]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11.cxx
In Open() and GotoEvent() try the ESD operations first, fallback to run-loader.
[u/mrichter/AliRoot.git] / ITS / AliITSv11.cxx
index b61f366fdc8a5903f0254307464cb3a2a9232980..03307f9ba495ce115d43dd424ccc0316542b4b6b 100644 (file)
@@ -1,5 +1,5 @@
 /**************************************************************************
- * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * Copyright(c) 2007-2008, ALICE Experiment at CERN, All rights reserved. *
  *                                                                        *
  * Author: The ALICE Off-line Project.                                    *
  * Contributors are mentioned in the code where appropriate.              *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.3  2003/01/28 17:59:54  nilsen
-Work continuing.
-
-Revision 1.2  2003/01/26 14:35:15  nilsen
-Some more geometry interface functions added and a start at the SSD support
-cone geometry. Committed to allow easy updates of partical work between authors.
 
-Revision 1.1  2003/01/20 23:32:49  nilsen
-New ITS geometry. Only a Skeleton for now.
+//************************************************************************
+//
+//                 Inner Traking System geometry v11
+//
+//  Based on ROOT geometrical modeler
+//
+// B. Nilsen, L. Gaudichet
+//************************************************************************
 
-$Id$
-*/
 
-//////////////////////////////////////////////////////////////////////////////
-//                                                                          //
-//  Inner Traking System version 11                                         //
-//  This class contains the base procedures for the Inner Tracking System   //
-//                                                                          //
-// Authors: R. Barbera                                                      //
-// version 6.                                                               //
-// Created  2000.                                                           //
-//                                                                          //
-//  NOTE: THIS IS THE  SYMMETRIC PPR geometry of the ITS.                   //
-// THIS WILL NOT WORK                                                       //
-// with the geometry or module classes or any analysis classes. You are     //
-// strongly encouraged to uses AliITSv5.                                    //
-//                                                                          //
-//////////////////////////////////////////////////////////////////////////////
-// See AliITSv11::StepManager().
-#include <Riostream.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <TMath.h>
-#include <TGeometry.h>
-#include <TNode.h>
-#include <TTUBE.h>
-#include <TTUBS.h>
-#include <TPCON.h>
-#include <TFile.h>    // only required for Tracking function?
-#include <TCanvas.h>
-#include <TObjArray.h>
-#include <TLorentzVector.h>
-#include <TObjString.h>
 #include <TClonesArray.h>
-#include <TBRIK.h>
-#include <TSystem.h>
-
+#include <TLorentzVector.h>
 
-#include "AliRun.h"
-#include "AliMagF.h"
-#include "AliConst.h"
-#include "AliITSGeant3Geometry.h"
-#include "AliITShit.h"
 #include "AliITS.h"
-#include "AliITSv11.h"
+#include "AliITSDetTypeSim.h"
+#include <TVirtualMC.h>
+
 #include "AliITSgeom.h"
-#include "AliITSgeomSPD.h"
-#include "AliITSgeomSDD.h"
-#include "AliITSgeomSSD.h"
-#include "AliITSDetType.h"
-#include "AliITSresponseSPD.h"
-#include "AliITSresponseSDD.h"
-#include "AliITSresponseSSD.h"
-#include "AliITSsegmentationSPD.h"
+#include "AliITShit.h"
+
+#include "AliITSCalibrationSDD.h"
+
 #include "AliITSsegmentationSDD.h"
+#include "AliITSsegmentationSPD.h"
 #include "AliITSsegmentationSSD.h"
-#include "AliITSsimulationSPD.h"
-#include "AliITSsimulationSDD.h"
-#include "AliITSsimulationSSD.h"
-#include "AliITSClusterFinderSPD.h"
-#include "AliITSClusterFinderSDD.h"
-#include "AliITSClusterFinderSSD.h"
+#include "AliMagF.h"
+#include "AliRun.h"
+#include "AliTrackReference.h"
+#include "AliMC.h"
+
+#include <TGeoManager.h>
+#include <TGeoVolume.h>
+#include <TGeoPcon.h>
+#include "AliITSv11.h"
+#include "AliITSv11GeometrySPD.h"
+#include "AliITSv11GeometrySDD.h"
+#include "AliITSv11GeometrySSD.h"
+#include "AliITSv11GeometrySupport.h"
+
 
 
 ClassImp(AliITSv11)
+
 
 //______________________________________________________________________
-AliITSv11::AliITSv11() : AliITS() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard default constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-AliITSv11::AliITSv11(const char *title) : AliITS("ITS", title){
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
+AliITSv11::AliITSv11() : 
+AliITS(),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+fSPDgeom(),
+fSDDgeom(0),
+fSSDgeom(),
+fSupgeom(),
+fIgm(kv11)
+{
+  //    Standard default constructor for the ITS version 11.
+
+    fIdN          = 0;
+    fIdName       = 0;
+    fIdSens       = 0;
+    Int_t i;
+    for(i=0;i<60;i++) fRead[i] = '\0';
+    for(i=0;i<60;i++) fWrite[i] = '\0';
+    for(i=0;i<60;i++) fEuclidGeomDet[i] = '\0';
+    strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
+}
+
+
+//______________________________________________________________________
+AliITSv11::AliITSv11(const char *name, const char *title): 
+AliITS("ITS", title),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+fSPDgeom(),
+fSDDgeom(0),
+fSSDgeom(),
+fSupgeom(),
+fIgm(kv11)
+{
+  //    Standard constructor for the ITS version 11.
+
+  fSDDgeom = new AliITSv11GeometrySDD(0);
+
+  Int_t i;
+  fIdN = 6;
+  fIdName = new TString[fIdN];
+  fIdName[0] = name; // removes warning message
+  fIdName[0] = "ITS1";
+  fIdName[1] = "ITS2";
+  fIdName[2] = fSDDgeom->GetSenstiveVolumeName3();
+  fIdName[3] = fSDDgeom->GetSenstiveVolumeName4();
+  fIdName[4] = "ITS5";
+  fIdName[5] = "ITS6";
+  fIdSens    = new Int_t[fIdN];
+  for(i=0;i<fIdN;i++) fIdSens[i] = 0;
+  // not needed, fByThick set to kTRUE in in the member initialization lis
+  
+
+  fEuclidGeometry="$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.euc";
+  strncpy(fEuclidGeomDet,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det",60);
+  strncpy(fRead,fEuclidGeomDet,60);
+  strncpy(fWrite,fEuclidGeomDet,60);
+  strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
+}
+//______________________________________________________________________
+AliITSv11::AliITSv11(Int_t debugITS,Int_t debugSPD,Int_t debugSDD,
+                  Int_t debugSSD,Int_t debugSUP) :
+AliITS("ITS","ITS geometry v11"),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+fSPDgeom(),
+fSDDgeom(0),
+fSSDgeom(),
+fSupgeom(),
+fIgm(kv11)
+{
+  // Standard default constructor for the ITS version 11.
+
+
+  //   fSPDgeom = new AliITSv11GeometrySPD(debugSPD);
+  fSDDgeom = new AliITSv11GeometrySDD(debugSDD);
+  fSDDgeom->SetDebug(debugSDD);
+  //   fSupgeom = new AliITSv11GeometrySupport(debugSUP);
+
+  Int_t i;
+  fIdN = 6;
+  fIdName = new TString[fIdN];
+  fIdName[0] = fSPDgeom->GetSenstiveVolumeName1();
+  fIdName[1] = fSPDgeom->GetSenstiveVolumeName2();
+  fIdName[2] = fSDDgeom->GetSenstiveVolumeName3();
+  fIdName[3] = fSDDgeom->GetSenstiveVolumeName4();
+  fIdName[4] = fSSDgeom->GetSenstiveVolumeName5();
+  fIdName[5] = fSSDgeom->GetSenstiveVolumeName6();
+  fIdSens    = new Int_t[fIdN];
+  for(i=0;i<fIdN;i++) fIdSens[i] = 0;
+  fEuclidOut    = kFALSE; // Don't write Euclide file
+  
+  fEuclidGeometry="$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.euc";
+  strncpy(fEuclidGeomDet,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det",60);
+  strncpy(fRead,fEuclidGeomDet,60);
+  strncpy(fWrite,fEuclidGeomDet,60);
+  strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
+
+  debugITS = (debugSPD && debugSSD && debugSUP && debugSDD); //remove temp. warnings
 }
 //______________________________________________________________________
 AliITSv11::~AliITSv11() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard destructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-void AliITSv11::Box(const char gnam[3],const TString &dis,
-                   Double_t dx,Double_t dy,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS bos geometries. Box with faces
-    // perpendicular to the axes. It has 3 paramters. See SetScale() for
-    // units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length of box in x-axis
-    //    Double_t dy         half-length of box in y-axis
-    //    Double_t dz         half-length of box in z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"BOX ",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid1(const char gnam[3],const TString &dis,
-                          Double_t dxn,Double_t dxp,Double_t dy,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD1 geometries. Trapezoid with the 
-    // x dimension varing along z. It has 4 parameters. See SetScale() for
-    // units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dy         half-length along the y-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
-
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dy;
-    param[3] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD1",fidmed[med],param,4);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid2(const char gnam[3],const TString &dis,Double_t dxn,
-                          Double_t dxp,Double_t dyn,Double_t dyp,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD2 geometries. Trapezoid with the 
-    // x and y dimension varing along z. It has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dyn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dyp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dyn;
-    param[3] = fScale*dyp;
-    param[4] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD2",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid(const char gnam[3],const TString &dis,Double_t dz,
-                         Double_t thet,Double_t phi,Double_t h1,Double_t bl1,
-                         Double_t tl1,Double_t alp1,Double_t h2,Double_t bl2,
-                         Double_t tl2,Double_t alp2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRAP geometries. General Trapezoid, 
-    // The faces perpendicular to z are trapezia and their centers are not 
-    // necessarily on a line parallel to the z axis. This shape has 11 
-    // parameters, but only cosidering that the faces should be planar, only 9 
-    // are really independent. A check is performed on the user parameters and 
-    // a message is printed in case of non-planar faces. Ignoring this warning 
-    // may cause unpredictable effects at tracking time. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         Half-length along the z-asix
-    //    Double_t thet       Polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at dz 
-    //                        [degree].
-    //    Double_t phi        aximuthal angle of the line joing the center of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degree].
-    //    Double_t h1         half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side at -h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl1        half-length along x of teh side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t alp1       angle with respect to the y axis from the center 
-    //                        of the side at -h1 in y to the cetner of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degree].
-    //    Double_t h2         half-length along y of the face at +dz
-    //    Double_t bl2        half-length along x of the side at -h2 in y of
-    //                        the face at +dz in z.
-    //    Double_t tl2        half-length along x of the side at _h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t alp2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the 
-    //                        side at +h2 in y of the face at +dz in z 
-    //                        [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
-
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = fScale*h1;
-    param[4] = fScale*bl1;
-    param[5] = fScale*tl1;
-    param[6] = alp1;
-    param[7] = fScale*h2;
-    param[8] = fScale*bl2;
-    param[9] = fScale*tl2;
-    param[10] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRAP",fidmed[med],param,11);
-}
-//______________________________________________________________________
-void AliITSv11::Tube(const char gnam[3],const TString &dis,Double_t rmin,
-                    Double_t rmax,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Simple Tube. It has
-    // 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBE",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::TubeSegment(const char gnam[3],const TString &dis,
-                           Double_t rmin,Double_t rmax,Double_t dz,
-                           Double_t phi1,Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Phi segment of a 
-    // tube. It has 5  parameters. Phi1 should be smaller than phi2. If this is
-    // not the case, the system adds 360 degrees to phi2. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBS",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::Cone(const char gnam[3],const TString &dis,Double_t dz,
-                    Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                    Double_t rmax2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS Cone geometries. Conical tube. It 
-    // has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::ConeSegment(const char gnam[3],const TString &dis,Double_t dz,
-                           Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                           Double_t rmax2,Double_t phi1,Double_t phi2,
-                           Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ConS geometries. One segment of a 
-    // conical tube. It has 7 parameters. Phi1 should be smaller than phi2. If 
-    // this is not the case, the system adds 360 degrees to phi2. See 
-    // SetScale() for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[7];
-
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    param[5] = phi1;
-    param[6] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,7);
-}
-//______________________________________________________________________
-void AliITSv11::Sphere(const char gnam[3],const TString &dis,Double_t rmin,
-                      Double_t rmax,Double_t the1,Double_t the2,Double_t phi1,
-                      Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS SPHE geometries. Segment of a 
-    // sphereical shell. It has 6 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t the1       staring polar angle of the shell [degree].
-    //    Double_t the2       ending polar angle of the shell [degree].
-    //    Double_t phui       staring asimuthal angle of the shell [degree].
-    //    Double_t phi2       ending asimuthal angle of the shell [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = the1;
-    param[3] = the2;
-    param[4] = phi1;
-    param[5] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"SPHE",fidmed[med],param,6);
+  delete fSDDgeom;
 }
 //______________________________________________________________________
-void AliITSv11::Parallelepiped(const char gnam[3],const TString &dis,
-                              Double_t dx,Double_t dy,Double_t dz,
-                              Double_t alph,Double_t thet,Double_t phi,
-                              Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PARA geometries. Parallelepiped. It 
-    // has 6 parameters. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length allong x-axis
-    //    Double_t dy         half-length allong y-axis
-    //    Double_t dz         half-length allong z-axis
-    //    Double_t alpha      angle formed by the y axis and by the plane 
-    //                        joining the center of teh faces parallel to the 
-    //                        z-x plane at -dY and +dy [degree].
-    //    Double_t thet       polar angle of the line joining the centers of 
-    //                        the faces at -dz and +dz in z [degree].
-    //    Double_t phi        azimuthal angle of teh line joing the centers of 
-    //                        the faaces at -dz and +dz in z [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
-
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    param[3] = alpha;
-    param[4] = thet;
-    param[5] = phi;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PARA",fidmed[med],param,6);
-}
-//______________________________________________________________________
-void AliITSv11::Polygon(const char gnam[3],const TString &dis,Double_t phi1,
-                       Double_t dphi,Int_t npdv,Int_t nz,Double_t *z,
-                       Double_t *rmin,Double_t *rmax,Double_t ,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PGON geometry. Polygon It has 10 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t npdv          the number of sides of teh cross section between 
-    //                        the given phi limits.
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         array [nz] of z coordiates of the sections..
-    //    Double_t *rmin      array [nz] of radius of teh circle tangent to 
-    //                        the sides of the inner polygon in teh 
-    //                        cross-section.
-    //    Double_t *rmax      array [nz] of radius of the circle tangent to 
-    //                        the sides of the outer polygon in the 
-    //                       cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
-
-    n = 4+3*nz;
-    param = new Float_t[n]
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t)npdv;
-    param[3] = (Float_t)nz;
-    for(i=0;i<nz;i++){
-       param[4+3*i] = z[i];
-       param[5+3*i] = rmin[i];
-       param[6+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PGON",fidmed[med],param,n);
+void AliITSv11::BuildGeometry(){
 
-    delete[] param;
 }
 //______________________________________________________________________
-void AliITSv11::PolyCone(const char gnam[3],const TString &dis,Double_t phi1,
-                        Double_t dphi,Int_t nz,Double_t *z,Double_t *rmin,
-                        Double_t *rmax,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PCON geometry. Poly-cone It has 9 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         Array [nz] of z coordinate of the section.
-    //    Double_t *rmin      Array [nz] of radius of teh inner circle in the 
-    //                        cross-section.
-    //    Double_t *rmax      Array [nz] of radius of the outer circle in the 
-    //                        cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
-
-    n = 3+3*nz;
-    param = new Float_t[n];
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t) nz;
-    for(i=0;i<nz;i++){
-       param[3+3*i] = z[i];
-       param[4+3*i] = rmin[i];
-       param[5+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PCON",fidmed[med],param,n);
+void AliITSv11::CreateGeometry(){
+    //
+    // Create ROOT geometry
+    //
+    // These constant character strings are set by cvs during commit
+    // do not change them unless you know what you are doing!
+    const Char_t *cvsDate="$Date$";
+    const Char_t *cvsRevision="$Revision$";
+
+    TGeoManager *geoManager = gGeoManager;
+    TGeoVolume *vALIC = geoManager->GetTopVolume();
+
+    TGeoPcon *sITS = new TGeoPcon("ITS Top Volume",0.0,360.0,2);
+
+    // DefineSection(section number, Z, Rmin, Rmax).
+    const Double_t kcm = 1.0;
+    sITS->DefineSection(0,-300.0*kcm,0.01*kcm,50.0*kcm);
+    sITS->DefineSection(1,+300.0*kcm,0.01*kcm,50.0*kcm);
+
+    TGeoMedium *air = gGeoManager->GetMedium("ITS_AIR$");
+    TGeoVolume *vITS = new TGeoVolume("ITSV",sITS,air);
+    vITS->SetVisibility(kFALSE);
+    const Int_t length=100;
+    Char_t vstrng[length];
+    if(fIgm.WriteVersionString(vstrng,length,(AliITSVersion_t)IsVersion(),
+                               fMinorVersion,cvsDate,cvsRevision))
+        vITS->SetTitle(vstrng);
+    //printf("Title set to %s\n",vstrng);
+    vALIC->AddNode(vITS,1,0);
+
+//   fSPDgeom->CenteralSPD(vITS);
+
+  fSDDgeom->Layer3(vITS);
+  fSDDgeom->Layer4(vITS);
+
+//     fSupgeom->SPDCone(vITS);
+//     fSupgeom->SPDThermalSheald(vITS);
+//     fSupgeom->SDDCone(vITS);
+//     fSupgeom->SSDCone(vITS);
+//     fSupgeom->ServicesCableSupport(vITS);
 
-    delete[] param;
-}
-//______________________________________________________________________
-void AliITSv11::TubeElliptical(const char gnam[3],const TString &dis,
-                              Double_t p1,Double_t p2,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ELTU geometries. Elliptical 
-    // cross-section Tube. It has 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The equation of the surface 
-    // is x^2 * p1^-2 + y^2 * p2^-2 = 1.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t p1         semi-axis of the elipse along x.
-    //    Double_t p2         semi-axis of the elipse along y.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*p1;
-    param[1] = fScale*p2;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"ELTU",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::HyperbolicTube(const char gnam[3],const TString &dis,
-                              Double_t rmin,Double_t rmax,Double_t dz,
-                              Double_t thet,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS HYPE geometries. Hyperbolic tube. 
-    // Fore example the inner and outer surfaces are hyperboloids, as would be 
-    // foumed by a system of cylinderical wires which were then rotated 
-    // tangentially about their centers. It has 4 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The hyperbolic surfaces are 
-    // given by r^2 = (ztan(thet)^2 + r(z=0)^2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t thet       stero angel of rotation of the two faces 
-    //                       [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = thet;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"HYPE",fidmed[med],param,4);
-}
-//______________________________________________________________________
-void AliITSv11::TwistedTrapezoid(const char gnam[3],const TString &dis,
-                                Double_t dz,Double_t thet,Double_t phi,
-                                Double_t twist,Double_t h1,Double_t bl1,
-                                Double_t tl1,Double_t apl1,Double_t h2,
-                                Double_t bl2,Double_t tl2,Double_t apl2,
-                                Int_t med){
-    // Interface to TMC->Gsvolu() for ITS GTRA geometries. General twisted 
-    // trapazoid. The faces perpendicular to z are trapazia and their centers 
-    // are not necessarily on a line parallel to the z axis as the TRAP. 
-    // Additionally, the faces may be twisted so that none of their edges are 
-    // parallel. It is a TRAP shape, exept that it is twisted in the x-y plane 
-    // as a function of z. The parallel sides perpendicular to the x axis are 
-    // rotated with respect to the x axis by an angle TWIST, which is one of 
-    // the parameters. The shape is defined by the eight corners and is assumed
-    // to be constructed of straight lines joingin points on the boundry of the
-    // trapezoidal face at Z=-dz to the coresponding points on the face at 
-    // z=+dz. Divisions are not allowed. It has 12 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. Note: This shape suffers from
-    // the same limitations than the TRAP. The tracking routines assume that 
-    // the faces are planar, but htis constraint is not easily expressed in 
-    // terms of the 12 parameters. Additionally, no check on th efaces is 
-    // performed in this case. Users should avoid to use this shape as much as 
-    // possible, and if they have to do so, they should make sure that the 
-    // faces are really planes. If this is not the case, the result of the 
-    // trasport is unpredictable. To accelerat ethe computations necessary for 
-    // trasport, 18 additioanl parameters are calculated for this shape are
-    // 1 DXODZ dx/dz of the line joing the centers of the faces at z=+_dz.
-    // 2 DYODZ dy/dz of the line joing the centers of the faces at z=+_dz.
-    // 3 XO1    x at z=0 for line joing the + on parallel side, perpendicular 
-    //          corners at z=+_dz.
-    // 4 YO1    y at z=0 for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 5 DXDZ1  dx/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 6 DYDZ1  dy/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 7 X02    x at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 8 YO2    y at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 9 DXDZ2  dx/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 10 DYDZ2dy/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 11 XO3   x at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 12 YO3   y at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 13 DXDZ3 dx/dzfor line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 14 DYDZ3 dydz for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 15 XO4   x at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 16 YO4   y at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 17 DXDZ4 dx/dz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 18 DYDZ4 dydz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z axis.
-    //    Double_t thet       polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t phi        Azymuthal angle of teh line joing the centre of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t twist      Twist angle of the faces parallel to the x-y 
-    //                        plane at z=+-dz around an axis parallel to z 
-    //                        passing through their centre [degrees].
-    //    Double_t h1         Half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side -h1 in y of the 
-    //                        face at -dz in z.
-    //    Double_t tl1        half-length along x of the side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t apl1       Angle with respect to the y ais from the center 
-    //                        of the side at -h1 in y to the centere of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degrees].
-    //    Double_t h2         half-length along the face at +dz.
-    //    Double_t bl2        half-length along x of the side at -h2 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl2        half-length along x of the side at +h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t apl2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the side
-    //                        at +h2 in y of the face at +dz in z [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[12];
-
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = twist;
-    param[4] = fScale*h1;
-    param[5] = fScale*bl1;
-    param[6] = fScale*tl1;
-    param[7] = alp1;
-    param[8] = fScale*h2;
-    param[9] = fScale*bl2;
-    param[10] = fScale*tl2;
-    param[11] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"GTRA",fidmed[med],param,12);
-}
-//______________________________________________________________________
-void AliITSv11::CutTube(const char gnam[3],const TString &dis,Double_t rmin,
-                       Double_t rmax,Double_t dz,Double_t phi1,Double_t phi2,
-                       Double_t lx,Double_t ly,Double_t lz,Double_t hx,
-                       Double_t hy,Double_t hz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS CTUB geometries. Cut tube. A tube cut
-    // at the extremities with planes not necessarily perpendicular tot he z 
-    // axis. It has 11 parameters. See SetScale() for units. Default units are 
-    // geant 3 [cm]. phi1 should be smaller than phi2. If this is not the case,
-    // the system adds 360 degrees to phi2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Double_t lx         x component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t ly         y component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t lz         z component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t hx         x component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hy         y component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hz         z component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    param[5] = lx;
-    param[6] = ly;
-    param[7] = lz;
-    param[8] = hx;
-    param[9] = hy;
-    param[10] = hz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CTUB",fidmed[med],param,11);
-}
-//______________________________________________________________________
-void AliITSv11::Pos(const char vol[3],Int_t cn,const char moth[3],Double_t x,
-                   Double_t y,Double_t z,Int_t irot){
-    // Place a copy of a volume previously defined by a call to GSVOLU inside 
-    // its mother volulme moth.
-    // Inputs:
-    //   const char vol[3]  3 character geant volume name. The letter "I"
-    //                      is appended to the front to indecate that this
-    //                      is an ITS volume.
-    //   const char moth[3] 3 character geant volume name of the mother volume 
-    //                      in which vol will be placed. The letter "I" is 
-    //                      appended to the front to indecate that this is an 
-    //                      ITS volume.
-    //   Double_t x         The x positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t y         The y positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t z         The z positon of the volume in the mother's 
-    //                      reference system
-    //   Int_t irot         the index for the rotation matrix to be used.
-    //                      irot=-1 => unit rotation.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    char name[4],mother[4];
-    Float_t param[3];
-    Int_t r=0,i;
-
-    param[0] = x;
-    param[1] = y;
-    param[2] = z;
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = vol[i];
-    mother[0] = 'I';
-    for(i=0;i<3;i++) mother[i+1] = moth[i];
-    if(irot>=0) r=fidrot[irot];
-    fMC->Gspos(name,mother,param[0],param[1],param[2],r,"ONLY");
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t thet1,Double_t phi1,
-                      Double_t thet2,Double_t phi2,
-                      Double_t thet3,Double_t phi3){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot     Intex specifing which rotation matrix.
-    //   Double_t thet1 Polar angle for axisw x [degrees].
-    //   Double_t phi1  azimuthal angle for axis x [degrees].
-    //   Double_t thet12Polar angle for axisw y [degrees].
-    //   Double_t phi2  azimuthal angle for axis y [degrees].
-    //   Double_t thet3 Polar angle for axisw z [degrees].
-    //   Double_t phi3  azimuthal angle for axis z [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    Float_t t1,p1,t2,p2,t3,p3;
-
-    if(thet1==90.0&&phi1==0.0&&thet2==90.0&&phi2==90.0&&thet3==0.0&&phi3==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       t1 = thet1;
-       p1 = phi1;
-       t2 = thet2;
-       p2 = phi2;
-       t3 = thet3;
-       p3 = phi3
-       AliMatrix(fidrot[irot],t1,p1,t2,p2,t3,p3);
-    } // end if
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Int_t axis,Double_t thet){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Int_t axis         Axis about which rotation is to be done.
-    //   Double_t thet      Angle to rotate by [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-
-    if(thet==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       switch (irot) {
-       case 0: //Rotate about x-axis, x-axis does not change.
-           AliMatrix(fidrot[irot],90.0,0.0,90.0+thet,90.0,thet,90.0);
-           break;
-       case 1: //Rotate about y-axis, y-axis does not change.
-           AliMatrix(fidrot[irot],-90.0-thet,0.0,90.0,90.0,thet,90.0);
-           break;
-       case 2: //Rotate about z-axis, z-axis does not change.
-           AliMatrix(fidrot[irot],90.0,thet,90.0,-thet-90.0,0.0,0.0);
-           break;
-       default:
-           Error("Matrix","axis must be either 0, 1, or 2. for matrix=%d",
-                 irot);
-           break;
-       } // end switch
-    } // end if
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t rot[3][3]){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Double_t rot[3][3] The 3 by 3 rotation matrix.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-
-    if(rot[0][0]==1.0&&rot[1][1]==1.0&&rot[2][2]==1.0&&
-       rot[0][1]==0.0&&rot[0][2]==0.0&&rot[1][0]==0.0&&
-       rot[1][2]==0.0&&rot[2][0]==0.0&&rot[2][1]==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       Double_t si,c=180./TMath::Pi();
-       Double_t ang[6];
-
-       ang[1] = TMath::ATan2(rot[0][1],rot[0][0]);
-       if(TMath::Cos(ang[1])!=0.0) si = rot[0][0]/TMath::Cos(ang[1]);
-       else si = rot[0][1]/TMath::Sin(ang[1]);
-       ang[0] = TMath::ATan2(si,rot[0][2]);
-
-       ang[3] = TMath::ATan2(rot[1][1],rot[1][0]);
-       if(TMath::Cos(ang[3])!=0.0) si = rot[1][0]/TMath::Cos(ang[3]);
-       else si = rot[1][1]/TMath::Sin(ang[3]);
-       ang[2] = TMath::ATan2(si,rot[1][2]);
-
-       ang[5] = TMath::ATan2(rot[2][1],rot[2][0]);
-       if(TMath::Cos(ang[5])!=0.0) si = rot[2][0]/TMath::Cos(ang[5]);
-       else si = rot[2][1]/TMath::Sin(ang[5]);
-       ang[4] = TMath::ATan2(si,rot[2][2]);
-
-       for(Int_t i=0;i<6;i++) {ang[i] *= c; if(ang[i]<0.0) ang[i] += 360.;}
-       AliMatrix(fidrot[irot],ang[0],ang[1],ang[2],ang[3],ang[4],ang[5]);
-    } // end if
-}
-//______________________________________________________________________
-Float_t AliITSv11::GetA(Int_t z){
-    // Returns the isotopicaly averaged atomic number.
-    // Inputs:
-    //    Int_t z  Elemental number
-    // Outputs:
-    //    none.
-    // Return:
-    //    The atomic mass number.
-    const Float_t A[]={ 1.00794 ,  4.0026902,  6.941   ,  9.012182 , 10.811   ,
-                       12.01007 , 14.00674  , 15.9994  , 18.9984032, 20.1797  ,
-                       22.98970 , 24.3050   , 26.981538, 28.0855   , 30.973761,
-                       32.066   , 35.4527   , 39.948   , 39.0983   , 40.078   ,
-                       44.95591 , 47.867    , 50.9415  , 51.9961   , 54.938049,
-                       55.845   , 58.933200 , 58.6934  , 63.546    , 65.39    ,
-                       69.723   , 72.61     , 74.92160 , 78.96     , 79.904   ,
-                       83.80    , 85.4678   , 87.62    , 88.9085   , 91.224   ,
-                       92.90638 , 95.94     , 97.907215, 101.07    ,102.90550 ,
-                      106.42    ,107.8682   ,112.411   ,114.818    ,118.710   ,
-                      121.760   ,127.60     ,126.90447 ,131.29     ,132.90545 ,
-                      137.327   ,138.9055   ,140.116   ,140.90765  ,144.24    ,
-                      144.912746,150.36     ,151.964   ,157.25     ,158.92534 ,
-                      162.50     ,164.93032 ,167.26    ,168.93421  ,173.04    ,
-                      174.967    ,178.49    ,180.9479 ,183.84      ,186.207   ,
-                      190.23     ,192.217   ,195.078  ,196.96655   ,200.59    ,
-                      204.3833   ,207.2     ,208.98038,208.982415  ,209.987131,
-                      222.017570 ,223.019731,226.025402,227.027747 ,232.0381  ,
-                      231.03588  238.0289};
-
-    if(z<1||z>92){
-       Error("GetA","z must be 0<z<93. z=%d",z);
-       return 0.0;
-    } // end if
-    return A[z-1];
-}
-//______________________________________________________________________
-Float_t AliITSv11::GetStandardMaxStepSize(Int_t istd){
-    // Returns one of a set of standard Maximum Step Size values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard Maximum Step Size value [cm].
-    Float_t t[]={1.0, // default
-                0.0075, // Silicon detectors...
-                1.0, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
 }
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardThetaMax(Int_t istd){
-    // Returns one of a set of standard Theata Max values.
+void AliITSv11::CreateMaterials(){
+    // Create Standard ITS Materials
     // Inputs:
-    //   Int_t istd  Index to indecate which standard.
+    //  none.
     // Outputs:
-    //    none.
+    //  none.
     // Return:
-    //    The appropreate standard Theta max value [degrees].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
+    // none.
+
+    
+    //
+    fSPDgeom->AliITSv11Geometry::CreateDefaultMaterials();
+    // Detector specific material definistions
+    fSPDgeom->CreateMaterials();
+    fSDDgeom->CreateMaterials();
+    fSSDgeom->CreateMaterials();
+    fSupgeom->CreateMaterials();
 }
+/*
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardEfraction(Int_t istd){
-    // Returns one of a set of standard E fraction values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard E fraction value [#].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
+void AliITSv11::InitAliITSgeom(){
+  //
+  // Fill fITSgeom with the 3 sub-detector geometries
+  //
+
+  if (gGeoManager) gGeoManager->Export("geometry.root");
+
+    const Int_t knlayers = 6;
+    const Int_t kndeep = 3;
+    const AliITSDetector kidet[knlayers]={kSPD,kSPD,kSDD,kSDD,kSSD,kSSD};
+    const TString knames[knlayers] = {
+      "AliITSv11:spd missing",  // lay=1
+      "AliITSv11:spd missing",  // lay=2
+      "/ALIC_1/ITSV_1/ITSsddLayer3_1/ITSsddLadd_%d/ITSsddSensor_%d/ITSsddWafer_%d", // lay=3
+      "/ALIC_1/ITSV_1/ITSsddLayer4_1/ITSsddLadd_%d/ITSsddSensor_%d/ITSsddWafer_%d", // lay=4
+      "AliITSv11:ssd missing",  // lay=5
+      "AliITSv11:ssd missing"   // lay=6
     };
-    return t[istd];
-}
-//______________________________________________________________________
-void AliITSv11::Element(Int_t imat,const char* name,Int_t z,Double_t dens,
-                       Int_t istd){
-    // Defines a Geant single element material and sets its Geant medium
-    // proporties. The average atomic A is assumed to be given by their
-    // natural abundances. Things like the radiation length are calculated
-    // for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t z          The elemental number.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,Z,A=GetA(z),tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len;
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    Z = (Float_t)z;
-    rad = GetRadLength(z)/dens;
-    AliMaterial(imat,name2,A,Z,dens,rad,0.0,0,0);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
-}
-//______________________________________________________________________
-void AliITSv11::MixtureByWeight(Int_t imat,const char* name,Int_t *z,
-                               Double_t *w,Double_t dens,Int_t n,Int_t istd){
-    // Defines a Geant material by a set of elements and weights, and sets 
-    // its Geant medium proporties. The average atomic A is assumed to be 
-    // given by their natural abundances. Things like the radiation length 
-    // are calculated for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t *z         Array of The elemental numbers.
-    //    Double_t *w      Array of relative weights.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t n          the number of elements making up the mixture.
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.   
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,*Z,*A,tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len,i;
-    Z = new Float_t[n];
-    A = new Float_t[n];
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
-                     W[i] = (Float_t)w[i]}
-    rad = GetRadLength(z)/dens;
-    AliMixture(imat,name2,A,Z,dens,n,W);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
-}
-//______________________________________________________________________
-void AliITSv11::MixtureByNumber(Int_t imat,const char* name,Int_t *z,
-                               Int_t *w,Double_t dens,Int_t n,Int_t istd){
-    // Defines a Geant material by a set of elements and number, and sets 
-    // its Geant medium proporties. The average atomic A is assumed to be 
-    // given by their natural abundances. Things like the radiation length 
-    // are calculated for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t *z         Array of The elemental numbers.
-    //    Int_t_t *w       Array of relative number.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t n          the number of elements making up the mixture.
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.   
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,*Z,*A,tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len,i;
-    Z = new Float_t[n];
-    A = new Float_t[n];
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
-                     W[i] = (Float_t)w[i]}
-    rad = GetRadLength(z)/dens;
-    AliMixture(imat,name2,A,Z,dens,-n,W);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
-//______________________________________________________________________
-void AliITSv11::SSDConeDetail(TVector3 &tran,const char moth[3],Int_t mat0){
-    // Defines the volumes and materials for the ITS SSD Support cone.
-    // Based on drawings ALR-0767 and ALR-0767/3. Units are in mm.
-    // Inputs:
-    //   Double_t zShift  The z shift to be applied to the final volume.
-    // Outputs:
-    //   none.
-    // Return:
-    //   none.
-    Double_t th = 13.0; //mm, Thickness of Rohacell+carbon fiber
-    Double_t ct=1.5; //mm, Carbon finber thickness
-    Double_t r=15.0; // mm, Radius of curvature.
-    Double_t tc=51.0; // angle of SSD cone [degrees].
-    Double_t sintc=Sind(tc),costc=Cosd(tc),tantc=Tand(tc);
-    Double_t z0=0.0,Routmax=0.5*985.,Routmin=0.5*945.,Rholemax=0.5*890.;
-    Double_t Rholemin=0.5*740.,Rin=0.5*560.,RoutHole=0.5*965.;
-    Int_t nspoaks=12,ninscrews=40,npost=4;
-    Int_t SSDcf=man0+1; // SSD support cone Carbon Fiber materal number.
-    Int_t SSDfs=mat0+2; // SSD support cone inserto stesalite 4411w.
-    Int_t SSDfo=mat0+3; // SSD support cone foam, Rohacell 50A.
-    Int_t SSDsw=mat0+4; // SSD support cone screw material,Stainless steal
-    Double_t t; // some general angle [degrees].
-    Double_t phi0=0.0,dphi=360.0,x,y,z;
-    Int_t i,j,k,l,n,nz,nrad=0;
-
-    SetScalemm();
-    // Lets start with the upper left outer carbon fiber surface.
-    // Between za[2],rmaxa[2] and za[4],rmaxa[4] there is a curved section
-    // given by rmaxa = rmaxa[2]-r*Sind(t) for 0<=t<=tc and 
-    // za = za[2] + r*Cosd(t) for 0<=t<=tc. Simularly between za[1],rmina[1
-    // and za[3],rmina[3] there is a curve section given by
-    // rmina = rmina[1]-r*Sind(t) for 0<=t<=tc and za = za[1]+r&Sind(t)
-    // for t<=0<=tc. These curves have been replaced by straight lines
-    // between the equivelent points for simplicity.
-    Double_t dza = th/sintc-(Routmax-Routmin)/tantc;
-    if(dza<=0){ // The number or order of the points are in error for a proper
-       // call to pcons!
-       Error("SSDcone","The definition of the points for a call to PCONS is"
-             " in error. abort.");
-       return;
-    } // end if
-    nz = 7;
-    Double_t *za    = new Double_t[nz];
-    Double_t *rmina = new Double_t[nz];
-    Double_t *rmaxa = new Double_t[nz];
-    za[0]    = z0;
-    rmina[0] = Routmin;
-    rmaxa[0] = Routmax;
-    za[1]    = za[0]+13.5-5.0 - dza; // za[2] - dza.
-    rmina[1] = rmina[0];
-    rmaxa[1] =rmaxa[0];
-    za[2]    = za[0]+13.5-5.0; // From Drawing ALR-0767 and ALR-0767/3
-    rmaxa[2] = rmaxa[0];
-    za[3]    = za[1]+rc*sintc;
-    rmina[3] = rmina[1]-rc*sintc;
-    rmina[2] = rmina[1]+(rmina[3]-rmina[1])*(za[2]-za[1])/(za[3]-za[1]);
-    za[4]    = za[2]+rc*sintc;
-    rmaxa[4] = rmaxa[2]-rc*sintc;
-    rmaxa[3] = rmaxa[2]+(rmaxa[4]-rmaxa[2])*(za[3]-za[2])/(za[4]-za[2]);
-    rmina[5] = Rholemax;
-    za[5]    = za[3]+(za[4]-za[3])*(rmina[5]-rmina[3])/(rmina[4]-rmina[3]);
-    rmina[4] = rmina[3]+(rmina[5]-rmina[3])*(za[4]-za[3])/(za[5]-za[3]);
-    za[6]    = th/sinth+za[5];
-    rmina[6] = Rholemax;
-    rmaxa[6] = rmina[6];
-    rmaxa[5] = rmaxa[4]+(rmaxa[6]-rmaxa[4])*(za[5]-za[4])/(za[6]-za[4]);
-    //
-    PolyCone("SCA","SSD Suport cone Carbon Fiber Surface outer left",
-            phi0,dphi,nz,*z,*rmin,*rmax,SSDcf);
-    Pos("SCA",1,moth,trans.x(),trans.y(),trans.z(),0);
-    XMatrix(1,180.0);
-    Pos("SCA",2,moth,trans.x(),trans.y(),-trans.z(),1);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDcf,"Carbon Fiber for SSD support cone",Z,W,dens,2);
-    //
-    // Now lets define the Inserto Stesalite 4411w material volume.
-    nz = 6;
-    Double_t *zb    = new Double_t[nz];
-    Double_t *rminb = new Double_t[nz];
-    Double_t *rmaxb = new Double_t[nz];
-    zb[0] = z0;
-    rminb[0] = rmina[0]+ct;
-    rmaxb[0] = rmaxa[0]-ct;
-    zb[1] = za[1];
-    rminb[1] = rminb[0];
-    rmaxb[1] = rmaxb[0];
-    zb[2] = za[2];
-    rmaxb[2] = rmaxb[1];
-    zb[3] = za[4] - ct/sintc;
-    rmaxb[3] = rmaxb[2] - (rc-ct)*sintc;
-    zb[4] = za[3]+ct/sintc;
-    rminb[4] = rminb[1]-(rc-ct)*sintc;
-    rminb[2] = rminb[1]+(rminb[4]-rminb[1])*(zb[2]-zb[1])/(zb[4]-zb[1]);
-    rminb[3] = rminb[1]+(rminb[4]-rminb[1])*(zb[3]-zb[1])/(zb[4]-zb[1]);
-    zb[5] = zb[4]+(ct-2.*ct)/sintc;
-    rminb[5] = rminb[4]+(ct-2.*ct)*tantc;
-    rmaxb[5] = rminb[5];
-    rmaxb[4] = rmaxb[3]+(rmaxb[5]-rmaxb[3])*(zb[4]-zb[3])/(zb[5]-zb[3]);
-    PolyCone("SCB","SSD Suport cone Inserto Stesalite left edge",
-            phi0,dphi,nz,*zb,*rminb,*rmaxb,SSDfs);
-    Pos("SCB",1,"SCA",0.0,.0,0.0,0);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDfs,"Inserto stealite 4411w for SSD support cone",
-                   Z,W,dens,3);
-    //
-    // Now lets define the Rohacell foam material volume.
-    nz = 4;
-    Double_t *zc    = new Double_t[nz];
-    Double_t *rminc = new Double_t[nz];
-    Double_t *rmaxc = new Double_t[nz];
-    zc[0] = zb[4];
-    rminc[0] = rminb[4];
-    rmaxc[0] = rmminc[0];
-    zc[1] = zb[5];
-    rmaxc[1] = rminb[5];
-    zc[2] = za[5] + ct/sintc;
-    rminc[2] = rmina[5]+ct; // leave space for carbon fiber covering hole.
-    rminc[1] = rminc[0] +(rminc[2]-rminc[0])*(zc[1]-zc[0])/(zc[2]-zc[0]);
-    zc[3] = za[6] - ct/sintc;
-    rminc[3] = rmina[6]+ct;
-    rmaxc[3] = rminc[3];
-    rmaxc[2] = rmaxc[1]+(rmaxc[3]-rmaxc[1])*(zc[2]-zc[1])/(zc[3]-zc[1]);
-    PolyCone("SCC","SSD Suport cone Rohacell foam left edge",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDfo);
-    Pos("SCC",1,"SCA",0.0,.0,0.0,0);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDfo,"Foam core (Rohacell 50A) for SSD support cone",
-                   Z,W,dens,3);
-    //
-    // In volume SCB, th Inserto Stesalite 4411w material volume, there
-    // are a number of Stainless steel screw and pin studs which will be
-    // filled with screws/studs.
-    Double_t rmin=0.0,rmax=6.0,dz=0.5*10.0; // mm
-    Tube("SCD","Screw+stud used to mount things to the SSD support cone",
-        rmin,rmax,dz,SSDsw);
-    rmin=0.0;rmax=6.0;dz=0.5*12.0; // mm
-    Tube("SCE","pin used to mount things to the SSD support cone",
-        rmin,rmax,dz,SSDsw);
-    Za[0] =  6.; Wa[0] = ; // Carbon Content
-    Za[1] = 25.; Wa[1] = ; // Iron Content
-    MixtureByWeight(SSDsw,"Stainless steal screw, pin, and stud material",
-                   Z,W,dens,3);
-    k=l=0;
-    for(i=0;i<2;i++){ // position for ITS-TPC mounting brackets
-       for(j=0;j<2;j++){ // 2 screws per bracket
-           k++;
-           t = -5.0+10.0*((Double_t)j)+180.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCD",k,"SCB",x,y,z,0);
-       } // end for j
-       for(j=0;j<3;j++){ // 3 pins per bracket
-           l++;
-           t = -3.0+3.0*((Double_t)j)+180.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCE",l,"SCB",x,y,z,0);
-       } // end for j
-    } // end for i
-    for(i=0;i<2;i++){ // position for ITS-rail mounting brackets
-       for(j=0;j<4;j++){ // 4 screws per bracket
-           Double_t a[4]={0.0,2.0,5.0,7.0}; // Relative angles.
-           k++;
-           t = 90.0-a[j]+187.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCD",k,"SCB",x,y,z,0);
-       } // end for j
-       for(j=0;j<2;j++){ // 2 pins per bracket
-           l++;
-           t = 88+7.0*((Double_t)j)+184.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCE",l,"SCB",x,y,z,0);
-       } // end for j
-    } // end for i
-    //
-    // There is no carbon fiber between this upper left section and the
-    // SSD spoaks. We remove it by replacing it with Rohacell foam.
-    nz = 4;
-    Double_t *zf    = new Double_t[nz];
-    Double_t *rminf = new Double_t[nz];
-    Double_t *rmaxf = new Double_t[nz];
-    zf[0] = zc[2];
-    rminf[0] = rminc[3];
-    rmaxf[0] = rminf[0];
-    rminf[1] = rmina[5];
-    rmaxf[1] = rminf[0];
-    zf[1] = zc[0]+(zc[2]-zc[0])*(rminf[1]-rminc[0])/(rminc[2]-rminc[0]);
-    zf[2] = zc[3];
-    rminf[2] = rminf[1];
-    rmaxf[2] = rmaxf[1];
-    zf[3] = zc[1]+(zc[3]-zc[1])*(rmaxf[3]-rmaxc[1])/(rmaxc[3]-rmaxc[1]);
-    rminf[3] = rmina[5];
-    rmaxf[3] = rminf[3];
-    PolyCone("SCF","SSD Suport cone Rohacell foam left edge",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDfo);
-    Pos("SCF",1,"SCA",0.0,.0,0.0,0);
-    //=================================================================
-    // Now for the spoak part of the SSD cone.
-    // It is not posible to inclue the radius of curvature between
-    // the spoak part and the upper left part of the SSD cone or lowwer right
-    // part. This would be discribed by the following curves.
-    // R = Rmax - (5mm)*Sin(t) phi = phi0+(5mm*180/(Pi*RoutHole))*Sin(t) 
-    // where 0<=t<=90 For the inner curve a simular equiation holds.
-    phi0 = 12.5; // degrees see drawing ALR-0767.
-    dphi = 5.0; // degrees
-    nz = 4;
-    Double_t *zg    = new Double_t[nz];
-    Double_t *rming = new Double_t[nz];
-    Double_t *rmaxg = new Double_t[nz];
-    zg[0] = zb[5];
-    rming[0] = rmina[5];
-    rmaxg[0] = rming[0];
-    zg[1] = za[6];
-    rming[1] = -thatc*(zg[1]-za[3])+rmina[3];
-    rmaxg[1] = rmaxg[0];
-    rming[2] = Rholemin;
-    zg[2] = za[3]-(rming[2]-rmina[3])/tantc;
-    rmaxg[2] = -thatc*(zg[2]-za[4])+rmaxa[4];
-    rming[3] = rming[2];
-    rmaxg[3] = rming[3];
-    zg[3] = za[4]-(rmaxg[3]-rmaxa[4])/tantc;
-    PolyCone("SCG","SSD spoak carbon fiber surfaces",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDcf);
-    Zmatrix(irot,360./((Double_t)nspoaks));
-    Pos("SCG",i+1,"SCA",0.0,.0,0.0,0);
-    for(i=1;i<nspoaks;i++){
-       Zmatrix(irot+i,360./((Double_t)nspoaks));
-       Pos("SCG",i+1,"SCA",0.0,.0,0.0,irot+i);
+
+    const Int_t kitsGeomTreeCopys[knlayers][kndeep]= {{10, 2, 4},// lay=1
+                                                     {10, 4, 4}, // lay=2
+                                                     {14, 6, 1}, // lay=3
+                                                     {22, 8, 1}, // lay=4
+                                                     {34,22, 1}, // lay=5
+                                                     {38,25, 1}};// lay=6
+    Int_t       nlad[knlayers],ndet[knlayers];
+    Int_t       mod,lay,lad=0,det=0,i,j,k,cp0,cp1,cp2;
+    TString path,shapeName;
+    TGeoHMatrix materix;
+    Double_t trans[3]={3*0.0},rot[10]={9*0.0,1.0};
+    TArrayD shapePar;
+    TArrayF shapeParF;
+    Bool_t shapeDefined[3]={kFALSE,kFALSE,kFALSE};
+
+    AliDebug(1,"Reading Geometry transformation directly from Modler.");
+    mod = 0;
+    for(i=0;i<knlayers;i++){
+        k = 1;
+        for(j=0;j<kndeep;j++) if(kitsGeomTreeCopys[i][j]!=0)
+            k *= TMath::Abs(kitsGeomTreeCopys[i][j]);
+        mod += k;
     } // end for i
-    // For the foam core.
-    t = ct/(0.5*(Rholemax+Rholemin));// It is not posible to get the
-    // carbon fiber thickness uniform in this phi direction. We can only
-    // make it a fixed angular thickness.
-    t *= 180.0/TMath::Pi();
-    dphi = 5.0 - 2.0*t; // degrees
-    phi0 = 12.5+t; // degrees see drawing ALR-0767.
-    nz = 4;
-    Double_t *zh    = new Double_t[nz];
-    Double_t *rminh = new Double_t[nz];
-    Double_t *rmaxh = new Double_t[nz];
-    zh[0] = zf[2];
-    rminh[0] = rming[0];
-    rmaxh[0] = rmaxg[0];
-    zh[1] = zf[3];
-    rminh[1] = rming[1]-(ct/sintc-(zg[1]-zh[1]))*tantc;
-    rmaxh[1] = rmaxh[0];
-    zh[2] = zg[2]+ct/tanth;
-    rminh[2] = rming[2];
-    rmaxh[2] = rmaxg[2]-(ct/sintc-(zg[2]-zh[2]))*tantc;
-    zh[3] = zg[3]-ct/sintc;
-    rminh[3] = rminh[2];
-    rmaxh[3] = rminh[3];
-    PolyCone("SCG","SSD spoak carbon fiber surfaces",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDcf);
-    Pos("SCH",1,"SCG",0.0,.0,0.0,0);
-    //
-    //==================================================================
 
-    //
-    //Now for the carbon fiber on the sides of the spoakes.
-    //==============================================================
-    delete[] za;delete[] rmina;delete[] rmaxa;
-    delete[] zb;delete[] rminb;delete[] rmaxb;
-    delete[] zc;delete[] rminc;delete[] rmaxc;
-    delete[] zd;delete[] rmind;delete[] rmaxd;
-    delete[] ze;delete[] rmine;delete[] rmaxe;
-    delete[] zf;delete[] rminf;delete[] rmaxf;
-    delete[] zg;delete[] rming;delete[] rmaxg;
-    delete[] zh;delete[] rminh;delete[] rmaxh;
-    delete[] zi;delete[] rmini;delete[] rmaxi;
-    delete[] zj;delete[] rminj;delete[] rmaxj;
-    // Set back to cm default scale before exiting.
-    SetScalecm();
-    return;
-}
-//______________________________________________________________________
-void AliITSv11::CreateGeometry(){
-    ////////////////////////////////////////////////////////////////////////
-    // This routine defines and Creates the geometry for version 11 of the ITS.
-    ////////////////////////////////////////////////////////////////////////
+    SetITSgeom(0);
+    nlad[0]=20;nlad[1]=40;nlad[2]=14;nlad[3]=22;nlad[4]=34;nlad[5]=38;
+    ndet[0]= 4;ndet[1]= 4;ndet[2]= 6;ndet[3]= 8;ndet[4]=22;ndet[5]=25;
+    AliITSgeom* geom = new AliITSgeom(0,6,nlad,ndet,mod);
+    SetITSgeom(geom);
+    mod = 0;
+    for(lay=1;lay<=knlayers;lay++){
+
+        for(cp0=0; cp0<kitsGeomTreeCopys[lay-1][0]; cp0++){
+            for(cp1=0; cp1<kitsGeomTreeCopys[lay-1][1]; cp1++){
+                for(cp2=1; cp2<=kitsGeomTreeCopys[lay-1][2]; cp2++){
+
+                    path.Form(knames[lay-1].Data(),
+                              cp0,cp1,cp2);
+                    switch (lay){
+                    case 1:{
+                        det = cp2;
+                        lad = cp1+2*(cp0-1);
+                    }break;
+                    case 2:{
+                        det = cp2;
+                        lad = cp1+4*(cp0-1);
+                    } break;
+                    case 3: case 4: case 5: case 6:{
+                        det = cp1;
+                        lad = cp0;
+                    } break;
+                    } // end switch
+                         //AliInfo(Form("path=%s lay=%d lad=%d det=%d",
+                         //             path.Data(),lay,lad,det));
+                    gMC->GetTransformation(path.Data(),materix);
+                    gMC->GetShape(path.Data(),shapeName,shapePar);
+                    shapeParF.Set(shapePar.GetSize());
+                    for(i=0;i<shapePar.GetSize();i++) shapeParF[i]=shapePar[i];
+                    geom->CreateMatrix(mod,lay,lad,det,kidet[lay-1],trans,rot);
+                    geom->SetTrans(mod,materix.GetTranslation());
+                    geom->SetRotMatrix(mod,materix.GetRotationMatrix());
+                   geom->GetGeomMatrix(mod)->SetPath(path.Data());
+                    switch (lay){
+                    case 1: case 2:
+                       if(!shapeDefined[kSPD]){
+                        geom->ReSetShape(kSPD,new AliITSgeomSPD425Short(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSPD] = kTRUE;
+                    }break;
+                    case 3: case 4:
+                       if(!shapeDefined[kSDD]){
+                        geom->ReSetShape(kSDD,new AliITSgeomSDD256(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSDD] = kTRUE;
+                    }break;
+                    case 5: case 6:
+                       if(!shapeDefined[kSSD]){
+                        geom->ReSetShape(kSSD,new AliITSgeomSSD75and275(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSSD] = kTRUE;
+                    }break;
+                    default:{
+                    }break;
+                    } // end switch
+                    mod++;
+                } /// end for cp2
+            } // end for cp1
+        } // end for cp0
+    } // end for lay
+
+//   fSDDgeom->ExportSensorGeometry(GetITSgeom(), +3, 0);  //SDD
 }
+*/
 //______________________________________________________________________
-void AliITSv11::CreateMaterials(){
-////////////////////////////////////////////////////////////////////////
+void AliITSv11::Init(){
   //
-  // Create ITS materials
-  //     This function defines the default materials used in the Geant
-  // Monte Carlo simulations for the geometries AliITSv1, AliITSv3,
-  // AliITSv11.
-  // In general it is automatically replaced by
-  // the CreatMaterials routine defined in AliITSv?. Should the function
-  // CreateMaterials not exist for the geometry version you are using this
-  // one is used. See the definition found in AliITSv5 or the other routine
-  // for a complete definition.
+  //     Initialise the ITS after it has been created.
   //
-}
-//______________________________________________________________________
-void AliITSv11::InitAliITSgeom(){
-    //     Based on the geometry tree defined in Geant 3.21, this
-    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS geometry
-    // sturture.
-}
 
-//______________________________________________________________________
-void AliITSv11::Init(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Initialise the ITS after it has been created.
-    ////////////////////////////////////////////////////////////////////////
+  //AliInfo(Form("Minor version %d",fMinorVersion));
+    //
+    UpdateInternalGeometry();
+    AliITS::Init();
+    if(fGeomDetOut) GetITSgeom()->WriteNewFile(fWrite);
+
+    //
+/*
+    if(fRead[0]=='\0') strncpy(fRead,fEuclidGeomDet,60);
+    if(fWrite[0]=='\0') strncpy(fWrite,fEuclidGeomDet,60);
+    if(GetITSgeom()!=0) SetITSgeom(0x0);
+    AliITSgeom* geom = new AliITSgeom();
+    SetITSgeom(geom);
+    if(fGeomDetIn) GetITSgeom()->ReadNewFile(fRead);
+    else this->InitAliITSgeom();
+    if(fGeomDetOut) GetITSgeom()->WriteNewFile(fWrite);
+    AliITS::Init();
+*/    //
 }
+
+
 //______________________________________________________________________
 void AliITSv11::SetDefaults(){
-    // sets the default segmentation, response, digit and raw cluster classes
+  //
+  // Set response and segmentation models for SPD, SDD and SSD
+  //
+
+//     if(!fDetTypeSim) fDetTypeSim = new AliITSDetTypeSim();
+//     fDetTypeSim->SetITSgeom(GetITSgeom());
+    if(!fDetTypeSim) {
+      Warning("SetDefaults","Error fDetTypeSim not defined");
+      return;
+    }
+  
+    fDetTypeSim->ResetCalibrationArray();
+    fDetTypeSim->ResetSegmentation();
+    fDetTypeSim->SetDefaults();
+    
+    if(fgkNTYPES>3){
+       Warning("SetDefaults",
+               "Only the four basic detector types are initialised!");
+    }// end if
+
+    
+    return;
 }
+
+
+
+
+
 //______________________________________________________________________
-void AliITSv11::DrawModule(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Draw a shaded view of the FMD version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
+void AliITSv11::DrawModule() const{
+
+}
+
+// //______________________________________________________________________
+// void AliITSv11::StepManager(){
+//   //
+//   //    Called for every step in the ITS, then calles the AliITShit class
+//   // creator with the information to be recoreded about that hit.
+//   //
+//     Int_t         copy, id;
+//     TLorentzVector position, momentum;
+//     static TLorentzVector position0;
+//     static Int_t stat0=0;
+
+//     if(!(this->IsActive())){
+//     return;
+//     } // end if !Active volume.
+
+//     if(!(gMC->TrackCharge())) return;
+
+//     id=gMC->CurrentVolID(copy);
+
+//     Bool_t sensvol = kFALSE;
+//     for(Int_t kk=0;kk<6;kk++)if(id == fIdSens[kk])sensvol=kTRUE;
+//     if(sensvol && (gMC->IsTrackExiting())){
+//     copy = fTrackReferences->GetEntriesFast();
+//     TClonesArray &lTR = *fTrackReferences;
+//     // Fill TrackReference structure with this new TrackReference.
+//     new(lTR[copy]) AliTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
+//     } // if Outer ITS mother Volume
+
+
+//     Int_t   copy1,copy2;  
+//     Int_t   vol[5];
+//     TClonesArray &lhits = *fHits;
+//     //
+//     // Track status
+//     vol[3] = 0;
+//     vol[4] = 0;
+//     if(gMC->IsTrackInside())      vol[3] +=  1;
+//     if(gMC->IsTrackEntering())    vol[3] +=  2;
+//     if(gMC->IsTrackExiting())     vol[3] +=  4;
+//     if(gMC->IsTrackOut())         vol[3] +=  8;
+//     if(gMC->IsTrackDisappeared()) vol[3] += 16;
+//     if(gMC->IsTrackStop())        vol[3] += 32;
+//     if(gMC->IsTrackAlive())       vol[3] += 64;
+//     //
+//     // Fill hit structure.
+//     if(!(gMC->TrackCharge())) return;
+//     //
+//     // Only entering charged tracks
+//     if((id = gMC->CurrentVolID(copy)) == fIdSens[0]) {
+//     vol[0] = 1;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //detector copy in the ladder = 1<->4  (ITS1 < I101 < I103 < I10A)
+//     vol[1] = copy;
+//     gMC->CurrentVolOffID(3,copy1);
+//     //ladder copy in the module   = 1<->2  (I10A < I12A)
+//     gMC->CurrentVolOffID(4,copy2);
+//     //module copy in the layer    = 1<->10 (I12A < IT12)
+//     vol[2] = copy1+(copy2-1)*2;//# of ladders in one module  = 2
+//     } else if(id == fIdSens[1]){
+//     vol[0] = 2;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //detector copy in the ladder = 1<->4  (ITS2 < I1D1 < I1D3 < I20A)
+//     vol[1] = copy;
+//     gMC->CurrentVolOffID(3,copy1);
+//     //ladder copy in the module   = 1<->4  (I20A < I12A)
+//     gMC->CurrentVolOffID(4,copy2);
+//     //module copy in the layer    = 1<->10 (I12A < IT12)
+//     vol[2] = copy1+(copy2-1)*4;//# of ladders in one module  = 4
+//     } else if(id == fIdSens[2]){
+//     vol[0] = 3;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->6  (ITS3 < I302 < I004)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->14 (I004 < IT34)
+//     vol[2] = copy;
+//     } else if(id == fIdSens[3]){
+//     vol[0] = 4;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->8  (ITS4 < I402 < I005)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->22 (I005 < IT34))
+//     vol[2] = copy;
+//     }else if(id == fIdSens[4]){
+//     vol[0] = 5;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->22  (ITS5 < I562 < I565)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->34 (I565 < IT56)
+//     vol[2] = copy;
+//     }else if(id == fIdSens[5]){
+//     vol[0] = 6;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->25  (ITS6 < I566 < I569)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer = 1<->38 (I569 < IT56)
+//     vol[2] = copy;
+//     } else {
+//     return; // not an ITS volume?
+//     } // end if/else if (gMC->CurentVolID(copy) == fIdSens[i])
+//     //
+//     gMC->TrackPosition(position);
+//     gMC->TrackMomentum(momentum);
+//     vol[4] = stat0;
+//     if(gMC->IsTrackEntering()){
+//     position0 = position;
+//     stat0 = vol[3];
+//     return;
+//     } // end if IsEntering
+//     // Fill hit structure with this new hit.
+    
+//     new(lhits[fNhits++]) AliITShit(fIshunt,gAlice->GetMCApp()->GetCurrentTrackNumber(),vol,
+//                                gMC->Edep(),gMC->TrackTime(),position,
+//                                position0,momentum);
+
+//     position0 = position;
+//     stat0 = vol[3];
+
+//     return;
+// }
+
+
 //______________________________________________________________________
 void AliITSv11::StepManager(){
-    ////////////////////////////////////////////////////////////////////////
-    //    Called for every step in the ITS, then calles the AliITShit class
-    // creator with the information to be recoreded about that hit.
-    //     The value of the macro ALIITSPRINTGEOM if set to 1 will allow the
-    // printing of information to a file which can be used to create a .det
-    // file read in by the routine CreateGeometry(). If set to 0 or any other
-    // value except 1, the default behavior, then no such file is created nor
-    // it the extra variables and the like used in the printing allocated.
-    ////////////////////////////////////////////////////////////////////////
+  //
+  //    Called for every step in the ITS, then calles the AliITShit class
+  // creator with the information to be recoreded about that hit.
+  //
+    Int_t         copy, id;
+    TLorentzVector position, momentum;
+    static TLorentzVector position0;
+    static Int_t stat0=0;
+
+    if(!(this->IsActive())){
+       return;
+    } // end if !Active volume.
+
+    if(!(gMC->TrackCharge())) return;
+
+    id=gMC->CurrentVolID(copy);
+
+    Bool_t sensvol = kFALSE;
+    for(Int_t kk=0;kk<6;kk++)if(id == fIdSens[kk])sensvol=kTRUE;
+    if(sensvol && (gMC->IsTrackExiting())){
+       AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kITS);
+    } // if Outer ITS mother Volume
+
+
+    Int_t   copy1,copy2;  
+    Int_t   vol[5];
+    TClonesArray &lhits = *fHits;
+    //
+    // Track status
+    vol[3] = 0;
+    vol[4] = 0;
+    if(gMC->IsTrackInside())      vol[3] +=  1;
+    if(gMC->IsTrackEntering())    vol[3] +=  2;
+    if(gMC->IsTrackExiting())     vol[3] +=  4;
+    if(gMC->IsTrackOut())         vol[3] +=  8;
+    if(gMC->IsTrackDisappeared()) vol[3] += 16;
+    if(gMC->IsTrackStop())        vol[3] += 32;
+    if(gMC->IsTrackAlive())       vol[3] += 64;
+    //
+    // Fill hit structure.
+    if(!(gMC->TrackCharge())) return;
+
+    // Only entering charged tracks
+    if((id = gMC->CurrentVolID(copy)) == fIdSens[0]) {
+       vol[0] = 1;
+       id = gMC->CurrentVolOffID(2,copy);
+       //detector copy in the ladder = 1<->4  (ITS1 < I101 < I103 < I10A)
+       vol[1] = copy;
+       gMC->CurrentVolOffID(3,copy1);
+       //ladder copy in the module   = 1<->2  (I10A < I12A)
+       gMC->CurrentVolOffID(4,copy2);
+       //module copy in the layer    = 1<->10 (I12A < IT12)
+       vol[2] = copy1+(copy2-1)*2;//# of ladders in one module  = 2
+
+    } else if(id == fIdSens[1]){
+       vol[0] = 2;
+       id = gMC->CurrentVolOffID(2,copy);
+       //detector copy in the ladder = 1<->4  (ITS2 < I1D1 < I1D3 < I20A)
+       vol[1] = copy;
+       gMC->CurrentVolOffID(3,copy1);
+       //ladder copy in the module   = 1<->4  (I20A < I12A)
+       gMC->CurrentVolOffID(4,copy2);
+       //module copy in the layer    = 1<->10 (I12A < IT12)
+       vol[2] = copy1+(copy2-1)*4;//# of ladders in one module  = 4
+
+    } else if(id == fIdSens[2]){
+       vol[0] = 3;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->6  (ITS3 < I302 < I004)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->14 (I004 < IT34)
+       vol[2] = copy;
+
+    } else if(id == fIdSens[3]){
+       vol[0] = 4;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->8  (ITS4 < I402 < I005)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->22 (I005 < IT34))
+       vol[2] = copy;
+
+    }else if(id == fIdSens[4]){
+       vol[0] = 5;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->22  (ITS5 < I562 < I565)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->34 (I565 < IT56)
+       vol[2] = copy;
+
+    }else if(id == fIdSens[5]){
+       vol[0] = 6;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->25  (ITS6 < I566 < I569)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer = 1<->38 (I569 < IT56)
+       vol[2] = copy;
+    } else {
+       return; // not an ITS volume?
+    } // end if/else if (gMC->CurentVolID(copy) == fIdSens[i])
+    //
+    gMC->TrackPosition(position);
+    gMC->TrackMomentum(momentum);
+    vol[4] = stat0;
+    if(gMC->IsTrackEntering()){
+       position0 = position;
+       stat0 = vol[3];
+       return;
+    } // end if IsEntering
+    // Fill hit structure with this new hit.
+    
+    new(lhits[fNhits++]) AliITShit(fIshunt,gAlice->GetMCApp()->GetCurrentTrackNumber(),vol,
+                                  gMC->Edep(),gMC->TrackTime(),position,
+                                  position0,momentum);
+
+    position0 = position;
+    stat0 = vol[3];
+
+    return;
 }
+