]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSClusterFinderSDD.cxx
Improved access to AliITSgeom in reconstruction
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
index d13b3e498f726fb79ab0e01848a66c5c96127451..6430c48401dbf5250c004ecdd72cfcc3b610c72b 100644 (file)
  * about the suitability of this software for any purpose. It is          *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
-#include <iostream.h>
-#include <TFile.h>
-#include <TMath.h>
-#include <math.h>
+/*
+  $Id$
+ */
+/////////////////////////////////////////////////////////////////////////// 
+//  Cluster finder                                                       //
+//  for Silicon                                                          //
+//  Drift Detector                                                       //
+////////////////////////////////////////////////////////////////////////// 
+
 
 #include "AliITSClusterFinderSDD.h"
 #include "AliITSMapA1.h"
-#include "AliITS.h"
-#include "AliITSdigit.h"
-#include "AliITSRawCluster.h"
+#include "AliITSRawClusterSDD.h"
 #include "AliITSRecPoint.h"
-#include "AliITSsegmentation.h"
-#include "AliITSresponseSDD.h"
-#include "AliRun.h"
+#include "AliITSdigitSDD.h"
+#include "AliITSDetTypeRec.h"
+#include "AliITSCalibrationSDD.h"
+#include "AliITSsegmentationSDD.h"
+#include "AliLog.h"
 
 ClassImp(AliITSClusterFinderSDD)
 
 //______________________________________________________________________
-AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
-                                              AliITSresponse *response,
-                                              TClonesArray *digits,
-                                              TClonesArray *recp){
-    // standard constructor
-
-    fSegmentation=seg;
-    fResponse=response;
-    fDigits=digits;
-    fClusters=recp;
-    fNclusters= fClusters->GetEntriesFast();
-    SetCutAmplitude();
-    SetDAnode();
-    SetDTime();
-    SetMinPeak();
-    SetMinNCells();
-    SetMaxNCells();
-    SetTimeCorr();
-    SetMinCharge();
-    fMap=new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
+AliITSClusterFinderSDD::AliITSClusterFinderSDD():
+AliITSClusterFinder(),
+fNclusters(0),
+fDAnode(0.0),
+fDTime(0.0),
+fTimeCorr(0.0),
+fCutAmplitude(0),
+fMinPeak(0),
+fMinCharge(0),
+fMinNCells(0),
+fMaxNCells(0){
+    // default constructor
 }
 //______________________________________________________________________
-AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
-    // default constructor
+AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSDetTypeRec* dettyp,
+                                               TClonesArray *digits,
+                                               TClonesArray *recp):
+AliITSClusterFinder(dettyp),
+fNclusters(0),
+fDAnode(0.0),
+fDTime(0.0),
+fTimeCorr(0.0),
+fCutAmplitude(0),
+fMinPeak(0),
+fMinCharge(0),
+fMinNCells(0),
+fMaxNCells(0){
+    // standard constructor
 
-    fSegmentation=0;
-    fResponse=0;
-    fDigits=0;
-    fClusters=0;
-    fNclusters=0;
-    fMap=0;
-    fCutAmplitude=0;
+    SetDigits(digits);
+    SetClusters(recp);
+    SetCutAmplitude(fDetTypeRec->GetITSgeom()->GetStartSDD());
     SetDAnode();
     SetDTime();
-    SetMinPeak();
+    SetMinPeak((Int_t)(((AliITSCalibrationSDD*)GetResp(fDetTypeRec->GetITSgeom()->GetStartSDD()))->
+                       GetNoiseAfterElectronics()*5));
+    //    SetMinPeak();
     SetMinNCells();
     SetMaxNCells();
     SetTimeCorr();
     SetMinCharge();
-}
-//____________________________________________________________________________
-AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
-    // destructor
-
-    if(fMap) delete fMap;
+    SetMap(new AliITSMapA1(GetSeg(),Digits(),fCutAmplitude));
 }
 //______________________________________________________________________
-void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
+void AliITSClusterFinderSDD::SetCutAmplitude(Int_t mod,Double_t nsigma){
     // set the signal threshold for cluster finder
-    Float_t baseline,noise,noise_after_el;
+    Double_t baseline,noise,noiseAfterEl;
 
-    fResponse->GetNoiseParam(noise,baseline);
-    noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
-    fCutAmplitude=(Int_t)((baseline + nsigma*noise_after_el) + 0.2);
+    GetResp(mod)->GetNoiseParam(noise,baseline);
+    noiseAfterEl = ((AliITSCalibrationSDD*)GetResp(mod))->GetNoiseAfterElectronics();
+    fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
 }
 //______________________________________________________________________
 void AliITSClusterFinderSDD::Find1DClusters(){
     // find 1D clusters
-    static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
   
     // retrieve the parameters 
-    Int_t fNofMaps = fSegmentation->Npz();
-    Int_t fMaxNofSamples = fSegmentation->Npx();
-    Int_t fNofAnodes = fNofMaps/2;
-    Int_t dummy=0;
-    Float_t fTimeStep = fSegmentation->Dpx(dummy);
-    Float_t fSddLength = fSegmentation->Dx();
-    Float_t fDriftSpeed = fResponse->DriftSpeed();  
-    Float_t anodePitch = fSegmentation->Dpz(dummy);
+    Int_t fNofMaps       = GetSeg()->Npz();
+    Int_t fMaxNofSamples = GetSeg()->Npx();
+    Int_t fNofAnodes     = fNofMaps/2;
+    Int_t dummy          = 0;
+    Double_t fTimeStep    = GetSeg()->Dpx(dummy);
+    Double_t fSddLength   = GetSeg()->Dx();
+    Double_t fDriftSpeed  = GetResp(fModule)->GetDriftSpeed();  
+    Double_t anodePitch   = GetSeg()->Dpz(dummy);
 
     // map the signal
-    fMap->SetThreshold(fCutAmplitude);
-    fMap->FillMap();
+    Map()->ClearMap();
+    Map()->SetThreshold(fCutAmplitude);
+    Map()->FillMap();
   
-    Float_t noise;
-    Float_t baseline;
-    fResponse->GetNoiseParam(noise,baseline);
+    Double_t noise;
+    Double_t baseline;
+    GetResp(fModule)->GetNoiseParam(noise,baseline);
   
     Int_t nofFoundClusters = 0;
     Int_t i;
-    Float_t **dfadc = new Float_t*[fNofAnodes];
-    for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
-    Float_t fadc = 0.;
-    Float_t fadc1 = 0.;
-    Float_t fadc2 = 0.;
+    Double_t **dfadc = new Double_t*[fNofAnodes];
+    for(i=0;i<fNofAnodes;i++) dfadc[i] = new Double_t[fMaxNofSamples];
+    Double_t fadc  = 0.;
+    Double_t fadc1 = 0.;
+    Double_t fadc2 = 0.;
     Int_t j,k,idx,l,m;
     for(j=0;j<2;j++) {
-       for(k=0;k<fNofAnodes;k++) {
-           idx = j*fNofAnodes+k;
-           // signal (fadc) & derivative (dfadc)
-           dfadc[k][255]=0.;
-           for(l=0; l<fMaxNofSamples; l++) {
-               fadc2=(Float_t)fMap->GetSignal(idx,l);
-               if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
-               if(l>0) dfadc[k][l-1] = fadc2-fadc1;
-           } // samples
-       } // anodes
+        for(k=0;k<fNofAnodes;k++) {
+            idx = j*fNofAnodes+k;
+            // signal (fadc) & derivative (dfadc)
+            dfadc[k][255]=0.;
+            for(l=0; l<fMaxNofSamples; l++) {
+                fadc2=(Double_t)Map()->GetSignal(idx,l);
+                if(l>0) fadc1=(Double_t)Map()->GetSignal(idx,l-1);
+                if(l>0) dfadc[k][l-1] = fadc2-fadc1;
+            } // samples
+        } // anodes
 
-       for(k=0;k<fNofAnodes;k++) {
-       //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
-           idx = j*fNofAnodes+k;
-           Int_t imax = 0;
-           Int_t imaxd = 0;
-           Int_t it=0;
-           while(it <= fMaxNofSamples-3) {
-               imax = it;
-               imaxd = it;
-               // maximum of signal      
-               Float_t fadcmax = 0.;
-               Float_t dfadcmax = 0.;
-               Int_t lthrmina = 1;
-               Int_t lthrmint = 3;
-               Int_t lthra = 1;
-               Int_t lthrt = 0;
-               for(m=0;m<20;m++) {
-                   Int_t id = it+m;
-                   if(id>=fMaxNofSamples) break;
-                   fadc=(float)fMap->GetSignal(idx,id);
-                   if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
-                   if(fadc > (float)fCutAmplitude) { 
-                       lthrt++; 
-                   } // end if
-                   if(dfadc[k][id] > dfadcmax) {
-                       dfadcmax = dfadc[k][id];
-                       imaxd = id;
-                   } // end if
-               } // end for m
-               it = imaxd;
-               if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
-               // cluster charge
-               Int_t tstart = it-2;
-               if(tstart < 0) tstart = 0;
-               Bool_t ilcl = 0;
-               if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
-               if(ilcl) {
-                   nofFoundClusters++;
-                   Int_t tstop = tstart;
-                   Float_t dfadcmin = 10000.;
-                   Int_t ij;
-                   for(ij=0; ij<20; ij++) {
-                       if(tstart+ij > 255) { tstop = 255; break; }
-                       fadc=(float)fMap->GetSignal(idx,tstart+ij);
-                       if((dfadc[k][tstart+ij] < dfadcmin) && 
-                          (fadc > fCutAmplitude)) {
-                           tstop = tstart+ij+5;
-                           if(tstop > 255) tstop = 255;
-                           dfadcmin = dfadc[k][it+ij];
-                       } // end if
-                   } // end for ij
+        for(k=0;k<fNofAnodes;k++) {
+            AliDebug(5,Form("Anode: %d, Wing: %d",k+1,j+1));
+            idx = j*fNofAnodes+k;
+            Int_t imax  = 0;
+            Int_t imaxd = 0;
+            Int_t it    = 0;
+            while(it <= fMaxNofSamples-3) {
+                imax  = it;
+                imaxd = it;
+                // maximum of signal          
+                Double_t fadcmax  = 0.;
+                Double_t dfadcmax = 0.;
+                Int_t lthrmina   = 1;
+                Int_t lthrmint   = 3;
+                Int_t lthra      = 1;
+                Int_t lthrt      = 0;
+                for(m=0;m<20;m++) {
+                    Int_t id = it+m;
+                    if(id>=fMaxNofSamples) break;
+                    fadc=(float)Map()->GetSignal(idx,id);
+                    if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
+                    if(fadc > (float)fCutAmplitude)lthrt++; 
+                    if(dfadc[k][id] > dfadcmax) {
+                        dfadcmax = dfadc[k][id];
+                        imaxd    = id;
+                    } // end if
+                } // end for m
+                it = imaxd;
+                if(Map()->TestHit(idx,imax) == kEmpty) {it++; continue;}
+                // cluster charge
+                Int_t tstart = it-2;
+                if(tstart < 0) tstart = 0;
+                Bool_t ilcl = 0;
+                if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
+                if(ilcl) {
+                    nofFoundClusters++;
+                    Int_t tstop      = tstart;
+                    Double_t dfadcmin = 10000.;
+                    Int_t ij;
+                    for(ij=0; ij<20; ij++) {
+                        if(tstart+ij > 255) { tstop = 255; break; }
+                        fadc=(float)Map()->GetSignal(idx,tstart+ij);
+                        if((dfadc[k][tstart+ij] < dfadcmin) && 
+                           (fadc > fCutAmplitude)) {
+                            tstop = tstart+ij+5;
+                            if(tstop > 255) tstop = 255;
+                            dfadcmin = dfadc[k][it+ij];
+                        } // end if
+                    } // end for ij
 
-                   Float_t clusterCharge = 0.;
-                   Float_t clusterAnode = k+0.5;
-                   Float_t clusterTime = 0.;
-                   Float_t clusterMult = 0.;
-                   Float_t clusterPeakAmplitude = 0.;
-                   Int_t its,peakpos=-1;
-                   Float_t n, baseline;
-                   fResponse->GetNoiseParam(n,baseline);
-                   for(its=tstart; its<=tstop; its++) {
-                       fadc=(float)fMap->GetSignal(idx,its);
-                       if(fadc>baseline) fadc-=baseline;
-                       else fadc=0.;
-                       clusterCharge += fadc;
-                       // as a matter of fact we should take the peak
-                       // pos before FFT
-                       // to get the list of tracks !!!
-                       if(fadc > clusterPeakAmplitude) {
-                           clusterPeakAmplitude = fadc;
-                           //peakpos=fMap->GetHitIndex(idx,its);
-                           Int_t shift=(int)(fTimeCorr/fTimeStep);
-                           if(its>shift && its<(fMaxNofSamples-shift))
-                               peakpos=fMap->GetHitIndex(idx,its+shift);
-                           else peakpos=fMap->GetHitIndex(idx,its);
-                           if(peakpos<0) peakpos=fMap->GetHitIndex(idx,its);
-                       } // end if
-                       clusterTime += fadc*its;
-                       if(fadc > 0) clusterMult++;
-                       if(its == tstop) {
-                           clusterTime /= (clusterCharge/fTimeStep);   // ns
-                           if(clusterTime>fTimeCorr) clusterTime-=fTimeCorr;
-                           //ns
-                       } // end if
-                   } // end for its
+                    Double_t clusterCharge = 0.;
+                    Double_t clusterAnode  = k+0.5;
+                    Double_t clusterTime   = 0.;
+                    Int_t   clusterMult   = 0;
+                    Double_t clusterPeakAmplitude = 0.;
+                    Int_t its,peakpos     = -1;
+                    Double_t n, baseline;
+                    GetResp(fModule)->GetNoiseParam(n,baseline);
+                    for(its=tstart; its<=tstop; its++) {
+                        fadc=(float)Map()->GetSignal(idx,its);
+                        if(fadc>baseline) fadc -= baseline;
+                        else fadc = 0.;
+                        clusterCharge += fadc;
+                        // as a matter of fact we should take the peak
+                        // pos before FFT
+                        // to get the list of tracks !!!
+                        if(fadc > clusterPeakAmplitude) {
+                            clusterPeakAmplitude = fadc;
+                            //peakpos=Map()->GetHitIndex(idx,its);
+                            Int_t shift = (int)(fTimeCorr/fTimeStep);
+                            if(its>shift && its<(fMaxNofSamples-shift))
+                                peakpos  = Map()->GetHitIndex(idx,its+shift);
+                            else peakpos = Map()->GetHitIndex(idx,its);
+                            if(peakpos<0) peakpos =Map()->GetHitIndex(idx,its);
+                        } // end if
+                        clusterTime += fadc*its;
+                        if(fadc > 0) clusterMult++;
+                        if(its == tstop) {
+                            clusterTime /= (clusterCharge/fTimeStep);   // ns
+                            if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
+                            //ns
+                        } // end if
+                    } // end for its
 
-                   Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
-                                                                   anodePitch;
-                   Float_t clusterDriftPath = clusterTime*fDriftSpeed;
-                   clusterDriftPath = fSddLength-clusterDriftPath;
-                   if(clusterCharge <= 0.) break;
-                   AliITSRawClusterSDD clust(j+1,clusterAnode,clusterTime,
-                                             clusterCharge,
-                                             clusterPeakAmplitude,
-                                             peakpos,0.,0.,clusterDriftPath,
-                                             clusteranodePath,clusterMult,0,0,
-                                             0,0,0,0,0);
-                   iTS->AddCluster(1,&clust);
-                   it = tstop;
-               } // ilcl
-               it++;
-           } // while (samples)
-       } // anodes
+                    Double_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
+                                                 anodePitch;
+                    Double_t clusterDriftPath = clusterTime*fDriftSpeed;
+                    clusterDriftPath = fSddLength-clusterDriftPath;
+                    if(clusterCharge <= 0.) break;
+                    AliITSRawClusterSDD clust(j+1,//i
+                                              clusterAnode,clusterTime,//ff
+                                              clusterCharge, //f
+                                              clusterPeakAmplitude, //f
+                                              peakpos, //i
+                                              0.,0.,clusterDriftPath,//fff
+                                              clusteranodePath, //f
+                                              clusterMult, //i
+                                              0,0,0,0,0,0,0);//7*i
+                   fDetTypeRec->AddCluster(1,&clust);
+                    it = tstop;
+                } // ilcl
+                it++;
+            } // while (samples)
+        } // anodes
     } // detectors (2)
-    //fMap->ClearMap();
 
     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
     delete [] dfadc;
@@ -242,204 +244,206 @@ void AliITSClusterFinderSDD::Find1DClusters(){
 //______________________________________________________________________
 void AliITSClusterFinderSDD::Find1DClustersE(){
     // find 1D clusters
-    static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
     // retrieve the parameters 
-    Int_t fNofMaps = fSegmentation->Npz();
-    Int_t fMaxNofSamples = fSegmentation->Npx();
+    Int_t fNofMaps = GetSeg()->Npz();
+    Int_t fMaxNofSamples = GetSeg()->Npx();
     Int_t fNofAnodes = fNofMaps/2;
     Int_t dummy=0;
-    Float_t fTimeStep = fSegmentation->Dpx( dummy );
-    Float_t fSddLength = fSegmentation->Dx();
-    Float_t fDriftSpeed = fResponse->DriftSpeed();
-    Float_t anodePitch = fSegmentation->Dpz( dummy );
-    Float_t n, baseline;
-    fResponse->GetNoiseParam( n, baseline );
+    Double_t fTimeStep = GetSeg()->Dpx( dummy );
+    Double_t fSddLength = GetSeg()->Dx();
+    Double_t fDriftSpeed = GetResp(fModule)->GetDriftSpeed();
+    Double_t anodePitch = GetSeg()->Dpz( dummy );
+    Double_t n, baseline;
+    GetResp(fModule)->GetNoiseParam( n, baseline );
     // map the signal
-    fMap->SetThreshold( fCutAmplitude );
-    fMap->FillMap();
+    Map()->ClearMap();
+    Map()->SetThreshold( fCutAmplitude );
+    Map()->FillMap();
+
     Int_t nClu = 0;
-    // cout << "Search  cluster... "<< endl;
+    //        cout << "Search  cluster... "<< endl;
     for( Int_t j=0; j<2; j++ ){
-       for( Int_t k=0; k<fNofAnodes; k++ ){
-           Int_t idx = j*fNofAnodes+k;
-           Bool_t on = kFALSE;
-           Int_t start = 0;
-           Int_t nTsteps = 0;
-           Float_t fmax = 0.;
-           Int_t lmax = 0;
-           Float_t charge = 0.;
-           Float_t time = 0.;
-           Float_t anode = k+0.5;
-           Int_t peakpos = -1;
-           for( Int_t l=0; l<fMaxNofSamples; l++ ){
-               Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
-               if( fadc > 0.0 ){
-                   if( on == kFALSE && l<fMaxNofSamples-4){
-                       // star RawCluster (reset var.)
-                       Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
-                       if( fadc1 < fadc ) continue;
-                       start = l;
-                       fmax = 0.;
-                       lmax = 0;
-                       time = 0.;
-                       charge = 0.; 
-                       on = kTRUE; 
-                       nTsteps = 0;
-                   } // end if on...
-                   nTsteps++ ;
-                   if( fadc > baseline ) fadc -= baseline;
-                   else fadc=0.;
-                   charge += fadc;
-                   time += fadc*l;
-                   if( fadc > fmax ){ 
-                       fmax = fadc; 
-                       lmax = l; 
-                       Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
-                       if( l > shift && l < (fMaxNofSamples-shift) )  
-                           peakpos = fMap->GetHitIndex( idx, l+shift );
-                       else
-                           peakpos = fMap->GetHitIndex( idx, l );
-                       if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
-                   } // end if fadc
-               }else{ // end fadc>0
-                   if( on == kTRUE ){  
-                       if( nTsteps > 2 ){
-                           //  min # of timesteps for a RawCluster
-                           // Found a RawCluster...
-                           Int_t stop = l-1;
-                           time /= (charge/fTimeStep);   // ns
-                               // time = lmax*fTimeStep;   // ns
-                           if( time > fTimeCorr ) time -= fTimeCorr;   // ns
-                           Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
-                           Float_t driftPath = time*fDriftSpeed;
-                           driftPath = fSddLength-driftPath;
-                           AliITSRawClusterSDD clust(j+1,anode,time,charge,
-                                                     fmax, peakpos,0.,0.,
-                                                     driftPath,anodePath,
-                                                     nTsteps,start,stop,
-                                                     start, stop, 1, k, k );
-                           iTS->AddCluster( 1, &clust );
-                           //  clust.PrintInfo();
-                           nClu++;
-                       } // end if nTsteps
-                       on = kFALSE;
-                   } // end if on==kTRUE
-               } // end if fadc>0
-           } // samples
-       } // anodes
+        for( Int_t k=0; k<fNofAnodes; k++ ){
+            Int_t idx = j*fNofAnodes+k;
+            Bool_t on = kFALSE;
+            Int_t start = 0;
+            Int_t nTsteps = 0;
+            Double_t fmax = 0.;
+            Int_t lmax = 0;
+            Double_t charge = 0.;
+            Double_t time = 0.;
+            Double_t anode = k+0.5;
+            Int_t peakpos = -1;
+            for( Int_t l=0; l<fMaxNofSamples; l++ ){
+                Double_t fadc = (Double_t)Map()->GetSignal( idx, l );
+                if( fadc > 0.0 ){
+                    if( on == kFALSE && l<fMaxNofSamples-4){
+                        // star RawCluster (reset var.)
+                        Double_t fadc1 = (Double_t)Map()->GetSignal( idx, l+1 );
+                        if( fadc1 < fadc ) continue;
+                        start = l;
+                        fmax = 0.;
+                        lmax = 0;
+                        time = 0.;
+                        charge = 0.; 
+                        on = kTRUE; 
+                        nTsteps = 0;
+                    } // end if on...
+                    nTsteps++ ;
+                    if( fadc > baseline ) fadc -= baseline;
+                    else fadc=0.;
+                    charge += fadc;
+                    time += fadc*l;
+                    if( fadc > fmax ){ 
+                        fmax = fadc; 
+                        lmax = l; 
+                        Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
+                        if( l > shift && l < (fMaxNofSamples-shift) )  
+                            peakpos = Map()->GetHitIndex( idx, l+shift );
+                        else
+                            peakpos = Map()->GetHitIndex( idx, l );
+                        if( peakpos < 0) peakpos = Map()->GetHitIndex(idx,l);
+                    } // end if fadc
+                }else{ // end fadc>0
+                    if( on == kTRUE ){        
+                        if( nTsteps > 2 ){
+                            //  min # of timesteps for a RawCluster
+                            // Found a RawCluster...
+                            Int_t stop = l-1;
+                            time /= (charge/fTimeStep);   // ns
+                                // time = lmax*fTimeStep;   // ns
+                            if( time > fTimeCorr ) time -= fTimeCorr;   // ns
+                            Double_t anodePath =(anode-fNofAnodes/2)*anodePitch;
+                            Double_t driftPath = time*fDriftSpeed;
+                            driftPath = fSddLength-driftPath;
+                            AliITSRawClusterSDD clust(j+1,anode,time,charge,
+                                                      fmax, peakpos,0.,0.,
+                                                      driftPath,anodePath,
+                                                      nTsteps,start,stop,
+                                                      start, stop, 1, k, k );
+                           fDetTypeRec->AddCluster( 1, &clust );
+                            if(AliDebugLevel()>=5) clust.PrintInfo();
+                            nClu++;
+                        } // end if nTsteps
+                        on = kFALSE;
+                    } // end if on==kTRUE
+                } // end if fadc>0
+            } // samples
+        } // anodes
     } // wings
-    // cout << "# Rawclusters " << nClu << endl;       
+    AliDebug(3,Form("# Rawclusters %d",nClu));         
     return; 
 }
 //_______________________________________________________________________
-Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
-                                        Int_t *peakX, Int_t *peakZ, 
-                                        Float_t *peakAmp, Float_t minpeak ){
+Int_t AliITSClusterFinderSDD::SearchPeak(Double_t *spect,Int_t xdim,Int_t zdim,
+                                         Int_t *peakX, Int_t *peakZ, 
+                                         Double_t *peakAmp, Double_t minpeak ){
     // search peaks on a 2D cluster
     Int_t npeak = 0;    // # peaks
     Int_t i,j;
     // search peaks
     for( Int_t z=1; z<zdim-1; z++ ){
-       for( Int_t x=2; x<xdim-3; x++ ){
-           Float_t sxz = spect[x*zdim+z];
-           Float_t sxz1 = spect[(x+1)*zdim+z];
-           Float_t sxz2 = spect[(x-1)*zdim+z];
-           // search a local max. in s[x,z]
-           if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
-           if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
-               sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
-               sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
-               sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
-               // peak found
-               peakX[npeak] = x;
-               peakZ[npeak] = z;
-               peakAmp[npeak] = sxz;
-               npeak++;
-           } // end if ....
-       } // end for x
+        for( Int_t x=1; x<xdim-2; x++ ){
+            Double_t sxz = spect[x*zdim+z];
+            Double_t sxz1 = spect[(x+1)*zdim+z];
+            Double_t sxz2 = spect[(x-1)*zdim+z];
+            // search a local max. in s[x,z]
+            if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
+            if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
+                sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
+                sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
+                sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
+                // peak found
+                peakX[npeak] = x;
+                peakZ[npeak] = z;
+                peakAmp[npeak] = sxz;
+                npeak++;
+            } // end if ....
+        } // end for x
     } // end for z
     // search groups of peaks with same amplitude.
     Int_t *flag = new Int_t[npeak];
     for( i=0; i<npeak; i++ ) flag[i] = 0;
     for( i=0; i<npeak; i++ ){
-       for( j=0; j<npeak; j++ ){
-           if( i==j) continue;
-           if( flag[j] > 0 ) continue;
-           if( peakAmp[i] == peakAmp[j] && 
-               TMath::Abs(peakX[i]-peakX[j])<=1 && 
-               TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
-               if( flag[i] == 0) flag[i] = i+1;
-               flag[j] = flag[i];
-           } // end if ...
-       } // end for j
+        for( j=0; j<npeak; j++ ){
+            if( i==j) continue;
+            if( flag[j] > 0 ) continue;
+            if( peakAmp[i] == peakAmp[j] && 
+                TMath::Abs(peakX[i]-peakX[j])<=1 && 
+                TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
+                if( flag[i] == 0) flag[i] = i+1;
+                flag[j] = flag[i];
+            } // end if ...
+        } // end for j
     } // end for i
-    // make average of peak groups     
+    // make average of peak groups        
     for( i=0; i<npeak; i++ ){
-       Int_t nFlag = 1;
-       if( flag[i] <= 0 ) continue;
-       for( j=0; j<npeak; j++ ){
-           if( i==j ) continue;
-           if( flag[j] != flag[i] ) continue;
-           peakX[i] += peakX[j];
-           peakZ[i] += peakZ[j];
-           nFlag++;
-           npeak--;
-           for( Int_t k=j; k<npeak; k++ ){
-               peakX[k] = peakX[k+1];
-               peakZ[k] = peakZ[k+1];
-               peakAmp[k] = peakAmp[k+1];
-               flag[k] = flag[k+1];
-           } // end for k      
-           j--;
-       } // end for j
-       if( nFlag > 1 ){
-           peakX[i] /= nFlag;
-           peakZ[i] /= nFlag;
-       } // end fi nFlag
+        Int_t nFlag = 1;
+        if( flag[i] <= 0 ) continue;
+        for( j=0; j<npeak; j++ ){
+            if( i==j ) continue;
+            if( flag[j] != flag[i] ) continue;
+            peakX[i] += peakX[j];
+            peakZ[i] += peakZ[j];
+            nFlag++;
+            npeak--;
+            for( Int_t k=j; k<npeak; k++ ){
+                peakX[k] = peakX[k+1];
+                peakZ[k] = peakZ[k+1];
+                peakAmp[k] = peakAmp[k+1];
+                flag[k] = flag[k+1];
+            } // end for k        
+            j--;
+        } // end for j
+        if( nFlag > 1 ){
+            peakX[i] /= nFlag;
+            peakZ[i] /= nFlag;
+        } // end fi nFlag
     } // end for i
     delete [] flag;
     return( npeak );
 }
 //______________________________________________________________________
-void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
-                                      Float_t *spe, Float_t *integral){
+void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Double_t *par,
+                                       Double_t *spe, Double_t *integral){
     // function used to fit the clusters
-    // par -> paramiters..
+    // par -> parameters..
     // par[0]  number of peaks.
     // for each peak i=1, ..., par[0]
-    //                 par[i] = Ampl.
-    //                 par[i+1] = xpos
-    //                 par[i+2] = zpos
-    //                 par[i+3] = tau
-    //                 par[i+4] = sigma.
-    Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
+    //                 par[i] = Ampl.
+    //                 par[i+1] = xpos
+    //                 par[i+2] = zpos
+    //                 par[i+3] = tau
+    //                 par[i+4] = sigma.
+    Int_t electronics = GetResp(fModule)->GetElectronics(); // 1 = PASCAL, 2 = OLA
     const Int_t knParam = 5;
     Int_t npeak = (Int_t)par[0];
 
-    memset( spe, 0, sizeof( Float_t )*zdim*xdim );
+    memset( spe, 0, sizeof( Double_t )*zdim*xdim );
 
     Int_t k = 1;
     for( Int_t i=0; i<npeak; i++ ){
         if( integral != 0 ) integral[i] = 0.;
-        Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
-        Float_t T2 = par[k+3];   // PASCAL
-        if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
+        Double_t sigmaA2 = par[k+4]*par[k+4]*2.;
+        Double_t t2 = par[k+3];   // PASCAL
+        if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
         for( Int_t z=0; z<zdim; z++ ){
             for( Int_t x=0; x<xdim; x++ ){
-                Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
-                Float_t x2 = 0.;
-                Float_t signal = 0.;
+                Double_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
+                Double_t x2 = 0.;
+                Double_t signal = 0.;
                 if( electronics == 1 ){ // PASCAL
-                    x2 = (x-par[k+1]+T2)/T2;
+                    x2 = (x-par[k+1]+t2)/t2;
                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
                 }else if( electronics == 2 ) { // OLA
-                   x2 = (x-par[k+1])*(x-par[k+1])/T2;
-                   signal = par[k]  * exp( -x2 - z2 );
-               } else {
-                   cout << "Wrong SDD Electronics =" << electronics << endl;
-                   // exit( 1 );
-               } // end if electronicx
+                    x2 = (x-par[k+1])*(x-par[k+1])/t2;
+                    signal = par[k]  * exp( -x2 - z2 );
+                } else {
+                    Warning("PeakFunc","Wrong SDD Electronics = %d",
+                            electronics);
+                    // exit( 1 );
+                } // end if electronicx
                 spe[x*zdim+z] += signal;
                 if( integral != 0 ) integral[i] += signal;
             } // end for x
@@ -449,122 +453,134 @@ void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
     return;
 }
 //__________________________________________________________________________
-Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
-                                       Float_t *speFit ){
+Double_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Double_t *spe,
+                                        Double_t *speFit ) const{
     // EVALUATES UNNORMALIZED CHI-SQUARED
-    Float_t chi2 = 0.;
+    Double_t chi2 = 0.;
     for( Int_t z=0; z<zdim; z++ ){
-       for( Int_t x=1; x<xdim-1; x++ ){
-           Int_t index = x*zdim+z;
-           Float_t tmp = spe[index] - speFit[index];
-           chi2 += tmp*tmp;
-       } // end for x
+        for( Int_t x=1; x<xdim-1; x++ ){
+            Int_t index = x*zdim+z;
+            Double_t tmp = spe[index] - speFit[index];
+            chi2 += tmp*tmp;
+        } // end for x
     } // end for z
     return( chi2 );
 }
 //_______________________________________________________________________
-void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
-                                   Float_t *prm0,Float_t *steprm,
-                                   Float_t *chisqr,Float_t *spe,
-                                   Float_t *speFit ){
+void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Double_t *param,
+                                    Double_t *prm0,Double_t *steprm,
+                                    Double_t *chisqr,Double_t *spe,
+                                    Double_t *speFit ){
     // 
     Int_t   k, nnn, mmm, i;
-    Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
+    Double_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
     const Int_t knParam = 5;
     Int_t npeak = (Int_t)param[0];
     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
     for( k=1; k<(npeak*knParam+1); k++ ){
-       p1 = param[k];
-       delta = steprm[k];
-       d1 = delta;
-       // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
-       if( fabs( p1 ) > 1.0E-6 ) 
-           if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
-           else  delta = (Float_t)1.0E-4;
-       //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
-       PeakFunc( xdim, zdim, param, speFit );
-       chisq1 = ChiSqr( xdim, zdim, spe, speFit );
-       p2 = p1+delta;
-       param[k] = p2;
-       PeakFunc( xdim, zdim, param, speFit );
-       chisq2 = ChiSqr( xdim, zdim, spe, speFit );
-       if( chisq1 < chisq2 ){
-           // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
-           delta = -delta;
-           t = p1;
-           p1 = p2;
-           p2 = t;
-           t = chisq1;
-           chisq1 = chisq2;
-           chisq2 = t;
-       } // end if
-       i = 1; nnn = 0;
-       do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
-           nnn++;
-           p3 = p2 + delta;
-           mmm = nnn - (nnn/5)*5;  // multiplo de 5
-           if( mmm == 0 ){
-               d1 = delta;
-               // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
-               delta *= 5;
-           } // end if
-           param[k] = p3;
-           // Constrain paramiters
-           Int_t kpos = (k-1) % knParam;
-           switch( kpos ){
-           case 0 :
-               if( param[k] <= 20 ) param[k] = fMinPeak;
-           case 1 :
-               if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
-           case 2 :
-               if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
-           case 3 :
-               if( param[k] < .5 ) param[k] = .5;      
-           case 4 :
-               if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
-           }; // end switch
-           PeakFunc( xdim, zdim, param, speFit );
-           chisq3 = ChiSqr( xdim, zdim, spe, speFit );
-           if( chisq3 < chisq2 && nnn < 50 ){
-               p1 = p2;
-               p2 = p3;
-               chisq1 = chisq2;
-               chisq2 = chisq3;
-           }else i=0;
-       } while( i );
-       // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
-       a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
-       b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
-       if( a!=0 ) p0 = (Float_t)(0.5*b/a);
-       else p0 = 10000;
-       //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
-       //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
-       //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
-       //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
-       //if( fabs( p2-p0 ) > dp ) p0 = p2;
-       param[k] = p0;
-       // Constrain paramiters
-       Int_t kpos = (k-1) % knParam;
-       switch( kpos ){
-       case 0 :
-           if( param[k] <= 20 ) param[k] = fMinPeak;   
-       case 1 :
-           if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
-       case 2 :
-           if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
-       case 3 :
-           if( param[k] < .5 ) param[k] = .5;  
-       case 4 :
-           if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
-       }; // end switch
-       PeakFunc( xdim, zdim, param, speFit );
-       chisqt = ChiSqr( xdim, zdim, spe, speFit );
-       // DO NOT ALLOW ERRONEOUS INTERPOLATION
-       if( chisqt <= *chisqr ) *chisqr = chisqt;
-       else param[k] = prm0[k];
-       // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
-       steprm[k] = (param[k]-prm0[k])/5;
-       if( steprm[k] >= d1 ) steprm[k] = d1/5;
+        p1 = param[k];
+        delta = steprm[k];
+        d1 = delta;
+        // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
+        if( TMath::Abs( p1 ) > 1.0E-6 ) 
+            if ( TMath::Abs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
+            else  delta = (Double_t)1.0E-4;
+        //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
+        PeakFunc( xdim, zdim, param, speFit );
+        chisq1 = ChiSqr( xdim, zdim, spe, speFit );
+        p2 = p1+delta;
+        param[k] = p2;
+        PeakFunc( xdim, zdim, param, speFit );
+        chisq2 = ChiSqr( xdim, zdim, spe, speFit );
+        if( chisq1 < chisq2 ){
+            // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
+            delta = -delta;
+            t = p1;
+            p1 = p2;
+            p2 = t;
+            t = chisq1;
+            chisq1 = chisq2;
+            chisq2 = t;
+        } // end if
+        i = 1; nnn = 0;
+        do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
+            nnn++;
+            p3 = p2 + delta;
+            mmm = nnn - (nnn/5)*5;  // multiplo de 5
+            if( mmm == 0 ){
+                d1 = delta;
+                // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
+                delta *= 5;
+            } // end if
+            param[k] = p3;
+            // Constrain paramiters
+            Int_t kpos = (k-1) % knParam;
+            switch( kpos ){
+            case 0 :
+                if( param[k] <= 20 ) param[k] = fMinPeak;
+                break;
+            case 1 :
+                if( TMath::Abs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
+                break;
+            case 2 :
+                if( TMath::Abs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
+                break;
+            case 3 :
+                if( param[k] < .5 ) param[k] = .5;        
+                break;
+            case 4 :
+                if( param[k] < .288 ) param[k] = .288;// 1/sqrt(12) = 0.288
+                if( param[k] > zdim*.5 ) param[k] = zdim*.5;
+                break;
+            }; // end switch
+            PeakFunc( xdim, zdim, param, speFit );
+            chisq3 = ChiSqr( xdim, zdim, spe, speFit );
+            if( chisq3 < chisq2 && nnn < 50 ){
+                p1 = p2;
+                p2 = p3;
+                chisq1 = chisq2;
+                chisq2 = chisq3;
+            }else i=0;
+        } while( i );
+        // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
+        a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
+        b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
+        if( a!=0 ) p0 = (Double_t)(0.5*b/a);
+        else p0 = 10000;
+        //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
+        //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
+        //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
+        //dp = (Double_t) max (TMath::Abs(p3-p2), TMath::Abs(p2-p1));
+        //if( TMath::Abs( p2-p0 ) > dp ) p0 = p2;
+        param[k] = p0;
+        // Constrain paramiters
+        Int_t kpos = (k-1) % knParam;
+        switch( kpos ){
+        case 0 :
+            if( param[k] <= 20 ) param[k] = fMinPeak;   
+            break;
+        case 1 :
+            if( TMath::Abs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
+            break;
+        case 2 :
+            if( TMath::Abs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
+            break;
+        case 3 :
+            if( param[k] < .5 ) param[k] = .5;        
+            break;
+        case 4 :
+            if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
+            if( param[k] > zdim*.5 ) param[k] = zdim*.5;
+            break;
+        }; // end switch
+        PeakFunc( xdim, zdim, param, speFit );
+        chisqt = ChiSqr( xdim, zdim, spe, speFit );
+        // DO NOT ALLOW ERRONEOUS INTERPOLATION
+        if( chisqt <= *chisqr ) *chisqr = chisqt;
+        else param[k] = prm0[k];
+        // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
+        steprm[k] = (param[k]-prm0[k])/5;
+        if( steprm[k] >= d1 ) steprm[k] = d1/5;
     } // end for k
     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
     PeakFunc( xdim, zdim, param, speFit );
@@ -573,87 +589,87 @@ void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
 }
 //_________________________________________________________________________
 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
-                                          Float_t *param, Float_t *spe, 
-                                          Int_t *niter, Float_t *chir ){
+                                           Double_t *param, Double_t *spe, 
+                                           Int_t *niter, Double_t *chir ){
     // fit method from Comput. Phys. Commun 46(1987) 149
-    const Float_t kchilmt = 0.01;  //  relative accuracy         
-    const Int_t   knel = 3;        //  for parabolic minimization  
-    const Int_t   knstop = 50;     //  Max. iteration number     
+    const Double_t kchilmt = 0.01;  //        relative accuracy           
+    const Int_t   knel = 3;        //        for parabolic minimization  
+    const Int_t   knstop = 50;     //        Max. iteration number          
     const Int_t   knParam = 5;
     Int_t npeak = (Int_t)param[0];
     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
-    Float_t degFree = (xdim*zdim - npeak*knParam)-1;
+    Double_t degFree = (xdim*zdim - npeak*knParam)-1;
     Int_t   n, k, iterNum = 0;
-    Float_t *prm0 = new Float_t[npeak*knParam+1];
-    Float_t *step = new Float_t[npeak*knParam+1];
-    Float_t *schi = new Float_t[npeak*knParam+1]; 
-    Float_t *sprm[3];
-    sprm[0] = new Float_t[npeak*knParam+1];
-    sprm[1] = new Float_t[npeak*knParam+1];
-    sprm[2] = new Float_t[npeak*knParam+1];
-    Float_t  chi0, chi1, reldif, a, b, prmin, dp;
-    Float_t *speFit = new Float_t[ xdim*zdim ];
+    Double_t *prm0 = new Double_t[npeak*knParam+1];
+    Double_t *step = new Double_t[npeak*knParam+1];
+    Double_t *schi = new Double_t[npeak*knParam+1]; 
+    Double_t *sprm[3];
+    sprm[0] = new Double_t[npeak*knParam+1];
+    sprm[1] = new Double_t[npeak*knParam+1];
+    sprm[2] = new Double_t[npeak*knParam+1];
+    Double_t  chi0, chi1, reldif, a, b, prmin, dp;
+    Double_t *speFit = new Double_t[ xdim*zdim ];
     PeakFunc( xdim, zdim, param, speFit );
     chi0 = ChiSqr( xdim, zdim, spe, speFit );
     chi1 = chi0;
     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
-    for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
-       step[k] = param[k] / 20.0 ;
-       step[k+1] = param[k+1] / 50.0;
-       step[k+2] = param[k+2] / 50.0;           
-       step[k+3] = param[k+3] / 20.0;           
-       step[k+4] = param[k+4] / 20.0;           
-    } // end for k
+        for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
+            step[k] = param[k] / 20.0 ;
+            step[k+1] = param[k+1] / 50.0;
+            step[k+2] = param[k+2] / 50.0;                 
+            step[k+3] = param[k+3] / 20.0;                 
+            step[k+4] = param[k+4] / 20.0;                 
+        } // end for k
     Int_t out = 0;
     do{
-       iterNum++;
-       chi0 = chi1;
-       Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
-       reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
-       // EXIT conditions
-       if( reldif < (float) kchilmt ){
-           *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
-           *niter = iterNum;
-           out = 0;
-           break;
-       } // end if
-       if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
-           *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
-           *niter = iterNum;
-           out = 0;
-           break;
-       } // end if
-       if( iterNum > 5*knstop ){
-           *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
-           *niter = iterNum;
-           out = 1;
-           break;
-       } // end if
-       if( iterNum <= knel ) continue;
-       n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
-       if( n > 3 || n == 0 ) continue;
-       schi[n-1] = chi1;
-       for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
-       if( n != 3 ) continue;
-       // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
-       //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
-       for( k=1; k<(npeak*knParam+1); k++ ){
-           Float_t tmp0 = sprm[0][k];
-           Float_t tmp1 = sprm[1][k];
-           Float_t tmp2 = sprm[2][k];
-           a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
-           a += (schi[2]*(tmp0-tmp1));
-           b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
-           b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
-                                                (tmp0*tmp0-tmp1*tmp1)));
-           if ((double)a < 1.0E-6) prmin = 0;
-           else prmin = (float) (0.5*b/a);
-           dp = 5*(tmp2-tmp0);
-           if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
-           param[k] = prmin;
-           step[k]  = dp/10; // OPTIMIZE SEARCH STEP
-       } // end for k
+        iterNum++;
+            chi0 = chi1;
+            Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
+            reldif = ( chi1 > 0 ) ? ((Double_t) TMath::Abs( chi1-chi0)/chi1 ) : 0;
+        // EXIT conditions
+        if( reldif < (float) kchilmt ){
+            *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
+            *niter = iterNum;
+            out = 0;
+            break;
+        } // end if
+        if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
+            *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
+            *niter = iterNum;
+            out = 0;
+            break;
+        } // end if
+        if( iterNum > 5*knstop ){
+            *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
+            *niter = iterNum;
+            out = 1;
+            break;
+        } // end if
+        if( iterNum <= knel ) continue;
+        n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
+        if( n > 3 || n == 0 ) continue;
+        schi[n-1] = chi1;
+        for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
+        if( n != 3 ) continue;
+        // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
+        //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
+        for( k=1; k<(npeak*knParam+1); k++ ){
+            Double_t tmp0 = sprm[0][k];
+            Double_t tmp1 = sprm[1][k];
+            Double_t tmp2 = sprm[2][k];
+            a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
+            a += (schi[2]*(tmp0-tmp1));
+            b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
+            b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
+                                             (tmp0*tmp0-tmp1*tmp1)));
+            if ((double)a < 1.0E-6) prmin = 0;
+            else prmin = (float) (0.5*b/a);
+            dp = 5*(tmp2-tmp0);
+            if( TMath::Abs(prmin-tmp2) > TMath::Abs(dp) ) prmin = tmp2+dp;
+            param[k] = prmin;
+            step[k]  = dp/10; // OPTIMIZE SEARCH STEP
+        } // end for k
     } while( kTRUE );
     delete [] prm0;
     delete [] step;
@@ -664,147 +680,180 @@ Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
     delete [] speFit;
     return( out );
 }
+
 //______________________________________________________________________
-void AliITSClusterFinderSDD::ResolveClustersE(){
+void AliITSClusterFinderSDD::ResolveClusters(){
     // The function to resolve clusters if the clusters overlapping exists
     Int_t i;
-    static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
     // get number of clusters for this module
-    Int_t nofClusters = fClusters->GetEntriesFast();
+    Int_t nofClusters = NClusters();
     nofClusters -= fNclusters;
-    Int_t fNofMaps = fSegmentation->Npz();
+    Int_t fNofMaps = GetSeg()->Npz();
     Int_t fNofAnodes = fNofMaps/2;
-    Int_t fMaxNofSamples = fSegmentation->Npx();
+    //Int_t fMaxNofSamples = GetSeg()->Npx();
     Int_t dummy=0;
-    Double_t fTimeStep = fSegmentation->Dpx( dummy );
-    Double_t fSddLength = fSegmentation->Dx();
-    Double_t fDriftSpeed = fResponse->DriftSpeed();
-    Double_t anodePitch = fSegmentation->Dpz( dummy );
-    Float_t n, baseline;
-    fResponse->GetNoiseParam( n, baseline );
-    Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
-    // fill Map of signals
-    fMap->FillMap(); 
+    Double_t fTimeStep = GetSeg()->Dpx( dummy );
+    Double_t fSddLength = GetSeg()->Dx();
+    Double_t fDriftSpeed = GetResp(fModule)->GetDriftSpeed();
+    Double_t anodePitch = GetSeg()->Dpz( dummy );
+    Double_t n, baseline;
+    GetResp(fModule)->GetNoiseParam( n, baseline );
+    Int_t electronics =GetResp(fModule)->GetElectronics(); // 1 = PASCAL, 2 = OLA
+
     for( Int_t j=0; j<nofClusters; j++ ){ 
-       // get cluster information
-       AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
-       Int_t astart = clusterJ->Astart();
-       Int_t astop = clusterJ->Astop();
-       Int_t tstart = clusterJ->Tstartf();
-       Int_t tstop = clusterJ->Tstopf();
-       Int_t wing = (Int_t)clusterJ->W();
-       if( wing == 2 ){
-           astart += fNofAnodes; 
-           astop  += fNofAnodes;
-       } // end if 
-       Int_t xdim = tstop-tstart+3;
-       Int_t zdim = astop-astart+3;
-       Float_t *sp = new Float_t[ xdim*zdim+1 ];
-       memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
-       // make a local map from cluster region
-       for( Int_t ianode=astart; ianode<=astop; ianode++ ){
-           for( Int_t itime=tstart; itime<=tstop; itime++ ){
-               Float_t fadc = fMap->GetSignal( ianode, itime );
-               if( fadc > baseline ) fadc -= (Double_t)baseline;
-               else fadc = 0.;
-               Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
-               sp[index] = fadc;
-           } // time loop
-       } // anode loop
-       // search peaks on cluster
-       const Int_t kNp = 150;
-       Int_t peakX1[kNp];
-       Int_t peakZ1[kNp];
-       Float_t peakAmp1[kNp];
-       Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
-       // if multiple peaks, split cluster
-       if( npeak >= 1 ){
-           //  cout << "npeak " << npeak << endl;
-           //  clusterJ->PrintInfo();
-           Float_t *par = new Float_t[npeak*5+1];
-           par[0] = (Float_t)npeak;            
-           // Initial paramiters in cell dimentions
-           Int_t k1 = 1;
-           for( i=0; i<npeak; i++ ){
-               par[k1] = peakAmp1[i];
-               par[k1+1] = peakX1[i]; // local time pos. [timebin]
-               par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
-               if( electronics == 1 ) 
-                   par[k1+3] = 2.; // PASCAL
-               else if( electronics == 2 ) 
-                   par[k1+3] = 0.7; // tau [timebin]  OLA 
-               par[k1+4] = .4;    // sigma     [anodepich]
-               k1+=5;
-           } // end for i                      
-           Int_t niter;
-           Float_t chir;                       
-           NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
-           Float_t peakX[kNp];
-           Float_t peakZ[kNp];
-           Float_t sigma[kNp];
-           Float_t tau[kNp];
-           Float_t peakAmp[kNp];
-           Float_t integral[kNp];
-           //get integrals => charge for each peak
-           PeakFunc( xdim, zdim, par, sp, integral );
-           k1 = 1;
-           for( i=0; i<npeak; i++ ){
-               peakAmp[i] = par[k1];
-               peakX[i] = par[k1+1];
-               peakZ[i] = par[k1+2];
-               tau[i] = par[k1+3];
-               sigma[i] = par[k1+4];
-               k1+=5;
-           } // end for i
-           // calculate paramiter for new clusters
-           for( i=0; i<npeak; i++ ){
-               AliITSRawClusterSDD clusterI( *clusterJ );
-               Int_t newAnode = peakZ1[i]-1 + astart;
-               Int_t newiTime = peakX1[i]-1 + tstart;
-               Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
-               if(newiTime>shift&&newiTime<(fMaxNofSamples-shift)) shift = 0;
-               Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
-               clusterI.SetPeakPos( peakpos );
-               clusterI.SetPeakAmpl( peakAmp1[i] );
-               Float_t newAnodef = peakZ[i] - 0.5 + astart;
-               Float_t newiTimef = peakX[i] - 1 + tstart;
-               if( wing == 2 ) newAnodef -= fNofAnodes; 
-               Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
-               newiTimef *= fTimeStep;
-               if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
-               if( electronics == 1 ){
-                   newiTimef *= 0.999438;    // PASCAL
-                   newiTimef += (6./fDriftSpeed - newiTimef/3000.);
-               }else if( electronics == 2 )
-                   newiTimef *= 0.99714;    // OLA
-               Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
-               Float_t sign = ( wing == 1 ) ? -1. : 1.;
-               clusterI.SetX( driftPath*sign * 0.0001 );       
-               clusterI.SetZ( anodePath * 0.0001 );
-               clusterI.SetAnode( newAnodef );
-               clusterI.SetTime( newiTimef );
-               clusterI.SetAsigma( sigma[i]*anodePitch );
-               clusterI.SetTsigma( tau[i]*fTimeStep );
-               clusterI.SetQ( integral[i] );
-               //      clusterI.PrintInfo();
-               iTS->AddCluster( 1, &clusterI );
-           } // end for i
-           fClusters->RemoveAt( j );
-           delete [] par;
-       } else cout <<" --- Peak not found!!!!  minpeak=" << fMinPeak<< 
-                  " cluster peak=" << clusterJ->PeakAmpl() << endl << endl;
-       delete [] sp;
+        // get cluster information
+        AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) Cluster(j);
+        Int_t astart = clusterJ->Astart();
+        Int_t astop = clusterJ->Astop();
+        Int_t tstart = clusterJ->Tstartf();
+        Int_t tstop = clusterJ->Tstopf();
+        Int_t wing = (Int_t)clusterJ->W();
+        if( wing == 2 ){
+            astart += fNofAnodes; 
+            astop  += fNofAnodes;
+        } // end if 
+        Int_t xdim = tstop-tstart+3;
+        Int_t zdim = astop-astart+3;
+        if( xdim > 50 || zdim > 30 ) { 
+            Warning("ResolveClusters","xdim: %d , zdim: %d ",xdim,zdim);
+            continue;
+        }
+        Double_t *sp = new Double_t[ xdim*zdim+1 ];
+        memset( sp, 0, sizeof(Double_t)*(xdim*zdim+1) );
+        
+        // make a local map from cluster region
+        for( Int_t ianode=astart; ianode<=astop; ianode++ ){
+            for( Int_t itime=tstart; itime<=tstop; itime++ ){
+                Double_t fadc = Map()->GetSignal( ianode, itime );
+                if( fadc > baseline ) fadc -= (Double_t)baseline;
+                else fadc = 0.;
+                Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
+                sp[index] = fadc;
+            } // time loop
+        } // anode loop
+        
+        // search peaks on cluster
+        const Int_t kNp = 150;
+        Int_t peakX1[kNp];
+        Int_t peakZ1[kNp];
+        Double_t peakAmp1[kNp];
+        Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
+
+        // if multiple peaks, split cluster
+        if( npeak >= 1 ){
+            //        cout << "npeak " << npeak << endl;
+            //        clusterJ->PrintInfo();
+            Double_t *par = new Double_t[npeak*5+1];
+            par[0] = (Double_t)npeak;                
+            // Initial parameters in cell dimentions
+            Int_t k1 = 1;
+            for( i=0; i<npeak; i++ ){
+                par[k1] = peakAmp1[i];
+                par[k1+1] = peakX1[i]; // local time pos. [timebin]
+                par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
+                if( electronics == 1 ) par[k1+3] = 2.; // PASCAL
+                else if(electronics==2) par[k1+3] = 0.7;//tau [timebin] OLA 
+                par[k1+4] = .4;    // sigma        [anodepich]
+                k1 += 5;
+            } // end for i                        
+            Int_t niter;
+            Double_t chir;                        
+            NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
+            Double_t peakX[kNp];
+            Double_t peakZ[kNp];
+            Double_t sigma[kNp];
+            Double_t tau[kNp];
+            Double_t peakAmp[kNp];
+            Double_t integral[kNp];
+            //get integrals => charge for each peak
+            PeakFunc( xdim, zdim, par, sp, integral );
+            k1 = 1;
+            for( i=0; i<npeak; i++ ){
+                peakAmp[i] = par[k1];
+                peakX[i]   = par[k1+1];
+                peakZ[i]   = par[k1+2];
+                tau[i]     = par[k1+3];
+                sigma[i]   = par[k1+4];
+                k1+=5;
+            } // end for i
+            // calculate parameter for new clusters
+            for( i=0; i<npeak; i++ ){
+                AliITSRawClusterSDD clusterI( *clusterJ );
+            
+                Int_t newAnode = peakZ1[i]-1 + astart;
+
+            //    Int_t newiTime = peakX1[i]-1 + tstart;
+            //    Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
+            //    if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
+            //        shift = 0;
+            //    Int_t peakpos = Map()->GetHitIndex(newAnode,newiTime+shift );
+            //    clusterI.SetPeakPos( peakpos );
+           
+                clusterI.SetPeakAmpl( peakAmp1[i] );
+                Double_t newAnodef = peakZ[i] - 0.5 + astart;
+                Double_t newiTimef = peakX[i] - 1 + tstart;
+                if( wing == 2 ) newAnodef -= fNofAnodes; 
+                Double_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
+                newiTimef *= fTimeStep;
+                if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
+                if( electronics == 1 ){
+                //    newiTimef *= 0.999438;    // PASCAL
+                //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
+                }else if( electronics == 2 )
+                    newiTimef *= 0.99714;    // OLA
+                    
+                Int_t timeBin = (Int_t)(newiTimef/fTimeStep+0.5);    
+                Int_t peakpos = Map()->GetHitIndex( newAnode, timeBin );
+                if( peakpos < 0 ) { 
+                    for( Int_t ii=0; ii<3; ii++ ) {
+                        peakpos = Map()->GetHitIndex( newAnode, timeBin+ii );
+                        if( peakpos > 0 ) break;
+                        peakpos = Map()->GetHitIndex( newAnode, timeBin-ii );
+                        if( peakpos > 0 ) break;
+                    }
+                }
+                
+                if( peakpos < 0 ) { 
+                    //Warning("ResolveClusters",
+                    //        "Digit not found for cluster");
+                    //if(AliDebugLevel()>=3) clusterI.PrintInfo(); 
+                   continue;
+                }
+                clusterI.SetPeakPos( peakpos );    
+                Double_t driftPath = fSddLength - newiTimef * fDriftSpeed;
+                Double_t sign = ( wing == 1 ) ? -1. : 1.;
+                clusterI.SetX( driftPath*sign * 0.0001 );        
+                clusterI.SetZ( anodePath * 0.0001 );
+                clusterI.SetAnode( newAnodef );
+                clusterI.SetTime( newiTimef );
+                clusterI.SetAsigma( sigma[i]*anodePitch );
+                clusterI.SetTsigma( tau[i]*fTimeStep );
+                clusterI.SetQ( integral[i] );
+                
+               fDetTypeRec->AddCluster( 1, &clusterI );
+            } // end for i
+            Clusters()->RemoveAt( j );
+            delete [] par;
+        } else {  // something odd
+            Warning( "ResolveClusters",
+                     "--- Peak not found!!!!  minpeak=%d ,cluster peak= %f"
+                     " , module= %d",
+                     fMinPeak, clusterJ->PeakAmpl(),GetModule()); 
+            clusterJ->PrintInfo();
+            Warning( "ResolveClusters"," xdim= %d zdim= %d", xdim-2, zdim-2 );
+        }
+        delete [] sp;
     } // cluster loop
-    fClusters->Compress();
-    fMap->ClearMap(); 
+    Clusters()->Compress();
+//    Map()->ClearMap(); 
 }
 //________________________________________________________________________
 void  AliITSClusterFinderSDD::GroupClusters(){
     // group clusters
     Int_t dummy=0;
-    Float_t fTimeStep = fSegmentation->Dpx(dummy);
+    Double_t fTimeStep = GetSeg()->Dpx(dummy);
     // get number of clusters for this module
-    Int_t nofClusters = fClusters->GetEntriesFast();
+    Int_t nofClusters = NClusters();
     nofClusters -= fNclusters;
     AliITSRawClusterSDD *clusterI;
     AliITSRawClusterSDD *clusterJ;
@@ -812,26 +861,28 @@ void  AliITSClusterFinderSDD::GroupClusters(){
     Int_t i,j;
     for(i=0; i<nofClusters; i++) label[i] = 0;
     for(i=0; i<nofClusters; i++) { 
-       if(label[i] != 0) continue;
-       for(j=i+1; j<nofClusters; j++) { 
-           if(label[j] != 0) continue;
-           clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
-           clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
-           // 1.3 good
-           if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
-           if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
-           Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
-           if(!pair) continue;
-           //      clusterI->PrintInfo();
-           //      clusterJ->PrintInfo();
-           clusterI->Add(clusterJ);
-           label[j] = 1;
-           fClusters->RemoveAt(j);
-           j=i; // <- Ernesto
-       } // J clusters  
-       label[i] = 1;
+        if(label[i] != 0) continue;
+        for(j=i+1; j<nofClusters; j++) { 
+            if(label[j] != 0) continue;
+            clusterI = (AliITSRawClusterSDD*) Cluster(i);
+            clusterJ = (AliITSRawClusterSDD*) Cluster(j);
+            // 1.3 good
+            if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
+            if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
+            Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
+            if(!pair) continue;
+            if(AliDebugLevel()>=4){
+                clusterI->PrintInfo();
+                clusterJ->PrintInfo();
+            } // end if AliDebugLevel
+            clusterI->Add(clusterJ);
+            label[j] = 1;
+            Clusters()->RemoveAt(j);
+            j=i; // <- Ernesto
+        } // J clusters  
+        label[i] = 1;
     } // I clusters
-    fClusters->Compress();
+    Clusters()->Compress();
 
     delete [] label;
     return;
@@ -839,381 +890,96 @@ void  AliITSClusterFinderSDD::GroupClusters(){
 //________________________________________________________________________
 void AliITSClusterFinderSDD::SelectClusters(){
     // get number of clusters for this module
-    Int_t nofClusters = fClusters->GetEntriesFast();
+    Int_t nofClusters = NClusters();
 
     nofClusters -= fNclusters;
     Int_t i;
     for(i=0; i<nofClusters; i++) { 
-       AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
-       Int_t rmflg = 0;
-       Float_t wy = 0.;
-       if(clusterI->Anodes() != 0.) {
-           wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
-       } // end if
-       Int_t amp = (Int_t) clusterI->PeakAmpl();
-       Int_t cha = (Int_t) clusterI->Q();
-       if(amp < fMinPeak) rmflg = 1;  
-       if(cha < fMinCharge) rmflg = 1;
-       if(wy < fMinNCells) rmflg = 1;
-       //if(wy > fMaxNCells) rmflg = 1;
-       if(rmflg) fClusters->RemoveAt(i);
+        AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) Cluster(i);
+        Int_t rmflg = 0;
+        Double_t wy = 0.;
+        if(clusterI->Anodes() != 0.) {
+            wy = ((Double_t) clusterI->Samples())/clusterI->Anodes();
+        } // end if
+        Int_t amp = (Int_t) clusterI->PeakAmpl();
+        Int_t cha = (Int_t) clusterI->Q();
+        if(amp < fMinPeak) rmflg = 1;  
+        if(cha < fMinCharge) rmflg = 1;
+        if(wy < fMinNCells) rmflg = 1;
+        //if(wy > fMaxNCells) rmflg = 1;
+        if(rmflg) Clusters()->RemoveAt(i);
     } // I clusters
-    fClusters->Compress();
+    Clusters()->Compress();
     return;
 }
-//__________________________________________________________________________
-void AliITSClusterFinderSDD::ResolveClusters(){
-    // The function to resolve clusters if the clusters overlapping exists
-/*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
-    // get number of clusters for this module
-    Int_t nofClusters = fClusters->GetEntriesFast();
-    nofClusters -= fNclusters;
-    //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
-    // <<fNclusters<<endl;
-    Int_t fNofMaps = fSegmentation->Npz();
-    Int_t fNofAnodes = fNofMaps/2;
-    Int_t dummy=0;
-    Double_t fTimeStep = fSegmentation->Dpx(dummy);
-    Double_t fSddLength = fSegmentation->Dx();
-    Double_t fDriftSpeed = fResponse->DriftSpeed();
-    Double_t anodePitch = fSegmentation->Dpz(dummy);
-    Float_t n, baseline;
-    fResponse->GetNoiseParam(n,baseline);
-    Float_t dzz_1A = anodePitch * anodePitch / 12;
-    // fill Map of signals
-    fMap->FillMap(); 
-    Int_t j,i,ii,ianode,anode,itime;
-    Int_t wing,astart,astop,tstart,tstop,nanode;
-    Double_t fadc,ClusterTime;
-    Double_t q[400],x[400],z[400]; // digit charges and coordinates
-    for(j=0; j<nofClusters; j++) { 
-       AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
-       Int_t ndigits = 0;
-       astart=clusterJ->Astart();
-       astop=clusterJ->Astop();
-       tstart=clusterJ->Tstartf();
-       tstop=clusterJ->Tstopf();
-       nanode=clusterJ->Anodes();  // <- Ernesto
-       wing=(Int_t)clusterJ->W();
-       if(wing == 2) {
-           astart += fNofAnodes; 
-           astop  += fNofAnodes;
-       }  // end if
-       // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
-       //      <<tstart<<","<<tstop<<endl;
-       // clear the digit arrays
-       for(ii=0; ii<400; ii++) { 
-           q[ii] = 0.; 
-           x[ii] = 0.;
-           z[ii] = 0.;
-       } // end for ii
-
-       for(ianode=astart; ianode<=astop; ianode++) { 
-           for(itime=tstart; itime<=tstop; itime++) { 
-               fadc=fMap->GetSignal(ianode,itime);
-               if(fadc>baseline) {
-                   fadc-=(Double_t)baseline;
-                   q[ndigits] = fadc*(fTimeStep/160);  // KeV
-                   anode = ianode;
-                   if(wing == 2) anode -= fNofAnodes;
-                   z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
-                   ClusterTime = itime*fTimeStep;
-                   if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
-                   x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
-                   if(wing == 1) x[ndigits] *= (-1);
-                   // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
-                   //     <<fadc<<endl;
-                   // cout<<"wing,anode,ndigits,charge ="<<wing<<","
-                   //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
-                   ndigits++;
-                   continue;
-               } //  end if
-               fadc=0;
-               //            cout<<"fadc=0, ndigits ="<<ndigits<<endl;
-           } // time loop
-       } // anode loop
-       //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
-       // Fit cluster to resolve for two separate ones --------------------
-       Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
-       Double_t dxx=0., dzz=0., dxz=0.;
-       Double_t scl = 0., tmp, tga, elps = -1.;
-       Double_t xfit[2], zfit[2], qfit[2];
-       Double_t pitchz = anodePitch*1.e-4;             // cm
-       Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
-       Double_t sigma2;
-       Int_t nfhits;
-       Int_t nbins = ndigits;
-       Int_t separate = 0;
-       // now, all lengths are in microns
-       for (ii=0; ii<nbins; ii++) {
-           qq += q[ii];
-           xm += x[ii]*q[ii];
-           zm += z[ii]*q[ii];
-           xx += x[ii]*x[ii]*q[ii];
-           zz += z[ii]*z[ii]*q[ii];
-           xz += x[ii]*z[ii]*q[ii];
-       } // end for ii
-       xm /= qq;
-       zm /= qq;
-       xx /= qq;
-       zz /= qq;
-       xz /= qq;
-       dxx = xx - xm*xm;
-       dzz = zz - zm*zm;
-       dxz = xz - xm*zm;
-
-       // shrink the cluster in the time direction proportionaly to the 
-       // dxx/dzz, which lineary depends from the drift path
-       // new  Ernesto........  
-       if( nanode == 1 ){
-           dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
-           scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
-       } // end if
-       if( nanode == 2 ){
-           scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
-       } // end if
-       if( nanode == 3 ){
-           scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
-       } // end if
-       if( nanode > 3 ){
-           scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
-       } // end if
-       //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
-       //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
-       //  old Boris.........
-       //  tmp=29730. - 585.*fabs(xm/1000.); 
-       //  scl=TMath::Sqrt(tmp/130000.);
-   
-       xm *= scl;
-       xx *= scl*scl;
-       xz *= scl;
 
-       dxx = xx - xm*xm;
-       //   dzz = zz - zm*zm;
-       dxz = xz - xm*zm;
-       //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
-       // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
-       // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
-  
-       if (dxx < 0.) dxx=0.;
-       // the data if no cluster overlapping (the coordunates are in cm) 
-       nfhits = 1;
-       xfit[0] = xm*1.e-4;
-       zfit[0] = zm*1.e-4;
-       qfit[0] = qq;
-       //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
-  
-       if (nbins >= 7) {
-           if (dxz==0.) tga=0.;
-           else {
-               tmp=0.5*(dzz-dxx)/dxz;
-               tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
-                                                  tmp+TMath::Sqrt(tmp*tmp+1);
-           } // end if dxz
-           elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
-           // change from microns to cm
-           xm *= 1.e-4; 
-           zm *= 1.e-4; 
-           zz *= 1.e-8;
-           xx *= 1.e-8;
-           xz *= 1.e-8;
-           dxz *= 1.e-8;
-           dxx *= 1.e-8;
-           dzz *= 1.e-8;
-           //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
-           //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
-           for (i=0; i<nbins; i++) {     
-               x[i] = x[i] *= scl;
-               x[i] = x[i] *= 1.e-4;
-               z[i] = z[i] *= 1.e-4;
-           } // end for i
-           //     cout<<"!!! elps ="<<elps<<endl;
-           if (elps < 0.3) { // try to separate hits 
-               separate = 1;
-               tmp=atan(tga);
-               Double_t cosa=cos(tmp),sina=sin(tmp);
-               Double_t a1=0., x1=0., xxx=0.;
-               for (i=0; i<nbins; i++) {
-                   tmp=x[i]*cosa + z[i]*sina;
-                   if (q[i] > a1) {
-                       a1=q[i];
-                       x1=tmp;
-                   } // end if
-                   xxx += tmp*tmp*tmp*q[i];
-               } // end for i
-               xxx /= qq;
-               Double_t z12=-sina*xm + cosa*zm;
-               sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
-               xm=cosa*xm + sina*zm;
-               xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
-               Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
-               Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
-               for (i=0; i<33; i++) { // solve a system of equations
-                   Double_t x1_old=x1, x2_old=x2, r_old=r;
-                   Double_t c11=x1-x2;
-                   Double_t c12=r;
-                   Double_t c13=1-r;
-                   Double_t c21=x1*x1 - x2*x2;
-                   Double_t c22=2*r*x1;
-                   Double_t c23=2*(1-r)*x2;
-                   Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
-                   Double_t c32=3*r*(sigma2 + x1*x1);
-                   Double_t c33=3*(1-r)*(sigma2 + x2*x2);
-                   Double_t f1=-(r*x1 + (1-r)*x2 - xm);
-                   Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
-                   Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
-                                                        (3*sigma2+x2*x2)-xxx);
-                   Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
-                                      c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
-                   if (d==0.) {
-                       cout<<"*********** d=0 ***********\n";
-                       break;
-                   } // end if
-                   Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
-                       f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
-                   Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
-                       c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
-                   Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
-                       c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
-                   r  += dr/d;
-                   x1 += d1/d;
-                   x2 += d2/d;
-                   if (fabs(x1-x1_old) > 0.0001) continue;
-                   if (fabs(x2-x2_old) > 0.0001) continue;
-                   if (fabs(r-r_old)/5 > 0.001) continue;
-                   a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
-                   Double_t a2=a1*(1-r)/r;
-                   qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
-                                                               z12*cosa;
-                   qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
-                                                               z12*cosa;
-                   nfhits=2;
-                   break; // Ok !
-               } // end for i
-               if (i==33) cerr<<"No more iterations ! "<<endl;
-           } // end of attempt to separate overlapped clusters
-       } // end of nbins cut 
-       if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
-       if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
-                                                    <<elps<<","<<nfhits<<endl;
-       if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
-       for (i=0; i<nfhits; i++) {
-           xfit[i] *= (1.e+4/scl);
-           if(wing == 1) xfit[i] *= (-1);
-           zfit[i] *= 1.e+4;
-           //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
-           // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
-       } // end for i
-       Int_t ncl = nfhits;
-       if(nfhits == 1 && separate == 1) {
-           cout<<"!!!!! no separate"<<endl;
-           ncl = -2;
-       }  // end if
-       if(nfhits == 2) {
-           cout << "Split cluster: " << endl;
-           clusterJ->PrintInfo();
-           cout << " in: " << endl;
-           for (i=0; i<nfhits; i++) {
-               // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
-                                               -1,-1,(Float_t)qfit[i],ncl,0,0,
-                                               (Float_t)xfit[i],
-                                               (Float_t)zfit[i],0,0,0,0,
-                                                tstart,tstop,astart,astop);
-           //  AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
-           //                                 -1,(Float_t)qfit[i],0,0,0,
-           //                                  (Float_t)xfit[i],
-           //                                  (Float_t)zfit[i],0,0,0,0,
-           //                                  tstart,tstop,astart,astop,ncl);
-           // ???????????
-           // if(wing == 1) xfit[i] *= (-1);
-           Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
-           Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
-           Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
-           Float_t peakpos = clusterJ->PeakPos();
-           Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
-           Float_t clusterDriftPath = Time*fDriftSpeed;
-           clusterDriftPath = fSddLength-clusterDriftPath;
-           AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
-                                                                Time,qfit[i],
-                                               clusterPeakAmplitude,peakpos,
-                                               0.,0.,clusterDriftPath,
-                                         clusteranodePath,clusterJ->Samples()/2
-                                   ,tstart,tstop,0,0,0,astart,astop);
-           clust->PrintInfo();
-           iTS->AddCluster(1,clust);
-           //  cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
-           // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
-           // <<","<<ncl<<endl;
-           delete clust;
-       }// nfhits loop
-       fClusters->RemoveAt(j);
-    } // if nfhits = 2
-} // cluster loop
-fClusters->Compress();
-fMap->ClearMap(); 
-*/
-    return;
-}
 //______________________________________________________________________
 void AliITSClusterFinderSDD::GetRecPoints(){
     // get rec points
-    static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
+  
     // get number of clusters for this module
-    Int_t nofClusters = fClusters->GetEntriesFast();
+    Int_t nofClusters = NClusters();
     nofClusters -= fNclusters;
-    const Float_t kconvGeV = 1.e-6; // GeV -> KeV
-    const Float_t kconv = 1.0e-4; 
-    const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
-    const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
+    const Double_t kconvGeV = 1.e-6; // GeV -> KeV
+    const Double_t kconv = 1.0e-4; 
+    const Double_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
+    const Double_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
     Int_t i;
     Int_t ix, iz, idx=-1;
     AliITSdigitSDD *dig=0;
-    Int_t ndigits=fDigits->GetEntriesFast();
+    Int_t ndigits=NDigits();
+
+    Int_t lay,lad,det;
+    fDetTypeRec->GetITSgeom()->GetModuleId(fModule,lay,lad,det);
+    Int_t ind=(lad-1)*fDetTypeRec->GetITSgeom()->GetNdetectors(lay)+(det-1);
+    Int_t lyr=(lay-1);
+
+
     for(i=0; i<nofClusters; i++) { 
-       AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
-       if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
-       if(clusterI) idx=clusterI->PeakPos();
-       if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
-       // try peak neighbours - to be done 
-       if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
-       if(!dig) {
-           // try cog
-           fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
-           dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
-           // if null try neighbours
-           if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
-           if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
-           if (!dig) printf("SDD: cannot assign the track number!\n");
-       } //  end if !dig
-       AliITSRecPoint rnew;
-       rnew.SetX(clusterI->X());
-       rnew.SetZ(clusterI->Z());
-       rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
-       rnew.SetdEdX(kconvGeV*clusterI->Q());
-       rnew.SetSigmaX2(kRMSx*kRMSx);
-       rnew.SetSigmaZ2(kRMSz*kRMSz);
-       if(dig) rnew.fTracks[0]=dig->fTracks[0];
-       if(dig) rnew.fTracks[1]=dig->fTracks[1];
-       if(dig) rnew.fTracks[2]=dig->fTracks[2];
-       //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
-       //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
-       //         lusterI->X(),clusterI->Z());
-       iTS->AddRecPoint(rnew);
+        AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)Cluster(i);
+        if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
+        if(clusterI) idx=clusterI->PeakPos();
+        if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
+        // try peak neighbours - to be done 
+        if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)GetDigit(idx);
+        if(!dig) {
+            // try cog
+            GetSeg()->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
+            dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix-1);
+            // if null try neighbours
+            if (!dig) dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix); 
+            if (!dig) dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix+1); 
+            if (!dig) printf("SDD: cannot assign the track number!\n");
+        } //  end if !dig
+        AliITSRecPoint rnew(fDetTypeRec->GetITSgeom());
+       rnew.SetXZ(fModule,clusterI->X(),clusterI->Z());
+        rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
+        rnew.SetdEdX(kconvGeV*clusterI->Q());
+        rnew.SetSigmaDetLocX2(kRMSx*kRMSx);
+        rnew.SetSigmaZ2(kRMSz*kRMSz);
+
+        if(dig) rnew.SetLabel(dig->GetTrack(0),0);
+        if(dig) rnew.SetLabel(dig->GetTrack(1),1);
+        if(dig) rnew.SetLabel(dig->GetTrack(2),2);
+       rnew.SetDetectorIndex(ind);
+       rnew.SetLayer(lyr);
+       fDetTypeRec->AddRecPoint(rnew);        
     } // I clusters
-    fMap->ClearMap();
+//    Map()->ClearMap();
 }
 //______________________________________________________________________
 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
     // find raw clusters
-
+    
+    SetModule(mod);
     Find1DClustersE();
     GroupClusters();
     SelectClusters();
-    ResolveClustersE();
+    ResolveClusters();
     GetRecPoints();
 }
 //_______________________________________________________________________
-void AliITSClusterFinderSDD::Print(){
+void AliITSClusterFinderSDD::PrintStatus() const{
     // Print SDD cluster finder Parameters
 
     cout << "**************************************************" << endl;