]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - HMPID/AliHMPIDRecon.h
Qthre from preprocessor now is used in the code.
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDRecon.h
index 144ce2fd39795d3b697425def46d14fa9ab2a8d8..c3d699147320e9d0464683e3e201e86d652a0808 100644 (file)
 #include <TTask.h>        //base class
 #include <TVector3.h>     //fields 
 
-class TClonesArray;
+class TClonesArray; //CkovAngle()
+class AliESDtrack;  //CkovAngle()
+
 class AliHMPIDRecon : public TTask 
 {
 public : 
              AliHMPIDRecon();
     virtual ~AliHMPIDRecon()                                                          {}
 
-  
-  Double_t CkovAngle    (TClonesArray *pCluLst,Int_t &iNaccepted);                                                         //reconstructed Theta Cerenkov
-  Double_t CkovSigma2   (                                                                   )const{ return fCkovSigma2;} //track ckov angle error squared
-  Double_t FindPhotCkov (Double_t cluX,Double_t cluY                                        );     //find ckov angle for single photon candidate
-  Double_t FindPhotPhi  (Double_t cluX,Double_t cluY                                        );     //find phi angle for single photon candidate
+
+  void     CkovAngle    (AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean, Double_t qthre);  //reconstructed Theta Cerenkov
+  Bool_t   FindPhotCkov (Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer    );     //find ckov angle for single photon candidate
   Double_t FindRingCkov (Int_t iNclus                                                       );     //best ckov for ring formed by found photon candidates
-  Double_t FindRingArea (Double_t ckov                                                      )const;//estimated area of ring in cm^2
+  Double_t FindRingArea (Double_t ckovAngMin,Double_t ckovAngMax                            )const;//estimated area of delta ring in cm^2 to weight Hough Transform
   Int_t    FlagPhot     (Double_t ckov                                                      );     //is photon ckov near most probable track ckov
   Double_t HoughResponse(                                                                   );     //most probable track ckov angle
-  void     Propagate    (const TVector3 &dir,      TVector3 &pos,Double_t z                 )const;//propagate photon alogn the line  
+  void     Propagate    (const TVector3  dir,      TVector3 &pos,Double_t z                 )const;//propagate photon alogn the line  
   void     Refract      (      TVector3 &dir,                    Double_t n1,    Double_t n2)const;//refract photon on the boundary
-  Double_t TracePhot    (Double_t ckovTh,Double_t ckovPh,TVector2 &pos                      )const;//trace photon created by track to PC 
-  void     SetTrack     (Double_t th,Double_t ph,Double_t x,Double_t y                      ){fTrkDir.SetMagThetaPhi(1,th,ph);  fTrkPos.Set(x,y);}//set track
+  TVector2 TracePhot    (Double_t ckovTh,Double_t ckovPh                                    )const;//trace photon created by track to PC 
+  TVector2 TraceForward (TVector3 dirCkov                                                   )const;//tracing forward a photon from (x,y) to PC
+  void     RecPhot      (TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer               );     //theta,phi cerenkov reconstructed
+  void     SetTrack     (Double_t xRad,Double_t yRad,Double_t theta,Double_t phi            )
+                                {fTrkDir.SetMagThetaPhi(1,theta,phi);  fTrkPos.Set(xRad,yRad);}    //set track parameter at RAD
+  void     SetImpPC     (Double_t xPc,Double_t yPc                                          )
+                                {fPc.Set(xPc,yPc);}                                                //set track impact to PC 
   Double_t SigLoc       (Double_t ckovTh,Double_t ckovPh,Double_t beta                      )const;//error due to cathode segmetation
   Double_t SigGeom      (Double_t ckovTh,Double_t ckovPh,Double_t beta                      )const;//error due to unknown photon origin
   Double_t SigCrom      (Double_t ckovTh,Double_t ckovPh,Double_t beta                      )const;//error due to unknonw photon energy
-  Double_t Sigma2       (Double_t ckovTh,Double_t ckovPh                                    )const;//photon candidate sigma
-  
-  static void  Display  (                                                                   );    //event display  
-   
-  
+  Double_t Sigma2       (Double_t ckovTh,Double_t ckovPh                                    )const;//photon candidate sigma^2
+  enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11};
+// HTA hidden track algorithm
+  Bool_t   CkovHiddenTrk    (AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean,Double_t qthre);//Pattern recognition without trackinf information
+  Bool_t   CluPreFilter     (TClonesArray *pClu               );                                   //Pre clustering filter to cut bkg clusters
+  Bool_t   DoRecHiddenTrk   (TClonesArray *pClu               );                                   //Calling to the fitted procedures
+  Bool_t   FitEllipse       (Double_t &phiRec                    );                                //Fit clusters with a conical section (kTRUE only for ellipses)
+  Bool_t   FitFree          (Double_t phiRec                     );                                //Fit (th,ph) of the track and ckovFit as result
+  Double_t FunConSect       (Double_t *c,Double_t x,Double_t y   );                                //Function of a general conical section
+  void     SetNClu          (Int_t nclu                          ) {fNClu=nclu;}                   //Setter for # of clusters
+  void     SetClCk          (Int_t i,Bool_t what                 ) {fClCk[i]=what;}                //Setter for cluster flags 
+  void     SetCkovFit       (Double_t ckov                       ) {fCkovFit=ckov;}                //Setter for ckov fitted
+  void     SetCkovSig2      (Double_t rms                       ) {fCkovSig2=rms;}                 //Setter for sigma2 ckov fitted
+  void     SetTrkFit        (Double_t th,Double_t ph             ) {fThTrkFit = th;fPhTrkFit = ph;}//Setter for (th,ph) of the track
+  void     SetRadXY         (Double_t  x,Double_t y              ) {fRadX = x;fRadY = y;}          //Setter for (th,ph) of the track
+  static void     FunMinEl  (Int_t&/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t /* */);   //Fit function to find ellipes parameters
+  static void     FunMinPhot(Int_t&/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t iflag);   //Fit function to minimize thetaCer RMS/Sqrt(n) of n clusters
+  Int_t    IdxMip       ()const {return fIdxMip;}                                                  //Getter index of MIP
+  Double_t MipX         ()const {return fMipX;}                                                    //Getter of x MIP in LORS
+  Double_t MipY         ()const {return fMipY;}                                                    //Getter of y MIP in LORS
+  Double_t MipQ         ()const {return fMipQ;}                                                    //Getter of Q MIP
+  Double_t RadX         ()const {return fRadX;}                                                    //Getter of x at RAD in LORS
+  Double_t RadY         ()const {return fRadY;}                                                    //Getter of y at RAD in LORS
+  Int_t    NClu         ()const {return fNClu;}                                                    //Getter of cluster multiplicity
+  Double_t XClu         (Int_t i)const {return fXClu[i];}                                          //Getter of x clu
+  Double_t YClu         (Int_t i)const {return fYClu[i];}                                          //Getter of y clu
+  Bool_t   ClCk         (Int_t i)const {return fClCk[i];}                                          //Getter of cluster flags
+  Double_t CkovFit      ()const {return fCkovFit;}                                                 //Getter of ckov angle fitted
+  Double_t ThTrkFit     ()const {return fThTrkFit;}                                                //Getter of theta fitted of the track
+  Double_t PhTrkFit     ()const {return fPhTrkFit;}                                                //Getter of phi fitted of the track
+//
 protected:
-  static const Double_t fgkRadThick;                      //radiator thickness
-  static const Double_t fgkWinThick;                      //window thickness
-  static const Double_t fgkGapThick;                      //proximity gap thickness
-  static const Double_t fgkRadIdx;                        //mean refractive index of RAD material (C6F14)
-  static const Double_t fgkWinIdx;                        //mean refractive index of WIN material (SiO2) 
-  static const Double_t fgkGapIdx;                        //mean refractive index of GAP material (CH4)
+  Double_t fRadNmean;                          //C6F14 mean refractive index
   Int_t    fPhotCnt;                           // counter of photons candidate
   Int_t    fPhotFlag[3000];                    // flags of photon candidates
   Double_t fPhotCkov[3000];                    // Ckov angles of photon candidates, [rad]
@@ -58,16 +84,38 @@ protected:
   Double_t fPhotWei [3000];                    // weigths of photon candidates
   Double_t fCkovSigma2;                        // sigma2 of the reconstructed ring
 
-  Bool_t  fIsWEIGHT;                          // flag to consider weight procedure
-  Float_t fDTheta;                            // Step for sliding window
-  Float_t fWindowWidth;                       // Hough width of sliding window
+  Bool_t   fIsWEIGHT;                          // flag to consider weight procedure
+  Float_t  fDTheta;                            // Step for sliding window
+  Float_t  fWindowWidth;                       // Hough width of sliding window
   
-  TVector3 fTrkDir;                           //track direction in LORS
-  TVector2 fTrkPos;                           //track positon in LORS at the middle of radiator
+  TVector3 fTrkDir;                            //track direction in LORS at RAD
+  TVector2 fTrkPos;                            //track positon in LORS at RAD
+  TVector2 fPc;                                //track position at PC
+// HTA hidden track algorithm
+  Double_t fMipX;                              //mip X position for Hidden Track Algorithm  
+  Double_t fMipY;                              //mip Y position for Hidden Track Algorithm
+  Double_t fMipQ;                              //mip Q          for Hidden Track Algorithm
+  Double_t fRadX;                              //rad X position for Hidden Track Algorithm  
+  Double_t fRadY;                              //rad Y position for Hidden Track Algorithm
+  Int_t    fIdxMip;                            //mip index in the clus list
+  Int_t    fNClu;                              //n clusters to fit
+  Double_t fXClu[100];                         //container for x clus position
+  Double_t fYClu[100];                         //container for y clus position
+  Bool_t   fClCk[100];                         //flag if cluster is used in fitting
+  Double_t fThTrkFit;                          //theta fitted of the track
+  Double_t fPhTrkFit;                          //phi   fitted of the track
+  Double_t fCkovFit;                           //estimated ring Cherenkov angle
+  Double_t fCkovSig2;                          //estimated error^2 on ring Cherenkov angle
+//
+private:
+  static const Double_t fgkRadThick;                      //radiator thickness
+  static const Double_t fgkWinThick;                      //window thickness
+  static const Double_t fgkGapThick;                      //proximity gap thickness
+  static const Double_t fgkWinIdx;                        //mean refractive index of WIN material (SiO2) 
+  static const Double_t fgkGapIdx;                        //mean refractive index of GAP material (CH4)
+
   ClassDef(AliHMPIDRecon,0)
 };
 
-typedef AliHMPIDRecon AliRICHRecon; // for backward compatibility
-    
 #endif // #ifdef AliHMPIDRecon_cxx