrklt = fTracklets->GetEntriesFast();
3571 return idx >= 0 && idx < ntrklt ? (AliTRDseedV1*)fTracklets->UncheckedAt(idx) : NULL;
3574 //____________________________________________________________________
3575 AliKalmanTrack* AliTRDtrackerV1::GetTrack(Int_t idx) const
3577 if(!fTracks) return NULL;
3578 Int_t ntrk = fTracks->GetEntriesFast();
3579 return idx >= 0 && idx < ntrk ? (AliKalmanTrack*)fTracks->UncheckedAt(idx) : NULL;
3584 // //_____________________________________________________________________________
3585 // Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
3586 // , Int_t *outlist, Bool_t down)
3589 // // Sort eleements according occurancy
3590 // // The size of output array has is 2*n
3597 // Int_t *sindexS = new Int_t[n]; // Temporary array for sorting
3598 // Int_t *sindexF = new Int_t[2*n];
3599 // for (Int_t i = 0; i < n; i++) {
3603 // TMath::Sort(n,inlist,sindexS,down);
3605 // Int_t last = inlist[sindexS[0]];
3606 // Int_t val = last;
3608 // sindexF[0+n] = last;
3609 // Int_t countPos = 0;
3611 // // Find frequency
3612 // for (Int_t i = 1; i < n; i++) {
3613 // val = inlist[sindexS[i]];
3614 // if (last == val) {
3615 // sindexF[countPos]++;
3619 // sindexF[countPos+n] = val;
3620 // sindexF[countPos]++;
3624 // if (last == val) {
3628 // // Sort according frequency
3629 // TMath::Sort(countPos,sindexF,sindexS,kTRUE);
3631 // for (Int_t i = 0; i < countPos; i++) {
3632 // outlist[2*i ] = sindexF[sindexS[i]+n];
3633 // outlist[2*i+1] = sindexF[sindexS[i]];
3636 // delete [] sindexS;
3637 // delete [] sindexF;
3644 //____________________________________________________________________
3645 void AliTRDtrackerV1::ResetSeedTB()
3647 // reset buffer for seeding time bin layers. If the time bin
3648 // layers are not allocated this function allocates them
3650 for(Int_t isl=0; isl<kNSeedPlanes; isl++){
3651 if(!fSeedTB[isl]) fSeedTB[isl] = new AliTRDchamberTimeBin();
3652 else fSeedTB[isl]->Clear();
3657 //_____________________________________________________________________________
3658 Float_t AliTRDtrackerV1::GetChi2Y(const AliTRDseedV1 * const tracklets) const
3660 // Calculates normalized chi2 in y-direction
3661 // chi2 = Sum chi2 / n_tracklets
3663 Double_t chi2 = 0.; Int_t n = 0;
3664 for(Int_t ipl = kNPlanes; ipl--;){
3665 if(!tracklets[ipl].IsOK()) continue;
3666 chi2 += tracklets[ipl].GetChi2Y();
3669 return n ? chi2/n : 0.;
3672 //_____________________________________________________________________________
3673 Float_t AliTRDtrackerV1::GetChi2Z(const AliTRDseedV1 *const tracklets) const
3675 // Calculates normalized chi2 in z-direction
3676 // chi2 = Sum chi2 / n_tracklets
3678 Double_t chi2 = 0; Int_t n = 0;
3679 for(Int_t ipl = kNPlanes; ipl--;){
3680 if(!tracklets[ipl].IsOK()) continue;
3681 chi2 += tracklets[ipl].GetChi2Z();
3684 return n ? chi2/n : 0.;
3687 //_____________________________________________________________________________
3688 Float_t AliTRDtrackerV1::GetChi2Phi(const AliTRDseedV1 *const tracklets) const
3690 // Calculates normalized chi2 for angular resolution
3691 // chi2 = Sum chi2 / n_tracklets
3693 Double_t chi2 = 0; Int_t n = 0;
3694 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
3695 if(!tracklets[iLayer].IsOK()) continue;
3696 chi2 += tracklets[iLayer].GetChi2Phi();
3699 return n ? chi2/n: 0.;
3702 //____________________________________________________________________
3703 Float_t AliTRDtrackerV1::CalculateReferenceX(const AliTRDseedV1 *const tracklets){
3705 // Calculates the reference x-position for the tilted Rieman fit defined as middle
3706 // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
3707 // are taken into account
3709 // Parameters: - Array of tracklets(AliTRDseedV1)
3711 // Output: - The reference x-position(Float_t)
3712 // Only kept for compatibility with the old code
3714 Int_t nDistances = 0;
3715 Float_t meanDistance = 0.;
3716 Int_t startIndex = 5;
3717 for(Int_t il =5; il > 0; il--){
3718 if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
3719 Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
3720 meanDistance += xdiff;
3723 if(tracklets[il].IsOK()) startIndex = il;
3725 if(tracklets[0].IsOK()) startIndex = 0;
3727 // We should normally never get here
3728 Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
3729 Int_t iok = 0, idiff = 0;
3730 // This attempt is worse and should be avoided:
3731 // check for two chambers which are OK and repeat this without taking the mean value
3732 // Strategy avoids a division by 0;
3733 for(Int_t il = 5; il >= 0; il--){
3734 if(tracklets[il].IsOK()){
3735 xpos[iok] = tracklets[il].GetX0();
3739 if(iok) idiff++; // to get the right difference;
3743 meanDistance = (xpos[0] - xpos[1])/idiff;
3746 // we have do not even have 2 layers which are OK? The we do not need to fit at all
3751 meanDistance /= nDistances;
3753 return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
3756 //_____________________________________________________________________________
3757 Double_t AliTRDtrackerV1::FitTiltedRiemanV1(AliTRDseedV1 *const tracklets){
3759 // Track Fitter Function using the new class implementation of
3762 AliTRDtrackFitterRieman fitter;
3763 fitter.SetRiemanFitter(GetTiltedRiemanFitter());
3765 for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) fitter.SetTracklet(il, &tracklets[il]);
3766 Double_t chi2 = fitter.Eval();
3767 // Update the tracklets
3768 Double_t cov[15]; Double_t x0;
3769 memset(cov, 0, sizeof(Double_t) * 15);
3770 for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++){
3771 x0 = tracklets[il].GetX0();
3772 tracklets[il].SetYref(0, fitter.GetYat(x0));
3773 tracklets[il].SetZref(0, fitter.GetZat(x0));
3774 tracklets[il].SetYref(1, fitter.GetDyDxAt(x0));
3775 tracklets[il].SetZref(1, fitter.GetDzDx());
3776 tracklets[il].SetC(fitter.GetCurvature());
3777 fitter.GetCovAt(x0, cov);
3778 tracklets[il].SetCovRef(cov);
3779 tracklets[il].SetChi2(chi2);
3784 //____________________________________________________________________
3785 void AliTRDtrackerV1::UnsetTrackletsTrack(const AliTRDtrackV1 * const track)
3787 // Remove tracklets from tracker list attached to "track"
3789 for(Int_t il(0); il<kNPlanes; il++){
3790 if((idx = track->GetTrackletIndex(il)) < 0) continue;
3791 delete (fTracklets->RemoveAt(idx));
3796 ///////////////////////////////////////////////////////
3798 // Resources of class AliTRDLeastSquare //
3800 ///////////////////////////////////////////////////////
3802 //_____________________________________________________________________________
3803 AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){
3805 // Constructor of the nested class AliTRDtrackFitterLeastSquare
3807 // Fast solving linear regresion in 2D
3809 // The data members have the following meaning
3820 // fCovarianceMatrix[0] : s2a
3821 // fCovarianceMatrix[1] : s2b
3822 // fCovarianceMatrix[2] : cov(ab)
3824 memset(fParams, 0, sizeof(Double_t) * 2);
3825 memset(fSums, 0, sizeof(Double_t) * 6);
3826 memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
3830 //_____________________________________________________________________________
3831 void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(const Double_t *const x, Double_t y, Double_t sigmaY){
3833 // Adding Point to the fitter
3836 Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
3838 const Double_t &xpt = *x;
3839 // printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
3841 fSums[1] += weight * xpt;
3842 fSums[2] += weight * y;
3843 fSums[3] += weight * xpt * y;
3844 fSums[4] += weight * xpt * xpt;
3845 fSums[5] += weight * y * y;
3848 //_____________________________________________________________________________
3849 void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(const Double_t *const x, Double_t y, Double_t sigmaY){
3851 // Remove Point from the sample
3854 Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
3856 const Double_t &xpt = *x;
3858 fSums[1] -= weight * xpt;
3859 fSums[2] -= weight * y;
3860 fSums[3] -= weight * xpt * y;
3861 fSums[4] -= weight * xpt * xpt;
3862 fSums[5] -= weight * y * y;
3865 //_____________________________________________________________________________
3866 Bool_t AliTRDtrackerV1::AliTRDLeastSquare::Eval(){
3868 // Evaluation of the fit:
3869 // Calculation of the parameters
3870 // Calculation of the covariance matrix
3873 Double_t det = fSums[0] * fSums[4] - fSums[1] *fSums[1];
3874 if(TMath::Abs(det)<1.e-30) return kFALSE;
3876 // for(Int_t isum = 0; isum < 5; isum++)
3877 // printf("fSums[%d] = %f\n", isum, fSums[isum]);
3878 // printf("denominator = %f\n", denominator);
3879 fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/det;
3880 fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2])/det;
3881 // printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
3883 // Covariance matrix
3884 Double_t den = fSums[0]*fSums[4] - fSums[1]*fSums[1];
3885 fCovarianceMatrix[0] = fSums[4] / den;
3886 fCovarianceMatrix[1] = fSums[0] / den;
3887 fCovarianceMatrix[2] = -fSums[1] / den;
3888 /* fCovarianceMatrix[0] = fSums[4] / fSums[0] - fSums[1] * fSums[1] / (fSums[0] * fSums[0]);
3889 fCovarianceMatrix[1] = fSums[5] / fSums[0] - fSums[2] * fSums[2] / (fSums[0] * fSums[0]);
3890 fCovarianceMatrix[2] = fSums[3] / fSums[0] - fSums[1] * fSums[2] / (fSums[0] * fSums[0]);*/
3897 //_____________________________________________________________________________
3898 Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(const Double_t *const xpos) const {
3900 // Returns the Function value of the fitted function at a given x-position
3902 return fParams[0] + fParams[1] * (*xpos);
3905 //_____________________________________________________________________________
3906 void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const {
3908 // Copies the values of the covariance matrix into the storage
3910 memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
3913 //_____________________________________________________________________________
3914 void AliTRDtrackerV1::AliTRDLeastSquare::Reset(){
3918 memset(fParams, 0, sizeof(Double_t) * 2);
3919 memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
3920 memset(fSums, 0, sizeof(Double_t) * 6);
3923 ///////////////////////////////////////////////////////
3925 // Resources of class AliTRDtrackFitterRieman //
3927 ///////////////////////////////////////////////////////
3929 //_____________________________________________________________________________
3930 AliTRDtrackerV1::AliTRDtrackFitterRieman::AliTRDtrackFitterRieman():
3936 fSysClusterError(0.)
3939 // Default constructor
3941 fZfitter = new AliTRDLeastSquare;
3942 fCovarPolY = new TMatrixD(3,3);
3943 fCovarPolZ = new TMatrixD(2,2);
3944 memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * 6);
3945 memset(fParameters, 0, sizeof(Double_t) * 5);
3946 memset(fSumPolY, 0, sizeof(Double_t) * 5);
3947 memset(fSumPolZ, 0, sizeof(Double_t) * 2);
3950 //_____________________________________________________________________________
3951 AliTRDtrackerV1::AliTRDtrackFitterRieman::~AliTRDtrackFitterRieman(){
3955 if(fZfitter) delete fZfitter;
3956 if(fCovarPolY) delete fCovarPolY;
3957 if(fCovarPolZ) delete fCovarPolZ;
3960 //_____________________________________________________________________________
3961 void AliTRDtrackerV1::AliTRDtrackFitterRieman::Reset(){
3966 fTrackFitter->StoreData(kTRUE);
3967 fTrackFitter->ClearPoints();
3973 memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * AliTRDgeometry::kNlayer);
3974 memset(fParameters, 0, sizeof(Double_t) * 5);
3975 memset(fSumPolY, 0, sizeof(Double_t) * 5);
3976 memset(fSumPolZ, 0, sizeof(Double_t) * 2);
3977 for(Int_t irow = 0; irow < fCovarPolY->GetNrows(); irow++)
3978 for(Int_t icol = 0; icol < fCovarPolY->GetNcols(); icol++){
3979 (*fCovarPolY)(irow, icol) = 0.;
3980 if(irow < 2 && icol < 2)
3981 (*fCovarPolZ)(irow, icol) = 0.;
3985 //_____________________________________________________________________________
3986 void AliTRDtrackerV1::AliTRDtrackFitterRieman::SetTracklet(Int_t itr, AliTRDseedV1 *tracklet){
3988 // Add tracklet into the fitter
3990 if(itr >= AliTRDgeometry::kNlayer) return;
3991 fTracklets[itr] = tracklet;
3994 //_____________________________________________________________________________
3995 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::Eval(){
3998 // 1. Apply linear transformation and store points in the fitter
3999 // 2. Evaluate the fit
4000 // 3. Check if the result of the fit in z-direction is reasonable
4002 // 3a. Fix the parameters 3 and 4 with the results of a simple least
4004 // 3b. Redo the fit with the fixed parameters
4005 // 4. Store fit results (parameters and errors)
4010 fXref = CalculateReferenceX();
4011 for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) UpdateFitters(fTracklets[il]);
4012 if(!fTrackFitter->GetNpoints()) return 1e10;
4014 fTrackFitter->Eval();
4016 fParameters[3] = fTrackFitter->GetParameter(3);
4017 fParameters[4] = fTrackFitter->GetParameter(4);
4018 if(!CheckAcceptable(fParameters[3], fParameters[4])) {
4019 fTrackFitter->FixParameter(3, fZfitter->GetFunctionValue(&fXref));
4020 fTrackFitter->FixParameter(4, fZfitter->GetFunctionParameter(1));
4021 fTrackFitter->Eval();
4022 fTrackFitter->ReleaseParameter(3);
4023 fTrackFitter->ReleaseParameter(4);
4024 fParameters[3] = fTrackFitter->GetParameter(3);
4025 fParameters[4] = fTrackFitter->GetParameter(4);
4027 // Update the Fit Parameters and the errors
4028 fParameters[0] = fTrackFitter->GetParameter(0);
4029 fParameters[1] = fTrackFitter->GetParameter(1);
4030 fParameters[2] = fTrackFitter->GetParameter(2);
4032 // Prepare Covariance estimation
4033 (*fCovarPolY)(0,0) = fSumPolY[0]; (*fCovarPolY)(1,1) = fSumPolY[2]; (*fCovarPolY)(2,2) = fSumPolY[4];
4034 (*fCovarPolY)(1,0) = (*fCovarPolY)(0,1) = fSumPolY[1];
4035 (*fCovarPolY)(2,0) = (*fCovarPolY)(0,2) = fSumPolY[2];
4036 (*fCovarPolY)(2,1) = (*fCovarPolY)(1,2) = fSumPolY[3];
4037 fCovarPolY->Invert();
4038 (*fCovarPolZ)(0,0) = fSumPolZ[0]; (*fCovarPolZ)(1,1) = fSumPolZ[2];
4039 (*fCovarPolZ)(1,0) = (*fCovarPolZ)(0,1) = fSumPolZ[1];
4040 fCovarPolZ->Invert();
4041 return fTrackFitter->GetChisquare() / fTrackFitter->GetNpoints();
4044 //_____________________________________________________________________________
4045 void AliTRDtrackerV1::AliTRDtrackFitterRieman::UpdateFitters(AliTRDseedV1 * const tracklet){
4047 // Does the transformations and updates the fitters
4048 // The following transformation is applied
4050 AliTRDcluster *cl = NULL;
4051 Double_t x, y, z, dx, t, w, we, yerr, zerr;
4053 if(!tracklet || !tracklet->IsOK()) return;
4054 Double_t tilt = tracklet->GetTilt();
4055 for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
4056 if(!(cl = tracklet->GetClusters(itb))) continue;
4057 if(!cl->IsInChamber()) continue;
4058 if (!tracklet->IsUsable(itb)) continue;
4065 uvt[0] = 2. * x * t;
4067 uvt[2] = 2. * tilt * t;
4068 uvt[3] = 2. * tilt * dx * t;
4069 w = 2. * (y + tilt*z) * t;
4070 // error definition changes for the different calls
4072 we *= TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2());
4073 // Update sums for error calculation
4074 yerr = 1./(TMath::Sqrt(cl->GetSigmaY2()) + fSysClusterError);
4076 zerr = 1./cl->GetSigmaZ2();
4077 for(Int_t ipol = 0; ipol < 5; ipol++){
4078 fSumPolY[ipol] += yerr;
4081 fSumPolZ[ipol] += zerr;
4085 fTrackFitter->AddPoint(uvt, w, we);
4086 fZfitter->AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
4090 //_____________________________________________________________________________
4091 Bool_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CheckAcceptable(Double_t offset, Double_t slope){
4093 // Check whether z-results are acceptable
4094 // Definition: Distance between tracklet fit and track fit has to be
4095 // less then half a padlength
4096 // Point of comparision is at the anode wire
4098 Bool_t acceptablez = kTRUE;
4099 Double_t zref = 0.0;
4100 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
4101 if(!fTracklets[iLayer]->IsOK()) continue;
4102 zref = offset + slope * (fTracklets[iLayer]->GetX0() - fXref);
4103 if (TMath::Abs(fTracklets[iLayer]->GetZfit(0) - zref) > fTracklets[iLayer]->GetPadLength() * 0.5 + 1.0)
4104 acceptablez = kFALSE;
4109 //_____________________________________________________________________________
4110 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetYat(Double_t x) const {
4112 // Calculate y position out of the track parameters
4113 // y: R^2 = (x - x0)^2 + (y - y0)^2
4114 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
4115 // R = Sqrt() = 1/Curvature
4116 // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
4119 Double_t disc = (x * fParameters[0] + fParameters[1]);
4120 disc = 1 - fParameters[0]*fParameters[2] + fParameters[1]*fParameters[1] - disc*disc;
4122 disc = TMath::Sqrt(disc);
4123 y = (1.0 - disc) / fParameters[0];
4128 //_____________________________________________________________________________
4129 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetZat(Double_t x) const {
4131 // Return z position for a given x position
4132 // Simple linear function
4134 return fParameters[3] + fParameters[4] * (x - fXref);
4137 //_____________________________________________________________________________
4138 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetDyDxAt(Double_t x) const {
4140 // Calculate dydx at a given radial position out of the track parameters
4141 // dy: R^2 = (x - x0)^2 + (y - y0)^2
4142 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
4143 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
4144 // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
4145 // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
4147 Double_t x0 = -fParameters[1] / fParameters[0];
4148 Double_t curvature = GetCurvature();
4150 if (-fParameters[2] * fParameters[0] + fParameters[1] * fParameters[1] + 1 > 0) {
4151 if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
4152 Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
4153 if (fParameters[0] < 0) yderiv *= -1.0;
4160 //_____________________________________________________________________________
4161 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCurvature() const {
4163 // Calculate track curvature
4166 Double_t curvature = 1.0 + fParameters[1]*fParameters[1] - fParameters[2]*fParameters[0];
4167 if (curvature > 0.0)
4168 curvature = fParameters[0] / TMath::Sqrt(curvature);
4172 //_____________________________________________________________________________
4173 void AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCovAt(Double_t x, Double_t *cov) const {
4175 // Error Definition according to gauss error propagation
4177 TMatrixD transform(3,3);
4178 transform(0,0) = transform(1,1) = transform(2,2) = 1;
4179 transform(0,1) = transform(1,2) = x;
4180 transform(0,2) = x*x;
4181 TMatrixD covariance(transform, TMatrixD::kMult, *fCovarPolY);
4182 covariance *= transform.T();
4183 cov[0] = covariance(0,0);
4184 TMatrixD transformZ(2,2);
4185 transformZ(0,0) = transformZ(1,1) = 1;
4186 transformZ(0,1) = x;
4187 TMatrixD covarZ(transformZ, TMatrixD::kMult, *fCovarPolZ);
4188 covarZ *= transformZ.T();
4189 cov[1] = covarZ(0,0);
4193 //____________________________________________________________________
4194 Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CalculateReferenceX(){
4196 // Calculates the reference x-position for the tilted Rieman fit defined as middle
4197 // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
4198 // are taken into account
4200 // Parameters: - Array of tracklets(AliTRDseedV1)
4202 // Output: - The reference x-position(Float_t)
4204 Int_t nDistances = 0;
4205 Float_t meanDistance = 0.;
4206 Int_t startIndex = 5;
4207 for(Int_t il =5; il > 0; il--){
4208 if(fTracklets[il]->IsOK() && fTracklets[il -1]->IsOK()){
4209 Float_t xdiff = fTracklets[il]->GetX0() - fTracklets[il -1]->GetX0();
4210 meanDistance += xdiff;
4213 if(fTracklets[il]->IsOK()) startIndex = il;
4215 if(fTracklets[0]->IsOK()) startIndex = 0;
4217 // We should normally never get here
4218 Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
4219 Int_t iok = 0, idiff = 0;
4220 // This attempt is worse and should be avoided:
4221 // check for two chambers which are OK and repeat this without taking the mean value
4222 // Strategy avoids a division by 0;
4223 for(Int_t il = 5; il >= 0; il--){
4224 if(fTracklets[il]->IsOK()){
4225 xpos[iok] = fTracklets[il]->GetX0();
4229 if(iok) idiff++; // to get the right difference;
4233 meanDistance = (xpos[0] - xpos[1])/idiff;
4236 // we have do not even have 2 layers which are OK? The we do not need to fit at all
4241 meanDistance /= nDistances;
4243 return fTracklets[startIndex]->GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());