]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11.cxx
Fix of parsing bug related to the reading of the calib header. Added consistency...
[u/mrichter/AliRoot.git] / ITS / AliITSv11.cxx
index edb0eb64aab6575ea759bcd5078563c6d780d55c..461e0cc3b249f44b7710dfc3bec5d271c3cd2e46 100644 (file)
@@ -1,5 +1,5 @@
 /**************************************************************************
- * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * Copyright(c) 2007-2008, ALICE Experiment at CERN, All rights reserved. *
  *                                                                        *
  * Author: The ALICE Off-line Project.                                    *
  * Contributors are mentioned in the code where appropriate.              *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.1  2003/01/20 23:32:49  nilsen
-New ITS geometry. Only a Skeleton for now.
 
-$Id$
-*/
+//************************************************************************
+//
+//                 Inner Traking System geometry v11
+//
+//  Based on ROOT geometrical modeler
+//
+// B. Nilsen, L. Gaudichet
+//************************************************************************
 
-//////////////////////////////////////////////////////////////////////////////
-//                                                                          //
-//  Inner Traking System version 11                                         //
-//  This class contains the base procedures for the Inner Tracking System   //
-//                                                                          //
-// Authors: R. Barbera                                                      //
-// version 6.                                                               //
-// Created  2000.                                                           //
-//                                                                          //
-//  NOTE: THIS IS THE  SYMMETRIC PPR geometry of the ITS.                   //
-// THIS WILL NOT WORK                                                       //
-// with the geometry or module classes or any analysis classes. You are     //
-// strongly encouraged to uses AliITSv5.                                    //
-//                                                                          //
-//////////////////////////////////////////////////////////////////////////////
-// See AliITSv11::StepManager().
-#include <Riostream.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <TMath.h>
-#include <TGeometry.h>
-#include <TNode.h>
-#include <TTUBE.h>
-#include <TTUBS.h>
-#include <TPCON.h>
-#include <TFile.h>    // only required for Tracking function?
-#include <TCanvas.h>
-#include <TObjArray.h>
-#include <TLorentzVector.h>
-#include <TObjString.h>
-#include <TClonesArray.h>
-#include <TBRIK.h>
-#include <TSystem.h>
 
+#include <TClonesArray.h>
+#include <TLorentzVector.h>
 
-#include "AliRun.h"
-#include "AliMagF.h"
-#include "AliConst.h"
-#include "AliITSGeant3Geometry.h"
-#include "AliITShit.h"
 #include "AliITS.h"
-#include "AliITSv11.h"
+#include "AliITSDetTypeSim.h"
+#include <TVirtualMC.h>
+
 #include "AliITSgeom.h"
-#include "AliITSgeomSPD.h"
 #include "AliITSgeomSDD.h"
+#include "AliITSgeomSPD.h"
 #include "AliITSgeomSSD.h"
-#include "AliITSDetType.h"
-#include "AliITSresponseSPD.h"
-#include "AliITSresponseSDD.h"
-#include "AliITSresponseSSD.h"
-#include "AliITSsegmentationSPD.h"
+#include "AliITShit.h"
+
+#include "AliITSCalibrationSDD.h"
+
 #include "AliITSsegmentationSDD.h"
+#include "AliITSsegmentationSPD.h"
 #include "AliITSsegmentationSSD.h"
-#include "AliITSsimulationSPD.h"
-#include "AliITSsimulationSDD.h"
-#include "AliITSsimulationSSD.h"
-#include "AliITSClusterFinderSPD.h"
-#include "AliITSClusterFinderSDD.h"
-#include "AliITSClusterFinderSSD.h"
+#include "AliMagF.h"
+#include "AliRun.h"
+#include "AliTrackReference.h"
+#include "AliMC.h"
+
+#include <TGeoManager.h>
+#include <TGeoVolume.h>
+#include <TGeoPcon.h>
+#include "AliITSv11.h"
+//#include "AliITSv11GeometrySPD.h"
+#include "AliITSv11GeometrySDD.h"
+//#include "AliITSv11GeometrySupport.h"
+
 
 
 ClassImp(AliITSv11)
 
-//______________________________________________________________________
-AliITSv11::AliITSv11() : AliITS() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard default constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-AliITSv11::AliITSv11(const char *title) : AliITS("ITS", title){
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-AliITSv11::~AliITSv11() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard destructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-void AliITSv11::Box(const char gnam[3],const TString &dis,
-                   Double_t dx,Double_t dy,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS bos geometries. Box with faces
-    // perpendicular to the axes. It has 3 paramters. See SetScale() for
-    // units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length of box in x-axis
-    //    Double_t dy         half-length of box in y-axis
-    //    Double_t dz         half-length of box in z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"BOX ",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid1(const char gnam[3],const TString &dis,
-                          Double_t dxn,Double_t dxp,Double_t dy,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD1 geometries. Trapezoid with the 
-    // x dimension varing along z. It has 4 parameters. See SetScale() for
-    // units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dy         half-length along the y-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
-
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dy;
-    param[3] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD1",fidmed[med],param,4);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid2(const char gnam[3],const TString &dis,Double_t dxn,
-                          Double_t dxp,Double_t dyn,Double_t dyp,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD2 geometries. Trapezoid with the 
-    // x and y dimension varing along z. It has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dyn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dyp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dyn;
-    param[3] = fScale*dyp;
-    param[4] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD2",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::Trapezoid(const char gnam[3],const TString &dis,Double_t dz,
-                         Double_t thet,Double_t phi,Double_t h1,Double_t bl1,
-                         Double_t tl1,Double_t alp1,Double_t h2,Double_t bl2,
-                         Double_t tl2,Double_t alp2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRAP geometries. General Trapezoid, 
-    // The faces perpendicular to z are trapezia and their centers are not 
-    // necessarily on a line parallel to the z axis. This shape has 11 
-    // parameters, but only cosidering that the faces should be planar, only 9 
-    // are really independent. A check is performed on the user parameters and 
-    // a message is printed in case of non-planar faces. Ignoring this warning 
-    // may cause unpredictable effects at tracking time. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         Half-length along the z-asix
-    //    Double_t thet       Polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at dz 
-    //                        [degree].
-    //    Double_t phi        aximuthal angle of the line joing the center of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degree].
-    //    Double_t h1         half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side at -h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl1        half-length along x of teh side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t alp1       angle with respect to the y axis from the center 
-    //                        of the side at -h1 in y to the cetner of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degree].
-    //    Double_t h2         half-length along y of the face at +dz
-    //    Double_t bl2        half-length along x of the side at -h2 in y of
-    //                        the face at +dz in z.
-    //    Double_t tl2        half-length along x of the side at _h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t alp2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the 
-    //                        side at +h2 in y of the face at +dz in z 
-    //                        [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
-
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = fScale*h1;
-    param[4] = fScale*bl1;
-    param[5] = fScale*tl1;
-    param[6] = alp1;
-    param[7] = fScale*h2;
-    param[8] = fScale*bl2;
-    param[9] = fScale*tl2;
-    param[10] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRAP",fidmed[med],param,11);
-}
-//______________________________________________________________________
-void AliITSv11::Tube(const char gnam[3],const TString &dis,Double_t rmin,
-                    Double_t rmax,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Simple Tube. It has
-    // 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBE",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::TubeSegment(const char gnam[3],const TString &dis,
-                           Double_t rmin,Double_t rmax,Double_t dz,
-                           Double_t phi1,Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Phi segment of a 
-    // tube. It has 5  parameters. Phi1 should be smaller than phi2. If this is
-    // not the case, the system adds 360 degrees to phi2. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBS",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::Cone(const char gnam[3],const TString &dis,Double_t dz,
-                    Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                    Double_t rmax2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS Cone geometries. Conical tube. It 
-    // has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
-
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,5);
-}
-//______________________________________________________________________
-void AliITSv11::ConeSegment(const char gnam[3],const TString &dis,Double_t dz,
-                           Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                           Double_t rmax2,Double_t phi1,Double_t phi2,
-                           Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ConS geometries. One segment of a 
-    // conical tube. It has 7 parameters. Phi1 should be smaller than phi2. If 
-    // this is not the case, the system adds 360 degrees to phi2. See 
-    // SetScale() for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[7];
-
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    param[5] = phi1;
-    param[6] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,7);
-}
-//______________________________________________________________________
-void AliITSv11::Sphere(const char gnam[3],const TString &dis,Double_t rmin,
-                      Double_t rmax,Double_t the1,Double_t the2,Double_t phi1,
-                      Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS SPHE geometries. Segment of a 
-    // sphereical shell. It has 6 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t the1       staring polar angle of the shell [degree].
-    //    Double_t the2       ending polar angle of the shell [degree].
-    //    Double_t phui       staring asimuthal angle of the shell [degree].
-    //    Double_t phi2       ending asimuthal angle of the shell [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = the1;
-    param[3] = the2;
-    param[4] = phi1;
-    param[5] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"SPHE",fidmed[med],param,6);
-}
-//______________________________________________________________________
-void AliITSv11::Parallelepiped(const char gnam[3],const TString &dis,
-                              Double_t dx,Double_t dy,Double_t dz,
-                              Double_t alph,Double_t thet,Double_t phi,
-                              Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PARA geometries. Parallelepiped. It 
-    // has 6 parameters. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length allong x-axis
-    //    Double_t dy         half-length allong y-axis
-    //    Double_t dz         half-length allong z-axis
-    //    Double_t alpha      angle formed by the y axis and by the plane 
-    //                        joining the center of teh faces parallel to the 
-    //                        z-x plane at -dY and +dy [degree].
-    //    Double_t thet       polar angle of the line joining the centers of 
-    //                        the faces at -dz and +dz in z [degree].
-    //    Double_t phi        azimuthal angle of teh line joing the centers of 
-    //                        the faaces at -dz and +dz in z [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
-
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    param[3] = alpha;
-    param[4] = thet;
-    param[5] = phi;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PARA",fidmed[med],param,6);
-}
-//______________________________________________________________________
-void AliITSv11::Polygon(const char gnam[3],const TString &dis,Double_t phi1,
-                       Double_t dphi,Int_t npdv,Int_t nz,Double_t *z,
-                       Double_t *rmin,Double_t *rmax,Double_t ,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PGON geometry. Polygon It has 10 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t npdv          the number of sides of teh cross section between 
-    //                        the given phi limits.
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         array [nz] of z coordiates of the sections..
-    //    Double_t *rmin      array [nz] of radius of teh circle tangent to 
-    //                        the sides of the inner polygon in teh 
-    //                        cross-section.
-    //    Double_t *rmax      array [nz] of radius of the circle tangent to 
-    //                        the sides of the outer polygon in the 
-    //                       cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
-
-    n = 4+3*nz;
-    param = new Float_t[n]
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t)npdv;
-    param[3] = (Float_t)nz;
-    for(i=0;i<nz;i++){
-       param[4+3*i] = z[i];
-       param[5+3*i] = rmin[i];
-       param[6+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PGON",fidmed[med],param,n);
 
-    delete[] param;
-}
 //______________________________________________________________________
-void AliITSv11::PolyCone(const char gnam[3],const TString &dis,Double_t phi1,
-                        Double_t dphi,Int_t nz,Double_t *z,Double_t *rmin,
-                        Double_t *rmax,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PCON geometry. Poly-cone It has 9 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         Array [nz] of z coordinate of the section.
-    //    Double_t *rmin      Array [nz] of radius of teh inner circle in the 
-    //                        cross-section.
-    //    Double_t *rmax      Array [nz] of radius of the outer circle in the 
-    //                        cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
-
-    n = 3+3*nz;
-    param = new Float_t[n];
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t) nz;
-    for(i=0;i<nz;i++){
-       param[3+3*i] = z[i];
-       param[4+3*i] = rmin[i];
-       param[5+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PCON",fidmed[med],param,n);
+AliITSv11::AliITSv11() : 
+AliITS(),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+//fSPDgeom(),
+fSDDgeom(0),
+//fSupgeom(),
+fIgm(kv11)
+{
+  //    Standard default constructor for the ITS version 11.
 
-    delete[] param;
-}
-//______________________________________________________________________
-void AliITSv11::TubeElliptical(const char gnam[3],const TString &dis,
-                              Double_t p1,Double_t p2,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ELTU geometries. Elliptical 
-    // cross-section Tube. It has 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The equation of the surface 
-    // is x^2 * p1^-2 + y^2 * p2^-2 = 1.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t p1         semi-axis of the elipse along x.
-    //    Double_t p2         semi-axis of the elipse along y.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
-
-    param[0] = fScale*p1;
-    param[1] = fScale*p2;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"ELTU",fidmed[med],param,3);
-}
-//______________________________________________________________________
-void AliITSv11::HyperbolicTube(const char gnam[3],const TString &dis,
-                              Double_t rmin,Double_t rmax,Double_t dz,
-                              Double_t thet,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS HYPE geometries. Hyperbolic tube. 
-    // Fore example the inner and outer surfaces are hyperboloids, as would be 
-    // foumed by a system of cylinderical wires which were then rotated 
-    // tangentially about their centers. It has 4 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The hyperbolic surfaces are 
-    // given by r^2 = (ztan(thet)^2 + r(z=0)^2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t thet       stero angel of rotation of the two faces 
-    //                       [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = thet;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"HYPE",fidmed[med],param,4);
-}
-//______________________________________________________________________
-void AliITSv11::TwistedTrapezoid(const char gnam[3],const TString &dis,
-                                Double_t dz,Double_t thet,Double_t phi,
-                                Double_t twist,Double_t h1,Double_t bl1,
-                                Double_t tl1,Double_t apl1,Double_t h2,
-                                Double_t bl2,Double_t tl2,Double_t apl2,
-                                Int_t med){
-    // Interface to TMC->Gsvolu() for ITS GTRA geometries. General twisted 
-    // trapazoid. The faces perpendicular to z are trapazia and their centers 
-    // are not necessarily on a line parallel to the z axis as the TRAP. 
-    // Additionally, the faces may be twisted so that none of their edges are 
-    // parallel. It is a TRAP shape, exept that it is twisted in the x-y plane 
-    // as a function of z. The parallel sides perpendicular to the x axis are 
-    // rotated with respect to the x axis by an angle TWIST, which is one of 
-    // the parameters. The shape is defined by the eight corners and is assumed
-    // to be constructed of straight lines joingin points on the boundry of the
-    // trapezoidal face at Z=-dz to the coresponding points on the face at 
-    // z=+dz. Divisions are not allowed. It has 12 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. Note: This shape suffers from
-    // the same limitations than the TRAP. The tracking routines assume that 
-    // the faces are planar, but htis constraint is not easily expressed in 
-    // terms of the 12 parameters. Additionally, no check on th efaces is 
-    // performed in this case. Users should avoid to use this shape as much as 
-    // possible, and if they have to do so, they should make sure that the 
-    // faces are really planes. If this is not the case, the result of the 
-    // trasport is unpredictable. To accelerat ethe computations necessary for 
-    // trasport, 18 additioanl parameters are calculated for this shape are
-    // 1 DXODZ dx/dz of the line joing the centers of the faces at z=+_dz.
-    // 2 DYODZ dy/dz of the line joing the centers of the faces at z=+_dz.
-    // 3 XO1    x at z=0 for line joing the + on parallel side, perpendicular 
-    //          corners at z=+_dz.
-    // 4 YO1    y at z=0 for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 5 DXDZ1  dx/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 6 DYDZ1  dy/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 7 X02    x at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 8 YO2    y at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 9 DXDZ2  dx/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 10 DYDZ2dy/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 11 XO3   x at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 12 YO3   y at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 13 DXDZ3 dx/dzfor line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 14 DYDZ3 dydz for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 15 XO4   x at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 16 YO4   y at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 17 DXDZ4 dx/dz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 18 DYDZ4 dydz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z axis.
-    //    Double_t thet       polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t phi        Azymuthal angle of teh line joing the centre of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t twist      Twist angle of the faces parallel to the x-y 
-    //                        plane at z=+-dz around an axis parallel to z 
-    //                        passing through their centre [degrees].
-    //    Double_t h1         Half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side -h1 in y of the 
-    //                        face at -dz in z.
-    //    Double_t tl1        half-length along x of the side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t apl1       Angle with respect to the y ais from the center 
-    //                        of the side at -h1 in y to the centere of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degrees].
-    //    Double_t h2         half-length along the face at +dz.
-    //    Double_t bl2        half-length along x of the side at -h2 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl2        half-length along x of the side at +h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t apl2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the side
-    //                        at +h2 in y of the face at +dz in z [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[12];
-
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = twist;
-    param[4] = fScale*h1;
-    param[5] = fScale*bl1;
-    param[6] = fScale*tl1;
-    param[7] = alp1;
-    param[8] = fScale*h2;
-    param[9] = fScale*bl2;
-    param[10] = fScale*tl2;
-    param[11] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"GTRA",fidmed[med],param,12);
-}
-//______________________________________________________________________
-void AliITSv11::CutTube(const char gnam[3],const TString &dis,Double_t rmin,
-                       Double_t rmax,Double_t dz,Double_t phi1,Double_t phi2,
-                       Double_t lx,Double_t ly,Double_t lz,Double_t hx,
-                       Double_t hy,Double_t hz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS CTUB geometries. Cut tube. A tube cut
-    // at the extremities with planes not necessarily perpendicular tot he z 
-    // axis. It has 11 parameters. See SetScale() for units. Default units are 
-    // geant 3 [cm]. phi1 should be smaller than phi2. If this is not the case,
-    // the system adds 360 degrees to phi2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Double_t lx         x component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t ly         y component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t lz         z component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t hx         x component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hy         y component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hz         z component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
-
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    param[5] = lx;
-    param[6] = ly;
-    param[7] = lz;
-    param[8] = hx;
-    param[9] = hy;
-    param[10] = hz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CTUB",fidmed[med],param,11);
-}
-//______________________________________________________________________
-void AliITSv11::Pos(const char vol[3],Int_t cn,const char moth[3],Double_t x,
-                   Double_t y,Double_t z,Int_t irot){
-    // Place a copy of a volume previously defined by a call to GSVOLU inside 
-    // its mother volulme moth.
-    // Inputs:
-    //   const char vol[3]  3 character geant volume name. The letter "I"
-    //                      is appended to the front to indecate that this
-    //                      is an ITS volume.
-    //   const char moth[3] 3 character geant volume name of the mother volume 
-    //                      in which vol will be placed. The letter "I" is 
-    //                      appended to the front to indecate that this is an 
-    //                      ITS volume.
-    //   Double_t x         The x positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t y         The y positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t z         The z positon of the volume in the mother's 
-    //                      reference system
-    //   Int_t irot         the index for the rotation matrix to be used.
-    //                      irot=-1 => unit rotation.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    char name[4],mother[4];
-    Float_t param[3];
-    Int_t r=0,i;
-
-    param[0] = x;
-    param[1] = y;
-    param[2] = z;
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = vol[i];
-    mother[0] = 'I';
-    for(i=0;i<3;i++) mother[i+1] = moth[i];
-    if(irot>=0) r=fidrot[irot];
-    fMC->Gspos(name,mother,param[0],param[1],param[2],r,"ONLY");
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t thet1,Double_t phi1,
-                      Double_t thet2,Double_t phi2,
-                      Double_t thet3,Double_t phi3){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot     Intex specifing which rotation matrix.
-    //   Double_t thet1 Polar angle for axisw x [degrees].
-    //   Double_t phi1  azimuthal angle for axis x [degrees].
-    //   Double_t thet12Polar angle for axisw y [degrees].
-    //   Double_t phi2  azimuthal angle for axis y [degrees].
-    //   Double_t thet3 Polar angle for axisw z [degrees].
-    //   Double_t phi3  azimuthal angle for axis z [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    Float_t t1,p1,t2,p2,t3,p3;
-
-    if(thet1==90.0&&phi1==0.0&&thet2==90.0&&phi2==90.0&&thet3==0.0&&phi3==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       t1 = thet1;
-       p1 = phi1;
-       t2 = thet2;
-       p2 = phi2;
-       t3 = thet3;
-       p3 = phi3
-       AliMatrix(fidrot[irot],t1,p1,t2,p2,t3,p3);
-    } // end if
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Int_t axis,Double_t thet){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Int_t axis         Axis about which rotation is to be done.
-    //   Double_t thet      Angle to rotate by [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-
-    if(thet==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       switch (irot) {
-       case 0: //Rotate about x-axis, x-axis does not change.
-           AliMatrix(fidrot[irot],90.0,0.0,90.0+thet,90.0,thet,90.0);
-           break;
-       case 1: //Rotate about y-axis, y-axis does not change.
-           AliMatrix(fidrot[irot],-90.0-thet,0.0,90.0,90.0,thet,90.0);
-           break;
-       case 2: //Rotate about z-axis, z-axis does not change.
-           AliMatrix(fidrot[irot],90.0,thet,90.0,-thet-90.0,0.0,0.0);
-           break;
-       default:
-           Error("Matrix","axis must be either 0, 1, or 2. for matrix=%d",
-                 irot);
-           break;
-       } // end switch
-    } // end if
-}
-//______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t rot[3][3]){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Double_t rot[3][3] The 3 by 3 rotation matrix.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-
-    if(rot[0][0]==1.0&&rot[1][1]==1.0&&rot[2][2]==1.0&&
-       rot[0][1]==0.0&&rot[0][2]==0.0&&rot[1][0]==0.0&&
-       rot[1][2]==0.0&&rot[2][0]==0.0&&rot[2][1]==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       Double_t si,c=180./TMath::Pi();
-       Double_t ang[6];
-
-       ang[1] = TMath::ATan2(rot[0][1],rot[0][0]);
-       if(TMath::Cos(ang[1])!=0.0) si = rot[0][0]/TMath::Cos(ang[1]);
-       else si = rot[0][1]/TMath::Sin(ang[1]);
-       ang[0] = TMath::ATan2(si,rot[0][2]);
-
-       ang[3] = TMath::ATan2(rot[1][1],rot[1][0]);
-       if(TMath::Cos(ang[3])!=0.0) si = rot[1][0]/TMath::Cos(ang[3]);
-       else si = rot[1][1]/TMath::Sin(ang[3]);
-       ang[2] = TMath::ATan2(si,rot[1][2]);
-
-       ang[5] = TMath::ATan2(rot[2][1],rot[2][0]);
-       if(TMath::Cos(ang[5])!=0.0) si = rot[2][0]/TMath::Cos(ang[5]);
-       else si = rot[2][1]/TMath::Sin(ang[5]);
-       ang[4] = TMath::ATan2(si,rot[2][2]);
-
-       for(Int_t i=0;i<6;i++) {ang[i] *= c; if(ang[i]<0.0) ang[i] += 360.;}
-       AliMatrix(fidrot[irot],ang[0],ang[1],ang[2],ang[3],ang[4],ang[5]);
-    } // end if
-}
-//______________________________________________________________________
-Float_t AliITSv11::GetA(Int_t z){
-    // Returns the isotopicaly averaged atomic number.
-    // Inputs:
-    //    Int_t z  Elemental number
-    // Outputs:
-    //    none.
-    // Return:
-    //    The atomic mass number.
-    const Float_t A[]={ 1.00794 ,  4.0026902,  6.941   ,  9.012182 , 10.811   ,
-                       12.01007 , 14.00674  , 15.9994  , 18.9984032, 20.1797  ,
-                       22.98970 , 24.3050   , 26.981538, 28.0855   , 30.973761,
-                       32.066   , 35.4527   , 39.948   , 39.0983   , 40.078   ,
-                       44.95591 , 47.867    , 50.9415  , 51.9961   , 54.938049,
-                       55.845   , 58.933200 , 58.6934  , 63.546    , 65.39    ,
-                       69.723   , 72.61     , 74.92160 , 78.96     , 79.904   ,
-                       83.80    , 85.4678   , 87.62    , 88.9085   , 91.224   ,
-                       92.90638 , 95.94     , 97.907215, 101.07    ,102.90550 ,
-                      106.42    ,107.8682   ,112.411   ,114.818    ,118.710   ,
-                      121.760   ,127.60     ,126.90447 ,131.29     ,132.90545 ,
-                      137.327   ,138.9055   ,140.116   ,140.90765  ,144.24    ,
-                      144.912746,150.36     ,151.964   ,157.25     ,158.92534 ,
-                      162.50     ,164.93032 ,167.26    ,168.93421  ,173.04    ,
-                      174.967    ,178.49    ,180.9479 ,183.84      ,186.207   ,
-                      190.23     ,192.217   ,195.078  ,196.96655   ,200.59    ,
-                      204.3833   ,207.2     ,208.98038,208.982415  ,209.987131,
-                      222.017570 ,223.019731,226.025402,227.027747 ,232.0381  ,
-                      231.03588  238.0289};
-
-    if(z<1||z>92){
-       Error("GetA","z must be 0<z<93. z=%d",z);
-       return 0.0;
-    } // end if
-    return A[z-1];
+    fIdN          = 0;
+    fIdName       = 0;
+    fIdSens       = 0;
+    Int_t i;
+    for(i=0;i<60;i++) fRead[i] = '\0';
+    for(i=0;i<60;i++) fWrite[i] = '\0';
+    for(i=0;i<60;i++) fEuclidGeomDet[i] = '\0';
+    strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
 }
+
+
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardMaxStepSize(Int_t istd){
-    // Returns one of a set of standard Maximum Step Size values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard Maximum Step Size value [cm].
-    Float_t t[]={1.0, // default
-                0.0075, // Silicon detectors...
-                1.0, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
+AliITSv11::AliITSv11(const char *name, const char *title): 
+AliITS("ITS", title),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+//fSPDgeom(),
+fSDDgeom(0),
+//fSupgeom(),
+fIgm(kv11)
+{
+  //    Standard constructor for the ITS version 11.
+
+  fSDDgeom = new AliITSv11GeometrySDD(0);
+
+  Int_t i;
+  fIdN = 6;
+  fIdName = new TString[fIdN];
+  fIdName[0] = name; // removes warning message
+  fIdName[0] = "ITS1";
+  fIdName[1] = "ITS2";
+  fIdName[2] = fSDDgeom->GetSenstiveVolumeName3();
+  fIdName[3] = fSDDgeom->GetSenstiveVolumeName4();
+  fIdName[4] = "ITS5";
+  fIdName[5] = "ITS6";
+  fIdSens    = new Int_t[fIdN];
+  for(i=0;i<fIdN;i++) fIdSens[i] = 0;
+  // not needed, fByThick set to kTRUE in in the member initialization lis
+  
+
+  fEuclidGeometry="$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.euc";
+  strncpy(fEuclidGeomDet,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det",60);
+  strncpy(fRead,fEuclidGeomDet,60);
+  strncpy(fWrite,fEuclidGeomDet,60);
+  strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
 }
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardThetaMax(Int_t istd){
-    // Returns one of a set of standard Theata Max values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard Theta max value [degrees].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
+AliITSv11::AliITSv11(Int_t debugITS,Int_t debugSPD,Int_t debugSDD,
+                  Int_t debugSSD,Int_t debugSUP) :
+AliITS("ITS","ITS geometry v11"),
+fGeomDetOut(kFALSE),
+fGeomDetIn(kFALSE),
+fByThick(kTRUE),
+fMajorVersion(IsVersion()),
+fMinorVersion(0),
+fEuclidGeomDet(),
+fRead(),
+fWrite(),
+//fSPDgeom(),
+fSDDgeom(0),
+//fSuppgeom(),
+fIgm(kv11)
+{
+  // Standard default constructor for the ITS version 11.
+
+
+  //   fSPDgeom = new AliITSv11GeometrySPD(debugSPD);
+  fSDDgeom = new AliITSv11GeometrySDD(debugSDD);
+  fSDDgeom->SetDebug(debugSDD);
+  //   fSupgeom = new AliITSv11GeometrySupport(debugSUP);
+
+  Int_t i;
+  fIdN = 6;
+  fIdName = new TString[fIdN];
+  fIdName[0] = "ITS1";
+  fIdName[1] = "ITS2";
+  fIdName[2] = fSDDgeom->GetSenstiveVolumeName3();
+  fIdName[3] = fSDDgeom->GetSenstiveVolumeName4();
+  fIdName[4] = "ITS5";
+  fIdName[5] = "ITS6";
+  fIdSens    = new Int_t[fIdN];
+  for(i=0;i<fIdN;i++) fIdSens[i] = 0;
+  fEuclidOut    = kFALSE; // Don't write Euclide file
+  
+  fEuclidGeometry="$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.euc";
+  strncpy(fEuclidGeomDet,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det",60);
+  strncpy(fRead,fEuclidGeomDet,60);
+  strncpy(fWrite,fEuclidGeomDet,60);
+  strncpy(fRead,"$ALICE_ROOT/ITS/ITSgeometry_vPPRasymmFMD.det",60);
+
+  debugITS = (debugSPD && debugSSD && debugSUP && debugSDD); //remove temp. warnings
 }
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardEfraction(Int_t istd){
-    // Returns one of a set of standard E fraction values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard E fraction value [#].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
+AliITSv11::~AliITSv11() {
+  delete fSDDgeom;
 }
 //______________________________________________________________________
-void AliITSv11::Element(Int_t imat,const char* name,Int_t z,Double_t dens,
-                       Int_t istd){
-    // Defines a Geant single element material and sets its Geant medium
-    // proporties. The average atomic A is assumed to be given by their
-    // natural abundances. Things like the radiation length are calculated
-    // for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t z          The elemental number.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,Z,A=GetA(z),tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len;
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    Z = (Float_t)z;
-    rad = GetRadLength(z)/dens;
-    AliMaterial(imat,name2,A,Z,dens,rad,0.0,0,0);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
+void AliITSv11::BuildGeometry(){
+
 }
 //______________________________________________________________________
-void AliITSv11::SSDCone(Double_t zShift){
-    // Defines the volumes and materials for the ITS SSD Support cone.
-    // Based on drawings ALR-0767 and ALR-0767/3. Units are in mm.
-    // Inputs: 
-    //   Double_t zShift  The z shift to be applied to the final volume.
-    // Outputs:
-    //   none.
-    // Return:
-    //   none.
-    Double_t *za,*rmina,*rmaxa,phi0=0.0,dphi=360.0;
-    Int_t i,n,nz,nrad=0;
-    Double_t Cthick=1.5; //mm, Carbon finber thickness
-    Double_t r=15.0; // mm, Radius of curvature.
-    Double_t tc=51.0; // angle of SSD cone [degrees].
-    Double_t t; // some general angle [degrees].
-    Int_t SSDcf=; // SSD support cone Carbon Fiber materal number.
-
-    SetScalemm();
-    // Lets start with the upper left outer carbon fiber surface.
-    nz = 6;
-    za    = new Double_t[nz];
-    rmina = new Double_t[nz];
-    rmaxa = new Double_t[nz];
-
-    za[0] = 0.0;
-    rmaxa[0] = 985./2.;
-    rmina[0] = rmaxa[0] - Cthick;
-    za[1] = 13.5 - 5.0; // The original size of 13.5 (ALR-0767) is milled down
-    rmaxa[1] = rmaxa[0]; // by 5mm to give a well defined reference surface 
-    rmina[1] = rmina[0]; // (ALR-0767/3).
-    // The curved section is given by the following fomula
-    // rmax = r*Sind(90.-t)+rmaxa[0]-r for 0<=t<=tc.
-    // rmin = (r-Cthick)*Sind(90.-t)+rmina[0]-(r-Cthick) for 0<=t<=tc.
-    // z = r*Cosd(90.-t)+za[1] for 0<=t<=tc.
-    za[2] = (r-Cthick)*Cosd(90.-tc)+za[1];
-    rmina[2] = (r-Cthick)*Sind(90.0-tc)+rmaxa[0]-(r-Cthick);
-    t = 90.0 - ACosd((za[2]-za[1])/r); // angle for rmax
-    rmaxa[2] = r*Sind(90.-t)+rmaxa[0]-r;
-    rmaxa[3] = r*Sind(90.0-tc)+rmaxa[0]-r;
-    za[3] =r*Cosd(90.-tc)+za[1];
-    // angled section. surface is given by the following equations
-    // R = -Tand(tc)*Z + rmaxa[3] or rmina[2]
-    rmina[3] = -Tand(tc)*za[3] + rmina[2];
-    // Point of whole. Whole surface has fixed radius = 890.0/2 mm
-    rmina[4] = 890.0/2.+Cthick ; // Inner whole surface radius (ALR-0767)
-    za[4] = (rmina[4] - rmina[2])/(-Tand(tc));
-    rmaxa[4] = -Tand(tc)*za[4]+rmaxa[3];
+void AliITSv11::CreateGeometry(){
     //
-    rmaxa[5] = rmina[4];
-    rmina[5] = rmina[4];
-    za[5] = (rmaxa[5] - rmaxa[3])/(-Tand(tc));
-    PolyCone("SCAA","SSD Suport cone Carbon Fiber Surface outer left",
-            phi0,dphi,nz,*z,*rmin,*rmax,SSDcf);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[0] = ; // Carbon Content
-    MixtureByWeight(SSDcf,"Carbon Fiber for SSD support cone",Z,W,dens,3);
-    // Now for the Filler in the mounting regions Upper left first
-    zb[0]    = za[0];
-    rmaxb[0] = rmina[0];
-    rminb[0] = 945./2.-Cthick;
+    // Create ROOT geometry
     //
-    rmaxb[1] = rmina[1];
+    // These constant character strings are set by cvs during commit
+    // do not change them unless you know what you are doing!
+    const Char_t *cvsDate="$Date$";
+    const Char_t *cvsRevision="$Revision$";
+
+    TGeoManager *geoManager = gGeoManager;
+    TGeoVolume *vALIC = geoManager->GetTopVolume();
+
+    TGeoPcon *sITS = new TGeoPcon("ITS Top Volume",0.0,360.0,2);
+
+    // DefineSection(section number, Z, Rmin, Rmax).
+    const Double_t kcm = 1.0;
+    sITS->DefineSection(0,-300.0*kcm,0.01*kcm,50.0*kcm);
+    sITS->DefineSection(1,+300.0*kcm,0.01*kcm,50.0*kcm);
+
+    TGeoMedium *air = gGeoManager->GetMedium("ITS_AIR$");
+    TGeoVolume *vITS = new TGeoVolume("ITSV",sITS,air);
+    vITS->SetVisibility(kFALSE);
+    const Int_t length=100;
+    Char_t vstrng[length];
+    if(fIgm.WriteVersionString(vstrng,length,(AliITSVersion_t)IsVersion(),
+                               fMinorVersion,cvsDate,cvsRevision))
+        vITS->SetTitle(vstrng);
+    //printf("Title set to %s\n",vstrng);
+    vALIC->AddNode(vITS,1,0);
+
+//   fSPDgeom->CenteralSPD(vITS);
+
+  fSDDgeom->Layer3(vITS);
+  fSDDgeom->Layer4(vITS);
+
+//     fSupgeom->SPDCone(vITS);
+//     fSupgeom->SPDThermalSheald(vITS);
+//     fSupgeom->SDDCone(vITS);
+//     fSupgeom->SSDCone(vITS);
+//     fSupgeom->ServicesCableSupport(vITS);
 
-    delete[] za;delete[] rmina;delete[] rmaxa;
-    // Set back to cm default scale before exiting.
-    SetScalecm();
-    return;
-}
-//______________________________________________________________________
-void AliITSv11::CreateGeometry(){
-    ////////////////////////////////////////////////////////////////////////
-    // This routine defines and Creates the geometry for version 11 of the ITS.
-    ////////////////////////////////////////////////////////////////////////
 }
+
+
 //______________________________________________________________________
 void AliITSv11::CreateMaterials(){
-////////////////////////////////////////////////////////////////////////
   //
   // Create ITS materials
-  //     This function defines the default materials used in the Geant
-  // Monte Carlo simulations for the geometries AliITSv1, AliITSv3,
-  // AliITSv11.
-  // In general it is automatically replaced by
-  // the CreatMaterials routine defined in AliITSv?. Should the function
-  // CreateMaterials not exist for the geometry version you are using this
-  // one is used. See the definition found in AliITSv5 or the other routine
-  // for a complete definition.
+  // Defined media here should correspond to the one defined in galice.cuts
+  // File which is red in (AliMC*) fMCApp::Init() { ReadTransPar(); }
   //
+
+//     Int_t   ifield = gAlice->Field()->Integ();
+//     Float_t fieldm = gAlice->Field()->Max();
+
+//     Float_t tmaxfd = 0.1; // 1.0; // Degree
+//     Float_t stemax = 1.0; // cm
+//     Float_t deemax = 0.1; // 30.0; // Fraction of particle's energy 0<deemax<=1
+//     Float_t epsil  = 1.0E-4; // 1.0; // cm
+//     Float_t stmin  = 0.0; // cm "Default value used"
+
+//     Float_t tmaxfdSi = 0.1; // .10000E+01; // Degree
+//     Float_t stemaxSi = 0.0075; //  .10000E+01; // cm
+//     Float_t deemaxSi = 0.1; // 0.30000E-02; // Fraction of particle's energy 0<deemax<=1
+//     Float_t epsilSi  = 1.0E-4;// .10000E+01;
+//     Float_t stminSi  = 0.0; // cm "Default value used"
+
+//     Float_t tmaxfdAir = 0.1; // .10000E+01; // Degree
+//     Float_t stemaxAir = .10000E+01; // cm
+//     Float_t deemaxAir = 0.1; // 0.30000E-02; // Fraction of particle's energy 0<deemax<=1
+//     Float_t epsilAir  = 1.0E-4;// .10000E+01;
+//     Float_t stminAir  = 0.0; // cm "Default value used"
+
+//     Float_t tmaxfdServ = 1.0; // 10.0; // Degree
+//     Float_t stemaxServ = 1.0; // 0.01; // cm
+//     Float_t deemaxServ = 0.5; // 0.1; // Fraction of particle's energy 0<deemax<=1
+//     Float_t epsilServ  = 1.0E-3; // 0.003; // cm
+//     Float_t stminServ  = 0.0; //0.003; // cm "Default value used"
+
+//     // Freon PerFluorobuthane C4F10 see 
+//     // http://st-support-cooling-electronics.web.cern.ch/
+//     //        st-support-cooling-electronics/default.htm
+//     Float_t afre[2]  = { 12.011,18.9984032 };
+//     Float_t zfre[2]  = { 6., 9. };
+//     Float_t wfre[2]  = { 4.,10. };
+//     Float_t densfre  = 1.52;
+
+
+//     //CM55J
+//     Float_t aCM55J[4]={12.0107,14.0067,15.9994,1.00794};
+//     Float_t zCM55J[4]={6.,7.,8.,1.};
+//     Float_t wCM55J[4]={0.908508078,0.010387573,0.055957585,0.025146765};
+//     Float_t dCM55J = 1.63;
+
+//     //ALCM55J
+//     Float_t aALCM55J[5]={12.0107,14.0067,15.9994,1.00794,26.981538};
+//     Float_t zALCM55J[5]={6.,7.,8.,1.,13.};
+//     Float_t wALCM55J[5]={0.817657902,0.0093488157,0.0503618265,0.0226320885,0.1};
+//     Float_t dALCM55J = 1.9866;
+
+//     //Si Chips
+//     Float_t aSICHIP[6]={12.0107,14.0067,15.9994,1.00794,28.0855,107.8682};
+//     Float_t zSICHIP[6]={6.,7.,8.,1.,14., 47.};
+//     Float_t wSICHIP[6]={0.039730642,0.001396798,0.01169634,
+//                     0.004367771,0.844665,0.09814344903};
+//     Float_t dSICHIP = 2.36436;
+
+//     //Inox
+//     Float_t aINOX[9]={12.0107,54.9380, 28.0855,30.9738,32.066,
+//                   58.6928,55.9961,95.94,55.845};
+//     Float_t zINOX[9]={6.,25.,14.,15.,16., 28.,24.,42.,26.};
+//     Float_t wINOX[9]={0.0003,0.02,0.01,0.00045,0.0003,0.12,0.17,0.025,0.654};
+//     Float_t dINOX = 8.03;
+
+//     //SDD HV microcable
+//     Float_t aHVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+//     Float_t zHVm[5]={6.,1.,7.,8.,13.};
+//     Float_t wHVm[5]={0.520088819984,0.01983871336,0.0551367996,0.157399667056, 0.247536};
+//     Float_t dHVm = 1.6087;
+
+//     //SDD LV+signal cable
+//     Float_t aLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+//     Float_t zLVm[5]={6.,1.,7.,8.,13.};
+//     Float_t wLVm[5]={0.21722436468,0.0082859922,0.023028867,0.06574077612, 0.68572};
+//     Float_t dLVm = 2.1035;
+
+//     //SDD hybrid microcab
+//     Float_t aHLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+//     Float_t zHLVm[5]={6.,1.,7.,8.,13.};
+//     Float_t wHLVm[5]={0.24281879711,0.00926228815,0.02574224025,0.07348667449, 0.64869};
+//     Float_t dHLVm = 2.0502;
+
+//     //SDD anode microcab
+//     Float_t aALVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+//     Float_t zALVm[5]={6.,1.,7.,8.,13.};
+//     Float_t wALVm[5]={0.392653705471,0.0128595919215,
+//                   0.041626868025,0.118832707289, 0.431909};
+//     Float_t dALVm = 2.0502;
+
+//     //X7R capacitors
+//     Float_t aX7R[7]={137.327,47.867,15.9994,58.6928,63.5460,118.710,207.2};
+//     Float_t zX7R[7]={56.,22.,8.,28.,29.,50.,82.};
+//     Float_t wX7R[7]={0.251639432,0.084755042,0.085975822,
+//                  0.038244751,0.009471271,0.321736471,0.2081768};
+//     Float_t dX7R = 7.14567;
+
+//     // AIR
+//     Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
+//     Float_t zAir[4]={6.,7.,8.,18.};
+//     Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
+//     Float_t dAir = 1.20479E-3;
+
+//     // Water
+//     Float_t aWater[2]={1.00794,15.9994};
+//     Float_t zWater[2]={1.,8.};
+//     Float_t wWater[2]={0.111894,0.888106};
+//     Float_t dWater   = 1.0;
+
+//     // CERAMICS
+//   //     94.4% Al2O3 , 2.8% SiO2 , 2.3% MnO , 0.5% Cr2O3
+//     Float_t acer[5]  = { 26.981539,15.9994,28.0855,54.93805,51.9961 };
+//     Float_t zcer[5]  = {       13.,     8.,    14.,     25.,    24. };
+//     Float_t wcer[5]  = {.4443408,.5213375,.0130872,.0178135,.003421};
+//     Float_t denscer  = 3.6;
+
+//     //G10FR4
+//     Float_t zG10FR4[14] = {14.00,   20.00,  13.00,  12.00,  5.00,
+//                        22.00,       11.00,  19.00,  26.00,  9.00,
+//                        8.00,        6.00,   7.00,   1.00};
+//     Float_t aG10FR4[14] = {28.0855000,40.0780000,26.9815380,24.3050000,
+//                        10.8110000,47.8670000,22.9897700,39.0983000,
+//                        55.8450000,18.9984000,15.9994000,12.0107000,
+//                        14.0067000,1.0079400};
+//     Float_t wG10FR4[14] = {0.15144894,0.08147477,0.04128158,0.00904554,
+//                        0.01397570,0.00287685,0.00445114,0.00498089,
+//                        0.00209828,0.00420000,0.36043788,0.27529426,
+//                        0.01415852,0.03427566};
+//     Float_t densG10FR4= 1.8;
+    
+//      //--- EPOXY  --- C18 H19 O3
+//       Float_t aEpoxy[3] = {15.9994, 1.00794, 12.0107} ; 
+//       Float_t zEpoxy[3] = {     8.,      1.,      6.} ; 
+//       Float_t wEpoxy[3] = {     3.,     19.,     18.} ; 
+//       Float_t dEpoxy = 1.8 ;
+
+//       // rohacell: C9 H13 N1 O2
+//     Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
+//     Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
+//     Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
+//     Float_t drohac    = 0.05;
+
+//     // If he/she means stainless steel (inox) + Aluminium and Zeff=15.3383 then
+// //
+// // %Al=81.6164 %inox=100-%Al
+
+//     Float_t aInAl[5] = {27., 55.847,51.9961,58.6934,28.0855 };
+//     Float_t zInAl[5] = {13., 26.,24.,28.,14. };
+//     Float_t wInAl[5] = {.816164, .131443,.0330906,.0183836,.000919182};
+//     Float_t dInAl    = 3.075;
+
+//     // Kapton
+//     Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994};
+//     Float_t zKapton[4]={1.,6.,7.,8.};
+//     Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235};
+//     Float_t dKapton   = 1.42;
+
+//     //SDD ruby sph.
+//     Float_t aAlOxide[2]  = { 26.981539,15.9994};
+//     Float_t zAlOxide[2]  = {       13.,     8.};
+//     Float_t wAlOxide[2]  = {0.4707, 0.5293};
+//     Float_t dAlOxide     = 3.97;
+
+//     //---------
+//     AliMaterial(1,"ITSsddSi",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(1,"ITSsddSi",1,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+    
+//     AliMixture(5,"ITSair",aAir,zAir,dAir,4,wAir);
+//     AliMedium(5,"ITSair",5,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+    
+//     AliMixture(7,"ITSsddSiChip",aSICHIP,zSICHIP,dSICHIP,6,wSICHIP);
+//     AliMedium(7,"ITSsddSiChip",7,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMaterial(79,"SDD SI insensitive$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(79,"SDD SI insensitive$",79,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(11,"ITSal",0.26982E+02,0.13000E+02,0.26989E+01,0.89000E+01,0.99900E+03);
+//     AliMedium(11,"ITSal",11,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(9,"ITSsddCarbonM55J",aCM55J,zCM55J,dCM55J,4,wCM55J);
+//     AliMedium(9,"ITSsddCarbonM55J",9,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(10,"SDD AIR$",aAir,zAir,dAir,4,wAir);
+//     AliMedium(10,"SDD AIR$",10,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+//     AliMixture(12, "WATER",aWater,zWater,dWater,2,wWater);
+//     AliMedium(12,"WATER",12,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//      AliMixture(69,"ITSsddCAlM55J",aALCM55J,zALCM55J,dALCM55J,5,wALCM55J);
+//     AliMedium(69,"ITSsddCAlM55J",69,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+  
+//     AliMixture(70, "ITSsddKAPTON_POLYCH2", aKapton, zKapton, dKapton, 4, wKapton);
+//     AliMedium(70,"ITSsddKAPTON_POLYCH2",70,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(77,"SDDX7Rcapacitors",aX7R,zX7R,dX7R,7,wX7R);
+//     AliMedium(77,"SDDX7Rcapacitors",77,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(78,"SDD ruby sph. Al2O3$",aAlOxide,zAlOxide,dAlOxide,2,wAlOxide);
+//     AliMedium(78,"SDD ruby sph. Al2O3$",78,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+
+//     AliMaterial(64,"ALUMINUM$",0.26982E+02,0.13000E+02,0.26989E+01,0.89000E+01,0.99900E+03);
+//     AliMedium(64,"ALUMINUM$",64,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(14,"COPPER",0.63546E+02,0.29000E+02,0.89600E+01,0.14300E+01,0.99900E+03);
+//     AliMedium(14,"COPPER",14,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(2,"SPD SI CHIP$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(2,"SPD SI CHIP$",2,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMaterial(3,"SPD SI BUS$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(3,"SPD SI BUS$",3,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMixture(4,"C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+//     AliMedium(4,"C (M55J)$",4,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(6,"GEN AIR$",aAir,zAir,dAir,4,wAir);
+//     AliMedium(6,"GEN AIR$",6,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+//     AliMixture(13,"Freon$",afre,zfre,densfre,-2,wfre);
+//     AliMedium(13,"Freon$",13,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+
+//     AliMixture(15,"CERAMICS$",acer,zcer,denscer,5,wcer);
+//     AliMedium(15,"CERAMICS$",15,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(20,"SSD C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+//     AliMedium(20,"SSD C (M55J)$",20,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(21,"SSD AIR$",aAir,zAir,dAir,4,wAir);
+//     AliMedium(21,"SSD AIR$",21,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+//     AliMixture(25,"G10FR4$",aG10FR4,zG10FR4,densG10FR4,14,wG10FR4);
+//     AliMedium(25,"G10FR4$",25,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//      AliMixture(26,"GEN C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+//     AliMedium(26,"GEN C (M55J)$",26,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(27,"GEN Air$",aAir,zAir,dAir,4,wAir);
+//     AliMedium(27,"GEN Air$",27,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+//     AliMaterial(51,"SPD SI$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(51,"SPD SI$",51,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMaterial(52,"SPD SI CHIP$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(52,"SPD SI CHIP$",52,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMaterial(53,"SPD SI BUS$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(53,"SPD SI BUS$",53,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMixture(54,"SPD C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+//     AliMedium(54,"SPD C (M55J)$",54,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(55,"SPD AIR$",aAir,zAir,dAir,4,wAir);
+//     AliMedium(55,"SPD AIR$",55,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+//     AliMixture(56, "SPD KAPTON(POLYCH2)", aKapton, zKapton, dKapton, 4, wKapton);
+//     AliMedium(56,"SPD KAPTON(POLYCH2)$",56,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(61,"EPOXY$",aEpoxy,zEpoxy,dEpoxy,-3,wEpoxy);
+//     AliMedium(61,"EPOXY$",61,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(62,"SILICON$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(62,"SILICON$",62,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+//     AliMixture(63, "KAPTONH(POLYCH2)", aKapton, zKapton, dKapton, 4, wKapton);
+//     AliMedium(63,"KAPTONH(POLYCH2)$",63,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+
+//     AliMixture(65,"INOX$",aINOX,zINOX,dINOX,9,wINOX);
+//     AliMedium(65,"INOX$",65,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(68,"ROHACELL$",arohac,zrohac,drohac,-4,wrohac);
+//     AliMedium(68,"ROHACELL$",68,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+
+//      AliMaterial(71,"ITS SANDW A$",0.12011E+02,0.60000E+01,0.2115E+00,0.17479E+03,0.99900E+03);
+//     AliMedium(71,"ITS SANDW A$",71,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(72,"ITS SANDW B$",0.12011E+02,0.60000E+01,0.27000E+00,0.18956E+03,0.99900E+03);
+//     AliMedium(72,"ITS SANDW B$",72,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(73,"ITS SANDW C$",0.12011E+02,0.60000E+01,0.41000E+00,0.90868E+02,0.99900E+03);
+//     AliMedium(73,"ITS SANDW C$",73,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(74,"HEAT COND GLUE$",0.12011E+02,0.60000E+01,0.1930E+01,0.22100E+02,0.99900E+03);
+//     AliMedium(74,"HEAT COND GLUE$",74,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(75,"ELASTO SIL$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+//     AliMedium(75,"ELASTO SIL$",75,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(76,"SPDBUS(AL+KPT+EPOX)$",0.19509E+02,0.96502E+01,0.19060E+01,0.15413E+02,0.99900E+03);
+//     AliMedium(76,"SPDBUS(AL+KPT+EPOX)$",76,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+               
+
+//     AliMixture(80,"SDD HV microcable$",aHVm,zHVm,dHVm,5,wHVm);
+//     AliMedium(80,"SDD HV microcable$",80,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(81,"SDD LV+signal cable$",aLVm,zLVm,dLVm,5,wLVm);
+//     AliMedium(81,"SDD LV+signal cable$",81,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(82,"SDD hybrid microcab$",aHLVm, zHLVm,dHLVm,5,wHLVm);
+//     AliMedium(82,"SDD hybrid microcab$",82,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(83,"SDD anode microcab$",aALVm,zALVm,dALVm,5,wALVm);
+//     AliMedium(83,"SDD anode microcab$",83,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMaterial(84,"SDD/SSD rings$",0.123565E+02,0.64561E+01,0.18097E+01,0.229570E+02,0.99900E+03);
+//     AliMedium(84,"SDD/SSD rings$",84,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+//     AliMixture(85,"inox/alum$",aInAl,zInAl,dInAl,5,wInAl);
+//     AliMedium(85,"inox/alum$",85,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+
+//     // special media to take into account services in the SDD and SSD 
+//     // cones for the FMD
+
+//        Float_t aA[13],zZ[13],wW[13],den;
+//     // From Pierluigi Barberis calculations of 2SPD+1SDD October 2 2002.
+//     zZ[0] = 1.0; aA[0] = 1.00794; // Hydrogen
+//     zZ[1] = 6.0; aA[1] = 12.011; // Carbon
+//     zZ[2] = 7.0; aA[2] = 14.00674; // Nitrogen
+//     zZ[3] = 8.0; aA[3] = 15.9994; // Oxigen
+//     zZ[4] = 14.0; aA[4] = 28.0855; // Silicon
+//     zZ[5] = 24.0; aA[5] = 51.9961; //Cromium
+//     zZ[6] = 25.0; aA[6] = 54.938049; // Manganese
+//     zZ[7] = 26.0; aA[7] = 55.845; // Iron
+//     zZ[8] = 28.0; aA[8] = 58.6934; // Nickle
+//     zZ[9] = 29.0; aA[9] = 63.546; // Copper
+//     zZ[10] = 13.0; aA[10] = 26.981539; // Alulminum
+//     zZ[11] = 47.0; aA[11] = 107.8682; // Silver
+//     zZ[12] = 27.0; aA[12] = 58.9332; // Cobolt
+//     wW[0] = 0.019965;
+//     wW[1] = 0.340961;
+//     wW[2] = 0.041225;
+//     wW[3] = 0.200352;
+//     wW[4] = 0.000386;
+//     wW[5] = 0.001467;
+//     wW[6] = 0.000155;
+//     wW[7] = 0.005113;
+//     wW[8] = 0.000993;
+//     wW[9] = 0.381262;
+//     wW[10] = 0.008121;
+//     wW[11] = 0.000000;
+//     wW[12] = 0.000000;
+//     if(fByThick){// New values seeITS_MatBudget_4B.xls
+//     den = 1.5253276; // g/cm^3  Cell O370
+//     }else{
+//     den = 2.58423412; // g/cm^3 Cell L370
+//     } // end if fByThick
+//     //den = 6161.7/(3671.58978);//g/cm^3 Volume does not exclude holes
+//     AliMixture(86,"AIRFMDSDD$",aA,zZ,den,+11,wW);
+//     AliMedium(86,"AIRFMDSDD$",86,0,ifield,fieldm,tmaxfdAir,stemaxAir,
+//           deemaxAir,epsilAir,stminAir);
+
+
+//     wW[0] = 0.019777;
+//     wW[1] = 0.325901;
+//     wW[2] = 0.031848;
+//     wW[3] = 0.147668;
+//     wW[4] = 0.030609;
+//     wW[5] = 0.013993;
+//     wW[6] = 0.001479;
+//     wW[7] = 0.048792;
+//     wW[8] = 0.009477;
+//     wW[9] = 0.350697;
+//     wW[10] = 0.014546;
+//     wW[11] = 0.005213;
+//     wW[12] = 0.000000;
+//     if(fByThick){// New values seeITS_MatBudget_4B.xls
+//     den = 1.2464275; // g/cm^3   Cell O403
+//     }else{
+//     den = 1.28134409; // g/cm^3  Cell L403
+//     } // end if fByThick
+//     //den = 7666.3/(9753.553259); // volume does not exclude holes
+//     AliMixture(87,"AIRFMDSSD$",aA,zZ,den,+12,wW); 
+//     AliMedium(87,"AIRFMDSSD$",87,0,ifield,fieldm,tmaxfdAir,stemaxAir,
+//           deemaxAir,epsilAir,stminAir);
+
+//     wW[0] = 0.016302;
+//     wW[1] = 0.461870;
+//     wW[2] = 0.033662;
+//     wW[3] = 0.163595;
+//     wW[4] = 0.000315;
+//     wW[5] = 0.001197;
+//     wW[6] = 0.000127;
+//     wW[7] = 0.004175;
+//     wW[8] = 0.000811;
+//     wW[9] = 0.311315;
+//     wW[10] = 0.006631;
+//     wW[11] = 0.000000;
+//     wW[12] = 0.000000;
+//     if(fByThick){// New values seeITS_MatBudget_4B.xls
+//     den = 1.9353276; // g/cm^3  Cell N370
+//     }else{
+//     den = 3.2788626; // g/cm^3 Cell F370
+//     } // end if fByThick
+//     //den = 7667.1/(3671.58978); // Volume does not excludeholes
+//     AliMixture(88,"ITS SANDW CFMDSDD$",aA,zZ,den,+11,wW); 
+//     AliMedium(88,"ITS SANDW CFMDSDD$",88,0,ifield,fieldm,tmaxfd,stemax,
+//           deemax,epsil,stmin);
+
+//     wW[0] = 0.014065;
+//     wW[1] = 0.520598;
+//     wW[2] = 0.022650;
+//     wW[3] = 0.105018;
+//     wW[4] = 0.021768;
+//     wW[5] = 0.009952;
+//     wW[6] = 0.001051;
+//     wW[7] = 0.034700;
+//     wW[8] = 0.006740;
+//     wW[9] = 0.249406;
+//     wW[10] = 0.010345;
+//     wW[11] = 0.0003707;
+//     wW[12] = 0.000000;
+//     if(fByThick){// New values seeITS_MatBudget_4B.xls
+//     den = 1.6564275; // g/cm^3  Cell N304
+//     }else{
+//     den = 1.7028296; // g/cm^3  Cell F304
+//     } // end if fByThick
+//     //den = 1166.5/(3671.58978); // Volume does not exclude holes
+//     AliMixture(89,"ITS SANDW CFMDSSD$",aA,zZ,den,+12,wW); 
+//     AliMedium(89,"ITS SANDW CFMDSSD$",89,0,ifield,fieldm,tmaxfd,stemax,
+//           deemax,epsil,stmin);
+
+//     wW[0] = 0.005970;
+//     wW[1] = 0.304704;
+//     wW[2] = 0.042510;
+//     wW[3] = 0.121715;
+//     wW[4] = 0.001118;
+//     wW[5] = 0.030948;
+//     wW[6] = 0.003270;
+//     wW[7] = 0.107910;
+//     wW[8] = 0.020960;
+//     wW[9] = 0.360895;
+//     wW[10] = 0.000000;
+//     wW[11] = 0.000000;
+//     wW[12] = 0.000000;
+//     if(fByThick){// New values seeITS_MatBudget_4B.xls
+//     den = 80.31136576; // g/cm^3 Cell H329
+//     }else{
+//     den = 87.13062; // g/cm^3  Cell G329
+//     } // end if fByThick
+//     //den = 1251.3/(0.05*2.0*TMath::Pi()*(7.75*7.75 - 3.7*3.7)); // g/cm^3
+//     AliMixture(97,"SPD SERVICES$",aA,zZ,den,+10,wW); 
+//     AliMedium(97,"SPD SERVICES$",97,0,ifield,fieldm,tmaxfd,stemax,
+//           deemax,epsil,stmin);
+
+//     // Special media
+
+//     AliMaterial(90,"SPD shield$", 12.011, 6., 1.93/10. , 22.1*10., 999);
+//     AliMedium(90,"SPD shield$",90,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+//           deemaxServ,epsilServ,stminServ);
+
+//     AliMaterial(91, "SPD End ladder$", 47.0447, 21.7963, 3.6374, 4.4711, 999); 
+//     AliMedium(91,"SPD End ladder$",91,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+//           deemaxServ,epsilServ,stminServ);
+
+//     AliMaterial(92, "SPD cone$",28.0855, 14., 2.33, 9.36, 999);    
+//     AliMedium(92,"SPD cone$",92,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+//           deemaxServ,epsilServ,stminServ);
+
+// //     Material with fractional Z not actually used
+// //     AliMaterial(93, "SDD End ladder$", 69.9298, 29.8246, 0.3824, 36.5103, 999);
+// //     AliMedium(93,"SDD End ladder$",93,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+// //               deemaxServ,epsilServ,stminServ);
+
+//     AliMaterial(94, "SDD cone$",63.546, 29., 1.15, 1.265, 999);
+//     AliMedium(94,"SDD cone$",94,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+//           deemaxServ,epsilServ,stminServ);
+
+// //     Material with fractional Z not actually used
+// //     AliMaterial(95, "SSD End ladder$", 32.0988, 15.4021, 0.68, 35.3238, 999); 
+// //     AliMedium(95,"SSD End ladder$",95,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+// //     deemaxServ,epsilServ,stminServ);
+
+//     AliMaterial(96, "SSD cone$",63.546, 29., 1.15, 1.265, 999);
+//     AliMedium(96,"SSD cone$",96,0,ifield,fieldm,tmaxfdServ,stemaxServ,
+//           deemaxServ,epsilServ,stminServ);
+
+
+    Int_t   ifield = gAlice->Field()->Integ();
+    Float_t fieldm = gAlice->Field()->Max();
+
+    Float_t tmaxfd = 0.1; // 1.0; // Degree
+    Float_t stemax = 1.0; // cm
+    Float_t deemax = 0.1; // 30.0; // Fraction of particle's energy 0<deemax<=1
+    Float_t epsil  = 1.0E-4; // 1.0; // cm
+    Float_t stmin  = 0.0; // cm "Default value used"
+
+    Float_t tmaxfdSi = 0.1; // .10000E+01; // Degree
+    Float_t stemaxSi = 0.0075; //  .10000E+01; // cm
+    Float_t deemaxSi = 0.1; // 0.30000E-02; // Fraction of particle's energy 0<deemax<=1
+    Float_t epsilSi  = 1.0E-4;// .10000E+01;
+    Float_t stminSi  = 0.0; // cm "Default value used"
+
+    Float_t tmaxfdAir = 0.1; // .10000E+01; // Degree
+    Float_t stemaxAir = .10000E+01; // cm
+    Float_t deemaxAir = 0.1; // 0.30000E-02; // Fraction of particle's energy 0<deemax<=1
+    Float_t epsilAir  = 1.0E-4;// .10000E+01;
+    Float_t stminAir  = 0.0; // cm "Default value used"
+
+    Float_t tmaxfdServ = 1.0; // 10.0; // Degree
+    Float_t stemaxServ = 1.0; // 0.01; // cm
+    Float_t deemaxServ = 0.5; // 0.1; // Fraction of particle's energy 0<deemax<=1
+    Float_t epsilServ  = 1.0E-3; // 0.003; // cm
+    Float_t stminServ  = 0.0; //0.003; // cm "Default value used"
+
+    // Freon PerFluorobuthane C4F10 see 
+    // http://st-support-cooling-electronics.web.cern.ch/
+    //        st-support-cooling-electronics/default.htm
+    Float_t afre[2]  = { 12.011,18.9984032 };
+    Float_t zfre[2]  = { 6., 9. };
+    Float_t wfre[2]  = { 4.,10. };
+    Float_t densfre  = 1.52;
+
+
+    //CM55J
+
+    Float_t aCM55J[4]={12.0107,14.0067,15.9994,1.00794};
+    Float_t zCM55J[4]={6.,7.,8.,1.};
+    Float_t wCM55J[4]={0.908508078,0.010387573,0.055957585,0.025146765};
+    Float_t dCM55J = 1.63;
+
+    //ALCM55J
+
+    Float_t aALCM55J[5]={12.0107,14.0067,15.9994,1.00794,26.981538};
+    Float_t zALCM55J[5]={6.,7.,8.,1.,13.};
+    Float_t wALCM55J[5]={0.817657902,0.0093488157,0.0503618265,0.0226320885,0.1};
+    Float_t dALCM55J = 1.9866;
+
+    //Si Chips
+
+    Float_t aSICHIP[6]={12.0107,14.0067,15.9994,1.00794,28.0855,107.8682};
+    Float_t zSICHIP[6]={6.,7.,8.,1.,14., 47.};
+    Float_t wSICHIP[6]={0.039730642,0.001396798,0.01169634,0.004367771,0.844665,0.09814344903};
+    Float_t dSICHIP = 2.36436;
+
+    //Inox
+    
+    Float_t aINOX[9]={12.0107,54.9380, 28.0855,30.9738,32.066,58.6928,55.9961,95.94,55.845};
+    Float_t zINOX[9]={6.,25.,14.,15.,16., 28.,24.,42.,26.};
+    Float_t wINOX[9]={0.0003,0.02,0.01,0.00045,0.0003,0.12,0.17,0.025,0.654};
+    Float_t dINOX = 8.03;
+
+    //SDD HV microcable
+
+    Float_t aHVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+    Float_t zHVm[5]={6.,1.,7.,8.,13.};
+    Float_t wHVm[5]={0.520088819984,0.01983871336,0.0551367996,0.157399667056, 0.247536};
+    Float_t dHVm = 1.6087;
+
+    //SDD LV+signal cable
+
+    Float_t aLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+    Float_t zLVm[5]={6.,1.,7.,8.,13.};
+    Float_t wLVm[5]={0.21722436468,0.0082859922,0.023028867,0.06574077612, 0.68572};
+    Float_t dLVm = 2.1035;
+
+    //SDD hybrid microcab
+
+    Float_t aHLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+    Float_t zHLVm[5]={6.,1.,7.,8.,13.};
+    Float_t wHLVm[5]={0.24281879711,0.00926228815,0.02574224025,0.07348667449, 0.64869};
+    Float_t dHLVm = 2.0502;
+
+    //SDD anode microcab
+
+    Float_t aALVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
+    Float_t zALVm[5]={6.,1.,7.,8.,13.};
+    Float_t wALVm[5]={0.392653705471,0.0128595919215,0.041626868025,0.118832707289, 0.431909};
+    Float_t dALVm = 2.0502;
+
+    //X7R capacitors
+
+    Float_t aX7R[7]={137.327,47.867,15.9994,58.6928,63.5460,118.710,207.2};
+    Float_t zX7R[7]={56.,22.,8.,28.,29.,50.,82.};
+    Float_t wX7R[7]={0.251639432,0.084755042,0.085975822,0.038244751,0.009471271,0.321736471,0.2081768};
+    Float_t dX7R = 7.14567;
+
+    // AIR
+
+    Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
+    Float_t zAir[4]={6.,7.,8.,18.};
+    Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
+    Float_t dAir = 1.20479E-3;
+
+    // Water
+
+    Float_t aWater[2]={1.00794,15.9994};
+    Float_t zWater[2]={1.,8.};
+    Float_t wWater[2]={0.111894,0.888106};
+    Float_t dWater   = 1.0;
+
+    // CERAMICS
+  //     94.4% Al2O3 , 2.8% SiO2 , 2.3% MnO , 0.5% Cr2O3
+    Float_t acer[5]  = { 26.981539,15.9994,28.0855,54.93805,51.9961 };
+    Float_t zcer[5]  = {       13.,     8.,    14.,     25.,    24. };
+    Float_t wcer[5]  = {.4443408,.5213375,.0130872,.0178135,.003421};
+    Float_t denscer  = 3.6;
+
+    //G10FR4
+
+    Float_t zG10FR4[14] = {14.00,      20.00,  13.00,  12.00,  5.00,   22.00,  11.00,  19.00,  26.00,  9.00,   8.00,   6.00,   7.00,   1.00};
+    Float_t aG10FR4[14] = {28.0855000,40.0780000,26.9815380,24.3050000,10.8110000,47.8670000,22.9897700,39.0983000,55.8450000,18.9984000,15.9994000,12.0107000,14.0067000,1.0079400};
+    Float_t wG10FR4[14] = {0.15144894,0.08147477,0.04128158,0.00904554,0.01397570,0.00287685,0.00445114,0.00498089,0.00209828,0.00420000,0.36043788,0.27529426,0.01415852,0.03427566};
+    Float_t densG10FR4= 1.8;
+    
+     //--- EPOXY  --- C18 H19 O3
+      Float_t aEpoxy[3] = {15.9994, 1.00794, 12.0107} ; 
+      Float_t zEpoxy[3] = {     8.,      1.,      6.} ; 
+      Float_t wEpoxy[3] = {     3.,     19.,     18.} ; 
+      Float_t dEpoxy = 1.8 ;
+
+      // rohacell: C9 H13 N1 O2
+    Float_t arohac[4] = {12.01,  1.01, 14.010, 16.};
+    Float_t zrohac[4] = { 6.,    1.,    7.,     8.};
+    Float_t wrohac[4] = { 9.,   13.,    1.,     2.};
+    Float_t drohac    = 0.05;
+
+    // If he/she means stainless steel (inox) + Aluminium and Zeff=15.3383 then
+//
+// %Al=81.6164 %inox=100-%Al
+
+    Float_t aInAl[5] = {27., 55.847,51.9961,58.6934,28.0855 };
+    Float_t zInAl[5] = {13., 26.,24.,28.,14. };
+    Float_t wInAl[5] = {.816164, .131443,.0330906,.0183836,.000919182};
+    Float_t dInAl    = 3.075;
+
+    // Kapton
+
+    Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994};
+    Float_t zKapton[4]={1.,6.,7.,8.};
+    Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235};
+    Float_t dKapton   = 1.42;
+
+    //SDD ruby sph.
+    Float_t aAlOxide[2]  = { 26.981539,15.9994};
+    Float_t zAlOxide[2]  = {       13.,     8.};
+    Float_t wAlOxide[2]  = {0.4707, 0.5293};
+    Float_t dAlOxide     = 3.97;
+
+
+    AliMaterial(1,"SI$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(1,"SI$",1,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMaterial(2,"SPD SI CHIP$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(2,"SPD SI CHIP$",2,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMaterial(3,"SPD SI BUS$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(3,"SPD SI BUS$",3,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMixture(4,"C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+    AliMedium(4,"C (M55J)$",4,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(5,"AIR$",aAir,zAir,dAir,4,wAir);
+    AliMedium(5,"AIR$",5,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMixture(6,"GEN AIR$",aAir,zAir,dAir,4,wAir);
+    AliMedium(6,"GEN AIR$",6,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMixture(7,"SDD SI CHIP$",aSICHIP,zSICHIP,dSICHIP,6,wSICHIP);
+    AliMedium(7,"SDD SI CHIP$",7,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMixture(9,"SDD C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+    AliMedium(9,"SDD C (M55J)$",9,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(10,"SDD AIR$",aAir,zAir,dAir,4,wAir);
+    AliMedium(10,"SDD AIR$",10,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMaterial(11,"AL$",0.26982E+02,0.13000E+02,0.26989E+01,0.89000E+01,0.99900E+03);
+    AliMedium(11,"AL$",11,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(12, "Water$",aWater,zWater,dWater,2,wWater);
+    AliMedium(12,"WATER$",12,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(13,"Freon$",afre,zfre,densfre,-2,wfre);
+    AliMedium(13,"Freon$",13,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(14,"COPPER$",0.63546E+02,0.29000E+02,0.89600E+01,0.14300E+01,0.99900E+03);
+    AliMedium(14,"COPPER$",14,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+    AliMixture(15,"CERAMICS$",acer,zcer,denscer,5,wcer);
+    AliMedium(15,"CERAMICS$",15,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(20,"SSD C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+    AliMedium(20,"SSD C (M55J)$",20,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(21,"SSD AIR$",aAir,zAir,dAir,4,wAir);
+    AliMedium(21,"SSD AIR$",21,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMixture(25,"G10FR4$",aG10FR4,zG10FR4,densG10FR4,14,wG10FR4);
+    AliMedium(25,"G10FR4$",25,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+     AliMixture(26,"GEN C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+    AliMedium(26,"GEN C (M55J)$",26,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(27,"GEN Air$",aAir,zAir,dAir,4,wAir);
+    AliMedium(27,"GEN Air$",27,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMaterial(51,"SPD SI$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(51,"SPD SI$",51,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMaterial(52,"SPD SI CHIP$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(52,"SPD SI CHIP$",52,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMaterial(53,"SPD SI BUS$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(53,"SPD SI BUS$",53,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMixture(54,"SPD C (M55J)$",aCM55J,zCM55J,dCM55J,4,wCM55J);
+    AliMedium(54,"SPD C (M55J)$",54,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(55,"SPD AIR$",aAir,zAir,dAir,4,wAir);
+    AliMedium(55,"SPD AIR$",55,0,ifield,fieldm,tmaxfdAir,stemaxAir,deemaxAir,epsilAir,stminAir);
+
+    AliMixture(56, "SPD KAPTON(POLYCH2)", aKapton, zKapton, dKapton, 4, wKapton);
+    AliMedium(56,"SPD KAPTON(POLYCH2)$",56,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(61,"EPOXY$",aEpoxy,zEpoxy,dEpoxy,-3,wEpoxy);
+    AliMedium(61,"EPOXY$",61,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(62,"SILICON$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(62,"SILICON$",62,0,ifield,fieldm,tmaxfdSi,stemaxSi,deemaxSi,epsilSi,stminSi);
+
+    AliMixture(63, "KAPTONH(POLYCH2)", aKapton, zKapton, dKapton, 4, wKapton);
+    AliMedium(63,"KAPTONH(POLYCH2)$",63,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(64,"ALUMINUM$",0.26982E+02,0.13000E+02,0.26989E+01,0.89000E+01,0.99900E+03);
+    AliMedium(64,"ALUMINUM$",64,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(65,"INOX$",aINOX,zINOX,dINOX,9,wINOX);
+    AliMedium(65,"INOX$",65,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(68,"ROHACELL$",arohac,zrohac,drohac,-4,wrohac);
+    AliMedium(68,"ROHACELL$",68,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+     AliMixture(69,"SDD C AL (M55J)$",aALCM55J,zALCM55J,dALCM55J,5,wALCM55J);
+    AliMedium(69,"SDD C AL (M55J)$",69,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+  
+    AliMixture(70, "SDDKAPTON (POLYCH2)", aKapton, zKapton, dKapton, 4, wKapton);
+    AliMedium(70,"SDDKAPTON (POLYCH2)$",70,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+     AliMaterial(71,"ITS SANDW A$",0.12011E+02,0.60000E+01,0.2115E+00,0.17479E+03,0.99900E+03);
+    AliMedium(71,"ITS SANDW A$",71,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(72,"ITS SANDW B$",0.12011E+02,0.60000E+01,0.27000E+00,0.18956E+03,0.99900E+03);
+    AliMedium(72,"ITS SANDW B$",72,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(73,"ITS SANDW C$",0.12011E+02,0.60000E+01,0.41000E+00,0.90868E+02,0.99900E+03);
+    AliMedium(73,"ITS SANDW C$",73,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(74,"HEAT COND GLUE$",0.12011E+02,0.60000E+01,0.1930E+01,0.22100E+02,0.99900E+03);
+    AliMedium(74,"HEAT COND GLUE$",74,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(75,"ELASTO SIL$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(75,"ELASTO SIL$",75,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    // SPD bus (data from Petra Riedler)
+    Float_t aSPDbus[5] = {1.00794,12.0107,14.01,15.9994,26.982 };
+    Float_t zSPDbus[5] = {1.,6.,7.,8.,13.};
+    Float_t wSPDbus[5] = {0.023523,0.318053,0.009776,0.078057,0.570591};
+    Float_t dSPDbus    = 2.128505;
+
+    //   AliMaterial(76,"SPDBUS(AL+KPT+EPOX)$",0.19509E+02,0.96502E+01,0.19060E+01,0.15413E+02,0.99900E+03);
+    AliMixture(76,"SPDBUS(AL+KPT+EPOX)$",aSPDbus,zSPDbus,dSPDbus,5,wSPDbus);
+    AliMedium(76,"SPDBUS(AL+KPT+EPOX)$",76,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+               
+    AliMixture(77,"SDD X7R capacitors$",aX7R,zX7R,dX7R,7,wX7R);
+    AliMedium(77,"SDD X7R capacitors$",77,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(78,"SDD ruby sph. Al2O3$",aAlOxide,zAlOxide,dAlOxide,2,wAlOxide);
+    AliMedium(78,"SDD ruby sph. Al2O3$",78,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMaterial(79,"SDD SI insensitive$",0.28086E+02,0.14000E+02,0.23300E+01,0.93600E+01,0.99900E+03);
+    AliMedium(79,"SDD SI insensitive$",79,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(80,"SDD HV microcable$",aHVm,zHVm,dHVm,5,wHVm);
+    AliMedium(80,"SDD HV microcable$",80,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(81,"SDD LV+signal cable$",aLVm,zLVm,dLVm,5,wLVm);
+    AliMedium(81,"SDD LV+signal cable$",81,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(82,"SDD hybrid microcab$",aHLVm, zHLVm,dHLVm,5,wHLVm);
+    AliMedium(82,"SDD hybrid microcab$",82,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(83,"SDD anode microcab$",aALVm,zALVm,dALVm,5,wALVm);
+    AliMedium(83,"SDD anode microcab$",83,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+    Float_t aDSring[4]={12.0107,      1.00794,     14.0067,      15.9994};
+    Float_t zDSring[4]={ 6.,          1.,           7.,           8.};
+    Float_t wDSring[4]={ 0.854323888, 0.026408778,  0.023050265,  0.096217069};
+    Float_t dDSring = 0.2875;
+    AliMixture(84,"SDD/SSD rings$",aDSring,zDSring,dDSring,4,wDSring);
+    AliMedium(84,"SDD/SSD rings$",84,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    AliMixture(85,"inox/alum$",aInAl,zInAl,dInAl,5,wInAl);
+    AliMedium(85,"inox/alum$",85,0,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin);
+
+    // special media to take into account services in the SDD and SSD 
+    // cones for the FMD
+    //Begin_Html
+    /*
+      <A HREF="http://www.Physics.ohio-state.edu/~nilsen/ITS/ITS_MatBudget_4B.xls">
+      </pre>
+      <br clear=left>
+      <font size=+2 color=blue>
+      <p> The Exel spread sheet from which these density number come from.
+      </font></A>
+    */
+    //End_Html
+
+    //  AliMaterial(86,"AIRFMDSDD$",0.14610E+02,0.73000E+01,0.12050E-02,0.30423E+05,0.99900E+03);
+    Float_t aA[13],zZ[13],wW[13],den;
+    // From Pierluigi Barberis calculations of 2SPD+1SDD October 2 2002.
+    zZ[0] = 1.0; aA[0] = 1.00794; // Hydrogen
+    zZ[1] = 6.0; aA[1] = 12.011; // Carbon
+    zZ[2] = 7.0; aA[2] = 14.00674; // Nitrogen
+    zZ[3] = 8.0; aA[3] = 15.9994; // Oxigen
+    zZ[4] = 14.0; aA[4] = 28.0855; // Silicon
+    zZ[5] = 24.0; aA[5] = 51.9961; //Cromium
+    zZ[6] = 25.0; aA[6] = 54.938049; // Manganese
+    zZ[7] = 26.0; aA[7] = 55.845; // Iron
+    zZ[8] = 28.0; aA[8] = 58.6934; // Nickle
+    zZ[9] = 29.0; aA[9] = 63.546; // Copper
+    zZ[10] = 13.0; aA[10] = 26.981539; // Alulminum
+    zZ[11] = 47.0; aA[11] = 107.8682; // Silver
+    zZ[12] = 27.0; aA[12] = 58.9332; // Cobolt
+    wW[0] = 0.019965;
+    wW[1] = 0.340961;
+    wW[2] = 0.041225;
+    wW[3] = 0.200352;
+    wW[4] = 0.000386;
+    wW[5] = 0.001467;
+    wW[6] = 0.000155;
+    wW[7] = 0.005113;
+    wW[8] = 0.000993;
+    wW[9] = 0.381262;
+    wW[10] = 0.008121;
+    wW[11] = 0.000000;
+    wW[12] = 0.000000;
+    if(fByThick){// New values seeITS_MatBudget_4B.xls
+       den = 1.5253276; // g/cm^3  Cell O370
+    }else{
+       den = 2.58423412; // g/cm^3 Cell L370
+    } // end if fByThick
+    //den = 6161.7/(3671.58978);//g/cm^3 Volume does not exclude holes
+    AliMixture(86,"AIRFMDSDD$",aA,zZ,den,+11,wW);
+    AliMedium(86,"AIRFMDSDD$",86,0,ifield,fieldm,tmaxfdAir,stemaxAir,
+             deemaxAir,epsilAir,stminAir);
+
+    //AliMaterial(87,"AIRFMDSSD$",0.14610E+02,0.73000E+01,0.12050E-02,0.30423E+05,0.99900E+03);
+    // From Pierluigi Barberis calculations of SSD October 2 2002.
+    wW[0] = 0.019777;
+    wW[1] = 0.325901;
+    wW[2] = 0.031848;
+    wW[3] = 0.147668;
+    wW[4] = 0.030609;
+    wW[5] = 0.013993;
+    wW[6] = 0.001479;
+    wW[7] = 0.048792;
+    wW[8] = 0.009477;
+    wW[9] = 0.350697;
+    wW[10] = 0.014546;
+    wW[11] = 0.005213;
+    wW[12] = 0.000000;
+    if(fByThick){// New values seeITS_MatBudget_4B.xls
+       den = 1.2464275; // g/cm^3   Cell O403
+    }else{
+       den = 1.28134409; // g/cm^3  Cell L403
+    } // end if fByThick
+    //den = 7666.3/(9753.553259); // volume does not exclude holes
+    AliMixture(87,"AIRFMDSSD$",aA,zZ,den,+12,wW); 
+    AliMedium(87,"AIRFMDSSD$",87,0,ifield,fieldm,tmaxfdAir,stemaxAir,
+             deemaxAir,epsilAir,stminAir);
+
+    //AliMaterial(88,"ITS SANDW CFMDSDD$",0.12011E+02,0.60000E+01,0.41000E+00,0.90868E+02,0.99900E+03);
+    // From Pierluigi Barberis calculations of 1SDD+Carbon fiber October 2 2002
+    wW[0] = 0.016302;
+    wW[1] = 0.461870;
+    wW[2] = 0.033662;
+    wW[3] = 0.163595;
+    wW[4] = 0.000315;
+    wW[5] = 0.001197;
+    wW[6] = 0.000127;
+    wW[7] = 0.004175;
+    wW[8] = 0.000811;
+    wW[9] = 0.311315;
+    wW[10] = 0.006631;
+    wW[11] = 0.000000;
+    wW[12] = 0.000000;
+    if(fByThick){// New values seeITS_MatBudget_4B.xls
+       den = 1.9353276; // g/cm^3  Cell N370
+    }else{
+       den = 3.2788626; // g/cm^3 Cell F370
+    } // end if fByThick
+    //den = 7667.1/(3671.58978); // Volume does not excludeholes
+    AliMixture(88,"ITS SANDW CFMDSDD$",aA,zZ,den,+11,wW); 
+    AliMedium(88,"ITS SANDW CFMDSDD$",88,0,ifield,fieldm,tmaxfd,stemax,
+             deemax,epsil,stmin);
+
+    //AliMaterial(89,"ITS SANDW CFMDSSD$",0.12011E+02,0.60000E+01,0.41000E+00,0.90868E+02,0.99900E+03);
+    // From Pierluigi Barberis calculations of SSD+Carbon fiber October 2 2002.
+    wW[0] = 0.014065;
+    wW[1] = 0.520598;
+    wW[2] = 0.022650;
+    wW[3] = 0.105018;
+    wW[4] = 0.021768;
+    wW[5] = 0.009952;
+    wW[6] = 0.001051;
+    wW[7] = 0.034700;
+    wW[8] = 0.006740;
+    wW[9] = 0.249406;
+    wW[10] = 0.010345;
+    wW[11] = 0.0003707;
+    wW[12] = 0.000000;
+    if(fByThick){// New values seeITS_MatBudget_4B.xls
+       den = 1.6564275; // g/cm^3  Cell N304
+    }else{
+       den = 1.7028296; // g/cm^3  Cell F304
+    } // end if fByThick
+    //den = 1166.5/(3671.58978); // Volume does not exclude holes
+    AliMixture(89,"ITS SANDW CFMDSSD$",aA,zZ,den,+12,wW); 
+    AliMedium(89,"ITS SANDW CFMDSSD$",89,0,ifield,fieldm,tmaxfd,stemax,
+             deemax,epsil,stmin);
+
+    //AliMaterial(97,"SPD SERVICES$",0.12011E+02,0.60000E+01,0.41000E+00,0.90868E+02,0.99900E+03);
+    // From Pierluigi Barberis calculations of 1SPD October 2 2002.
+    wW[0] = 0.005970;
+    wW[1] = 0.304704;
+    wW[2] = 0.042510;
+    wW[3] = 0.121715;
+    wW[4] = 0.001118;
+    wW[5] = 0.030948;
+    wW[6] = 0.003270;
+    wW[7] = 0.107910;
+    wW[8] = 0.020960;
+    wW[9] = 0.360895;
+    wW[10] = 0.000000;
+    wW[11] = 0.000000;
+    wW[12] = 0.000000;
+    if(fByThick){// New values seeITS_MatBudget_4B.xls
+       den = 80.31136576; // g/cm^3 Cell H329
+    }else{
+       den = 87.13062; // g/cm^3  Cell G329
+    } // end if fByThick
+    //den = 1251.3/(0.05*2.0*TMath::Pi()*(7.75*7.75 - 3.7*3.7)); // g/cm^3
+    AliMixture(97,"SPD SERVICES$",aA,zZ,den,+10,wW); 
+    AliMedium(97,"SPD SERVICES$",97,0,ifield,fieldm,tmaxfd,stemax,
+             deemax,epsil,stmin);
+
+
+    // Special media
+
+    AliMaterial(90,"SPD shield$", 12.011, 6., 1.93/10. , 22.1*10., 999);
+    AliMedium(90,"SPD shield$",90,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+
+    // SPD End Ladder (data from Petra Riedler)
+    Float_t aSPDel[5] = {1.00794,12.0107,14.01,15.9994,63.54 };
+    Float_t zSPDel[5] = {1.,6.,7.,8.,29.};
+    Float_t wSPDel[5] = {0.004092,0.107274,0.011438,0.032476,0.844719};
+    Float_t dSPDel    = 3.903403;
+
+    //   AliMaterial(91, "SPD End ladder$", 47.0447, 21.7963, 3.6374, 4.4711, 999); 
+    AliMixture(91,"SPD End ladder$",aSPDel,zSPDel,dSPDel,5,wSPDel);
+    AliMedium(91,"SPD End ladder$",91,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+
+    AliMaterial(92, "SPD cone$",28.0855, 14., 2.33, 9.36, 999);    
+    AliMedium(92,"SPD cone$",92,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+    /*  Material with fractional Z not actually used
+    AliMaterial(93, "SDD End ladder$", 69.9298, 29.8246, 0.3824, 36.5103, 999);
+    AliMedium(93,"SDD End ladder$",93,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+    */
+    AliMaterial(94, "SDD cone$",63.546, 29., 1.15, 1.265, 999);
+    AliMedium(94,"SDD cone$",94,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+    /* Material with fractional Z not actually used
+    AliMaterial(95, "SSD End ladder$", 32.0988, 15.4021, 0.68, 35.3238, 999); 
+    AliMedium(95,"SSD End ladder$",95,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
+    */
+    AliMaterial(96, "SSD cone$",63.546, 29., 1.15, 1.265, 999);
+    AliMedium(96,"SSD cone$",96,0,ifield,fieldm,tmaxfdServ,stemaxServ,deemaxServ,epsilServ,stminServ);
 }
+/*
 //______________________________________________________________________
 void AliITSv11::InitAliITSgeom(){
-    //     Based on the geometry tree defined in Geant 3.21, this
-    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS geometry
-    // sturture.
-}
+  //
+  // Fill fITSgeom with the 3 sub-detector geometries
+  //
+
+  if (gGeoManager) gGeoManager->Export("geometry.root");
+
+    const Int_t knlayers = 6;
+    const Int_t kndeep = 3;
+    const AliITSDetector kidet[knlayers]={kSPD,kSPD,kSDD,kSDD,kSSD,kSSD};
+    const TString knames[knlayers] = {
+      "AliITSv11:spd missing",  // lay=1
+      "AliITSv11:spd missing",  // lay=2
+      "/ALIC_1/ITSV_1/ITSsddLayer3_1/ITSsddLadd_%d/ITSsddSensor_%d/ITSsddWafer_%d", // lay=3
+      "/ALIC_1/ITSV_1/ITSsddLayer4_1/ITSsddLadd_%d/ITSsddSensor_%d/ITSsddWafer_%d", // lay=4
+      "AliITSv11:ssd missing",  // lay=5
+      "AliITSv11:ssd missing"   // lay=6
+    };
+
+    const Int_t kitsGeomTreeCopys[knlayers][kndeep]= {{10, 2, 4},// lay=1
+                                                     {10, 4, 4}, // lay=2
+                                                     {14, 6, 1}, // lay=3
+                                                     {22, 8, 1}, // lay=4
+                                                     {34,22, 1}, // lay=5
+                                                     {38,25, 1}};// lay=6
+    Int_t       nlad[knlayers],ndet[knlayers];
+    Int_t       mod,lay,lad=0,det=0,i,j,k,cp0,cp1,cp2;
+    TString path,shapeName;
+    TGeoHMatrix materix;
+    Double_t trans[3]={3*0.0},rot[10]={9*0.0,1.0};
+    TArrayD shapePar;
+    TArrayF shapeParF;
+    Bool_t shapeDefined[3]={kFALSE,kFALSE,kFALSE};
+
+    AliDebug(1,"Reading Geometry transformation directly from Modler.");
+    mod = 0;
+    for(i=0;i<knlayers;i++){
+        k = 1;
+        for(j=0;j<kndeep;j++) if(kitsGeomTreeCopys[i][j]!=0)
+            k *= TMath::Abs(kitsGeomTreeCopys[i][j]);
+        mod += k;
+    } // end for i
+
+    SetITSgeom(0);
+    nlad[0]=20;nlad[1]=40;nlad[2]=14;nlad[3]=22;nlad[4]=34;nlad[5]=38;
+    ndet[0]= 4;ndet[1]= 4;ndet[2]= 6;ndet[3]= 8;ndet[4]=22;ndet[5]=25;
+    AliITSgeom* geom = new AliITSgeom(0,6,nlad,ndet,mod);
+    SetITSgeom(geom);
+    mod = 0;
+    for(lay=1;lay<=knlayers;lay++){
 
+        for(cp0=0; cp0<kitsGeomTreeCopys[lay-1][0]; cp0++){
+            for(cp1=0; cp1<kitsGeomTreeCopys[lay-1][1]; cp1++){
+                for(cp2=1; cp2<=kitsGeomTreeCopys[lay-1][2]; cp2++){
+
+                    path.Form(knames[lay-1].Data(),
+                              cp0,cp1,cp2);
+                    switch (lay){
+                    case 1:{
+                        det = cp2;
+                        lad = cp1+2*(cp0-1);
+                    }break;
+                    case 2:{
+                        det = cp2;
+                        lad = cp1+4*(cp0-1);
+                    } break;
+                    case 3: case 4: case 5: case 6:{
+                        det = cp1;
+                        lad = cp0;
+                    } break;
+                    } // end switch
+                         //AliInfo(Form("path=%s lay=%d lad=%d det=%d",
+                         //             path.Data(),lay,lad,det));
+                    gMC->GetTransformation(path.Data(),materix);
+                    gMC->GetShape(path.Data(),shapeName,shapePar);
+                    shapeParF.Set(shapePar.GetSize());
+                    for(i=0;i<shapePar.GetSize();i++) shapeParF[i]=shapePar[i];
+                    geom->CreateMatrix(mod,lay,lad,det,kidet[lay-1],trans,rot);
+                    geom->SetTrans(mod,materix.GetTranslation());
+                    geom->SetRotMatrix(mod,materix.GetRotationMatrix());
+                   geom->GetGeomMatrix(mod)->SetPath(path.Data());
+                    switch (lay){
+                    case 1: case 2:
+                       if(!shapeDefined[kSPD]){
+                        geom->ReSetShape(kSPD,new AliITSgeomSPD425Short(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSPD] = kTRUE;
+                    }break;
+                    case 3: case 4:
+                       if(!shapeDefined[kSDD]){
+                        geom->ReSetShape(kSDD,new AliITSgeomSDD256(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSDD] = kTRUE;
+                    }break;
+                    case 5: case 6:
+                       if(!shapeDefined[kSSD]){
+                        geom->ReSetShape(kSSD,new AliITSgeomSSD75and275(
+                                shapeParF.GetSize(),shapeParF.GetArray()));
+                       shapeDefined[kSSD] = kTRUE;
+                    }break;
+                    default:{
+                    }break;
+                    } // end switch
+                    mod++;
+                } /// end for cp2
+            } // end for cp1
+        } // end for cp0
+    } // end for lay
+
+//   fSDDgeom->ExportSensorGeometry(GetITSgeom(), +3, 0);  //SDD
+}
+*/
 //______________________________________________________________________
 void AliITSv11::Init(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Initialise the ITS after it has been created.
-    ////////////////////////////////////////////////////////////////////////
+  //
+  //     Initialise the ITS after it has been created.
+  //
+
+  //AliInfo(Form("Minor version %d",fMinorVersion));
+    //
+    UpdateInternalGeometry();
+    AliITS::Init();
+    if(fGeomDetOut) GetITSgeom()->WriteNewFile(fWrite);
+
+    //
+/*
+    if(fRead[0]=='\0') strncpy(fRead,fEuclidGeomDet,60);
+    if(fWrite[0]=='\0') strncpy(fWrite,fEuclidGeomDet,60);
+    if(GetITSgeom()!=0) SetITSgeom(0x0);
+    AliITSgeom* geom = new AliITSgeom();
+    SetITSgeom(geom);
+    if(fGeomDetIn) GetITSgeom()->ReadNewFile(fRead);
+    else this->InitAliITSgeom();
+    if(fGeomDetOut) GetITSgeom()->WriteNewFile(fWrite);
+    AliITS::Init();
+*/    //
 }
+
+// //______________________________________________________________________
+// void AliITSv11::SetDefaults(){
+//   //
+//   // Set response ans segmentation models for SPD, SDD and SSD
+//   //
+//      const Float_t kconv = 1.0e+04; // convert cm to microns
+//     AliInfo("Called");    
+
+//     if(!fDetTypeSim) fDetTypeSim = new AliITSDetTypeSim();
+//     fDetTypeSim->SetITSgeom(GetITSgeom());
+  
+//     AliITSgeomSPD  *s0;
+//     AliITSgeomSDD  *s1;
+//     AliITSgeomSSD  *s2;
+//     Int_t i;
+//     Float_t bx[256],bz[280];
+   
+//     fDetTypeSim->ResetCalibrationArray();
+//     fDetTypeSim->ResetSegmentation();
+//     fDetTypeSim->SetDefaults();
+    
+//     //SPD
+//     s0 = (AliITSgeomSPD*) GetITSgeom()->GetShape(kSPD);// Get shape info. Do it this way for now.
+//     AliITSsegmentationSPD* seg0 = (AliITSsegmentationSPD*)fDetTypeSim->GetSegmentationModel(0);
+//     seg0->SetDetSize(s0->GetDx()*2.*kconv, // base this on AliITSgeomSPD
+//                  s0->GetDz()*2.*kconv, // for now.
+//                  s0->GetDy()*2.*kconv); // x,z,y full width in microns.
+//     seg0->SetNPads(256,160);// Number of Bins in x and z
+//     for(i=000;i<256;i++) bx[i] =  50.0; // in x all are 50 microns.
+//     for(i=000;i<160;i++) bz[i] = 425.0; // most are 425 microns except below
+//     for(i=160;i<280;i++) bz[i] =   0.0; // Outside of detector.
+//     bz[ 31] = bz[ 32] = 625.0; // first chip boundry
+//     bz[ 63] = bz[ 64] = 625.0; // first chip boundry
+//     bz[ 95] = bz[ 96] = 625.0; // first chip boundry
+//     bz[127] = bz[128] = 625.0; // first chip boundry
+//     bz[160] = 425.0; // Set so that there is no zero pixel size for fNz.
+//     seg0->SetBinSize(bx,bz); // Based on AliITSgeomSPD for now.
+//     SetSegmentationModel(kSPD,seg0);
+//     // set digit and raw cluster classes to be used
+//     const char *kData0=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSPD()))->DataType();
+//     if (strstr(kData0,"real")) fDetTypeSim->SetDigitClassName(kSPD,"AliITSdigit");
+//     else fDetTypeSim->SetDigitClassName(kSPD,"AliITSdigitSPD");
+
+
+
+//     // SDD
+//     s1 = (AliITSgeomSDD*) GetITSgeom()->GetShape(kSDD);// Get shape info. Do it this way for now.
+//     AliITSsegmentationSDD* seg1 = (AliITSsegmentationSDD*)fDetTypeSim->GetSegmentationModel(1);
+//     seg1->SetDetSize(s1->GetDx()*kconv, // base this on AliITSgeomSDD
+//                  s1->GetDz()*2.*kconv, // for now.
+//                  s1->GetDy()*2.*kconv); // x,z,y full width in microns.
+//     seg1->SetNPads(256,256);// Use AliITSgeomSDD for now
+//     SetSegmentationModel(kSDD,seg1);
+//     const char *kData1=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSDD()))->DataType();
+//     AliITSCalibrationSDD* rsp = (AliITSCalibrationSDD*)fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSDD());
+//     const char *kopt=rsp->GetZeroSuppOption();
+//     if((!strstr(kopt,"2D")) && (!strstr(kopt,"1D")) || strstr(kData1,"real") ){
+//     fDetTypeSim->SetDigitClassName(kSDD,"AliITSdigit");
+//     } else fDetTypeSim->SetDigitClassName(kSDD,"AliITSdigitSDD");
+
+
+//     // SSD
+//     s2 = (AliITSgeomSSD*) GetITSgeom()->GetShape(kSSD);// Get shape info. Do it this way for now.
+//     AliITSsegmentationSSD* seg2 = (AliITSsegmentationSSD*)fDetTypeSim->GetSegmentationModel(2);
+//     seg2->SetDetSize(s2->GetDx()*2.*kconv, // base this on AliITSgeomSSD
+//                  s2->GetDz()*2.*kconv, // for now.
+//                  s2->GetDy()*2.*kconv); // x,z,y full width in microns.
+//     seg2->SetPadSize(95.,0.); // strip x pitch in microns
+//     seg2->SetNPads(768,0); // number of strips on each side.
+//     seg2->SetAngles(0.0075,0.0275); // strip angels rad P and N side.
+//     seg2->SetAnglesLay5(0.0075,0.0275); // strip angels rad P and N side.
+//     seg2->SetAnglesLay6(0.0275,0.0075); // strip angels rad P and N side.
+//     SetSegmentationModel(kSSD,seg2); 
+//         const char *kData2=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSSD()))->DataType();
+//     if(strstr(kData2,"real") ) fDetTypeSim->SetDigitClassName(kSSD,"AliITSdigit");
+//     else fDetTypeSim->SetDigitClassName(kSSD,"AliITSdigitSSD");
+//     if(fgkNTYPES>3){
+//     Warning("SetDefaults",
+//             "Only the four basic detector types are initialised!");
+//     }// end if
+
+    
+//     return;
+// }
+
+
 //______________________________________________________________________
 void AliITSv11::SetDefaults(){
-    // sets the default segmentation, response, digit and raw cluster classes
+  //
+  // Set response and segmentation models for SPD, SDD and SSD
+  //
+     const Float_t kconv = 1.0e+04; // convert cm to microns
+    AliInfo("Called");    
+
+//     if(!fDetTypeSim) fDetTypeSim = new AliITSDetTypeSim();
+//     fDetTypeSim->SetITSgeom(GetITSgeom());
+    if(!fDetTypeSim) {
+      Warning("SetDefaults","Error fDetTypeSim not defined");
+      return;
+    }
+  
+    AliITSgeomSPD  *s0;
+    AliITSgeomSDD  *s1;
+    AliITSgeomSSD  *s2;
+    Int_t i;
+    Float_t bx[256],bz[280];
+   
+    fDetTypeSim->ResetCalibrationArray();
+    fDetTypeSim->ResetSegmentation();
+    fDetTypeSim->SetDefaults();
+    
+    //SPD
+    s0 = (AliITSgeomSPD*) GetITSgeom()->GetShape(kSPD);// Get shape info. Do it this way for now.
+    AliITSsegmentationSPD* seg0 = (AliITSsegmentationSPD*)fDetTypeSim->GetSegmentationModel(0);
+    seg0->SetDetSize(s0->GetDx()*2.*kconv, // base this on AliITSgeomSPD
+                    s0->GetDz()*2.*kconv, // for now.
+                    s0->GetDy()*2.*kconv); // x,z,y full width in microns.
+    seg0->SetNPads(256,160);// Number of Bins in x and z
+    for(i=000;i<256;i++) bx[i] =  50.0; // in x all are 50 microns.
+    for(i=000;i<160;i++) bz[i] = 425.0; // most are 425 microns except below
+    for(i=160;i<280;i++) bz[i] =   0.0; // Outside of detector.
+    bz[ 31] = bz[ 32] = 625.0; // first chip boundry
+    bz[ 63] = bz[ 64] = 625.0; // first chip boundry
+    bz[ 95] = bz[ 96] = 625.0; // first chip boundry
+    bz[127] = bz[128] = 625.0; // first chip boundry
+    bz[160] = 425.0; // Set so that there is no zero pixel size for fNz.
+    seg0->SetBinSize(bx,bz); // Based on AliITSgeomSPD for now.
+    SetSegmentationModel(kSPD,seg0);
+    // set digit and raw cluster classes to be used
+    const char *kData0=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSPD()))->DataType();
+    if (strstr(kData0,"real")) fDetTypeSim->SetDigitClassName(kSPD,"AliITSdigit");
+    else fDetTypeSim->SetDigitClassName(kSPD,"AliITSdigitSPD");
+
+
+
+    // SDD
+    s1 = (AliITSgeomSDD*) GetITSgeom()->GetShape(kSDD);// Get shape info. Do it this way for now.
+    AliITSsegmentationSDD* seg1 = (AliITSsegmentationSDD*)fDetTypeSim->GetSegmentationModel(1);
+    seg1->SetDetSize(s1->GetDx()*kconv, // base this on AliITSgeomSDD
+                    s1->GetDz()*2.*kconv, // for now.
+                    s1->GetDy()*2.*kconv); // x,z,y full width in microns.
+    seg1->SetNPads(256,256);// Use AliITSgeomSDD for now
+    SetSegmentationModel(kSDD,seg1);
+    const char *kData1=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSDD()))->DataType();
+    AliITSCalibrationSDD* rsp = (AliITSCalibrationSDD*)fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSDD());
+    const char *kopt=rsp->GetZeroSuppOption();
+    if((!strstr(kopt,"2D")) && (!strstr(kopt,"1D")) || strstr(kData1,"real") ){
+       fDetTypeSim->SetDigitClassName(kSDD,"AliITSdigit");
+    } else fDetTypeSim->SetDigitClassName(kSDD,"AliITSdigitSDD");
+
+
+    // SSD
+    s2 = (AliITSgeomSSD*) GetITSgeom()->GetShape(kSSD);// Get shape info. Do it this way for now.
+    AliITSsegmentationSSD* seg2 = (AliITSsegmentationSSD*)fDetTypeSim->GetSegmentationModel(2);
+    seg2->SetDetSize(s2->GetDx()*2.*kconv, // base this on AliITSgeomSSD
+                    s2->GetDz()*2.*kconv, // for now.
+                    s2->GetDy()*2.*kconv); // x,z,y full width in microns.
+    seg2->SetPadSize(95.,0.); // strip x pitch in microns
+    seg2->SetNPads(768,0); // number of strips on each side.
+    seg2->SetAngles(0.0075,0.0275); // strip angels rad P and N side.
+    seg2->SetAnglesLay5(0.0075,0.0275); // strip angels rad P and N side.
+    seg2->SetAnglesLay6(0.0275,0.0075); // strip angels rad P and N side.
+    SetSegmentationModel(kSSD,seg2); 
+        const char *kData2=(fDetTypeSim->GetCalibrationModel(GetITSgeom()->GetStartSSD()))->DataType();
+    if(strstr(kData2,"real") ) fDetTypeSim->SetDigitClassName(kSSD,"AliITSdigit");
+    else fDetTypeSim->SetDigitClassName(kSSD,"AliITSdigitSSD");
+    if(fgkNTYPES>3){
+       Warning("SetDefaults",
+               "Only the four basic detector types are initialised!");
+    }// end if
+
+    
+    return;
 }
+
+
+
+
+
 //______________________________________________________________________
-void AliITSv11::DrawModule(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Draw a shaded view of the FMD version 11.
-    ////////////////////////////////////////////////////////////////////////
+void AliITSv11::DrawModule() const{
+
 }
+
+// //______________________________________________________________________
+// void AliITSv11::StepManager(){
+//   //
+//   //    Called for every step in the ITS, then calles the AliITShit class
+//   // creator with the information to be recoreded about that hit.
+//   //
+//     Int_t         copy, id;
+//     TLorentzVector position, momentum;
+//     static TLorentzVector position0;
+//     static Int_t stat0=0;
+
+//     if(!(this->IsActive())){
+//     return;
+//     } // end if !Active volume.
+
+//     if(!(gMC->TrackCharge())) return;
+
+//     id=gMC->CurrentVolID(copy);
+
+//     Bool_t sensvol = kFALSE;
+//     for(Int_t kk=0;kk<6;kk++)if(id == fIdSens[kk])sensvol=kTRUE;
+//     if(sensvol && (gMC->IsTrackExiting())){
+//     copy = fTrackReferences->GetEntriesFast();
+//     TClonesArray &lTR = *fTrackReferences;
+//     // Fill TrackReference structure with this new TrackReference.
+//     new(lTR[copy]) AliTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
+//     } // if Outer ITS mother Volume
+
+
+//     Int_t   copy1,copy2;  
+//     Int_t   vol[5];
+//     TClonesArray &lhits = *fHits;
+//     //
+//     // Track status
+//     vol[3] = 0;
+//     vol[4] = 0;
+//     if(gMC->IsTrackInside())      vol[3] +=  1;
+//     if(gMC->IsTrackEntering())    vol[3] +=  2;
+//     if(gMC->IsTrackExiting())     vol[3] +=  4;
+//     if(gMC->IsTrackOut())         vol[3] +=  8;
+//     if(gMC->IsTrackDisappeared()) vol[3] += 16;
+//     if(gMC->IsTrackStop())        vol[3] += 32;
+//     if(gMC->IsTrackAlive())       vol[3] += 64;
+//     //
+//     // Fill hit structure.
+//     if(!(gMC->TrackCharge())) return;
+//     //
+//     // Only entering charged tracks
+//     if((id = gMC->CurrentVolID(copy)) == fIdSens[0]) {
+//     vol[0] = 1;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //detector copy in the ladder = 1<->4  (ITS1 < I101 < I103 < I10A)
+//     vol[1] = copy;
+//     gMC->CurrentVolOffID(3,copy1);
+//     //ladder copy in the module   = 1<->2  (I10A < I12A)
+//     gMC->CurrentVolOffID(4,copy2);
+//     //module copy in the layer    = 1<->10 (I12A < IT12)
+//     vol[2] = copy1+(copy2-1)*2;//# of ladders in one module  = 2
+//     } else if(id == fIdSens[1]){
+//     vol[0] = 2;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //detector copy in the ladder = 1<->4  (ITS2 < I1D1 < I1D3 < I20A)
+//     vol[1] = copy;
+//     gMC->CurrentVolOffID(3,copy1);
+//     //ladder copy in the module   = 1<->4  (I20A < I12A)
+//     gMC->CurrentVolOffID(4,copy2);
+//     //module copy in the layer    = 1<->10 (I12A < IT12)
+//     vol[2] = copy1+(copy2-1)*4;//# of ladders in one module  = 4
+//     } else if(id == fIdSens[2]){
+//     vol[0] = 3;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->6  (ITS3 < I302 < I004)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->14 (I004 < IT34)
+//     vol[2] = copy;
+//     } else if(id == fIdSens[3]){
+//     vol[0] = 4;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->8  (ITS4 < I402 < I005)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->22 (I005 < IT34))
+//     vol[2] = copy;
+//     }else if(id == fIdSens[4]){
+//     vol[0] = 5;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->22  (ITS5 < I562 < I565)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer    = 1<->34 (I565 < IT56)
+//     vol[2] = copy;
+//     }else if(id == fIdSens[5]){
+//     vol[0] = 6;
+//     id = gMC->CurrentVolOffID(1,copy);
+//     //detector copy in the ladder = 1<->25  (ITS6 < I566 < I569)
+//     vol[1] = copy;
+//     id = gMC->CurrentVolOffID(2,copy);
+//     //ladder copy in the layer = 1<->38 (I569 < IT56)
+//     vol[2] = copy;
+//     } else {
+//     return; // not an ITS volume?
+//     } // end if/else if (gMC->CurentVolID(copy) == fIdSens[i])
+//     //
+//     gMC->TrackPosition(position);
+//     gMC->TrackMomentum(momentum);
+//     vol[4] = stat0;
+//     if(gMC->IsTrackEntering()){
+//     position0 = position;
+//     stat0 = vol[3];
+//     return;
+//     } // end if IsEntering
+//     // Fill hit structure with this new hit.
+    
+//     new(lhits[fNhits++]) AliITShit(fIshunt,gAlice->GetMCApp()->GetCurrentTrackNumber(),vol,
+//                                gMC->Edep(),gMC->TrackTime(),position,
+//                                position0,momentum);
+
+//     position0 = position;
+//     stat0 = vol[3];
+
+//     return;
+// }
+
+
 //______________________________________________________________________
 void AliITSv11::StepManager(){
-    ////////////////////////////////////////////////////////////////////////
-    //    Called for every step in the ITS, then calles the AliITShit class
-    // creator with the information to be recoreded about that hit.
-    //     The value of the macro ALIITSPRINTGEOM if set to 1 will allow the
-    // printing of information to a file which can be used to create a .det
-    // file read in by the routine CreateGeometry(). If set to 0 or any other
-    // value except 1, the default behavior, then no such file is created nor
-    // it the extra variables and the like used in the printing allocated.
-    ////////////////////////////////////////////////////////////////////////
+  //
+  //    Called for every step in the ITS, then calles the AliITShit class
+  // creator with the information to be recoreded about that hit.
+  //
+    Int_t         copy, id;
+    TLorentzVector position, momentum;
+    static TLorentzVector position0;
+    static Int_t stat0=0;
+
+    if(!(this->IsActive())){
+       return;
+    } // end if !Active volume.
+
+    if(!(gMC->TrackCharge())) return;
+
+    id=gMC->CurrentVolID(copy);
+
+    Bool_t sensvol = kFALSE;
+    for(Int_t kk=0;kk<6;kk++)if(id == fIdSens[kk])sensvol=kTRUE;
+    if(sensvol && (gMC->IsTrackExiting())){
+       AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kITS);
+    } // if Outer ITS mother Volume
+
+
+    Int_t   copy1,copy2;  
+    Int_t   vol[5];
+    TClonesArray &lhits = *fHits;
+    //
+    // Track status
+    vol[3] = 0;
+    vol[4] = 0;
+    if(gMC->IsTrackInside())      vol[3] +=  1;
+    if(gMC->IsTrackEntering())    vol[3] +=  2;
+    if(gMC->IsTrackExiting())     vol[3] +=  4;
+    if(gMC->IsTrackOut())         vol[3] +=  8;
+    if(gMC->IsTrackDisappeared()) vol[3] += 16;
+    if(gMC->IsTrackStop())        vol[3] += 32;
+    if(gMC->IsTrackAlive())       vol[3] += 64;
+    //
+    // Fill hit structure.
+    if(!(gMC->TrackCharge())) return;
+
+    // Only entering charged tracks
+    if((id = gMC->CurrentVolID(copy)) == fIdSens[0]) {
+       vol[0] = 1;
+       id = gMC->CurrentVolOffID(2,copy);
+       //detector copy in the ladder = 1<->4  (ITS1 < I101 < I103 < I10A)
+       vol[1] = copy;
+       gMC->CurrentVolOffID(3,copy1);
+       //ladder copy in the module   = 1<->2  (I10A < I12A)
+       gMC->CurrentVolOffID(4,copy2);
+       //module copy in the layer    = 1<->10 (I12A < IT12)
+       vol[2] = copy1+(copy2-1)*2;//# of ladders in one module  = 2
+
+    } else if(id == fIdSens[1]){
+       vol[0] = 2;
+       id = gMC->CurrentVolOffID(2,copy);
+       //detector copy in the ladder = 1<->4  (ITS2 < I1D1 < I1D3 < I20A)
+       vol[1] = copy;
+       gMC->CurrentVolOffID(3,copy1);
+       //ladder copy in the module   = 1<->4  (I20A < I12A)
+       gMC->CurrentVolOffID(4,copy2);
+       //module copy in the layer    = 1<->10 (I12A < IT12)
+       vol[2] = copy1+(copy2-1)*4;//# of ladders in one module  = 4
+
+    } else if(id == fIdSens[2]){
+       vol[0] = 3;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->6  (ITS3 < I302 < I004)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->14 (I004 < IT34)
+       vol[2] = copy;
+
+    } else if(id == fIdSens[3]){
+       vol[0] = 4;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->8  (ITS4 < I402 < I005)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->22 (I005 < IT34))
+       vol[2] = copy;
+
+    }else if(id == fIdSens[4]){
+       vol[0] = 5;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->22  (ITS5 < I562 < I565)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer    = 1<->34 (I565 < IT56)
+       vol[2] = copy;
+
+    }else if(id == fIdSens[5]){
+       vol[0] = 6;
+       id = gMC->CurrentVolOffID(1,copy);
+       //detector copy in the ladder = 1<->25  (ITS6 < I566 < I569)
+       vol[1] = copy;
+       id = gMC->CurrentVolOffID(2,copy);
+       //ladder copy in the layer = 1<->38 (I569 < IT56)
+       vol[2] = copy;
+    } else {
+       return; // not an ITS volume?
+    } // end if/else if (gMC->CurentVolID(copy) == fIdSens[i])
+    //
+    gMC->TrackPosition(position);
+    gMC->TrackMomentum(momentum);
+    vol[4] = stat0;
+    if(gMC->IsTrackEntering()){
+       position0 = position;
+       stat0 = vol[3];
+       return;
+    } // end if IsEntering
+    // Fill hit structure with this new hit.
+    
+    new(lhits[fNhits++]) AliITShit(fIshunt,gAlice->GetMCApp()->GetCurrentTrackNumber(),vol,
+                                  gMC->Edep(),gMC->TrackTime(),position,
+                                  position0,momentum);
+
+    position0 = position;
+    stat0 = vol[3];
+
+    return;
 }
+