]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSsimulationSSD.cxx
Analysis using Stavinsky mixing method
[u/mrichter/AliRoot.git] / ITS / AliITSsimulationSSD.cxx
index 3db5c39f4752d2ce50a1f5c16794d5e58819fbd5..5de9dc84ea3f167225f41b58b53d59a264fa763e 100644 (file)
@@ -1,19 +1,42 @@
+/**************************************************************************
+ * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ *                                                                        *
+ * Author: The ALICE Off-line Project.                                    *
+ * Contributors are mentioned in the code where appropriate.              *
+ *                                                                        *
+ * Permission to use, copy, modify and distribute this software and its   *
+ * documentation strictly for non-commercial purposes is hereby granted   *
+ * without fee, provided that the above copyright notice appears in all   *
+ * copies and that both the copyright notice and this permission notice   *
+ * appear in the supporting documentation. The authors make no claims     *
+ * about the suitability of this software for any purpose. It is          *
+ * provided "as is" without express or implied warranty.                  *
+ **************************************************************************/
+
+/* $Id$ */
+
 #include <stdio.h>
-#include <iostream.h>
+#include <stdlib.h>
+#include <Riostream.h>
 #include <TObjArray.h>
+#include <TParticle.h>
 #include <TRandom.h>
 #include <TMath.h>
+#include <TH1.h>
 
 #include "AliITSmodule.h"
-#include "AliITSMapA2.h"   
-#include "AliITSsegmentationSSD.h"
+#include "AliITSMapA2.h"
+#include "AliITSpList.h"
 #include "AliITSresponseSSD.h"
-#include "AliITSsimulationSSD.h"
-//#include "AliITSdictSSD.h"
+#include "AliITSsegmentationSSD.h"
 #include "AliITSdcsSSD.h"
 #include "AliITS.h"
+#include "AliITShit.h"
+#include "AliITSdigitSSD.h"
 #include "AliRun.h"
-
+#include "AliITSgeom.h"
+#include "AliITSsimulationSSD.h"
+#include "AliITSTableSSD.h"
 
 ClassImp(AliITSsimulationSSD);
 ////////////////////////////////////////////////////////////////////////
@@ -23,568 +46,577 @@ ClassImp(AliITSsimulationSSD);
 //
 // AliITSsimulationSSD is the simulation of SSDs.
 
-//------------------------------------------------------------
+//----------------------------------------------------------------------
+AliITSsimulationSSD::AliITSsimulationSSD():AliITSsimulation(),
+fDCS(0),
+fMapA2(0),
+fIonE(0.0),
+fDifConst(),
+fDriftVel(){
+    //default Constructor
+    //Inputs:
+    // none.
+    // Outputs:
+    // none.
+    // Return:
+    //  A default construction AliITSsimulationSSD class
+}
+//----------------------------------------------------------------------
 AliITSsimulationSSD::AliITSsimulationSSD(AliITSsegmentation *seg,
-                                         AliITSresponse *resp){
-  // Constructor
-
-    fSegmentation = seg;
-    fResponse = resp;
-  Float_t noise[2] = {0.,0.};
-  fResponse->GetNoiseParam(noise[0],noise[1]);   // retrieves noise parameters
-  cout<<"nois1,2 ="<<noise[0]<<","<<noise[1]<<endl;    
-  fDCS = new AliITSdcsSSD(seg,resp); 
-
-    fNstrips = fSegmentation->Npx();
-    fPitch = fSegmentation->Dpx(0);
-    cout<<" Dx,Dz ="<<fSegmentation->Dx()<<","<<fSegmentation->Dz()<<endl;
-    cout<<"fNstrips="<<fNstrips<<" fPitch="<<fPitch<<endl;
-
-    //fP = new TArrayF(fNstrips+1); 
-    //fN = new TArrayF(fNstrips+1);
-
-    fMapA2 = new AliITSMapA2(fSegmentation);
-     
-    //fTracksP = new AliITSdictSSD[fNstrips+1];
-    //fTracksN = new AliITSdictSSD[fNstrips+1];
-    
-    fSteps  = 100;   // still hard-wired - set in SetDetParam and get it via  
-                     // fDCS together with the others eventually    
+                                         AliITSresponse *res):
+AliITSsimulation(seg,res),
+fDCS(0),
+fMapA2(0),
+fIonE(0.0),
+fDifConst(),
+fDriftVel(){
+    // Constructor 
+    // Input:
+    //   AliITSsegmentationSSD *seg  Pointer to the SSD segmentation to be used
+    //   AliITSresponseSSD   *resp Pointer to the SSD responce class to be used
+    // Outputs:
+    //   none.
+    // Return
+    //   A standard constructed AliITSsimulationSSD class
+
+    Init();
 }
-
-//___________________________________________________________________________
-AliITSsimulationSSD& AliITSsimulationSSD::operator=(AliITSsimulationSSD 
-                                                                      &source){
-// Operator =
-
-    if(this==&source) return *this;
-
-    this->fDCS = new AliITSdcsSSD(*(source.fDCS));
-    //this->fN   = new TArrayF(*(source.fN));
-    //this->fP   = new TArrayF(*(source.fP));
-    this->fMapA2 = source.fMapA2;
-    //this->fTracksP = new AliITSdictSSD(*(source.fTracksP));
-    //this->fTracksN = new AliITSdictSSD(*(source.fTracksN));
-    this->fNstrips = source.fNstrips;
-    this->fPitch   = source.fPitch;
-    this->fSteps   = source.fSteps;
-    return *this;
+//----------------------------------------------------------------------
+void AliITSsimulationSSD::Init(){
+    // Inilizer, Inilizes all of the variable as needed in a standard place.
+    // Input:
+    //   AliITSsegmentationSSD *seg  Pointer to the SSD segmentation to be used
+    //   AliITSresponseSSD   *resp Pointer to the SSD responce class to be used
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+
+    Double_t noise[2] = {0.,0.};
+    GetResp()->GetNoiseParam(noise[0],noise[1]); // retrieves noise parameters
+    fDCS = new AliITSdcsSSD((AliITSsegmentationSSD*)GetSegmentationModel(),
+                            (AliITSresponseSSD*)GetResponseModel()); 
+
+    SetDriftVelocity(); // use default values in .h file
+    SetIonizeE();       // use default values in .h file
+    SetDiffConst();     // use default values in .h file
+    fpList           = new AliITSpList(2,GetNStrips());
+    fMapA2           = new AliITSMapA2(GetSegmentationModel());
+}
+//______________________________________________________________________
+AliITSsimulationSSD& AliITSsimulationSSD::operator=(
+                                         const AliITSsimulationSSD &s){
+  // Operator =
+
+  if(this==&s) return *this;
+
+  this->fDCS         = new AliITSdcsSSD(*(s.fDCS));
+  this->fMapA2       = s.fMapA2;
+  this->fIonE        = s.fIonE;
+  this->fDifConst[0] = s.fDifConst[0];
+  this->fDifConst[1] = s.fDifConst[1];
+  this->fDriftVel[0] = s.fDriftVel[0];
+  this->fDriftVel[1] = s.fDriftVel[1];
+  return *this;
 }
-//_____________________________________________________________
-AliITSsimulationSSD::AliITSsimulationSSD(AliITSsimulationSSD &source){
+//______________________________________________________________________
+AliITSsimulationSSD::AliITSsimulationSSD(const AliITSsimulationSSD &source):
+    AliITSsimulation(source){
   // copy constructor
 
-   *this = source;
+  *this = source;
 }
-//____________________________________________________________________________
+//______________________________________________________________________
 AliITSsimulationSSD::~AliITSsimulationSSD() {
-  // destructor    
-  //if(fP) delete fP;
-  //if(fN) delete fN;
-    delete fMapA2;
-    //if(fTracksP) delete [] fTracksP;
-    //if(fTracksN) delete [] fTracksN;
-    delete fDCS;
-} 
-
-//_______________________________________________________________
-void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t module,
-                                         Int_t dummy) {
-  // Digitizes hits for one SSD module 
-
-  TObjArray *hits = mod->GetHits();
-  Int_t nhits = hits->GetEntriesFast();
-  if (!nhits) return;
-  //cout<<"!! module, nhits ="<<module<<","<<nhits<<endl; //b.b.
-  
-  Double_t x0=0.0, y0=0.0, z0=0.0;
-  Double_t x1=0.0, y1=0.0, z1=0.0;
-  Double_t de=0.0;
-  Int_t maxNdigits = 2*fNstrips; 
-  Float_t  **pList = new Float_t* [maxNdigits]; 
-  memset(pList,0,sizeof(Float_t*)*maxNdigits);
-  Int_t indexRange[4] = {0,0,0,0};
-  static Bool_t first=kTRUE;
-  Int_t lasttrack = -2;
-  Int_t idtrack = -2;
-    
-  for(Int_t i=0; i<nhits; i++) {    
-    // LineSegmentL returns 0 if the hit is entering
-    // If hits is exiting returns positions of entering and exiting hits
-    // Returns also energy loss
-    if (mod->LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) {
-      //cout<<"!! befor HitToDigit: hit ="<<i<<endl; //b.b.
-      HitToDigit(module, x0, y0, z0, x1, y1, z1, de, indexRange, first);
-       
-      if (lasttrack != idtrack || i==(nhits-1)) {
-       GetList(idtrack,pList,indexRange);
-       first=kTRUE;
-      }
-      lasttrack=idtrack;
-    }
-  }  // end loop over hits
-  
-  ApplyNoise();
-  ApplyCoupling();
-
-  ChargeToSignal(pList);
-
-  fMapA2->ClearMap();
+  // destructor
+  delete fMapA2;
+  delete fDCS;
 }
-
-//---------------------------------------------------------------
-void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0, 
-                                    Double_t z0, Double_t x1, Double_t y1, 
-                                    Double_t z1, Double_t de,
-                                    Int_t *indexRange, Bool_t first) {
-  // Turns hits in SSD module into one or more digits.
-
-  AliITSsegmentationSSD *seg = new AliITSsegmentationSSD();
-  // AliITSresponseSSD *res = new AliITSresponseSSD();
-
-  Float_t tang[2] = {0.0,0.0};
-  seg->Angles(tang[0], tang[1]); // stereo<<  -> tan(stereo)~=stereo
-  //fSegmentation->Angles(tang[0], tang[1]); // stereo<<  -> tan(stereo)~=stereo
-  Double_t x, y, z;
-  Double_t dex=0.0, dey=0.0, dez=0.0;
-  Double_t pairs;
-  Double_t  ionE = 3.62E-9;   // ionization energy of Si (GeV)
-  //ionE = (Double_t)  res->GetIonE();     
-    
-  Double_t sigma[2] = {0.,0.};  // standard deviation of the diffusion gaussian
-
-  Double_t D[2] = {11.,30.};                // diffusion constant {h,e} (cm**2/sec)
-  //D[0] = (Double_t) res->GetDiffusionConstantP();
-  //D[1] = (Double_t) res->GetDiffusionConstantN();
-
-  Double_t tdrift[2] = {0.,0.}; // time of drift
-  Double_t vdrift[2] = {0.86E6,2.28E6};          // drift velocity (cm/sec)   
-  //vdrift[0] = (Double_t) res->GetDriftVelocityP();
-  //vdrift[1] = (Double_t) res->GetDriftVelocityN();
-
-  Double_t w;
-  Double_t inf[2], sup[2], par0[2];                 
-  // Steps in the module are determined "manually" (i.e. No Geant)
-  // NumOfSteps divide path between entering and exiting hits in steps 
-  Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez);
-  
-  // Enery loss is equally distributed among steps
-  de = de/numOfSteps;
-  pairs = de/ionE;             // e-h pairs generated
-
-  //cout<<"Dy ="<<seg->Dy()<<endl;
-  //cout<<"numOfSteps ="<<numOfSteps<<endl;
-  //cout<<"dex,dey,dez ="<<dex<<","<<dey<<","<<dez<<endl;
-  //cout<<"y0,y1 ="<<y0<<","<<y1<<endl;
-  for(Int_t j=0; j<numOfSteps; j++) {     // stepping
-    //    cout<<"step number ="<<j<<endl;
-    x = x0 + (j+0.5)*dex;
-    y = y0 + (j+0.5)*dey;
-    if ( y > (seg->Dy()/2 +10)*1.0E-4 ) {
-      //if ( y > (seg->Dy()*1.0E-4/2) ) {
-      //if ( y > (fSegmentation->Dy()*1.0E-4/2) ) {
-      // check if particle is within the detector
-      cout<<"AliITSsimulationSSD::HitToDigit: Warning: hit out of detector y0,y,dey,j ="<<y0<<","<<y<<","<<dey<<","<<j<<endl;
-      return;
-    };
-    z = z0 + (j+0.5)*dez;
-
-    // calculate drift time
-    tdrift[0] = (y+(seg->Dy()*1.0E-4)/2) / vdrift[0]; // y is the minimum path
-    tdrift[1] = ((seg->Dy()*1.0E-4)/2-y) / vdrift[1]; // y is the minimum path
-    //tdrift[0] = (y+(fSegmentation->Dy()*1.0E-4)/2) / vdrift[0]; // y is the minimum path
-    //tdrift[1] = ((fSegmentation->Dy()*1.0E-4)/2-y) / vdrift[1]; // y is the minimum path
-
-    for(Int_t k=0; k<2; k++) {   // both sides    remember: 0=Pside 1=Nside
-
-      tang[k]=TMath::Tan(tang[k]);
-
-      // w is the coord. perpendicular to the strips
-      if(k==0) {
-       w = (x+(seg->Dx()*1.0E-4)/2) - (z+(seg->Dz()*1.0E-4)/2)*tang[k]; 
-       //w = (x+(fSegmentation->Dx()*1.0E-4)/2) - (z+(fSegmentation->Dz()*1.0E-4)/2)*tang[k]; 
-       //cout<<"k,x,z,w ="<<k<<","<<x<<","<<z<<","<<w<<endl;
-      }
-      else {
-       w = (x+(seg->Dx()*1.0E-4)/2) + (z-(seg->Dz()*1.0E-4)/2)*tang[k]; 
-       //w = (x+(fSegmentation->Dx()*1.0E-4)/2) + (z-(fSegmentation->Dz()*1.0E-4)/2)*tang[k]; 
-       //cout<<"k,x,z,w ="<<k<<","<<x<<","<<z<<","<<w<<endl;
-      }
-      w = w / (fPitch*1.0E-4); // w is converted in units of pitch
-
-      if((w<(-0.5)) || (w>(fNstrips-0.5))) {
-       // this check rejects hits in regions not covered by strips
-       // 0.5 takes into account boundaries 
-       if(k==0) cout<<"AliITSsimulationSSD::HitToDigit: Warning: no strip in this region of P side"<<endl;
-       else cout<<"AliITSsimulationSSD::HitToDigit: Warning: no strip in this region of N side"<<endl;
-       return;
-      }
-
-      // sigma is the standard deviation of the diffusion gaussian
-
-      if(tdrift[k]<0) return;
-
-      sigma[k] = TMath::Sqrt(2*D[k]*tdrift[k]);
-      sigma[k] = sigma[k] /(fPitch*1.0E-4);  //units of Pitch
-      if(sigma[k]==0.0) {      
-       cout<<"AliITSsimulationSSD::DigitiseModule: Error: sigma=0"<<endl; 
-       exit(0);
-      }
-
-      par0[k] = pairs;
-      // we integrate the diffusion gaussian from -3sigma to 3sigma 
-      inf[k] = w - 3*sigma[k];      // 3 sigma from the gaussian average  
-      sup[k] = w + 3*sigma[k];      // 3 sigma from the gaussian average
-      // IntegrateGaussian does the actual integration of diffusion gaussian
-      IntegrateGaussian(k, par0[k], w, sigma[k], inf[k], sup[k], 
-                       indexRange, first);
-    }  // end for loop over side (0=Pside, 1=Nside)      
-  } // end stepping
-  delete seg;
+//______________________________________________________________________
+void AliITSsimulationSSD::InitSimulationModule(Int_t module,Int_t event){
+    // Creates maps to build the list of tracks for each sumable digit
+    // Inputs:
+    //   Int_t module    // Module number to be simulated
+    //   Int_t event     // Event number to be simulated
+    // Outputs:
+    //   none.
+    // Return
+    //    none.
+
+    SetModuleNumber(module);
+    SetEventNumber(event);
+    fMapA2->ClearMap();
+    fpList->ClearMap();
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::FinishSDigitiseModule(){
+    // Does the Sdigits to Digits work
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return:
+    //   none.
+
+    FillMapFrompList(fpList);  // need to check if needed here or not????
+    SDigitToDigit(fModule,fpList);
+    fpList->ClearMap();
+    fMapA2->ClearMap();
 }
+//______________________________________________________________________
+void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t,Int_t) {
+  // Digitizes hits for one SSD module
+  SetModuleNumber(mod->GetIndex());
 
-//____________________________________________________________________
+  HitsToAnalogDigits(mod,fpList);
+  SDigitToDigit(GetModuleNumber(),fpList);
 
-void AliITSsimulationSSD::ApplyNoise() {
-  // Apply Noise.
-  
-  Float_t signal;
-  Float_t noise[2] = {0.,0.};
-  fResponse->GetNoiseParam(noise[0],noise[1]);   // retrieves noise parameters
+  fpList->ClearMap();
+  fMapA2->ClearMap();
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::SDigitiseModule(AliITSmodule *mod,Int_t,Int_t) {
+  // Produces Summable/Analog digits and writes them to the SDigit tree. 
 
-  for(Int_t k=0;k<2;k++){                        // both sides (0=Pside, 1=Nside)
-    for(Int_t ix=0;ix<fNstrips;ix++){            // loop over strips
-      signal = (Float_t) fMapA2->GetSignal(k,ix);// retrieves signal from map
+    HitsToAnalogDigits(mod,fpList);
 
-      signal += gRandom->Gaus(0,noise[k]);       // add noise to signal
-      if(signal<0.) signal=0.0;                  // in case noise is negative...
+    WriteSDigits(fpList);
 
-      fMapA2->SetHit(k,ix,(Double_t)signal);     // give back signal to map
-    } // loop over strip 
-  } // loop over k (P or N side)
+    fpList->ClearMap();
+    fMapA2->ClearMap();
 }
+//______________________________________________________________________
+void AliITSsimulationSSD::SDigitToDigit(Int_t module,AliITSpList *pList){
+  // Takes the pList and finishes the digitization.
 
-//_________________________________________________________________________
+  ApplyNoise(pList,module);
+  ApplyCoupling(pList,module);
 
-void AliITSsimulationSSD::ApplyCoupling() {
-  // Apply the effect of electronic coupling between channels    
-  Float_t signal, signalLeft=0, signalRight=0;
-
-  for(Int_t ix=0;ix<fNstrips;ix++){
-    if(ix>0.) signalLeft  = (Float_t) fMapA2->GetSignal(0,ix-1)*fDCS->GetCouplingPL();
-    else signalLeft = 0.0;
-    if(ix<(fNstrips-1)) signalRight = (Float_t) fMapA2->GetSignal(0,ix+1)*fDCS->GetCouplingPR();
-    else signalRight = 0.0;
-    signal = (Float_t) fMapA2->GetSignal(0,ix);
-    signal += signalLeft + signalRight;
-    fMapA2->SetHit(0,ix,(Double_t)signal);
-    
-    if(ix>0.) signalLeft  = (Float_t) fMapA2->GetSignal(1,ix-1)*fDCS->GetCouplingNL();
-    else signalLeft = 0.0;
-    if(ix<(fNstrips-1)) signalRight = (Float_t) fMapA2->GetSignal(1,ix+1)*fDCS->GetCouplingNR();
-    else signalRight = 0.0;
-    signal = (Float_t) fMapA2->GetSignal(1,ix);
-    signal += signalLeft + signalRight;
-    fMapA2->SetHit(1,ix,(Double_t)signal);
-  } // loop over strips 
+  ChargeToSignal(pList);
 }
-
-//____________________________________________________________________________
+//______________________________________________________________________
+void AliITSsimulationSSD::HitsToAnalogDigits(AliITSmodule *mod,
+                                             AliITSpList *pList){
+    // Loops over all hits to produce Analog/floating point digits. This
+    // is also the first task in producing standard digits.
+    Int_t lasttrack     = -2;
+    Int_t idtrack       = -2;
+    Double_t x0=0.0, y0=0.0, z0=0.0;
+    Double_t x1=0.0, y1=0.0, z1=0.0;
+    Double_t de=0.0;
+    Int_t module = mod->GetIndex();
+
+    TObjArray *hits = mod->GetHits();
+    Int_t nhits     = hits->GetEntriesFast();
+    if (nhits<=0) return;
+    AliITSTableSSD * tav = new AliITSTableSSD(GetNStrips());
+    module = mod->GetIndex();
+    if ( mod->GetLayer() == 6 ) GetSegmentation()->SetLayer(6);
+    if ( mod->GetLayer() == 5 ) GetSegmentation()->SetLayer(5);
+    for(Int_t i=0; i<nhits; i++) {    
+        // LineSegmentL returns 0 if the hit is entering
+        // If hits is exiting returns positions of entering and exiting hits
+        // Returns also energy loss
+        if(GetDebug(4)){
+            cout << i << " ";
+            cout << mod->GetHit(i)->GetXL() << " "<<mod->GetHit(i)->GetYL();
+            cout << " " << mod->GetHit(i)->GetZL();
+            cout << endl;
+        } // end if
+        if (mod->LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) {
+            HitToDigit(module, x0, y0, z0, x1, y1, z1, de,tav);
+            if (lasttrack != idtrack || i==(nhits-1)) {
+                GetList(idtrack,i,module,pList,tav);
+            } // end if
+            lasttrack=idtrack;
+        } // end if
+    }  // end loop over hits
+    delete tav; tav=0;
+    return;
+}
+//----------------------------------------------------------------------
+void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0, 
+                                     Double_t z0, Double_t x1, Double_t y1, 
+                                     Double_t z1, Double_t de,
+                                     AliITSTableSSD *tav) {
+    // Turns hits in SSD module into one or more digits.
+    Float_t tang[2] = {0.0,0.0};
+    GetSegmentation()->Angles(tang[0], tang[1]);//stereo<<->tan(stereo)~=stereo
+    Double_t x, y, z;
+    Double_t dex=0.0, dey=0.0, dez=0.0; 
+    Double_t pairs; // pair generation energy per step.
+    Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian
+    Double_t tdrift[2] = {0.,0.}; // time of drift
+    Double_t w;
+    Double_t inf[2], sup[2], par0[2];                 
+
+    // Steps in the module are determined "manually" (i.e. No Geant)
+    // NumOfSteps divide path between entering and exiting hits in steps 
+    Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez);
+    // Enery loss is equally distributed among steps
+    de    = de/numOfSteps;
+    pairs = de/GetIonizeE(); // e-h pairs generated
+    for(Int_t j=0; j<numOfSteps; j++) {     // stepping
+        x = x0 + (j+0.5)*dex;
+        y = y0 + (j+0.5)*dey;
+        if ( y > (GetSegmentation()->Dy()/2+10)*1.0E-4 ) {
+            // check if particle is within the detector
+            Warning("HitToDigit",
+                    "hit out of detector y0=%e,y=%e,dey=%e,j =%e module=%d",
+                    y0,y,dey,j,module);
+            return;
+        } // end if
+        z = z0 + (j+0.5)*dez;
+        if(GetDebug(4)) cout <<"HitToDigit "<<x<<" "<<y<<" "<<z<< " "
+                            <<dex<<" "<<dey<<" "<<dez<<endl;
+        // calculate drift time
+        // y is the minimum path
+        tdrift[0] = (y+(GetSegmentation()->Dy()*1.0E-4)/2)/GetDriftVelocity(0);
+        tdrift[1] = ((GetSegmentation()->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1);
+
+        for(Int_t k=0; k<2; k++) {   // both sides    remember: 0=Pside 1=Nside
+
+            tang[k]=TMath::Tan(tang[k]);
+
+            // w is the coord. perpendicular to the strips
+            /*
+              if(k==0) {
+              w = (x+(GetSegmentation()->Dx()*1.0E-4)/2) -
+                   (z+(GetSegmentation()->Dz()*1.0E-4)/2)*tang[k]; 
+              }else{
+              w = (x+(GetSegmentation()->Dx()*1.0E-4)/2) + 
+                   (z-(GetSegmentation()->Dz()*1.0E-4)/2)*tang[k];
+              } // end if
+              w /= (GetStripPitch()*1.0E-4); //w is converted in units of pitch
+            */
+            { // replacement block for the above.
+                Float_t xp=x*1.e+4,zp=z*1.e+4; // microns
+                GetSegmentation()->GetPadTxz(xp,zp);
+                if(k==0) w = xp; // P side strip number
+                else w = zp; // N side strip number
+            } // end test block
+
+            if((w<(-0.5)) || (w>(GetNStrips()-0.5))) {
+                // this check rejects hits in regions not covered by strips
+                // 0.5 takes into account boundaries 
+                if(GetDebug(4)) cout << "x,z="<<x<<","<<z<<" w="<<w
+                                    <<" Nstrips="<<GetNStrips()<<endl;
+                return; // There are dead region on the SSD sensitive volume.
+            } // end if
+
+            // sigma is the standard deviation of the diffusion gaussian
+            if(tdrift[k]<0) return;
+            sigma[k] = TMath::Sqrt(2*GetDiffConst(k)*tdrift[k]);
+            sigma[k] /= (GetStripPitch()*1.0E-4);  //units of Pitch
+            if(sigma[k]==0.0) {        
+                Error("HitToDigit"," sigma[%d]=0",k);
+                exit(0);
+            } // end if
+
+            par0[k] = pairs;
+            // we integrate the diffusion gaussian from -3sigma to 3sigma 
+            inf[k] = w - 3*sigma[k]; // 3 sigma from the gaussian average  
+            sup[k] = w + 3*sigma[k]; // 3 sigma from the gaussian average
+            // IntegrateGaussian does the actual
+            // integration of diffusion gaussian
+            IntegrateGaussian(k, par0[k], w, sigma[k], inf[k], sup[k],tav);
+        }  // end for loop over side (0=Pside, 1=Nside)      
+    } // end stepping
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::ApplyNoise(AliITSpList *pList,Int_t module){
+    // Apply Noise.
+    Int_t    k,ix;
+    Double_t signal,noise;
+    Double_t noiseP[2] = {0.,0.};
+    Double_t a,b;
+
+    GetResp()->GetNoiseParam(a,b); // retrieves noise parameters
+    noiseP[0] = a; noiseP[1] = b;
+    for(k=0;k<2;k++){                    // both sides (0=Pside, 1=Nside)
+        for(ix=0;ix<GetNStrips();ix++){      // loop over strips
+            noise  = gRandom->Gaus(0,noiseP[k]);// get noise to signal
+            signal = noise + fMapA2->GetSignal(k,ix);//get signal from map
+            if(signal<0.) signal=0.0;           // in case noise is negative...
+            fMapA2->SetHit(k,ix,signal); // give back signal to map
+            if(signal>0.0) pList->AddNoise(k,ix,module,noise);
+        } // loop over strip 
+    } // loop over k (P or N side)
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::ApplyCoupling(AliITSpList *pList,Int_t module) {
+    // Apply the effect of electronic coupling between channels
+    Int_t ix;
+    Double_t signalLeft=0, signalRight=0,signal=0;
+
+    for(ix=0;ix<GetNStrips();ix++){
+        // P side coupling
+        if(ix>0.)signalLeft = fMapA2->GetSignal(0,ix-1)*fDCS->GetCouplingPL();
+        else signalLeft = 0.0;
+        if(ix<(GetNStrips()-1)) signalRight = fMapA2->GetSignal(0,ix+1)*
+                                    fDCS->GetCouplingPR();
+        else signalRight = 0.0;
+        signal = signalLeft + signalRight;
+        fMapA2->AddSignal(0,ix,signal);
+        if(signal>0.0) pList->AddNoise(0,ix,module,signal);
+
+        signalLeft = signalRight = signal = 0.0;
+        // N side coupling
+        if(ix>0.) signalLeft = fMapA2->GetSignal(1,ix-1)*fDCS->GetCouplingNL();
+        else signalLeft = 0.0;
+        if(ix<(GetNStrips()-1)) signalRight = fMapA2->GetSignal(1,ix+1)*
+                                    fDCS->GetCouplingNR();
+        else signalRight = 0.0;
+        signal = signalLeft + signalRight;
+        fMapA2->AddSignal(1,ix,signal);
+        if(signal>0.0) pList->AddNoise(1,ix,module,signal);
+    } // loop over strips 
+}
+//______________________________________________________________________
 Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) {
-  // Computes the integral of a gaussian using Error Function
-  Float_t sqrt2 = TMath::Sqrt(2.0);
-  Float_t sigm2 = sqrt2*s;
-  Float_t integral;
+    // Computes the integral of a gaussian using Error Function
+    Float_t sqrt2 = TMath::Sqrt(2.0);
+    Float_t sigm2 = sqrt2*s;
+    Float_t integral;
 
-  integral = 0.5 * TMath::Erf( (x - av) / sigm2);
-  return integral;
-} 
-
-//_________________________________________________________________________
+    integral = 0.5 * TMath::Erf( (x - av) / sigm2);
+    return integral;
+}
+//______________________________________________________________________
 void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w,
-                                           Double_t sigma, 
-                                           Double_t inf, Double_t sup,
-                                           Int_t *indexRange, Bool_t first) {
-  // integrate the diffusion gaussian
-  // remind: inf and sup are w-3sigma and w+3sigma
-  //         we could define them here instead of passing them
-  //         this way we are free to introduce asimmetry
-
-  Double_t a=0.0, b=0.0;
-  Double_t signal = 0.0, dXCharge1 = 0.0, dXCharge2 = 0.0;
-  // dXCharge1 and 2 are the charge to two neighbouring strips
-  // Watch that we only involve at least two strips
-  // Numbers greater than 2 of strips in a cluster depend on
-  //  geometry of the track and delta rays, not charge diffusion!   
-  
-  Double_t strip = TMath::Floor(w);         // clostest strip on the left
-
-  if ( TMath::Abs((strip - w)) < 0.5) { 
-    // gaussian mean is closer to strip on the left
-    a = inf;                         // integration starting point
-    if((strip+0.5)<=sup) {
-      // this means that the tail of the gaussian goes beyond
-      // the middle point between strips ---> part of the signal
-      // is given to the strip on the right
-      b = strip + 0.5;               // integration stopping point
-      dXCharge1 = F( w, b, sigma) - F(w, a, sigma);    
-      dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); 
-    }
-    else { 
-      // this means that all the charge is given to the strip on the left
-      b = sup;
-      dXCharge1 = 0.9973;   // gaussian integral at 3 sigmas
-      dXCharge2 = 0.0;
-    }
-
-    dXCharge1 = par * dXCharge1;  // normalize by mean of number of carriers
-    dXCharge2 = par * dXCharge2;
-
-    // for the time being, signal is the charge
-    // in ChargeToSignal signal is converted in ADC channel
-    signal = fMapA2->GetSignal(k,strip);
-    signal += dXCharge1;
-
-    fMapA2->SetHit(k,strip,(Double_t)signal);
-    if(((Int_t) strip) < (fNstrips-1)) {
-      // strip doesn't have to be the last (remind: last=fNstrips-1)
-      // otherwise part of the charge is lost
-      signal = fMapA2->GetSignal(k,(strip+1));
-      signal += dXCharge2;
-      fMapA2->SetHit(k,(strip+1),(Double_t)signal);
-    }
-    
-    if(dXCharge1 > 1.) {
-      if (first) {
-       indexRange[k*2+0]=indexRange[k*2+1]=(Int_t) strip;
-       first=kFALSE;
-      }
-
-      indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip);
-      indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip);
-    }      // dXCharge > 1 e-
-
-  }
-  else {
-    // gaussian mean is closer to strip on the right
-    strip++;     // move to strip on the rigth
-    b = sup;     // now you know where to stop integrating
-    if((strip-0.5)>=inf) { 
-      // tail of diffusion gaussian on the left goes left of
-      // middle point between strips
-      a = strip - 0.5;        // integration starting point
-      dXCharge1 = F(w, b, sigma) - F(w, a, sigma);
-      dXCharge2 = F(w, a, sigma) - F(w, inf, sigma);
-    }
-    else {
-      a = inf;
-      dXCharge1 = 0.9973;   // gaussian integral at 3 sigmas
-      dXCharge2 = 0.0;
-    }
-    
-    dXCharge1 = par * dXCharge1;    // normalize by means of carriers
-    dXCharge2 = par * dXCharge2;
-
-    // for the time being, signal is the charge
-    // in ChargeToSignal signal is converted in ADC channel
-    signal = fMapA2->GetSignal(k,strip);
-    signal += dXCharge1;
-    fMapA2->SetHit(k,strip,(Double_t)signal);
-    if(((Int_t) strip) > 0) {
-      // strip doesn't have to be the first
-      // otherwise part of the charge is lost
-      signal = fMapA2->GetSignal(k,(strip-1));
-      signal += dXCharge2;
-      fMapA2->SetHit(k,(strip-1),(Double_t)signal);
-    }
-    
-    if(dXCharge1 > 1.) {
-      if (first) {
-       indexRange[k*2+0]=indexRange[k*2+1]=(Int_t) strip;
-       first=kFALSE;
-      }
-
-      indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip);
-      indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip);
-    }      // dXCharge > 1 e-
-  }
+                                            Double_t sigma, 
+                                            Double_t inf, Double_t sup,
+                                            AliITSTableSSD *tav) {
+    // integrate the diffusion gaussian
+    // remind: inf and sup are w-3sigma and w+3sigma
+    //         we could define them here instead of passing them
+    //         this way we are free to introduce asimmetry
+
+    Double_t a=0.0, b=0.0;
+    Double_t dXCharge1 = 0.0, dXCharge2 = 0.0;
+    // dXCharge1 and 2 are the charge to two neighbouring strips
+    // Watch that we only involve at least two strips
+    // Numbers greater than 2 of strips in a cluster depend on
+    //  geometry of the track and delta rays, not charge diffusion!   
+
+    Double_t strip = TMath::Floor(w);         // closest strip on the left
+
+    if ( TMath::Abs((strip - w)) < 0.5) { 
+        // gaussian mean is closer to strip on the left
+        a = inf;                         // integration starting point
+        if((strip+0.5)<=sup) {
+            // this means that the tail of the gaussian goes beyond
+            // the middle point between strips ---> part of the signal
+            // is given to the strip on the right
+            b = strip + 0.5;               // integration stopping point
+            dXCharge1 = F( w, b, sigma) - F(w, a, sigma);
+            dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); 
+        }else { 
+            // this means that all the charge is given to the strip on the left
+            b = sup;
+            dXCharge1 = 0.9973;   // gaussian integral at 3 sigmas
+            dXCharge2 = 0.0;
+        } // end if
+        dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers
+        dXCharge2 = par * dXCharge2;
+
+        // for the time being, signal is the charge
+        // in ChargeToSignal signal is converted in ADC channel
+        fMapA2->AddSignal(k,(Int_t)strip,dXCharge1);
+        tav->Add(k,(Int_t)strip);
+        if(((Int_t) strip) < (GetNStrips()-1)) {
+            // strip doesn't have to be the last (remind: last=GetNStrips()-1)
+            // otherwise part of the charge is lost
+            fMapA2->AddSignal(k,((Int_t)strip+1),dXCharge2);
+            tav->Add(k,((Int_t)(strip+1)));
+        } // end if
+    }else{
+        // gaussian mean is closer to strip on the right
+        strip++;     // move to strip on the rigth
+        b = sup;     // now you know where to stop integrating
+        if((strip-0.5)>=inf) { 
+            // tail of diffusion gaussian on the left goes left of
+            // middle point between strips
+            a = strip - 0.5;        // integration starting point
+            dXCharge1 = F(w, b, sigma) - F(w, a, sigma);
+            dXCharge2 = F(w, a, sigma) - F(w, inf, sigma);
+        }else {
+            a = inf;
+            dXCharge1 = 0.9973;   // gaussian integral at 3 sigmas
+            dXCharge2 = 0.0;
+        } // end if
+        dXCharge1 = par * dXCharge1;    // normalize by means of carriers
+        dXCharge2 = par * dXCharge2;
+        // for the time being, signal is the charge
+        // in ChargeToSignal signal is converted in ADC channel
+        fMapA2->AddSignal(k,(Int_t)strip,dXCharge1);
+        tav->Add(k,(Int_t)strip);
+        if(((Int_t) strip) > 0) {
+            // strip doesn't have to be the first
+            // otherwise part of the charge is lost
+            fMapA2->AddSignal(k,((Int_t)strip-1),dXCharge2);
+            tav->Add(k,((Int_t)(strip-1)));
+        } // end if
+    } // end if
 }
-
-
-  //_________________________________________________________________________
-
+//______________________________________________________________________
 Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z,
-                                Double_t & dex,Double_t & dey,Double_t & dez) {  
-  // number of steps
-  // it also returns steps for each coord
-  //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD();
-
-  Double_t step = 25E-4;
-  //step = (Double_t) seg->GetStepSize();  // step size (cm)
-  Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step); 
-
-  if (numOfSteps < 1) numOfSteps = 1;       // one step, at least
-
-  // we could condition the stepping depending on the incident angle
-  // of the track
-  dex = x/numOfSteps;
-  dey = y/numOfSteps;
-  dez = z/numOfSteps;
-
-  return numOfSteps;
-
+                                      Double_t &dex,Double_t &dey,
+                                      Double_t &dez){
+    // number of steps
+    // it also returns steps for each coord
+    //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD();
+
+    Double_t step = 25E-4;
+    //step = (Double_t) seg->GetStepSize();  // step size (cm)
+    Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step); 
+
+    if (numOfSteps < 1) numOfSteps = 1;       // one step, at least
+
+    // we could condition the stepping depending on the incident angle
+    // of the track
+    dex = x/numOfSteps;
+    dey = y/numOfSteps;
+    dez = z/numOfSteps;
+    
+    return numOfSteps;
 }
-
-//---------------------------------------------
-void AliITSsimulationSSD::GetList(Int_t label,Float_t **pList,Int_t *indexRange) {
-  // loop over nonzero digits
-  Int_t ix,globalIndex;
-  Float_t signal=0.;
-  Float_t highest,middle,lowest;
-  // printf("SPD-GetList: indexRange[0] indexRange[1] indexRange[2] indexRange[3] %d %d %d %d\n",indexRange[0], indexRange[1], indexRange[2], indexRange[3]);
-
-  for(Int_t k=0; k<2; k++) {
-    for(ix=indexRange[k*2+0];ix<indexRange[k*2+1]+1;ix++){
-      if(indexRange[k*2+0]<indexRange[k*2+1]) 
-       signal=fMapA2->GetSignal(k,ix);
-      
-      globalIndex = k*fNstrips+ix; // globalIndex starts from 0!
-      if(!pList[globalIndex]){
-       
-       // 
-       // Create new list (6 elements - 3 signals and 3 tracks + total sig)
-       //
-       
-       pList[globalIndex] = new Float_t [6];
-       // set list to -1 
-       
-       *pList[globalIndex] = -2.;
-       *(pList[globalIndex]+1) = -2.;
-       *(pList[globalIndex]+2) = -2.;
-       *(pList[globalIndex]+3) =  0.;
-       *(pList[globalIndex]+4) =  0.;
-       *(pList[globalIndex]+5) =  0.;
-               
-       *pList[globalIndex] = (float)label;
-       *(pList[globalIndex]+3) = signal;
-
-      }
-      else{
-       
-       // check the signal magnitude
-       
-       highest = *(pList[globalIndex]+3);
-       middle = *(pList[globalIndex]+4);
-       lowest = *(pList[globalIndex]+5);
-       
-       signal -= (highest+middle+lowest);
-       
-       //
-       //  compare the new signal with already existing list
-       //
-       
-       if(signal<lowest) continue; // neglect this track
-       
-       if (signal>highest){
-         *(pList[globalIndex]+5) = middle;
-         *(pList[globalIndex]+4) = highest;
-         *(pList[globalIndex]+3) = signal;
-         
-         *(pList[globalIndex]+2) = *(pList[globalIndex]+1);
-         *(pList[globalIndex]+1) = *pList[globalIndex];
-         *pList[globalIndex] = label;
-       }
-       else if (signal>middle){
-         *(pList[globalIndex]+5) = middle;
-         *(pList[globalIndex]+4) = signal;
-         
-         *(pList[globalIndex]+2) = *(pList[globalIndex]+1);
-         *(pList[globalIndex]+1) = label;
-       }
-       else{
-         *(pList[globalIndex]+5) = signal;
-         *(pList[globalIndex]+2) = label;
-       }
-      }
-    } // end of loop pixels in x
-  } // end of loop over pixels in z
+//----------------------------------------------------------------------
+void AliITSsimulationSSD::GetList(Int_t label,Int_t hit,Int_t mod,
+                                  AliITSpList *pList,AliITSTableSSD *tav) {
+    // loop over nonzero digits
+    Int_t ix,i;
+    Double_t signal=0.;
+
+    for(Int_t k=0; k<2; k++) {
+        ix=tav->Use(k);
+        while(ix>-1){
+            signal = fMapA2->GetSignal(k,ix);
+            if(signal==0.0) {
+                ix=tav->Use(k);
+                continue;
+            } // end if signal==0.0
+            // check the signal magnitude
+            for(i=0;i<pList->GetNSignals(k,ix);i++){
+                signal -= pList->GetTSignal(k,ix,i);
+            } // end for i
+            //  compare the new signal with already existing list
+            if(signal>0)pList->AddSignal(k,ix,label,hit,mod,signal);
+            ix=tav->Use(k);
+        } // end of loop on strips
+    } // end of loop on P/N side
+    tav->Clear();
 }
-
-//---------------------------------------------
-void AliITSsimulationSSD::ChargeToSignal(Float_t **pList) {
-  // charge to signal  
-
-  AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
-  
-  Float_t threshold = 0.;
-
-  Int_t digits[3], tracks[3],hits[3],gi,j1;
-  Float_t charges[3];
-  Float_t signal,phys;
-  Float_t noise[2] = {0.,0.};
-  fResponse->GetNoiseParam(noise[0],noise[1]);
-  
-  for(Int_t k=0;k<2;k++){         // both sides (0=Pside, 1=Nside)
-
-    // Threshold for zero-suppression
-    // It can be defined in AliITSresponseSSD
-    //             threshold = (Float_t)fResponse->MinVal(k);
-    // I prefer to think adjusting the threshold "manually", looking
-    // at the scope, and considering noise standard deviation
-    threshold = 4.0*noise[k];      // 4 times noise is a choice
-    //cout<<"SSD: k,thresh ="<<k<<","<<threshold<<endl;
-    for(Int_t ix=0;ix<fNstrips;ix++){         // loop over strips
-
-      signal = (Float_t) fMapA2->GetSignal(k,ix);
-
-      gi =k*fNstrips+ix; // global index
-      if (signal > threshold) {
-       digits[0]=k;
-       digits[1]=ix;
-
-       // convert to ADC signal
-       // conversion factor are rather arbitrary (need tuning)
-       // minimum ionizing particle --> ~30000 pairs --> ADC channel 50
-       signal = signal*50.0/30000.0;        
-       //cout<<"SSD: 1 signal ="<<signal<<endl;
-       if(signal>1000.) signal = 1000.0; // if exceeding, accumulate last one
-       //cout<<"SSD: 2 signal ="<<signal<<endl;
-       digits[2]=(Int_t) signal;
-
-       //gi =k*fNstrips+ix; // global index
-       for(j1=0;j1<3;j1++){
-         if (pList[gi]) {
-           tracks[j1] = (Int_t)(*(pList[gi]+j1));
-         }       
-         else {
-           tracks[j1]=-2; //noise
-         }
-         charges[j1] = 0;
-       }
-
-       phys=0;
-
-       hits[0]=0;
-       hits[1]=0;
-       hits[2]=0;
-       aliITS->AddSimDigit(2,phys,digits,tracks,hits,charges);  // finally add digit
-
-       //if(pList[gi]) delete [] pList[gi];
-      }
-      if(pList[gi]) delete [] pList[gi];
-    }
-  }
-  delete [] pList;
+//----------------------------------------------------------------------
+void AliITSsimulationSSD::ChargeToSignal(AliITSpList *pList) {
+    // charge to signal
+    static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
+    Float_t threshold = 0.;
+    Int_t size = AliITSdigitSSD::GetNTracks();
+    Int_t * digits = new Int_t[size];
+    Int_t * tracks = new Int_t[size];
+    Int_t * hits = new Int_t[size];
+    Int_t j1;
+    Float_t charges[3] = {0.0,0.0,0.0};
+    Float_t signal;
+    Double_t noise[2] = {0.,0.};
+
+    GetResp()->GetNoiseParam(noise[0],noise[1]);
+
+    for(Int_t k=0;k<2;k++){         // both sides (0=Pside, 1=Nside)
+        // Threshold for zero-suppression
+        // It can be defined in AliITSresponseSSD
+        //             threshold = (Float_t)GetResp()->MinVal(k);
+        // I prefer to think adjusting the threshold "manually", looking
+        // at the scope, and considering noise standard deviation
+        threshold = 4.0*noise[k]; // 4 times noise is a choice
+        for(Int_t ix=0;ix<GetNStrips();ix++){     // loop over strips
+            if(fMapA2->GetSignal(k,ix) <= threshold)continue;
+            // convert to ADC signal
+            signal = GetResp()->DEvToADC(
+                fMapA2->GetSignal(k,ix));
+            if(signal>1024.) signal = 1024.;//if exceeding, accumulate last one
+            digits[0] = k;
+            digits[1] = ix;
+            digits[2] = (Int_t) signal;
+            for(j1=0;j1<size;j1++)if(j1<pList->GetNEnteries()){
+                // only three in digit.
+                tracks[j1]  = pList->GetTrack(k,ix,j1);
+                hits[j1]    = pList->GetHit(k,ix,j1);
+            }else{
+                tracks[j1]  = -3;
+                hits[j1]    = -1;
+            } // end for j1
+            // finally add digit
+            aliITS->AddSimDigit(2,0,digits,tracks,hits,charges);
+        } // end for ix
+    } // end for k
+    delete [] digits;
+    delete [] tracks;
+    delete [] hits;
 }
+//______________________________________________________________________
+void AliITSsimulationSSD::WriteSDigits(AliITSpList *pList){
+    // Fills the Summable digits Tree
+    Int_t i,ni,j,nj;
+    static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
+
+    pList->GetMaxMapIndex(ni,nj);
+    for(i=0;i<ni;i++)for(j=0;j<nj;j++){
+        if(pList->GetSignalOnly(i,j)>0.0){
+            aliITS->AddSumDigit(*(pList->GetpListItem(i,j)));
+            if(GetDebug(4)) cout << "pListSSD: "<<*(pList->GetpListItem(i,j))
+                                << endl;
+        } // end if
+    } // end for i,j
+  return;
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::FillMapFrompList(AliITSpList *pList){
+    // Fills fMap2A from the pList of Summable digits
+    Int_t k,ix;
+
+    for(k=0;k<2;k++)for(ix=0;ix<GetNStrips();ix++) 
+        fMapA2->AddSignal(k,ix,pList->GetSignal(k,ix));
+    return;
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::Print(ostream *os){
+    //Standard output format for this class
+
+    //AliITSsimulation::Print(os);
+    *os << fIonE <<",";
+    *os << fDifConst[0] <<","<< fDifConst[1] <<",";
+    *os << fDriftVel[0] <<","<< fDriftVel[1];
+    //*os <<","; fDCS->Print(os);
+    //*os <<","; fMapA2->Print(os);
+}
+//______________________________________________________________________
+void AliITSsimulationSSD::Read(istream *is){
+    // Standard output streaming function.
+
+    //AliITSsimulation::Read(is);
+    *is >> fIonE;
+    *is >> fDifConst[0] >> fDifConst[1];
+    *is >> fDriftVel[0] >> fDriftVel[1];
+    //fDCS->Read(is);
+    //fMapA2->Read(is);
+}
+//______________________________________________________________________
+ostream &operator<<(ostream &os,AliITSsimulationSSD &source){
+    // Standard output streaming function.
 
+    source.Print(&os);
+    return os;
+}
+//______________________________________________________________________
+istream &operator>>(istream &os,AliITSsimulationSSD &source){
+    // Standard output streaming function.
 
-
-
-
-
-
-
-
+    source.Read(&os);
+    return os;
+}
+//______________________________________________________________________