]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11.cxx
SDD digits modified. Both compressed and decompressed ADC values are stored - Tempora...
[u/mrichter/AliRoot.git] / ITS / AliITSv11.cxx
index b61f366fdc8a5903f0254307464cb3a2a9232980..88d73b1238648f6c36ff3ab9358ddbb4c3b23cad 100644 (file)
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.3  2003/01/28 17:59:54  nilsen
-Work continuing.
-
-Revision 1.2  2003/01/26 14:35:15  nilsen
-Some more geometry interface functions added and a start at the SSD support
-cone geometry. Committed to allow easy updates of partical work between authors.
-
-Revision 1.1  2003/01/20 23:32:49  nilsen
-New ITS geometry. Only a Skeleton for now.
-
-$Id$
-*/
+/* $Id$ */
 
 //////////////////////////////////////////////////////////////////////////////
 //                                                                          //
@@ -44,32 +31,35 @@ $Id$
 //                                                                          //
 //////////////////////////////////////////////////////////////////////////////
 // See AliITSv11::StepManager().
-#include <Riostream.h>
+// General C/C++ includes
 #include <stdio.h>
 #include <stdlib.h>
+// General Root includes
+#include <Riostream.h>
 #include <TMath.h>
-#include <TGeometry.h>
-#include <TNode.h>
-#include <TTUBE.h>
-#include <TTUBS.h>
-#include <TPCON.h>
 #include <TFile.h>    // only required for Tracking function?
-#include <TCanvas.h>
 #include <TObjArray.h>
+#include <TClonesArray.h>
 #include <TLorentzVector.h>
 #include <TObjString.h>
-#include <TClonesArray.h>
-#include <TBRIK.h>
-#include <TSystem.h>
-
-
+// Root Geometry includes
+#include <TGeoManager.h>
+#include <TGeoVolume.h>
+#include <TGeoPcon.h>
+#include <TGeoCone.h>
+#include <TGeoTube.h> // contaings TGeoTubeSeg
+#include <TGeoArb8.h>
+#include <TGeoCompositeShape.h>
+#include <TGeoMatrix.h>
+#include <TGeoNode.h>
+#include <TGeoMaterial.h>
+#include <TGeoMedium.h>
+// General AliRoot includes
 #include "AliRun.h"
 #include "AliMagF.h"
 #include "AliConst.h"
-#include "AliITSGeant3Geometry.h"
+// ITS specific includes
 #include "AliITShit.h"
-#include "AliITS.h"
-#include "AliITSv11.h"
 #include "AliITSgeom.h"
 #include "AliITSgeomSPD.h"
 #include "AliITSgeomSDD.h"
@@ -87,1451 +77,2876 @@ $Id$
 #include "AliITSClusterFinderSPD.h"
 #include "AliITSClusterFinderSDD.h"
 #include "AliITSClusterFinderSSD.h"
+#include "AliITSBaseGeometry.h"
+#include "AliITSv11.h"
+
+// Units, Convert from k?? to cm,degree,GeV,seconds,
+const Double_t kmm = 0.10; // Convert mm to TGeom's cm.
+const Double_t kcm = 1.00; // Convert cv to TGeom's cm.
+const Double_t kDegree = 1.0; // Convert degrees to TGeom's degrees
+const Double_t kRadian = TMath::DegToRad(); // conver to Radians
+
+#define SQ(A) ((A)*(A))
+
+#define printArb8(A)  if(GetDebug()){\
+   cout << A->GetName() << ":"; \
+  for(Int_t iii=0;iii<8;iii+=2){ cout <<"("<<A->GetVertices()[iii]<<","     \
+                          <<A->GetVertices()[iii+1]<<","<<-A->GetDz()<<")";}\
+  for(Int_t iii=8;iii<16;iii+=2){ cout <<"("<<A->GetVertices()[iii]<<","     \
+                          <<A->GetVertices()[iii+1]<<","<<A->GetDz()<<")";}\
+   cout << endl; }
+
+#define printPcon(A)  if(GetDebug()){\
+     cout << A->GetName() << ": N=" << A->GetNz() << " Phi1=" << A->GetPhi1() \
+          << ", Dphi=" << A->GetDphi() << endl;                              \
+     cout << "i\t   Z   \t  Rmin \t  Rmax" << endl;                          \
+     for(Int_t iii=0;iii<A->GetNz();iii++){                                 \
+         cout << iii << "\t" << A->GetZ(iii) << "\t" << A->GetRmin(iii)     \
+              << "\t" << A->GetRmax(iii) << endl;                           \
+     }} // end for iii
 
+#define printTube(A)  if(GetDebug()){\
+   cout << A->GetName() <<": Rmin="<<A->GetRmin()\
+                          <<" Rmax=" <<A->GetRmax()<<" Dz="<<A->GetDz()<<endl;}
+
+#define printTubeSeg(A)   if(GetDebug()){\
+    cout << A->GetName() <<": Phi1="<<A->GetPhi1()<< \
+                           " Phi2="<<A->GetPhi2()<<" Rmin="<<A->GetRmin()\
+                          <<" Rmax=" <<A->GetRmax()<<" Dz="<<A->GetDz()<<endl;}
+
+#define printConeSeg(A)   if(GetDebug()){\
+    cout << A->GetName() <<": Phi1="<<A->GetPhi1()<< \
+                         " Phi2="<<A->GetPhi2()<<" Rmin1="<<A->GetRmin1()\
+                       <<" Rmax1=" <<A->GetRmax1()<<" Rmin2="<<A->GetRmin2()\
+                       <<" Rmax2=" <<A->GetRmax2()<<" Dz="<<A->GetDz()<<endl;}
+
+#define printBBox(A)   if(GetDebug()){\
+    cout << A->GetName() <<": Dx="<<A->GetDX()<< \
+                           " Dy="<<A->GetDY()<<" Dz="<<A->GetDZ() <<endl;}
 
 ClassImp(AliITSv11)
 
+/*
+  Some temparary #define's used untill ROOT has addoppted the proper
+  Getter in it's classes.
+  These Below are for TGeoPcon functions.
+*/
+
 //______________________________________________________________________
 AliITSv11::AliITSv11() : AliITS() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard default constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
+    // Standard default constructor for the ITS version 11.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   A default constructed AliITSv11 class.
+
+    //fITSV = 0;
+    //fcS = 0;
+//   fcD = 0;
 }
 //______________________________________________________________________
 AliITSv11::AliITSv11(const char *title) : AliITS("ITS", title){
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard constructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
+    // Standard constructor for the ITS version 11.
+    // Inputs:
+    //   const char *title  The title of for this geometry.
+    // Outputs:
+    //   none.
+    // Return
+    //   A Standard constructed AliITSv11 class.
+
+    //fITSV = 0;
+    //fcS = 0;
+//    fcD = 0;
 }
 //______________________________________________________________________
 AliITSv11::~AliITSv11() {
-    ////////////////////////////////////////////////////////////////////////
-    //    Standard destructor for the ITS version 11.
-    ////////////////////////////////////////////////////////////////////////
-}
-//______________________________________________________________________
-void AliITSv11::Box(const char gnam[3],const TString &dis,
-                   Double_t dx,Double_t dy,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS bos geometries. Box with faces
-    // perpendicular to the axes. It has 3 paramters. See SetScale() for
-    // units. Default units are geant 3 [cm].
+    // Standard destructor for the ITS version 11.
     // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length of box in x-axis
-    //    Double_t dy         half-length of box in y-axis
-    //    Double_t dz         half-length of box in z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"BOX ",fidmed[med],param,3);
+//    if(fITSV!=0) delete fITSV;
+//    if(fcS!=0) delete fcS;
+//    if(fcD!=0) delete fcD;
 }
 //______________________________________________________________________
-void AliITSv11::Trapezoid1(const char gnam[3],const TString &dis,
-                          Double_t dxn,Double_t dxp,Double_t dy,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD1 geometries. Trapezoid with the 
-    // x dimension varing along z. It has 4 parameters. See SetScale() for
-    // units. Default units are geant 3 [cm].
+AliITSv11::AliITSv11(const AliITSv11 &source) : AliITS(source){
+    //     Copy Constructor for ITS version 11.
     // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dy         half-length along the y-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
+    //   AliITSv11 &source  class to be copied from.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dy;
-    param[3] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD1",fidmed[med],param,4);
+    if(&source == this) return;
+    Error("Copy Constructor","Not allowed to copy AliITSv11");
+    return;
 }
 //______________________________________________________________________
-void AliITSv11::Trapezoid2(const char gnam[3],const TString &dis,Double_t dxn,
-                          Double_t dxp,Double_t dyn,Double_t dyp,Double_t dz,
-                          Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRD2 geometries. Trapezoid with the 
-    // x and y dimension varing along z. It has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
+AliITSv11& AliITSv11::operator=(const AliITSv11 &source){
+    //    Assignment operator for the ITS version 11.
     // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dxn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dxp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dyn        half-length along x at the z surface positioned 
-    //                        at -DZ
-    //    Double_t dyp        half-length along x at the z surface positioned 
-    //                        at +DZ
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
+    //   AliITSv11 &source  class to be copied from.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 
-    param[0] = fScale*dxn;
-    param[1] = fScale*dxp;
-    param[2] = fScale*dyn;
-    param[3] = fScale*dyp;
-    param[4] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRD2",fidmed[med],param,5);
+    if(&source == this) return *this;
+    Error("= operator","Not allowed to copy AliITSv11");
+    return *this;
 }
 //______________________________________________________________________
-void AliITSv11::Trapezoid(const char gnam[3],const TString &dis,Double_t dz,
-                         Double_t thet,Double_t phi,Double_t h1,Double_t bl1,
-                         Double_t tl1,Double_t alp1,Double_t h2,Double_t bl2,
-                         Double_t tl2,Double_t alp2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TRAP geometries. General Trapezoid, 
-    // The faces perpendicular to z are trapezia and their centers are not 
-    // necessarily on a line parallel to the z axis. This shape has 11 
-    // parameters, but only cosidering that the faces should be planar, only 9 
-    // are really independent. A check is performed on the user parameters and 
-    // a message is printed in case of non-planar faces. Ignoring this warning 
-    // may cause unpredictable effects at tracking time. See SetScale() 
-    // for units. Default units are geant 3 [cm].
+void AliITSv11::BuildGeometry(){
+    // This routine defines and Creates the geometry for version 11 of 
+    // the ITS for use in the simulation display routines. This is a 
+    // very simplified geometry for speed of viewing.
     // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         Half-length along the z-asix
-    //    Double_t thet       Polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at dz 
-    //                        [degree].
-    //    Double_t phi        aximuthal angle of the line joing the center of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degree].
-    //    Double_t h1         half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side at -h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl1        half-length along x of teh side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t alp1       angle with respect to the y axis from the center 
-    //                        of the side at -h1 in y to the cetner of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degree].
-    //    Double_t h2         half-length along y of the face at +dz
-    //    Double_t bl2        half-length along x of the side at -h2 in y of
-    //                        the face at +dz in z.
-    //    Double_t tl2        half-length along x of the side at _h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t alp2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the 
-    //                        side at +h2 in y of the face at +dz in z 
-    //                        [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+    TVector3 t(0.0,0.0,0.0);
+
+    //if(fITSV==0) fITSV = new AliITSGeometryITSV(this,"ALIC");
+    //if(fcS==0) fcS = new AliITSGeometrySSDCone(this,t,"TSV",1);
 
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = fScale*h1;
-    param[4] = fScale*bl1;
-    param[5] = fScale*tl1;
-    param[6] = alp1;
-    param[7] = fScale*h2;
-    param[8] = fScale*bl2;
-    param[9] = fScale*tl2;
-    param[10] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TRAP",fidmed[med],param,11);
+    //fcS->BuildDisplayGeometry();
 }
 //______________________________________________________________________
-void AliITSv11::Tube(const char gnam[3],const TString &dis,Double_t rmin,
-                    Double_t rmax,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Simple Tube. It has
-    // 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
+void AliITSv11::CreateGeometry(){
+    // This routine defines and Creates the geometry for version 11 of 
+    // the ITS. The geometry is used by the particle trasport routines,
+    // and therefore, is very detailed.
     // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+    TVector3 t(0.0,0.0,0.0);
+
+    TGeoManager *mgr = gGeoManager;
+    TGeoVolume *ALIC = mgr->GetTopVolume();
 
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBE",fidmed[med],param,3);
+    TGeoPcon *itsv = new TGeoPcon("ITS Top Volume, Daughter of ALIC",
+                                  0.0,360.0,2);
+    // DefineSection(section number, Z, Rmin, Rmax).
+    itsv->DefineSection(0,-300.0*kcm,0.01*kcm,50.0*kcm);
+    itsv->DefineSection(1,+300.0*kcm,0.01*kcm,50.0*kcm);
+    TGeoVolume *ITSV = new TGeoVolume("ITSV",itsv,0);
+    //mgr->AddVolume(ITSV);
+    ITSV->SetVisibility(kFALSE);
+    ALIC->AddNode(ITSV,1,0);
+    //
+    SPDCone(ITSV);
+    SDDCone(ITSV);
+    SSDCone(ITSV);
+    ServicesCableSupport(ITSV);
 }
 //______________________________________________________________________
-void AliITSv11::TubeSegment(const char gnam[3],const TString &dis,
-                           Double_t rmin,Double_t rmax,Double_t dz,
-                           Double_t phi1,Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS TUBE geometries. Phi segment of a 
-    // tube. It has 5  parameters. Phi1 should be smaller than phi2. If this is
-    // not the case, the system adds 360 degrees to phi2. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
+Double_t AliITSv11::RmaxFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){
+    // functions Require at parts of Volume A to be already defined.
+    // Retruns the value of Rmax corresponding to point z alone the line
+    // defined by the two points p.Rmax(i1),p-GetZ(i1) and p->GetRmax(i2),
+    // p->GetZ(i2).
 
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"TUBS",fidmed[med],param,5);
+    return p->GetRmax(i2)+(p->GetRmax(i1)-p->GetRmax(i2))*(z-p->GetZ(i2))/
+     (p->GetZ(i1)-p->GetZ(i2));
 }
 //______________________________________________________________________
-void AliITSv11::Cone(const char gnam[3],const TString &dis,Double_t dz,
-                    Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                    Double_t rmax2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS Cone geometries. Conical tube. It 
-    // has 5 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[5];
+Double_t AliITSv11::RminFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){
+    // Retruns the value of Rmin corresponding to point z alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2),  p->GetZ(i2).
 
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,5);
+    return p->GetRmin(i2)+(p->GetRmin(i1)-p->GetRmin(i2))*(z-p->GetZ(i2))/
+     (p->GetZ(i1)-p->GetZ(i2));
 }
 //______________________________________________________________________
-void AliITSv11::ConeSegment(const char gnam[3],const TString &dis,Double_t dz,
-                           Double_t rmin1,Double_t rmax1,Double_t rmin2,
-                           Double_t rmax2,Double_t phi1,Double_t phi2,
-                           Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ConS geometries. One segment of a 
-    // conical tube. It has 7 parameters. Phi1 should be smaller than phi2. If 
-    // this is not the case, the system adds 360 degrees to phi2. See 
-    // SetScale() for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t rmin1      Inside Radius at -dz.
-    //    Double_t rmax1      Outside Radius at -dz.
-    //    Double_t rmin2      inside radius at +dz.
-    //    Double_t rmax2      outside radius at +dz.
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[7];
+Double_t AliITSv11::RFrom2Points(Double_t *p,Double_t *Z,Int_t i1,
+                                 Int_t i2,Double_t z){
+    // Retruns the value of Rmin corresponding to point z alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2), p->GetZ(i2).
 
-    param[0] = fScale*dz;
-    param[1] = fScale*rmin1;
-    param[2] = fScale*rmax1;
-    param[3] = fScale*rmin2;
-    param[4] = fScale*rmax2;
-    param[5] = phi1;
-    param[6] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CONS",fidmed[med],param,7);
+    return p[i2]+(p[i1]-p[i2])*(z-Z[i2])/(Z[i1]-Z[i2]);
 }
 //______________________________________________________________________
-void AliITSv11::Sphere(const char gnam[3],const TString &dis,Double_t rmin,
-                      Double_t rmax,Double_t the1,Double_t the2,Double_t phi1,
-                      Double_t phi2,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS SPHE geometries. Segment of a 
-    // sphereical shell. It has 6 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inside Radius.
-    //    Double_t rmax       Outside Radius.
-    //    Double_t the1       staring polar angle of the shell [degree].
-    //    Double_t the2       ending polar angle of the shell [degree].
-    //    Double_t phui       staring asimuthal angle of the shell [degree].
-    //    Double_t phi2       ending asimuthal angle of the shell [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
+Double_t AliITSv11::Zfrom2MinPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2),p->GetZ(i2)
 
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = the1;
-    param[3] = the2;
-    param[4] = phi1;
-    param[5] = phi2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"SPHE",fidmed[med],param,6);
+    return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmin(i2))/
+     (p->GetRmin(i1)-p->GetRmin(i2));
 }
 //______________________________________________________________________
-void AliITSv11::Parallelepiped(const char gnam[3],const TString &dis,
-                              Double_t dx,Double_t dy,Double_t dz,
-                              Double_t alph,Double_t thet,Double_t phi,
-                              Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PARA geometries. Parallelepiped. It 
-    // has 6 parameters. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dx         half-length allong x-axis
-    //    Double_t dy         half-length allong y-axis
-    //    Double_t dz         half-length allong z-axis
-    //    Double_t alpha      angle formed by the y axis and by the plane 
-    //                        joining the center of teh faces parallel to the 
-    //                        z-x plane at -dY and +dy [degree].
-    //    Double_t thet       polar angle of the line joining the centers of 
-    //                        the faces at -dz and +dz in z [degree].
-    //    Double_t phi        azimuthal angle of teh line joing the centers of 
-    //                        the faaces at -dz and +dz in z [degree].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[6];
+Double_t AliITSv11::Zfrom2MaxPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmax(i1),p->GetZ(i1) and 
+    // p->GetRmax(i2),p->GetZ(i2)
 
-    param[0] = fScale*dx;
-    param[1] = fScale*dy;
-    param[2] = fScale*dz;
-    param[3] = alpha;
-    param[4] = thet;
-    param[5] = phi;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PARA",fidmed[med],param,6);
+    return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmax(i2))/
+     (p->GetRmax(i1)-p->GetRmax(i2));
 }
 //______________________________________________________________________
-void AliITSv11::Polygon(const char gnam[3],const TString &dis,Double_t phi1,
-                       Double_t dphi,Int_t npdv,Int_t nz,Double_t *z,
-                       Double_t *rmin,Double_t *rmax,Double_t ,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PGON geometry. Polygon It has 10 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t npdv          the number of sides of teh cross section between 
-    //                        the given phi limits.
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         array [nz] of z coordiates of the sections..
-    //    Double_t *rmin      array [nz] of radius of teh circle tangent to 
-    //                        the sides of the inner polygon in teh 
-    //                        cross-section.
-    //    Double_t *rmax      array [nz] of radius of the circle tangent to 
-    //                        the sides of the outer polygon in the 
-    //                       cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
-
-    n = 4+3*nz;
-    param = new Float_t[n]
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t)npdv;
-    param[3] = (Float_t)nz;
-    for(i=0;i<nz;i++){
-       param[4+3*i] = z[i];
-       param[5+3*i] = rmin[i];
-       param[6+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PGON",fidmed[med],param,n);
+Double_t AliITSv11::Zfrom2Points(Double_t *Z,Double_t *p,Int_t i1,
+                                 Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmax(i1),p->GetZ(i1) and 
+    // p->GetRmax(i2),p->GetZ(i2)
 
-    delete[] param;
+    return Z[i2]+(Z[i1]-Z[i2])*(r-p[i2])/(p[i1]-p[i2]);
 }
 //______________________________________________________________________
-void AliITSv11::PolyCone(const char gnam[3],const TString &dis,Double_t phi1,
-                        Double_t dphi,Int_t nz,Double_t *z,Double_t *rmin,
-                        Double_t *rmax,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS PCON geometry. Poly-cone It has 9 
-    // parameters or more. See SetScale() for units. Default units are geant 3 
-    // [cm].
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t phi1       the azimuthal angle at which the volume begins 
-    //                        (angles are counted clouterclockwise) [degrees].
-    //    Double_t dphi       opening angle of the volume, which extends from 
-    //                        phi1 to phi1+dphi [degree].
-    //    Int_t nz            number of planes perpendicular to the z axis 
-    //                        where the dimension of the section is given - 
-    //                        this number should be at least 2 and NP triples 
-    //                        of number must follow.
-    //    Double_t *z         Array [nz] of z coordinate of the section.
-    //    Double_t *rmin      Array [nz] of radius of teh inner circle in the 
-    //                        cross-section.
-    //    Double_t *rmax      Array [nz] of radius of the outer circle in the 
-    //                        cross-section.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t *param;
-    Int_t n,i;
+Double_t AliITSv11::RmaxFromZpCone(TGeoPcon *p,Double_t tc,Double_t z,
+                                   Double_t th){
+    // General SSD Outer Cone surface equation Rmax.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    n = 3+3*nz;
-    param = new Float_t[n];
-    param[0] = phi1;
-    param[1] = dphi;
-    param[2] = (Float_t) nz;
-    for(i=0;i<nz;i++){
-       param[3+3*i] = z[i];
-       param[4+3*i] = rmin[i];
-       param[5+3*i] = rmax[i];
-    } // end for i
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"PCON",fidmed[med],param,n);
-
-    delete[] param;
+    return -tantc*(z-p->GetZ(4))+p->GetRmax(4)+th/costc;
 }
 //______________________________________________________________________
-void AliITSv11::TubeElliptical(const char gnam[3],const TString &dis,
-                              Double_t p1,Double_t p2,Double_t dz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS ELTU geometries. Elliptical 
-    // cross-section Tube. It has 3 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The equation of the surface 
-    // is x^2 * p1^-2 + y^2 * p2^-2 = 1.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t p1         semi-axis of the elipse along x.
-    //    Double_t p2         semi-axis of the elipse along y.
-    //    Double_t dz         half-length along the z-axis
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[3];
+Double_t AliITSv11::RmaxFromZpCone(Double_t *GetRmax,Double_t *GetZ,
+                                   Double_t tc,Double_t z,Double_t th){
+    // General SSD Outer Cone surface equation Rmax.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    param[0] = fScale*p1;
-    param[1] = fScale*p2;
-    param[2] = fScale*dz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"ELTU",fidmed[med],param,3);
+    return -tantc*(z-GetZ[4])+GetRmax[4]+th/costc;
 }
 //______________________________________________________________________
-void AliITSv11::HyperbolicTube(const char gnam[3],const TString &dis,
-                              Double_t rmin,Double_t rmax,Double_t dz,
-                              Double_t thet,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS HYPE geometries. Hyperbolic tube. 
-    // Fore example the inner and outer surfaces are hyperboloids, as would be 
-    // foumed by a system of cylinderical wires which were then rotated 
-    // tangentially about their centers. It has 4 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. The hyperbolic surfaces are 
-    // given by r^2 = (ztan(thet)^2 + r(z=0)^2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t thet       stero angel of rotation of the two faces 
-    //                       [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[4];
+Double_t AliITSv11::RminFromZpCone(TGeoPcon *p,Double_t tc,Double_t z,
+                                   Double_t th){
+    // General SSD Inner Cone surface equation Rmin.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = thet;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"HYPE",fidmed[med],param,4);
+    return -tantc*(z-p->GetZ(3))+p->GetRmin(3)+th/costc;
 }
 //______________________________________________________________________
-void AliITSv11::TwistedTrapezoid(const char gnam[3],const TString &dis,
-                                Double_t dz,Double_t thet,Double_t phi,
-                                Double_t twist,Double_t h1,Double_t bl1,
-                                Double_t tl1,Double_t apl1,Double_t h2,
-                                Double_t bl2,Double_t tl2,Double_t apl2,
-                                Int_t med){
-    // Interface to TMC->Gsvolu() for ITS GTRA geometries. General twisted 
-    // trapazoid. The faces perpendicular to z are trapazia and their centers 
-    // are not necessarily on a line parallel to the z axis as the TRAP. 
-    // Additionally, the faces may be twisted so that none of their edges are 
-    // parallel. It is a TRAP shape, exept that it is twisted in the x-y plane 
-    // as a function of z. The parallel sides perpendicular to the x axis are 
-    // rotated with respect to the x axis by an angle TWIST, which is one of 
-    // the parameters. The shape is defined by the eight corners and is assumed
-    // to be constructed of straight lines joingin points on the boundry of the
-    // trapezoidal face at Z=-dz to the coresponding points on the face at 
-    // z=+dz. Divisions are not allowed. It has 12 parameters. See SetScale() 
-    // for units. Default units are geant 3 [cm]. Note: This shape suffers from
-    // the same limitations than the TRAP. The tracking routines assume that 
-    // the faces are planar, but htis constraint is not easily expressed in 
-    // terms of the 12 parameters. Additionally, no check on th efaces is 
-    // performed in this case. Users should avoid to use this shape as much as 
-    // possible, and if they have to do so, they should make sure that the 
-    // faces are really planes. If this is not the case, the result of the 
-    // trasport is unpredictable. To accelerat ethe computations necessary for 
-    // trasport, 18 additioanl parameters are calculated for this shape are
-    // 1 DXODZ dx/dz of the line joing the centers of the faces at z=+_dz.
-    // 2 DYODZ dy/dz of the line joing the centers of the faces at z=+_dz.
-    // 3 XO1    x at z=0 for line joing the + on parallel side, perpendicular 
-    //          corners at z=+_dz.
-    // 4 YO1    y at z=0 for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 5 DXDZ1  dx/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 6 DYDZ1  dy/dz for line joing the + on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 7 X02    x at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 8 YO2    y at z=0 for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 9 DXDZ2  dx/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 10 DYDZ2dy/dz for line joing the - on parallel side, + on 
-    //          perpendicular corners at z=+-dz.
-    // 11 XO3   x at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 12 YO3   y at z=0 for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 13 DXDZ3 dx/dzfor line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 14 DYDZ3 dydz for line joing the - on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 15 XO4   x at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 16 YO4   y at z=0 for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 17 DXDZ4 dx/dz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // 18 DYDZ4 dydz for line joing the + on parallel side, - on 
-    //          perpendicular corners at z=+-dz.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t dz         half-length along the z axis.
-    //    Double_t thet       polar angle of the line joing the center of the 
-    //                        face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t phi        Azymuthal angle of teh line joing the centre of 
-    //                        the face at -dz to the center of the one at +dz 
-    //                        [degrees].
-    //    Double_t twist      Twist angle of the faces parallel to the x-y 
-    //                        plane at z=+-dz around an axis parallel to z 
-    //                        passing through their centre [degrees].
-    //    Double_t h1         Half-length along y of the face at -dz.
-    //    Double_t bl1        half-length along x of the side -h1 in y of the 
-    //                        face at -dz in z.
-    //    Double_t tl1        half-length along x of the side at +h1 in y of 
-    //                        the face at -dz in z.
-    //    Double_t apl1       Angle with respect to the y ais from the center 
-    //                        of the side at -h1 in y to the centere of the 
-    //                        side at +h1 in y of the face at -dz in z 
-    //                        [degrees].
-    //    Double_t h2         half-length along the face at +dz.
-    //    Double_t bl2        half-length along x of the side at -h2 in y of 
-    //                        the face at -dz in z.
-    //    Double_t tl2        half-length along x of the side at +h2 in y of 
-    //                        the face at +dz in z.
-    //    Double_t apl2       angle with respect to the y axis from the center 
-    //                        of the side at -h2 in y to the center of the side
-    //                        at +h2 in y of the face at +dz in z [degrees].
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[12];
+Double_t AliITSv11::RminFromZpCone(Double_t *GetRmin,Double_t *GetZ,
+                                   Double_t tc,Double_t z,Double_t th){
+    // General SSD Inner Cone surface equation Rmin.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    param[0] = fScale*dz;
-    param[1] = thet;
-    param[2] = phi;
-    param[3] = twist;
-    param[4] = fScale*h1;
-    param[5] = fScale*bl1;
-    param[6] = fScale*tl1;
-    param[7] = alp1;
-    param[8] = fScale*h2;
-    param[9] = fScale*bl2;
-    param[10] = fScale*tl2;
-    param[11] = alp2;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"GTRA",fidmed[med],param,12);
+    return -tantc*(z-GetZ[3])+GetRmin[3]+th/costc;
 }
 //______________________________________________________________________
-void AliITSv11::CutTube(const char gnam[3],const TString &dis,Double_t rmin,
-                       Double_t rmax,Double_t dz,Double_t phi1,Double_t phi2,
-                       Double_t lx,Double_t ly,Double_t lz,Double_t hx,
-                       Double_t hy,Double_t hz,Int_t med){
-    // Interface to TMC->Gsvolu() for ITS CTUB geometries. Cut tube. A tube cut
-    // at the extremities with planes not necessarily perpendicular tot he z 
-    // axis. It has 11 parameters. See SetScale() for units. Default units are 
-    // geant 3 [cm]. phi1 should be smaller than phi2. If this is not the case,
-    // the system adds 360 degrees to phi2.
-    // Inputs:
-    //    const char gnam[3]  3 character geant volume name. The letter "I"
-    //                        is appended to the front to indecate that this
-    //                        is an ITS volume.
-    //    TString &dis        String containging part discription.
-    //    Double_t rmin       Inner radius at z=0 where tube is narrowest.
-    //    Double_t rmax       Outer radius at z=0 where tube is narrowest.
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t dz         half-length along the z-axis
-    //    Double_t phi1       Starting angle of the segment [degree].
-    //    Double_t phi2       Ending angle of the segment [degree].
-    //    Double_t lx         x component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t ly         y component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t lz         z component of a unit vector perpendicular to 
-    //                        the face at -dz.
-    //    Double_t hx         x component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hy         y component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Double_t hz         z component of a unit vector perpendicular to 
-    //                        the face at +dz.
-    //    Int_t    med        media index number.
-    // Output:
-    //    none.
-    // Return.
-    //    none.
-    char name[4];
-    Float_t param[11];
+Double_t AliITSv11::ZFromRmaxpCone(TGeoPcon *p,Double_t tc,Double_t r,
+                                   Double_t th){
+    // General SSD Outer cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    param[0] = fScale*rmin;
-    param[1] = fScale*rmax;
-    param[2] = fScale*dz;
-    param[3] = phi1;
-    param[4] = phi2;
-    param[5] = lx;
-    param[6] = ly;
-    param[7] = lz;
-    param[8] = hx;
-    param[9] = hy;
-    param[10] = hz;
-    name[0] = 'I';
-    for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
-    gMC->Gsvolu(name,"CTUB",fidmed[med],param,11);
+    return p->GetZ(4)+(p->GetRmax(4)+th/costc-r)/tantc;
 }
 //______________________________________________________________________
-void AliITSv11::Pos(const char vol[3],Int_t cn,const char moth[3],Double_t x,
-                   Double_t y,Double_t z,Int_t irot){
-    // Place a copy of a volume previously defined by a call to GSVOLU inside 
-    // its mother volulme moth.
-    // Inputs:
-    //   const char vol[3]  3 character geant volume name. The letter "I"
-    //                      is appended to the front to indecate that this
-    //                      is an ITS volume.
-    //   const char moth[3] 3 character geant volume name of the mother volume 
-    //                      in which vol will be placed. The letter "I" is 
-    //                      appended to the front to indecate that this is an 
-    //                      ITS volume.
-    //   Double_t x         The x positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t y         The y positon of the volume in the mother's 
-    //                      reference system
-    //   Double_t z         The z positon of the volume in the mother's 
-    //                      reference system
-    //   Int_t irot         the index for the rotation matrix to be used.
-    //                      irot=-1 => unit rotation.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    char name[4],mother[4];
-    Float_t param[3];
-    Int_t r=0,i;
+Double_t AliITSv11::ZFromRmaxpCone(Double_t *GetRmax,Double_t *GetZ,
+                                   Double_t tc,Double_t r,Double_t th){
+    // General SSD Outer cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    param[0] = x;
-    param[1] = y;
-    param[2] = z;
-    name[0] = 'I';
-    for(i=0;i<3;i++) name[i+1] = vol[i];
-    mother[0] = 'I';
-    for(i=0;i<3;i++) mother[i+1] = moth[i];
-    if(irot>=0) r=fidrot[irot];
-    fMC->Gspos(name,mother,param[0],param[1],param[2],r,"ONLY");
+    return GetZ[4]+(GetRmax[4]+th/costc-r)/tantc;
 }
 //______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t thet1,Double_t phi1,
-                      Double_t thet2,Double_t phi2,
-                      Double_t thet3,Double_t phi3){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot     Intex specifing which rotation matrix.
-    //   Double_t thet1 Polar angle for axisw x [degrees].
-    //   Double_t phi1  azimuthal angle for axis x [degrees].
-    //   Double_t thet12Polar angle for axisw y [degrees].
-    //   Double_t phi2  azimuthal angle for axis y [degrees].
-    //   Double_t thet3 Polar angle for axisw z [degrees].
-    //   Double_t phi3  azimuthal angle for axis z [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    Float_t t1,p1,t2,p2,t3,p3;
+Double_t AliITSv11::ZFromRminpCone(TGeoPcon *p,Double_t tc,Double_t r,
+                                   Double_t th){
+    // General SSD Inner cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
 
-    if(thet1==90.0&&phi1==0.0&&thet2==90.0&&phi2==90.0&&thet3==0.0&&phi3==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       t1 = thet1;
-       p1 = phi1;
-       t2 = thet2;
-       p2 = phi2;
-       t3 = thet3;
-       p3 = phi3
-       AliMatrix(fidrot[irot],t1,p1,t2,p2,t3,p3);
-    } // end if
+    return p->GetZ(3)+(p->GetRmin(3)+th/costc-r)/tantc;
 }
 //______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Int_t axis,Double_t thet){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
-    // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Int_t axis         Axis about which rotation is to be done.
-    //   Double_t thet      Angle to rotate by [degrees].
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
+void AliITSv11::RadiusOfCurvature(Double_t rc,Double_t theta0,Double_t z0,
+                 Double_t r0,Double_t theta1,Double_t &z1,
+                 Double_t &r1){
+    // Given a initial point z0,r0, the initial angle theta0, and the radius
+    // of curvature, returns the point z1, r1 at the angle theta1. Theta
+    // measured from the r axis in the clock wise direction [degrees].
+    Double_t sin0 = TMath::Sin(theta0*TMath::DegToRad());
+    Double_t cos0 = TMath::Cos(theta0*TMath::DegToRad());
+    Double_t sin1 = TMath::Sin(theta1*TMath::DegToRad());
+    Double_t cos1 = TMath::Cos(theta1*TMath::DegToRad());
 
-    if(thet==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       switch (irot) {
-       case 0: //Rotate about x-axis, x-axis does not change.
-           AliMatrix(fidrot[irot],90.0,0.0,90.0+thet,90.0,thet,90.0);
-           break;
-       case 1: //Rotate about y-axis, y-axis does not change.
-           AliMatrix(fidrot[irot],-90.0-thet,0.0,90.0,90.0,thet,90.0);
-           break;
-       case 2: //Rotate about z-axis, z-axis does not change.
-           AliMatrix(fidrot[irot],90.0,thet,90.0,-thet-90.0,0.0,0.0);
-           break;
-       default:
-           Error("Matrix","axis must be either 0, 1, or 2. for matrix=%d",
-                 irot);
-           break;
-       } // end switch
-    } // end if
+    z1 = rc*(sin1-sin0)+z0;
+    r1 = rc*(cos1-cos0)+r0;
+    return;
 }
 //______________________________________________________________________
-void AliITSv11::Matrix(Int_t irot,Double_t rot[3][3]){
-    // Defines a Geant rotation matrix. checks to see if it is the unit
-    // matrix. If so, then no additonal matrix is defined. Stores rotation 
-    // matrix irot in the data structure JROTM. If the matrix is not 
-    // orthonormal, it will be corrected by setting y' perpendicular to x' 
-    // and z' = x' X y'. A warning message is printed in this case.
+void AliITSv11::SPDCone(TGeoVolume *Moth){
+    // Define the detail SPD support cone geometry.
     // Inputs:
-    //   Int_t irot         Intex specifing which rotation matrix.
-    //   Double_t rot[3][3] The 3 by 3 rotation matrix.
+    //   none.
     // Outputs:
-    //    none.
+    //  none.
     // Return:
-    //    none.
-
-    if(rot[0][0]==1.0&&rot[1][1]==1.0&&rot[2][2]==1.0&&
-       rot[0][1]==0.0&&rot[0][2]==0.0&&rot[1][0]==0.0&&
-       rot[1][2]==0.0&&rot[2][0]==0.0&&rot[2][1]==0.0){
-       fidrot[irot] = 0; // Unit matrix
-    }else{
-       Double_t si,c=180./TMath::Pi();
-       Double_t ang[6];
-
-       ang[1] = TMath::ATan2(rot[0][1],rot[0][0]);
-       if(TMath::Cos(ang[1])!=0.0) si = rot[0][0]/TMath::Cos(ang[1]);
-       else si = rot[0][1]/TMath::Sin(ang[1]);
-       ang[0] = TMath::ATan2(si,rot[0][2]);
-
-       ang[3] = TMath::ATan2(rot[1][1],rot[1][0]);
-       if(TMath::Cos(ang[3])!=0.0) si = rot[1][0]/TMath::Cos(ang[3]);
-       else si = rot[1][1]/TMath::Sin(ang[3]);
-       ang[2] = TMath::ATan2(si,rot[1][2]);
+    //  none.
 
-       ang[5] = TMath::ATan2(rot[2][1],rot[2][0]);
-       if(TMath::Cos(ang[5])!=0.0) si = rot[2][0]/TMath::Cos(ang[5]);
-       else si = rot[2][1]/TMath::Sin(ang[5]);
-       ang[4] = TMath::ATan2(si,rot[2][2]);
-
-       for(Int_t i=0;i<6;i++) {ang[i] *= c; if(ang[i]<0.0) ang[i] += 360.;}
-       AliMatrix(fidrot[irot],ang[0],ang[1],ang[2],ang[3],ang[4],ang[5]);
-    } // end if
+    SPDThermalSheald(Moth);
 }
 //______________________________________________________________________
-Float_t AliITSv11::GetA(Int_t z){
-    // Returns the isotopicaly averaged atomic number.
+void AliITSv11::SPDThermalSheald(TGeoVolume *Moth){
+    // Define the detail SPD Thermal Sheld geometry.
     // Inputs:
-    //    Int_t z  Elemental number
+    //   none.
     // Outputs:
-    //    none.
+    //  none.
     // Return:
-    //    The atomic mass number.
-    const Float_t A[]={ 1.00794 ,  4.0026902,  6.941   ,  9.012182 , 10.811   ,
-                       12.01007 , 14.00674  , 15.9994  , 18.9984032, 20.1797  ,
-                       22.98970 , 24.3050   , 26.981538, 28.0855   , 30.973761,
-                       32.066   , 35.4527   , 39.948   , 39.0983   , 40.078   ,
-                       44.95591 , 47.867    , 50.9415  , 51.9961   , 54.938049,
-                       55.845   , 58.933200 , 58.6934  , 63.546    , 65.39    ,
-                       69.723   , 72.61     , 74.92160 , 78.96     , 79.904   ,
-                       83.80    , 85.4678   , 87.62    , 88.9085   , 91.224   ,
-                       92.90638 , 95.94     , 97.907215, 101.07    ,102.90550 ,
-                      106.42    ,107.8682   ,112.411   ,114.818    ,118.710   ,
-                      121.760   ,127.60     ,126.90447 ,131.29     ,132.90545 ,
-                      137.327   ,138.9055   ,140.116   ,140.90765  ,144.24    ,
-                      144.912746,150.36     ,151.964   ,157.25     ,158.92534 ,
-                      162.50     ,164.93032 ,167.26    ,168.93421  ,173.04    ,
-                      174.967    ,178.49    ,180.9479 ,183.84      ,186.207   ,
-                      190.23     ,192.217   ,195.078  ,196.96655   ,200.59    ,
-                      204.3833   ,207.2     ,208.98038,208.982415  ,209.987131,
-                      222.017570 ,223.019731,226.025402,227.027747 ,232.0381  ,
-                      231.03588  238.0289};
+    //  none.
+    // From ALICE-Thermal Screen (SPD) "Cylinder" file thermal-screen2_a3.ps
+    // Volumes A1,A2,A2,Ah1,Ah2,Ah3, and B1,B2,B3,Bh1,Bh2,Bh3;
+    // "CONE TRANSITION" file thermal-screen1_a3.ps Volumes C1,C2,C3,Ch1,Ch2,
+    // Ch3; "FLANGE" file thermal-screen4_a3.ps Volumes D,Ds,Dw,Dws; and 
+    // "HALF ASSEMBLY" file thermal-screen3_a3.ps. This object, both halfs,
+    // are incased inside of a single minimum sized mother volume called M,
+    // which is a union of two parts M1 and 4 copies of M2.
+    const Double_t TSCarbonFiberThA = 0.03*kmm; // 
+    //const Double_t TSCarbonFiberThB = 0.10*kmm; //
+    const Double_t TSCLengthB  = 50.0*kmm; //
+    const Double_t TSCLengthA  = 900.0*kmm-2.0*TSCLengthB; //
+    const Double_t TSCLengthC  = 290.0*kmm; //
+    const Double_t TSCLengthD  = 15.0*kmm; //
+    const Double_t TSCAngle    = 36.0*kDegree;//Rep. angle of cent. accordin
+    const Double_t TSCRoutA    = 99.255*kmm; // Outer radii
+    const Double_t TSCRinA     = 81.475*kmm; // Iner radii
+    const Double_t TSCRoutB    = 99.955*kmm; // Outer radii
+    const Double_t TSCRinB     = 80.775*kmm; // Iner radii
+    const Double_t TSCRoutCp   = 390.0*kmm;  // Outer radii
+    const Double_t TSCRinCp    = 373.0*kmm;  // Iner radii
+    Double_t TSCRoutC,TSCRinC; // values need to be calculated
+    const Double_t TSCRwingD   = 492.5*kmm;  // Outer radii
+    const Double_t TSCRoutD    = 0.5*840.*kmm;// Outer radii
+    const Double_t TSCRinD     = 373.0*kmm;  // Iner radii
+    const Double_t TSCAngleDD  = 60.*kmm/TSCRwingD/kRadian;//angular wing width
+    //angular wing width of fill material
+    const Double_t TSCAngleDDs = (60.*kmm-2.*TSCarbonFiberThA)/TSCRwingD/kRadian;
+    const Double_t TSCAngleD0  = 45.*kDegree;//Strting angle of wing
+    const Double_t TSCoutSA    = 24.372*kmm; // The other one Calculated
+    const Double_t TSCinLA     = 31.674*kmm; // The ohter one Calculated
+    const Double_t TSCoutSB    = 24.596*kmm; // The other one Calculated
+    const Double_t TSCinLB     = 31.453*kmm; // The ohter one Calculated
+    const Double_t TSCoutSC    = 148.831*kmm;// The other one Calculated
+    const Double_t TSCinLC     = 90.915*kmm; // The ohter one Calculated
+    Int_t i,k;
+    Double_t th;
+    Double_t xo[7],yo[7],xi[7],yi[7];
+    Double_t xbo[7],ybo[7],xbi[7],ybi[7];
+    Double_t xco[7],yco[7],xci[7],yci[7];
+    TGeoArb8 *A1,*A2,*A3,*Ah1,*Ah2,*Ah3,*B1,*B2,*B3,*Bh1,*Bh2,*Bh3;
+    TGeoArb8 *C1,*C2,*C3,*Ch1,*Ch2,*Ch3;
+    TGeoTube  *D,*Ds;
+    TGeoTubeSeg *Dw,*Dws,*M2;
+    TGeoPcon *M1;
+    TGeoCompositeShape *M;
+    TGeoRotation *rot;
+    TGeoTranslation *tranb,*tranbm,*tranc;
+    TGeoTranslation *tranITSspdShealdVVt0;
+    TGeoCombiTrans *rotITSspdShealdVVt1,*rotITSspdShealdVVt2;
+    TGeoCombiTrans *rotITSspdShealdVVt3;
+    TGeoMedium *SPDcf  = 0; // SPD support cone Carbon Fiber materal number.
+    TGeoMedium *SPDfs  = 0; // SPD support cone inserto stesalite 4411w.
+    TGeoMedium *SPDfo  = 0; // SPD support cone foam, Rohacell 50A.
+    TGeoMedium *SPDss  = 0; // SPD support cone screw material,Stainless steal
+    TGeoMedium *SPDair = 0; // SPD support cone Air
+    //TGeoMedium *SPDal  = 0; // SPD support cone SDD mounting bracket Al
 
-    if(z<1||z>92){
-       Error("GetA","z must be 0<z<93. z=%d",z);
-       return 0.0;
+    TSCRoutC = TMath::Sqrt(TSCRoutCp*TSCRoutCp-0.25*TSCoutSC*TSCoutSC);
+    TSCRinC  = TMath::Sqrt(TSCRinCp *TSCRinCp -0.25*TSCinLC *TSCinLC );
+    A1  = new TGeoArb8("ITS SPD Therm Screen Clyinder A1",0.5*TSCLengthA);
+    A2  = new TGeoArb8("ITS SPD Therm Screen Clyinder A2",0.5*TSCLengthA);
+    A3  = new TGeoArb8("ITS SPD Therm Screen Clyinder A3",0.5*TSCLengthA);
+    Ah1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah1",0.5*TSCLengthA);
+    Ah2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah2",0.5*TSCLengthA);
+    Ah3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah3",0.5*TSCLengthA);
+    B1  = new TGeoArb8("ITS SPD Therm Screen Clyinder B1",0.5*TSCLengthB);
+    B2  = new TGeoArb8("ITS SPD Therm Screen Clyinder B2",0.5*TSCLengthB);
+    B3  = new TGeoArb8("ITS SPD Therm Screen Clyinder B3",0.5*TSCLengthB);
+    Bh1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh1",0.5*TSCLengthB);
+    Bh2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh2",0.5*TSCLengthB);
+    Bh3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh3",0.5*TSCLengthB);
+    C1  = new TGeoArb8("ITS SPD Therm Screen Clyinder C1",0.5*TSCLengthC);
+    C2  = new TGeoArb8("ITS SPD Therm Screen Clyinder C2",0.5*TSCLengthC);
+    C3  = new TGeoArb8("ITS SPD Therm Screen Clyinder C3",0.5*TSCLengthC);
+    Ch1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch1",0.5*TSCLengthC);
+    Ch2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch2",0.5*TSCLengthC);
+    Ch3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch3",0.5*TSCLengthC);
+    D = new TGeoTube("ITS SPD Therm Screen Flange D",TSCRinD,TSCRoutD,
+                    0.5*TSCLengthD);
+    Ds = new TGeoTube("ITS SPD Therm Screen Flange fill Ds",
+                      TSCRinD+TSCarbonFiberThA,TSCRoutD-TSCarbonFiberThA,
+                      0.5*TSCLengthD);
+    printTube(D);
+    printTube(Ds);
+    Dw = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Dw",
+                         TSCRoutD,TSCRwingD ,0.5*TSCLengthD,
+                         TSCAngleD0-0.5*TSCAngleDD,TSCAngleD0+0.5*TSCAngleDD);
+    Dws = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Fill Ds",
+                          TSCRoutD,TSCRwingD-TSCarbonFiberThA,
+                          0.5*TSCLengthD,TSCAngleD0-0.5*TSCAngleDDs,
+                          TSCAngleD0+0.5*TSCAngleDDs);
+    printTubeSeg(Dw);
+    printTubeSeg(Dws);
+    k = 0;
+    for(i=-1;i<2;i++){
+      th = ((Double_t)(i+1))*TSCAngle*kRadian;
+      xo[k] = TSCRoutA*TMath::Sin(th) - 0.5*TSCoutSA*TMath::Cos(th);
+      yo[k] = TSCRoutA*TMath::Cos(th) + 0.5*TSCoutSA*TMath::Sin(th);
+      xi[k] = TSCRinA *TMath::Sin(th) - 0.5*TSCinLA *TMath::Cos(th);
+      yi[k] = TSCRinA *TMath::Cos(th) + 0.5*TSCinLA *TMath::Sin(th);
+      xbo[k] = TSCRoutB*TMath::Sin(th) - 0.5*TSCoutSB*TMath::Cos(th);
+      ybo[k] = TSCRoutB*TMath::Cos(th) + 0.5*TSCoutSB*TMath::Sin(th);
+      xbi[k] = TSCRinB *TMath::Sin(th) - 0.5*TSCinLB *TMath::Cos(th);
+      ybi[k] = TSCRinB *TMath::Cos(th) + 0.5*TSCinLB *TMath::Sin(th);
+      xco[k] = TSCRoutC*TMath::Sin(th) - 0.5*TSCoutSC*TMath::Cos(th);
+      yco[k] = TSCRoutC*TMath::Cos(th) + 0.5*TSCoutSC*TMath::Sin(th);
+      xci[k] = TSCRinC *TMath::Sin(th) - 0.5*TSCinLC *TMath::Cos(th);
+      yci[k] = TSCRinC *TMath::Cos(th) + 0.5*TSCinLC *TMath::Sin(th);
+      k++;
+      xo[k] = TSCRoutA*TMath::Sin(th) + 0.5*TSCoutSA*TMath::Cos(th);
+      yo[k] = TSCRoutA*TMath::Cos(th) - 0.5*TSCoutSA*TMath::Sin(th);
+      xi[k] = TSCRinA *TMath::Sin(th) + 0.5*TSCinLA *TMath::Cos(th);
+      yi[k] = TSCRinA *TMath::Cos(th) - 0.5*TSCinLA *TMath::Sin(th);
+      xbo[k] = TSCRoutB*TMath::Sin(th) + 0.5*TSCoutSB*TMath::Cos(th);
+      ybo[k] = TSCRoutB*TMath::Cos(th) - 0.5*TSCoutSB*TMath::Sin(th);
+      xbi[k] = TSCRinB *TMath::Sin(th) + 0.5*TSCinLB *TMath::Cos(th);
+      ybi[k] = TSCRinB *TMath::Cos(th) - 0.5*TSCinLB *TMath::Sin(th);
+      xco[k] = TSCRoutC*TMath::Sin(th) + 0.5*TSCoutSC*TMath::Cos(th);
+      yco[k] = TSCRoutC*TMath::Cos(th) - 0.5*TSCoutSC*TMath::Sin(th);
+      xci[k] = TSCRinC *TMath::Sin(th) + 0.5*TSCinLC *TMath::Cos(th);
+      yci[k] = TSCRinC *TMath::Cos(th) - 0.5*TSCinLC *TMath::Sin(th);
+      k++;
+    } // end for i
+    xo[6] = xo[5];
+    yo[6] = 0.0;
+    xi[6] = xi[5];
+    yi[6] = 0.0;
+    xbo[6] = xbo[5];
+    ybo[6] = 0.0;
+    xbi[6] = xbi[5];
+    ybi[6] = 0.0;
+    xco[6] = xco[5];
+    yco[6] = 0.0;
+    xci[6] = xci[5];
+    yci[6] = 0.0;
+    if(GetDebug()){
+    cout.precision(4);
+    cout.width(7);
+    cout <<"i     \t  xo  yo    \t  xi yi     \t  xbo ybo   \t   xbi ybi  "
+        "\t   xco yco   \t   xci yxi"<<endl;
+    for(i=0;i<7;i++){
+        cout << i <<"\t"<<xo[i]<<","<<yo[i];
+        cout      <<"\t"<<xi[i]<<","<<yi[i];
+        cout      <<"\t"<<xbo[i]<<","<<ybo[i];
+        cout      <<"\t"<<xbi[i]<<","<<ybi[i];
+        cout      <<"\t"<<xco[i]<<","<<yco[i];
+        cout      <<"\t"<<xci[i]<<","<<yci[i];
+        cout<<endl;}
+    } // end if GetDebug()
+    //+++++++++++++++++++++++++
+    A1->SetVertex(0,xo[0],yo[0]);
+    A1->SetVertex(1,xo[1],yo[1]);
+    A1->SetVertex(2,xi[1],yi[1]);
+    A1->SetVertex(3,xi[0],yi[0]);
+    //
+    A2->SetVertex(0,xo[1],yo[1]);
+    A2->SetVertex(1,xo[2],yo[2]);
+    A2->SetVertex(2,xi[2],yi[2]);
+    A2->SetVertex(3,xi[1],yi[1]);
+    //
+    A3->SetVertex(0,xo[5],yo[5]);
+    A3->SetVertex(1,xo[6],yo[6]);
+    A3->SetVertex(2,xi[6],yi[6]);
+    A3->SetVertex(3,xi[5],yi[5]);
+    //--------------------------
+    B1->SetVertex(0,xbo[0],ybo[0]);
+    B1->SetVertex(1,xbo[1],ybo[1]);
+    B1->SetVertex(2,xbi[1],ybi[1]);
+    B1->SetVertex(3,xbi[0],ybi[0]);
+    //
+    B2->SetVertex(0,xbo[1],ybo[1]);
+    B2->SetVertex(1,xbo[2],ybo[2]);
+    B2->SetVertex(2,xbi[2],ybi[2]);
+    B2->SetVertex(3,xbi[1],ybi[1]);
+    //
+    B3->SetVertex(0,xbo[5],ybo[5]);
+    B3->SetVertex(1,xbo[6],ybo[6]);
+    B3->SetVertex(2,xbi[6],ybi[6]);
+    B3->SetVertex(3,xbi[5],ybi[5]);
+    //--------------------------
+    C1->SetVertex(0,xco[0],yco[0]);
+    C1->SetVertex(1,xco[1],yco[1]);
+    C1->SetVertex(2,xci[1],yci[1]);
+    C1->SetVertex(3,xci[0],yci[0]);
+    //
+    C2->SetVertex(0,xco[1],yco[1]);
+    C2->SetVertex(1,xco[2],yco[2]);
+    C2->SetVertex(2,xci[2],yci[2]);
+    C2->SetVertex(3,xci[1],yci[1]);
+    //
+    C3->SetVertex(0,xco[5],yco[5]);
+    C3->SetVertex(1,xco[6],yco[6]);
+    C3->SetVertex(2,xci[6],yci[6]);
+    C3->SetVertex(3,xci[5],yci[5]);
+    // Defining the hole, filled with air
+    Double_t p1,c1,x,y,x7[3],y7[3];
+    p1 = (xo[0]-xi[0])/(yo[0]-yi[0]);
+    c1 = xo[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[0]-xi[0])+
+                                                SQ(yo[0]-yi[0]))/(xo[0]-xi[0]);
+    y = TSCRoutA-2.*TSCarbonFiberThA;
+    x = p1*(y-yo[0])+c1;
+    Ah1->SetVertex(0,x,y);
+    Bh1->SetVertex(0,x,y);
+    Ch1->SetVertex(4,x,y);
+    y = TSCRinA+TSCarbonFiberThA;
+    x = p1*(y-yo[0])+c1;
+    Ah1->SetVertex(3,x,y);
+    Bh1->SetVertex(3,x,y);
+    x7[0] = x; y7[0] = y; // vortexing done after last point
+    //Ch1->SetVertex(7,x,y);
+    p1 = (xo[1]-xi[1])/(yo[1]-yi[1]);
+    c1 = xo[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[1]-xi[1])+
+                                                SQ(yo[1]-yi[1]))/(xo[1]-xi[1]);
+    y = TSCRoutA-2.*TSCarbonFiberThA;
+    x = p1*(y-yo[1])+c1;
+    Ah1->SetVertex(1,x,y);
+    Bh1->SetVertex(1,x,y);
+    Ch1->SetVertex(5,x,y);
+    y = TSCRinA+TSCarbonFiberThA;
+    x = p1*(y-yo[1])+c1;
+    Ah1->SetVertex(2,x,y);
+    Bh1->SetVertex(2,x,y);
+    Ch1->SetVertex(6,x,y);
+    //
+    // The easist way to get the points for the hole in volume A2 is to
+    // rotate it to the Y axis where the y coordinates are easier to know
+    // and then rotate it back.
+    Double_t xp,yp,xa,ya,xb,yb;
+    th = 0.5*TSCAngle*kRadian;
+    xa = TMath::Cos(th)*xo[1]-TMath::Sin(th)*yo[1];
+    ya = TMath::Sin(th)*xo[1]+TMath::Cos(th)*yo[1];
+    xb = TMath::Cos(th)*xi[1]-TMath::Sin(th)*yi[1];
+    yb = TMath::Sin(th)*xi[1]+TMath::Cos(th)*yi[1];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(0,xp,yp);
+    Bh2->SetVertex(0,xp,yp);
+    Ch2->SetVertex(4,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(3,xp,yp);
+    Bh2->SetVertex(3,xp,yp);
+    x7[1] = x; y7[1] = y; // vortexing done after last point
+    //Ch2->SetVertex(7,xp,yp);
+    xa = TMath::Cos(th)*xo[2]-TMath::Sin(th)*yo[2];
+    ya = TMath::Sin(th)*xo[2]+TMath::Cos(th)*yo[2];
+    xb = TMath::Cos(th)*xi[2]-TMath::Sin(th)*yi[2];
+    yb = TMath::Sin(th)*xi[2]+TMath::Cos(th)*yi[2];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(1,xp,yp);
+    Bh2->SetVertex(1,xp,yp);
+    Ch2->SetVertex(5,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(2,xp,yp);
+    Bh2->SetVertex(2,xp,yp);
+    Ch2->SetVertex(6,xp,yp);
+    //
+    p1 = (yo[5]-yi[5])/(xo[5]-xi[5]);
+    c1 = yo[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yo[5]-yi[5])+
+                                                SQ(xo[5]-xi[5]))/(yo[5]-yi[5]);
+    x = xo[5]-TSCarbonFiberThA;
+    y = p1*(x-xo[5])+c1;
+    Ah3->SetVertex(0,x,y);
+    Bh3->SetVertex(0,x,y);
+    Ch3->SetVertex(4,x,y);
+    x = xi[5]+2.0*TSCarbonFiberThA;
+    y = p1*(x-xo[5])+c1;
+    Ah3->SetVertex(3,x,y);
+    Bh3->SetVertex(3,x,y);
+    x7[2] = x; y7[2] = y; // vortexing done after last point
+    //Ch3->SetVertex(7,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xo[5]-TSCarbonFiberThA;
+    Ah3->SetVertex(1,x,y);
+    Bh3->SetVertex(1,x,y);
+    Ch3->SetVertex(5,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xi[5]+2.0*TSCarbonFiberThA;
+    Ah3->SetVertex(2,x,y);
+    Bh3->SetVertex(2,x,y);
+    Ch3->SetVertex(6,x,y);
+    //
+    for(i=0;i<4;i++){ // define points at +dz
+      A1->SetVertex(i+4,(A1->GetVertices())[2*i],(A1->GetVertices())[1+2*i]);
+      A2->SetVertex(i+4,(A2->GetVertices())[2*i],(A2->GetVertices())[1+2*i]);
+      A3->SetVertex(i+4,(A3->GetVertices())[2*i],(A3->GetVertices())[1+2*i]);
+      //
+      B1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]);
+      B2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]);
+      B3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]);
+      // C's are a cone which must match up with B's.
+      C1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]);
+      C2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]);
+      C3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]);
+      //
+      Ah1->SetVertex(i+4,(Ah1->GetVertices())[2*i],
+                         (Ah1->GetVertices())[1+2*i]);
+      Ah2->SetVertex(i+4,(Ah2->GetVertices())[2*i],
+                         (Ah2->GetVertices())[1+2*i]);
+      Ah3->SetVertex(i+4,(Ah3->GetVertices())[2*i],
+                         (Ah3->GetVertices())[1+2*i]);
+      //
+      Bh1->SetVertex(i+4,(Bh1->GetVertices())[2*i],
+                         (Bh1->GetVertices())[1+2*i]);
+      Bh2->SetVertex(i+4,(Bh2->GetVertices())[2*i],
+                         (Bh2->GetVertices())[1+2*i]);
+      Bh3->SetVertex(i+4,(Bh3->GetVertices())[2*i],
+                         (Bh3->GetVertices())[1+2*i]);
+    } // end for
+    //
+    p1 = (xco[0]-xci[0])/(yco[0]-yci[0]);
+    c1 = xco[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[0]-xci[0])+
+                                           SQ(yco[0]-yci[0]))/(xco[0]-xci[0]);
+    y = TSCRoutC-2.*TSCarbonFiberThA;
+    x = p1*(y-yco[0])+c1;
+    Ch1->SetVertex(0,x,y);
+    y = TSCRinC+TSCarbonFiberThA;
+    x = p1*(y-yci[0])+c1;
+    Ch1->SetVertex(2,x,y);
+    p1 = (xco[1]-xci[1])/(yco[1]-yci[1]);
+    c1 = xco[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[1]-xci[1])+
+                                           SQ(yco[1]-yci[1]))/(xco[1]-xci[1]);
+    y = TSCRoutC-2.*TSCarbonFiberThA;
+    x = p1*(y-yco[1])+c1;
+    Ch1->SetVertex(1,x,y);
+    y = TSCRinC+TSCarbonFiberThA;
+    x = p1*(y-yci[1])+c1;
+    Ch1->SetVertex(3,x,y);
+    //
+    th = 0.5*TSCAngle*kRadian;
+    xa = TMath::Cos(th)*xco[1]-TMath::Sin(th)*yco[1];
+    ya = TMath::Sin(th)*xco[1]+TMath::Cos(th)*yco[1];
+    xb = TMath::Cos(th)*xci[1]-TMath::Sin(th)*yci[1];
+    yb = TMath::Sin(th)*xci[1]+TMath::Cos(th)*yci[1];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    yp = ya-TSCarbonFiberThA;
+    xp = p1*(y-ya)+c1;
+    Ch2->SetVertex(0,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(2,xp,yp);
+    xa = TMath::Cos(th)*xco[2]-TMath::Sin(th)*yco[2];
+    ya = TMath::Sin(th)*xco[2]+TMath::Cos(th)*yco[2];
+    xb = TMath::Cos(th)*xci[2]-TMath::Sin(th)*yci[2];
+    yb = TMath::Sin(th)*xci[2]+TMath::Cos(th)*yci[2];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(1,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(3,xp,yp);
+    //
+    p1 = (yco[5]-yci[5])/(xco[5]-xci[5]);
+    c1 = yco[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yco[5]-yci[5])+
+                                          SQ(xco[5]-xci[5]))/(yco[5]-yci[5]);
+    x = xco[5]-TSCarbonFiberThA;
+    y = p1*(x-xco[5])+c1;
+    Ch3->SetVertex(0,x,y);
+    x = xci[5]+2.0*TSCarbonFiberThA;
+    y = p1*(x-xci[5])+c1;
+    Ch3->SetVertex(2,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xco[5]-TSCarbonFiberThA;
+    Ch3->SetVertex(1,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xci[5]+2.0*TSCarbonFiberThA;
+    Ch3->SetVertex(3,x,y);
+    Ch1->SetVertex(7,x7[0],y7[0]); // 7th point most be done last ???
+    Ch2->SetVertex(7,x7[1],y7[1]); // 7th point most be done last ???
+    Ch3->SetVertex(7,x7[2],y7[2]); // 7th point most be done last ???
+    printArb8(A1);
+    printArb8(Ah1);
+    printArb8(A2);
+    printArb8(Ah2);
+    printArb8(A3);
+    printArb8(Ah3);
+    printArb8(B1);
+    printArb8(Bh1);
+    printArb8(B2);
+    printArb8(Bh2);
+    printArb8(B3);
+    printArb8(Bh3);
+    printArb8(C1);
+    printArb8(Ch1);
+    printArb8(C2);
+    printArb8(Ch2);
+    printArb8(C3);
+    printArb8(Ch3);
+    //
+    // Define Minimal volume to inclose this SPD Thermal Sheald.
+    M1 = new TGeoPcon("ITSspdShealdVV",0.0,360.0,9);
+    M1->Z(0)    = 0.5*TSCLengthA+TSCLengthB;
+    M1->Rmin(0) = TSCRinB;
+    x = B1->GetVertices()[0]; // [0][0]
+    y = B1->GetVertices()[1]; // [0][1]
+    M1->Rmax(0) = TMath::Sqrt(x*x+y*y);
+    M1->Z(1)    = M1->GetZ(0)-TSCLengthB;
+    M1->Rmin(1) = M1->GetRmin(0);
+    M1->Rmax(1) = M1->GetRmax(0);
+    M1->Z(2)    = M1->GetZ(1);
+    M1->Rmin(2) = TSCRinA;
+    x = A1->GetVertices()[0]; // [0]0]
+    y = A1->GetVertices()[1]; // [0][1]
+    M1->Rmax(2) = TMath::Sqrt(x*x+y*y);
+    M1->Z(3)    = -(M1->GetZ(0)-TSCLengthB);
+    M1->Rmin(3) = M1->GetRmin(2);
+    M1->Rmax(3) = M1->GetRmax(2);
+    M1->Z(4)    = M1->GetZ(3);
+    M1->Rmin(4) = M1->GetRmin(1);
+    M1->Rmax(4) = M1->GetRmax(1);
+    M1->Z(5)    = -(M1->GetZ(0));
+    M1->Rmin(5) = M1->GetRmin(0);
+    M1->Rmax(5) = M1->GetRmax(0);
+    M1->Z(6)    = M1->GetZ(5) - TSCLengthC;
+    M1->Rmin(6) = TSCRinC;
+    x = C1->GetVertices()[0]; // [0][0]
+    y = C1->GetVertices()[1]; // [0][1]
+    M1->Rmax(6) = TMath::Sqrt(x*x+y*y);
+    M1->Z(7)    = M1->GetZ(6);
+    M1->Rmin(7) = D->GetRmin();
+    M1->Rmax(7) = D->GetRmax();
+    M1->Z(8)    = M1->Z(7) - TSCLengthD;
+    M1->Rmin(8) = M1->GetRmin(7);
+    M1->Rmax(8) = M1->GetRmax(7);
+    M2 = new TGeoTubeSeg("ITSspdShealdWingVV",
+         M1->GetRmax(8),Dw->GetRmax(),Dw->GetDz(),Dw->GetPhi1(),Dw->GetPhi2());
+    printTubeSeg(M2);
+    //
+    x = 0.5*(M1->GetZ(8) + M1->GetZ(7));
+    tranITSspdShealdVVt0 = new TGeoTranslation("ITSspdShealdVVt0",0.0,0.0,x);
+    tranITSspdShealdVVt0->RegisterYourself();
+    TGeoRotation rotz90("",0.0,0.0,90.0); // never registered.
+    rotITSspdShealdVVt1 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz90);
+    rotITSspdShealdVVt1->SetName("ITSspdShealdVVt1");
+    rotITSspdShealdVVt1->RegisterYourself();
+    TGeoRotation rotz180("",0.0,0.0,180.0); // never registered
+    rotITSspdShealdVVt2 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz180);
+    rotITSspdShealdVVt2->SetName("ITSspdShealdVVt2");
+    rotITSspdShealdVVt2->RegisterYourself();
+    TGeoRotation rotz270("",0.0,0.0,270.0); // never registered
+    rotITSspdShealdVVt3 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz270);
+    rotITSspdShealdVVt3->SetName("ITSspdShealdVVt3");
+    rotITSspdShealdVVt3->RegisterYourself();
+    M = new TGeoCompositeShape("ITS SPD Thermal sheald volume",
+                              "(((ITSspdShealdVV+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt0)+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt1)+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt2)+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt3");
+    //
+    TGeoManager *mgr = gGeoManager;
+    SPDcf = mgr->GetMedium("ITSspdCarbonFiber");
+    SPDfs = mgr->GetMedium("ITSspdStaselite4411w");
+    SPDfo = mgr->GetMedium("ITSspdRohacell50A");
+    SPDss = mgr->GetMedium("ITSspdStainlessSteal");
+    SPDair= mgr->GetMedium("ITSspdAir");
+    TGeoVolume *A1v,*A2v,*A3v,*Ah1v,*Ah2v,*Ah3v;
+    TGeoVolume *B1v,*B2v,*B3v,*Bh1v,*Bh2v,*Bh3v;
+    TGeoVolume *C1v,*C2v,*C3v,*Ch1v,*Ch2v,*Ch3v;
+    TGeoVolume *Dv,*Dsv,*Dwv,*Dwsv,*Mv;
+    Mv = new TGeoVolume("ITSspdThermalSheald",M,SPDair);
+    Mv->SetVisibility(kTRUE);
+    Mv->SetLineColor(7); // light Blue
+    Mv->SetLineWidth(1);
+    Mv->SetFillColor(Mv->GetLineColor());
+    Mv->SetFillStyle(4090); // 90% transparent
+    Moth->AddNode(Mv,1,0); ///////////////////// Virtual Volume ////////
+    A1v = new TGeoVolume("ITSspdCentCylA1CF",A1,SPDcf);
+    A1v->SetVisibility(kTRUE);
+    A1v->SetLineColor(4);
+    A1v->SetLineWidth(1);
+    A2v = new TGeoVolume("ITSspdCentCylA2CF",A2,SPDcf);
+    A2v->SetVisibility(kTRUE);
+    A2v->SetLineColor(4);
+    A2v->SetLineWidth(1);
+    A3v = new TGeoVolume("ITSspdCentCylA3CF",A3,SPDcf);
+    A3v->SetVisibility(kTRUE);
+    A3v->SetLineColor(4);
+    A3v->SetLineWidth(1);
+    B1v = new TGeoVolume("ITSspdCentCylB1CF",B1,SPDcf);
+    B1v->SetVisibility(kTRUE);
+    B1v->SetLineColor(4);
+    B1v->SetLineWidth(1);
+    B2v = new TGeoVolume("ITSspdCentCylB2CF",B2,SPDcf);
+    B2v->SetVisibility(kTRUE);
+    B2v->SetLineColor(4);
+    B2v->SetLineWidth(1);
+    B3v = new TGeoVolume("ITSspdCentCylB3CF",B3,SPDcf);
+    B3v->SetVisibility(kTRUE);
+    B3v->SetLineColor(4);
+    B3v->SetLineWidth(1);
+    C1v = new TGeoVolume("ITSspdCentCylC1CF",C1,SPDcf);
+    C1v->SetVisibility(kTRUE);
+    C1v->SetLineColor(4);
+    C1v->SetLineWidth(1);
+    C2v = new TGeoVolume("ITSspdCentCylC2CF",C2,SPDcf);
+    C2v->SetVisibility(kTRUE);
+    C2v->SetLineColor(4);
+    C2v->SetLineWidth(1);
+    C3v = new TGeoVolume("ITSspdCentCylC3CF",C3,SPDcf);
+    C3v->SetVisibility(kTRUE);
+    C3v->SetLineColor(4);
+    C3v->SetLineWidth(1);
+    Ah1v = new TGeoVolume("ITSspdCentCylA1AirA",Ah1,SPDair);
+    Ah1v->SetVisibility(kTRUE);
+    Ah1v->SetLineColor(5); // Yellow
+    Ah1v->SetFillColor(Ah1v->GetLineColor());
+    Ah1v->SetFillStyle(4090); // 90% transparent
+    Ah2v = new TGeoVolume("ITSspdCentCylA2AirA",Ah2,SPDair);
+    Ah2v->SetVisibility(kTRUE);
+    Ah2v->SetLineColor(5); // Yellow
+    Ah2v->SetFillColor(Ah2v->GetLineColor());
+    Ah2v->SetFillStyle(4090); // 90% transparent
+    Ah3v = new TGeoVolume("ITSspdCentCylA3AirA",Ah3,SPDair);
+    Ah3v->SetVisibility(kTRUE);
+    Ah3v->SetLineColor(5); // Yellow
+    Ah3v->SetFillColor(Ah3v->GetLineColor());
+    Ah3v->SetFillStyle(4090); // 90% transparent
+    Bh1v = new TGeoVolume("ITSspdCentCylA1AirB",Bh1,SPDair);
+    Bh1v->SetVisibility(kTRUE);
+    Bh1v->SetLineColor(5); // Yellow
+    Bh1v->SetFillColor(Bh1v->GetLineColor());
+    Bh1v->SetFillStyle(4090); // 90% transparent
+    Bh2v = new TGeoVolume("ITSspdCentCylA2AirB",Bh2,SPDair);
+    Bh2v->SetVisibility(kTRUE);
+    Bh2v->SetLineColor(5); // Yellow
+    Bh2v->SetFillColor(Bh2v->GetLineColor());
+    Bh2v->SetFillStyle(4090); // 90% transparent
+    Bh3v = new TGeoVolume("ITSspdCentCylA3AirB",Bh3,SPDair);
+    Bh3v->SetVisibility(kTRUE);
+    Bh3v->SetLineColor(5); // Yellow
+    Bh3v->SetFillColor(Bh3v->GetLineColor());
+    Bh3v->SetFillStyle(4090); // 90% transparent
+    Ch1v = new TGeoVolume("ITSspdCentCylA1AirC",Ch1,SPDair);
+    Ch1v->SetVisibility(kTRUE);
+    Ch1v->SetLineColor(5); // Yellow
+    Ch1v->SetFillColor(Ch1v->GetLineColor());
+    Ch1v->SetFillStyle(4090); // 90% transparent
+    Ch2v = new TGeoVolume("ITSspdCentCylA2AirC",Ch2,SPDair);
+    Ch2v->SetVisibility(kTRUE);
+    Ch2v->SetLineColor(5); // Yellow
+    Ch2v->SetFillColor(Ch2v->GetLineColor());
+    Ch2v->SetFillStyle(4090); // 90% transparent
+    Ch3v = new TGeoVolume("ITSspdCentCylA3AirC",Ch3,SPDair);
+    Ch3v->SetVisibility(kTRUE);
+    Ch3v->SetLineColor(5); // Yellow
+    Ch3v->SetFillColor(Ch3v->GetLineColor());
+    Ch3v->SetFillStyle(4090); // 90% transparent
+    Dv = new TGeoVolume("ITSspdCentCylA1CD",D,SPDcf);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(4);
+    Dv->SetLineWidth(1);
+    Dwv = new TGeoVolume("ITSspdCentCylA1CDw",Dw,SPDcf);
+    Dwv->SetVisibility(kTRUE);
+    Dwv->SetLineColor(4);
+    Dwv->SetLineWidth(1);
+    Dsv = new TGeoVolume("ITSspdCentCylA1Dfill",Ds,SPDfs);
+    Dsv->SetVisibility(kTRUE);
+    Dsv->SetLineColor(3); // Green
+    Dsv->SetFillColor(Dsv->GetLineColor());
+    Dsv->SetFillStyle(4010); // 10% transparent
+    Dwsv = new TGeoVolume("ITSspdCentCylA1DwingFill",Dws,SPDfs);
+    Dwsv->SetVisibility(kTRUE);
+    Dwsv->SetLineColor(3); // Green
+    Dwsv->SetFillColor(Dwsv->GetLineColor());
+    Dwsv->SetFillStyle(4010); // 10% transparent
+    //
+    A1v->AddNode(Ah1v,1,0);
+    A2v->AddNode(Ah2v,1,0);
+    A3v->AddNode(Ah3v,1,0);
+    B1v->AddNode(Bh1v,1,0);
+    B2v->AddNode(Bh2v,1,0);
+    B3v->AddNode(Bh3v,1,0);
+    C1v->AddNode(Ch1v,1,0);
+    C2v->AddNode(Ch2v,1,0);
+    C3v->AddNode(Ch3v,1,0);
+    Dv ->AddNode(Dsv ,1,0);
+    Dwv->AddNode(Dwsv,1,0);
+    //
+    Mv->AddNode(A1v,1,0);
+    Mv->AddNode(A2v,1,0);
+    Mv->AddNode(A3v,1,0);
+    tranb  = new TGeoTranslation("",0.0,0.0,0.5*(TSCLengthA+TSCLengthB));
+    tranbm = new TGeoTranslation("",0.0,0.0,0.5*(-TSCLengthA-TSCLengthB));
+    Mv->AddNode(B1v,1,tranb);
+    Mv->AddNode(B2v,1,tranb);
+    Mv->AddNode(B3v,1,tranb);
+    Mv->AddNode(B1v,2,tranbm);
+    Mv->AddNode(B2v,2,tranbm);
+    Mv->AddNode(B3v,2,tranbm);
+    // Muon side (rb26) is at -Z.
+    tranc = new TGeoTranslation("",0.0,0.0,
+                                0.5*(-TSCLengthA-TSCLengthB-TSCLengthC));
+    Mv->AddNode(C1v,1,tranc);
+    Mv->AddNode(C2v,1,tranc);
+    Mv->AddNode(C3v,1,tranc);
+    Mv->AddNode(Dv,1,tranITSspdShealdVVt0);
+    Mv->AddNode(Dwv,1,tranITSspdShealdVVt0);
+    Mv->AddNode(Dwv,2,rotITSspdShealdVVt1);
+    Mv->AddNode(Dwv,3,rotITSspdShealdVVt2);
+    Mv->AddNode(Dwv,4,rotITSspdShealdVVt3);
+    k=2;
+    for(i=1;i<10;i++) {
+      th = ((Double_t)i)*TSCAngle*kDegree;
+      rot = new TGeoRotation("",0.0,0.0,th);
+      Mv->AddNode(A1v,i+1,rot);
+      Mv->AddNode(B1v,i+2,new TGeoCombiTrans(*tranb,*rot));
+      Mv->AddNode(B1v,i+12,new TGeoCombiTrans(*tranbm,*rot));
+      Mv->AddNode(C1v,i+1,new TGeoCombiTrans(*tranc,*rot));
+      if(i!=0||i!=2||i!=7){
+        Mv->AddNode(A2v,k++,rot);
+        Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranb,*rot));
+        Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranbm,*rot));
+        Mv->AddNode(C2v,k++,new TGeoCombiTrans(*tranc,*rot));
+      } // end if
+      if(i==5) {
+        Mv->AddNode(A3v,2,rot);
+        Mv->AddNode(B3v,3,new TGeoCombiTrans(*tranb,*rot));
+        Mv->AddNode(B3v,4,new TGeoCombiTrans(*tranbm,*rot));
+        Mv->AddNode(C3v,2,new TGeoCombiTrans(*tranc,*rot));
+      } // end if
+    } // end for i
+    rot = new TGeoRotation("",180.,0.0,0.0);
+    Mv->AddNode(A3v,3,rot);
+    Mv->AddNode(B3v,5,new TGeoCombiTrans(*tranb,*rot));
+    Mv->AddNode(B3v,6,new TGeoCombiTrans(*tranbm,*rot));
+    Mv->AddNode(C3v,3,new TGeoCombiTrans(*tranc,*rot));
+    rot = new TGeoRotation("",180.,0.0,180.0);
+    Mv->AddNode(A3v,4,rot);
+    Mv->AddNode(B3v,7,new TGeoCombiTrans(*tranb,*rot));
+    Mv->AddNode(B3v,8,new TGeoCombiTrans(*tranbm,*rot));
+    Mv->AddNode(C3v,4,new TGeoCombiTrans(*tranc,*rot));
+    if(GetDebug()){
+        A1v->PrintNodes();
+        Ah1v->PrintNodes();
+        A2v->PrintNodes();
+        Ah2v->PrintNodes();
+        A3v->PrintNodes();
+        Ah3v->PrintNodes();
+        B1v->PrintNodes();
+        Bh1v->PrintNodes();
+        B2v->PrintNodes();
+        Bh2v->PrintNodes();
+        B3v->PrintNodes();
+        Bh3v->PrintNodes();
+        C1v->PrintNodes();
+        Ch1v->PrintNodes();
+        C2v->PrintNodes();
+        Ch2v->PrintNodes();
+        C3v->PrintNodes();
+        Ch3v->PrintNodes();
+        Dv->PrintNodes();
+        Dsv->PrintNodes();
+        Dwv->PrintNodes();
+        Dwsv->PrintNodes();
+        //Mv->PrintNodes();
     } // end if
-    return A[z-1];
-}
-//______________________________________________________________________
-Float_t AliITSv11::GetStandardMaxStepSize(Int_t istd){
-    // Returns one of a set of standard Maximum Step Size values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard Maximum Step Size value [cm].
-    Float_t t[]={1.0, // default
-                0.0075, // Silicon detectors...
-                1.0, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
-}
-//______________________________________________________________________
-Float_t AliITSv11::GetStandardThetaMax(Int_t istd){
-    // Returns one of a set of standard Theata Max values.
-    // Inputs:
-    //   Int_t istd  Index to indecate which standard.
-    // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard Theta max value [degrees].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
 }
 //______________________________________________________________________
-Float_t AliITSv11::GetStandardEfraction(Int_t istd){
-    // Returns one of a set of standard E fraction values.
+void AliITSv11::SDDCone(TGeoVolume *Moth){
+    // Define the detail SDD support cone geometry.
     // Inputs:
-    //   Int_t istd  Index to indecate which standard.
+    //   none.
     // Outputs:
-    //    none.
-    // Return:
-    //    The appropreate standard E fraction value [#].
-    Float_t t[]={0.1, // default
-                0.1, // Silicon detectors...
-                0.1, // Air in central detectors region
-                1.0  // Material in non-centeral region
-    };
-    return t[istd];
-}
-//______________________________________________________________________
-void AliITSv11::Element(Int_t imat,const char* name,Int_t z,Double_t dens,
-                       Int_t istd){
-    // Defines a Geant single element material and sets its Geant medium
-    // proporties. The average atomic A is assumed to be given by their
-    // natural abundances. Things like the radiation length are calculated
-    // for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t z          The elemental number.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.
-    // Output:
-    //     none.
+    //  none.
     // Return:
-    //     none.
-    Float_t rad,Z,A=GetA(z),tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len;
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    Z = (Float_t)z;
-    rad = GetRadLength(z)/dens;
-    AliMaterial(imat,name2,A,Z,dens,rad,0.0,0,0);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
-}
-//______________________________________________________________________
-void AliITSv11::MixtureByWeight(Int_t imat,const char* name,Int_t *z,
-                               Double_t *w,Double_t dens,Int_t n,Int_t istd){
-    // Defines a Geant material by a set of elements and weights, and sets 
-    // its Geant medium proporties. The average atomic A is assumed to be 
-    // given by their natural abundances. Things like the radiation length 
-    // are calculated for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t *z         Array of The elemental numbers.
-    //    Double_t *w      Array of relative weights.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t n          the number of elements making up the mixture.
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.   
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,*Z,*A,tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len,i;
-    Z = new Float_t[n];
-    A = new Float_t[n];
+    //  none.
+    //
+    // From Cilindro Centrale - Lavorazioni, ALR 0816/1 04/08/03 File
+    // name SDD/Cilindro.hpgl
+    const Double_t TSLength       = 790.0*kmm; // Thermal Sheeld length
+    const Double_t TSInsertoLength= 15.0*kmm;    // ????
+    const Double_t TSOuterR       = 0.5*(220.+10.)*kmm; // ????
+    const Double_t TSInnerR       = 0.5*(220.-10.)*kmm; // ????
+    const Double_t TSCarbonFiberth= 0.02*kmm;     // ????
+    const Double_t TSBoltDiameter = 6.0*kmm; // M6 screw
+    const Double_t TSBoltDepth    = 6.0*kmm; // in volume C
+    const Double_t TSBoltRadius   = 0.5*220.*kmm; // Radius in volume C
+    const Double_t TSBoltAngle0   = 0.0*kDegree; // Angle in volume C
+    const Double_t TSBoltdAngle   = 30.0*kDegree; // Angle in Volume C
+    Double_t x,y,z,t,t0;
+    Int_t i,n;
+    TGeoTube *A,*B,*C,*D;
+    TGeoTranslation *tran;
+    TGeoRotation *rot;
+    TGeoCombiTrans *rotran;
+    TGeoMedium *SDDcf,*SDDfs,*SDDfo,*SDDss;
 
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
-                     W[i] = (Float_t)w[i]}
-    rad = GetRadLength(z)/dens;
-    AliMixture(imat,name2,A,Z,dens,n,W);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
+    A = new TGeoTube("ITS SDD Central Cylinder",TSInnerR,TSOuterR,.5*TSLength);
+    B = new TGeoTube("ITS SDD CC Foam",TSInnerR+TSCarbonFiberth,
+                    TSOuterR-TSCarbonFiberth,
+                    0.5*(TSLength-2.0*TSInsertoLength));
+    C = new TGeoTube("ITS SDD CC Inserto",TSInnerR+TSCarbonFiberth,
+                    TSOuterR-TSCarbonFiberth,0.5*TSLength);
+    D = new TGeoTube("ITS SDD CC M6 bolt end",0.0,0.5*TSBoltDiameter,
+                    0.5*TSBoltDepth);
+    printTube(A);
+    printTube(B);
+    printTube(C);
+    printTube(D);
+    //
+    TGeoManager *mgr = gGeoManager;
+    SDDcf = mgr->GetMedium("ITSssdCarbonFiber");
+    SDDfs = mgr->GetMedium("ITSssdStaselite4411w");
+    SDDfo = mgr->GetMedium("ITSssdRohacell50A");
+    SDDss = mgr->GetMedium("ITSssdStainlessSteal");
+    TGeoVolume *Av,*Bv,*Cv,*Dv;
+    Av = new TGeoVolume("ITSsddCentCylCF",A,SDDcf);
+    Av->SetVisibility(kTRUE);
+    Av->SetLineColor(4);
+    Av->SetLineWidth(1);
+    Av->SetFillColor(Av->GetLineColor());
+    Av->SetFillStyle(4000); // 0% transparent
+    Bv = new TGeoVolume("ITSsddCentCylF",B,SDDfo);
+    Bv->SetVisibility(kTRUE);
+    Bv->SetLineColor(3);
+    Bv->SetLineWidth(1);
+    Bv->SetFillColor(Bv->GetLineColor());
+    Bv->SetFillStyle(4000); // 0% transparent
+    Cv = new TGeoVolume("ITSsddCentCylSt",C,SDDfs);
+    Cv->SetVisibility(kTRUE);
+    Cv->SetLineColor(2);
+    Cv->SetLineWidth(1);
+    Cv->SetFillColor(Cv->GetLineColor());
+    Cv->SetFillStyle(4000); // 0% transparent
+    Dv = new TGeoVolume("ITSsddCentCylSS",D,SDDss);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(1);
+    Dv->SetLineWidth(1);
+    Dv->SetFillColor(Dv->GetLineColor());
+    Dv->SetFillStyle(4000); // 0% transparent
+    //
+    Moth->AddNode(Av,1,0);
+    Av->AddNode(Cv,1,0);
+    Cv->AddNode(Bv,1,0);
+    n = (Int_t)((360.*kDegree)/TSBoltdAngle);
+    for(i=0;i<n;i++){
+        t = TSBoltAngle0+((Double_t)i)*TSBoltdAngle;
+        x = TSBoltRadius*TMath::Cos(t*kRadian);
+        y = TSBoltRadius*TMath::Sin(t*kRadian);
+        z = 0.5*(TSLength-TSBoltDepth);
+        tran = new TGeoTranslation("",x,y,z);
+        Cv->AddNode(Dv,i+1,tran);
+        tran = new TGeoTranslation("",x,y,-z);
+        Cv->AddNode(Dv,i+n+1,tran);
+    } // end for i
+    if(GetDebug()){
+        Av->PrintNodes();
+        Bv->PrintNodes();
+        Cv->PrintNodes();
+        Dv->PrintNodes();
+    } // end if
+    // SDD Suport Cone
+    //
+    //
+    const Double_t Thickness = 10.5*kmm; // Thickness of Rohacell+carbon fiber
+    const Double_t Cthick    = 1.5*kmm; // Carbon finber thickness
+    const Double_t Rcurv     = 15.0*kmm; // Radius of curvature.
+    const Double_t Tc        = 45.0; // angle of SSD cone [degrees].
+    const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad());
+    const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad());
+    const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad());
+    const Double_t ZouterMilled = 23.0*kmm;
+    const Double_t Zcylinder    = 186.0*kmm;
+    const Double_t Z0           = Zcylinder + 0.5*TSLength;
+    //const Int_t Nspoaks         = 12;
+    //const Int_t Nmounts         = 4;
+    //const Double_t DmountAngle  = 9.0; // degrees
+    const Double_t RoutMax      = 0.5*560.0*kmm;
+    const Double_t RoutMin      = 0.5*539.0*kmm;
+    // Holes in cone for cables
+    const Double_t PhiHole1     = 0.0*kDegree;
+    const Double_t dPhiHole1    = 25.0*kDegree;
+    const Double_t RholeMax1    = 0.5*528.*kmm;
+    const Double_t RholeMin1    = 0.5*464.*kmm;
+    const Double_t PhiHole2     = 0.0*kDegree;
+    const Double_t dPhiHole2    = 50.0*kDegree;
+    const Double_t RholeMax2    = 0.5*375.*kmm;
+    const Double_t RholeMin2    = 0.5*280.*kmm;
+    //
+    //const Int_t NpostsOut       = 6;
+    //const Int_t NpostsIn        = 3;
+    //const Double_t Phi0PostOut  = 0.0; // degree
+    //const Double_t Phi0PostIn   = 0.0; // degree
+    //const Double_t dRpostOut    = 16.0*kmm;
+    //const Double_t dRpostIn     = 16.0*kmm;
+    //const Double_t ZpostMaxOut  = 116.0*kmm;
+    //const Double_t ZpostMaxIn   = 190.0*kmm;
+    const Double_t RinMax       = 0.5*216*kmm;
+    const Double_t RinCylinder  = 0.5*231.0*kmm;
+    //const Double_t RinHole      = 0.5*220.0*kmm;
+    const Double_t RinMin       = 0.5*210.0*kmm;
+    const Double_t dZin         = 15.0*kmm; // ???
+    //
+    Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc;
+    Double_t Z,Rmin,Rmax; // Temp variables.
+    if(dza<=0){ // The number or order of the points are in error for a proper
+     // call to pcons!
+     Error("SDDcone","The definition of the points for a call to PCONS is"
+           " in error. abort.");
+     return;
+    } // end if
+    TGeoPcon *E = new TGeoPcon("ITSsddSuportConeCarbonFiberSurfaceE",
+                               0.0,360.0,12);
+    E->Z(0)    = 0.0;
+    E->Rmin(0) = RoutMin;
+    E->Rmax(0) = RoutMax;
+    E->Z(1)    = ZouterMilled - dza;
+    E->Rmin(1) = E->GetRmin(0);
+    E->Rmax(1) = E->GetRmax(0);
+    E->Z(2)    = ZouterMilled;
+    E->Rmax(2) = E->GetRmax(0);
+    RadiusOfCurvature(Rcurv,0.,E->GetZ(1),E->GetRmin(1),Tc,Z,Rmin);
+    E->Z(3)    = Z;
+    E->Rmin(3) = Rmin;
+    E->Rmin(2) = RminFrom2Points(E,3,1,E->GetZ(2));
+    RadiusOfCurvature(Rcurv,0.,E->GetZ(2),E->GetRmax(2),Tc,Z,Rmax);
+    E->Z(4)    = Z;
+    E->Rmax(4) = Rmax;
+    E->Rmin(4) = RminFromZpCone(E,Tc,E->GetZ(4),0.0);
+    E->Rmax(3) = RmaxFrom2Points(E,4,2,E->GetZ(3));
+    E->Rmin(7) = RinMin;
+    E->Rmin(8) = RinMin;
+    RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,Rmax);
+    E->Rmax(8) = Rmax;
+    E->Z(8)    = ZFromRmaxpCone(E,Tc,E->GetRmax(8));
+    E->Z(9)    = Zcylinder;
+    E->Rmin(9) = RinMin;
+    E->Z(10)    = E->GetZ(9);
+    E->Rmin(10) = RinCylinder;
+    E->Rmin(11) = RinCylinder;
+    E->Rmax(11) = E->GetRmin(11);
+    Rmin        = E->GetRmin(8);
+    RadiusOfCurvature(Rcurv,90.0-Tc,E->GetZ(8),E->GetRmax(8),90.0,Z,Rmax);
+    Rmax = RinMax;
+    E->Z(11)    = Z+(E->GetZ(8)-Z)*(E->GetRmax(11)-Rmax)/(E->GetRmax(8)-Rmax);
+    E->Rmax(9) = RmaxFrom2Points(E,11,8,E->GetZ(9));
+    E->Rmax(10) = E->GetRmax(9);
+    E->Z(6)    = Z-dZin;
+    E->Z(7)    = E->GetZ(6);
+    E->Rmax(6) = RmaxFromZpCone(E,Tc,E->GetZ(6));
+    E->Rmax(7) = E->GetRmax(6);
+    RadiusOfCurvature(Rcurv,90.,E->GetZ(6),0.0,90.0-Tc,Z,Rmin);
+    E->Z(5)    = Z;
+    E->Rmin(5) = RminFromZpCone(E,Tc,Z);
+    E->Rmax(5) = RmaxFromZpCone(E,Tc,Z);
+    RadiusOfCurvature(Rcurv,90.-Tc,0.0,E->Rmin(5),90.0,Z,Rmin);
+    E->Rmin(6) = Rmin;
+    printPcon(E);
+    // Inner Core, Inserto material
+    TGeoPcon *F = new TGeoPcon("ITSsddSuportConeInsertoStesaliteF",0.,360.0,9);
+    F->Z(0)    = E->GetZ(0);
+    F->Rmin(0) = E->GetRmin(0)+Cthick;
+    F->Rmax(0) = E->GetRmax(0)-Cthick;
+    F->Z(1)    = E->GetZ(1);
+    F->Rmin(1) = F->GetRmin(0);
+    F->Rmax(1) = F->GetRmax(0);
+    F->Z(2)    = E->GetZ(2);
+    F->Rmax(2) = F->GetRmax(1);
+    RadiusOfCurvature(Rcurv-Cthick,0.,F->GetZ(1),F->GetRmax(1),Tc,Z,Rmin);
+    F->Z(3)    = Z;
+    F->Rmin(3) = Rmin;
+    F->Rmin(2) = RminFrom2Points(F,3,1,F->GetZ(2));
+    RadiusOfCurvature(Rcurv+Cthick,0.,F->GetZ(2),F->GetRmax(2),Tc,Z,Rmax);
+    F->Z(4)    = Z;
+    F->Rmax(4) = Rmax;
+    F->Rmin(4) = RmaxFromZpCone(E,Tc,F->GetZ(4),-Cthick);
+    F->Rmax(3) = RmaxFrom2Points(F,4,2,F->GetZ(3));
+    F->Rmin(7) = E->GetRmin(7);
+    F->Rmin(8) = E->GetRmin(8);
+    F->Z(6)    = E->GetZ(6)+Cthick;
+    F->Rmin(6) = E->GetRmin(6);
+    F->Z(7)    = F->GetZ(6);
+    F->Rmax(8) = E->GetRmax(8)-Cthick*Sintc;
+    RadiusOfCurvature(Rcurv+Cthick,90.,F->GetZ(6),F->GetRmin(6),90.-Tc,Z,Rmin);
+    F->Z(5)    = Z;
+    F->Rmin(5) = Rmin;
+    F->Rmax(5) = RmaxFromZpCone(F,Tc,Z);
+    F->Rmax(6) = RmaxFromZpCone(F,Tc,F->GetZ(6));
+    F->Rmax(7) = F->GetRmax(6);
+    F->Z(8)    = ZFromRmaxpCone(F,Tc,F->GetRmax(8),-Cthick);
+    printPcon(F);
+    // Inner Core, Inserto material
+    TGeoPcon *G = new TGeoPcon("ITSsddSuportConeFoamCoreG",0.0,360.0,4);
+    RadiusOfCurvature(Rcurv+Cthick,0.0,F->GetZ(1),F->GetRmin(1),Tc,Z,Rmin);
+    G->Z(0)    = Z;
+    G->Rmin(0) = Rmin;
+    G->Rmax(0) = G->GetRmin(0);
+    G->Z(1)    = G->GetZ(0)+(Thickness-2.0*Cthick)/Sintc;;
+    G->Rmin(1) = RminFromZpCone(F,Tc,G->GetZ(1));
+    G->Rmax(1) = RmaxFromZpCone(F,Tc,G->GetZ(1));
+    G->Z(2)    = E->GetZ(5)-Cthick;
+    G->Rmin(2) = RminFromZpCone(F,Tc,G->GetZ(2));
+    G->Rmax(2) = RmaxFromZpCone(F,Tc,G->GetZ(2));
+    G->Z(3)    = F->GetZ(5)+(Thickness-2.0*Cthick)*Costc;
+    G->Rmax(3) = RmaxFromZpCone(F,Tc,G->GetZ(3));
+    G->Rmin(3) = G->GetRmax(3);
+    printPcon(G);
+    //
+    TGeoPcon *H = new TGeoPcon("ITSsddSuportConeHoleH",PhiHole1,dPhiHole1,4);
+    H->Rmin(0) = RholeMax1;
+    H->Rmax(0) = H->GetRmin(0);
+    H->Z(0)    = ZFromRminpCone(E,Tc,H->GetRmin(0));
+    H->Rmax(1) = H->GetRmax(0);
+    H->Z(1)    = ZFromRmaxpCone(E,Tc,H->GetRmax(1));
+    H->Rmin(1) = RminFromZpCone(E,Tc,H->GetZ(1));
+    H->Rmin(2) = RholeMin1;
+    H->Z(2)    = ZFromRminpCone(E,Tc,H->GetRmin(2));
+    H->Rmax(2) = RmaxFromZpCone(E,Tc,H->GetZ(2));
+    H->Rmin(3) = H->GetRmin(2);
+    H->Rmax(3) = H->GetRmin(3);
+    H->Z(3)    = ZFromRminpCone(E,Tc,H->GetRmin(3));
+    printPcon(H);
+    //
+    x = Cthick/(0.5*(RholeMax1+RholeMin1));
+    t0 = PhiHole1 - x/kRadian;
+    t  = dPhiHole1 + 2.0*x/kRadian;
+    TGeoPcon *I = new TGeoPcon("ITSsddSuportConeHoleI",t0,t,4);
+    I->Rmin(0) = RholeMax1+Cthick;
+    I->Rmax(0) = I->GetRmin(0);
+    I->Z(0)    = ZFromRminpCone(F,Tc,I->GetRmin(0));
+    I->Rmax(1) = I->GetRmax(0);
+    I->Z(1)    = ZFromRmaxpCone(F,Tc,I->GetRmax(1));
+    I->Rmin(1) = RminFromZpCone(F,Tc,I->GetZ(1));
+    I->Rmin(2) = RholeMin1-Cthick;
+    I->Z(2)    = ZFromRminpCone(F,Tc,I->GetRmin(2));
+    I->Rmax(2) = RmaxFromZpCone(F,Tc,I->GetZ(2));
+    I->Rmin(3) = I->GetRmin(2);
+    I->Rmax(3) = I->GetRmin(3);
+    I->Z(3)    = ZFromRmaxpCone(F,Tc,I->GetRmax(3));
+    printPcon(I);
+    //
+    TGeoPcon *J = new TGeoPcon("ITSsddSuportConeHoleJ",PhiHole2,dPhiHole2,4);
+    J->Rmin(0) = RholeMax2;
+    J->Rmax(0) = J->GetRmin(0);
+    J->Z(0)    = ZFromRminpCone(E,Tc,J->GetRmin(0));
+    J->Rmax(1) = J->GetRmax(0);
+    J->Z(1)    = ZFromRmaxpCone(E,Tc,J->GetRmax(1));
+    J->Rmin(1) = RminFromZpCone(E,Tc,J->GetZ(1));
+    J->Rmin(2) = RholeMin2;
+    J->Z(2)    = ZFromRminpCone(E,Tc,J->GetRmin(2));
+    J->Rmax(2) = RmaxFromZpCone(E,Tc,J->GetZ(2));
+    J->Rmin(3) = J->GetRmin(2);
+    J->Rmax(3) = J->GetRmin(3);
+    J->Z(3)    = ZFromRmaxpCone(E,Tc,J->GetRmax(3));
+    printPcon(J);
+    //
+    x = Cthick/(0.5*(RholeMax2+RholeMin2));
+    t0 = PhiHole2 - x/kRadian;
+    t  = dPhiHole2 + 2.0*x/kRadian;
+    TGeoPcon *K = new TGeoPcon("ITSsddSuportConeHoleK",t0,t,4);
+    K->Rmin(0) = RholeMax2+Cthick;
+    K->Rmax(0) = K->GetRmin(0);
+    K->Z(0)    = ZFromRminpCone(F,Tc,K->GetRmin(0));
+    K->Rmax(1) = K->GetRmax(0);
+    K->Z(1)    = ZFromRmaxpCone(F,Tc,K->GetRmax(1));
+    K->Rmin(1) = RminFromZpCone(F,Tc,K->GetZ(1));
+    K->Rmin(2) = RholeMin2-Cthick;
+    K->Z(2)    = ZFromRminpCone(F,Tc,K->GetRmin(2));
+    K->Rmax(2) = RmaxFromZpCone(F,Tc,K->GetZ(2));
+    K->Rmin(3) = K->GetRmin(2);
+    K->Rmax(3) = K->GetRmin(3);
+    K->Z(3)    = ZFromRmaxpCone(F,Tc,K->GetRmax(3));
+    printPcon(K);
+    //
+    TGeoCompositeShape *L,*M,*N;
+    rot = new TGeoRotation("ITSsddRotZ30",0.0,0.0,30.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ60",0.0,0.0,60.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ90",0.0,0.0,90.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ120",0.0,0.0,120.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ150",0.0,0.0,150.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ180",0.0,0.0,180.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ210",0.0,0.0,210.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ240",0.0,0.0,240.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ270",0.0,0.0,270.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ300",0.0,0.0,300.0);
+    rot->RegisterYourself();
+    rot = new TGeoRotation("ITSsddRotZ330",0.0,0.0,330.0);
+    rot->RegisterYourself();
+    L = new TGeoCompositeShape("ITS SDD Suport Cone","((((((((((((((((("
+                               "ITSsddSuportConeCarbonFiberSurfaceE -"
+                               "ITSsddSuportConeHoleH)  -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ30) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ90) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ150) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ210) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ270) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ300) -"
+                               "ITSsddSuportConeHoleH:ITSsddRotZ330) -"
+                               "ITSsddSuportConeHoleJ)  -"
+                               "ITSsddSuportConeHoleJ:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleJ:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleJ:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleJ:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleJ:ITSsddRotZ300");
+    M = new TGeoCompositeShape("ITS SDD Suport Cone Inserto Stesalite",
+                               "((((((((((((((((("
+                               "ITSsddSuportConeInsertoStesaliteF -"
+                               "ITSsddSuportConeHoleI)  -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ30) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ90) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ150) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ210) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ270) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ300) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ330) -"
+                               "ITSsddSuportConeHoleK)  -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ300");
+    N = new TGeoCompositeShape("ITS SDD Suport Cone Foam Core",
+                               "((((((((((((((((("
+                               "ITSsddSuportConeFoamCoreG -"
+                               "ITSsddSuportConeHoleI)  -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ30) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ90) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ150) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ210) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ270) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ300) -"
+                               "ITSsddSuportConeHoleI:ITSsddRotZ330) -"
+                               "ITSsddSuportConeHoleK)  -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ60) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ120) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ180) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ240) -"
+                               "ITSsddSuportConeHoleK:ITSsddRotZ300");
+    //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+    TGeoVolume *Lv,*Mv,*Nv;
+    Lv = new TGeoVolume("ITSsddConeL",L,SDDcf);
+    Lv->SetVisibility(kTRUE);
+    Lv->SetLineColor(4);
+    Lv->SetLineWidth(1);
+    Lv->SetFillColor(Lv->GetLineColor());
+    Lv->SetFillStyle(4000); // 0% transparent
+    Mv = new TGeoVolume("ITSsddConeM",M,SDDfs);
+    Mv->SetVisibility(kTRUE);
+    Mv->SetLineColor(2);
+    Mv->SetLineWidth(1);
+    Mv->SetFillColor(Mv->GetLineColor());
+    Mv->SetFillStyle(4010); // 10% transparent
+    Nv = new TGeoVolume("ITSsddConeN",N,SDDfo);
+    Nv->SetVisibility(kTRUE);
+    Nv->SetLineColor(7);
+    Nv->SetLineWidth(1);
+    Nv->SetFillColor(Nv->GetLineColor());
+    Nv->SetFillStyle(4050); // 50% transparent
+    //
+    Mv->AddNode(Nv,1,0);
+    Lv->AddNode(Mv,1,0);
+    tran = new TGeoTranslation("",0.0,0.0,-Z0);
+    Moth->AddNode(Lv,1,tran);
+    rot = new TGeoRotation("",0.0,180.0*kDegree,0.0);
+    rotran = new TGeoCombiTrans("",0.0,0.0,Z0,rot);
+    delete rot;// rot not explicity used in AddNode functions.
+    Moth->AddNode(Lv,2,rotran);
+    if(GetDebug()){
+        Lv->PrintNodes();
+        Mv->PrintNodes();
+        Nv->PrintNodes();
+    } // end if
 }
 //______________________________________________________________________
-void AliITSv11::MixtureByNumber(Int_t imat,const char* name,Int_t *z,
-                               Int_t *w,Double_t dens,Int_t n,Int_t istd){
-    // Defines a Geant material by a set of elements and number, and sets 
-    // its Geant medium proporties. The average atomic A is assumed to be 
-    // given by their natural abundances. Things like the radiation length 
-    // are calculated for you.
-    // Inputs:
-    //    Int_t imat       Material number.
-    //    const char* name Material name. No need to add a $ at the end.
-    //    Int_t *z         Array of The elemental numbers.
-    //    Int_t_t *w       Array of relative number.
-    //    Double_t dens    The density of the material [g/cm^3].
-    //    Int_t n          the number of elements making up the mixture.
-    //    Int_t istd       Defines which standard set of transport parameters
-    //                     which should be used.   
-    // Output:
-    //     none.
-    // Return:
-    //     none.
-    Float_t rad,*Z,*A,tmax,stemax,deemax,epsilon;
-    char *name2;
-    Int_t len,i;
-    Z = new Float_t[n];
-    A = new Float_t[n];
-
-    len = strlng(name)+1;
-    name2 = new char[len];
-    strncpy(name2,name,len-1);
-    name2[len-1] = '\0';
-    name2[len-2] = '$';
-    for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
-                     W[i] = (Float_t)w[i]}
-    rad = GetRadLength(z)/dens;
-    AliMixture(imat,name2,A,Z,dens,-n,W);
-    tmax    = GetStandardTheataMax(istd);    // degree
-    stemax  = GetStandardMaxStepSize(istd);  // cm
-    deemax  = GetStandardEfraction(istd);     // #
-    epsilon = GetStandardEpsilon(istd);
-    AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
-             gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
-    delete[] name2;
-//______________________________________________________________________
-void AliITSv11::SSDConeDetail(TVector3 &tran,const char moth[3],Int_t mat0){
-    // Defines the volumes and materials for the ITS SSD Support cone.
-    // Based on drawings ALR-0767 and ALR-0767/3. Units are in mm.
+void AliITSv11::SSDCone(TGeoVolume *Moth){
+    // Define the detail SSD support cone geometry.
     // Inputs:
-    //   Double_t zShift  The z shift to be applied to the final volume.
-    // Outputs:
     //   none.
+    // Outputs:
+    //  none.
     // Return:
-    //   none.
-    Double_t th = 13.0; //mm, Thickness of Rohacell+carbon fiber
-    Double_t ct=1.5; //mm, Carbon finber thickness
-    Double_t r=15.0; // mm, Radius of curvature.
-    Double_t tc=51.0; // angle of SSD cone [degrees].
-    Double_t sintc=Sind(tc),costc=Cosd(tc),tantc=Tand(tc);
-    Double_t z0=0.0,Routmax=0.5*985.,Routmin=0.5*945.,Rholemax=0.5*890.;
-    Double_t Rholemin=0.5*740.,Rin=0.5*560.,RoutHole=0.5*965.;
-    Int_t nspoaks=12,ninscrews=40,npost=4;
-    Int_t SSDcf=man0+1; // SSD support cone Carbon Fiber materal number.
-    Int_t SSDfs=mat0+2; // SSD support cone inserto stesalite 4411w.
-    Int_t SSDfo=mat0+3; // SSD support cone foam, Rohacell 50A.
-    Int_t SSDsw=mat0+4; // SSD support cone screw material,Stainless steal
-    Double_t t; // some general angle [degrees].
-    Double_t phi0=0.0,dphi=360.0,x,y,z;
-    Int_t i,j,k,l,n,nz,nrad=0;
-
-    SetScalemm();
+    //  none.
+    //
+    TGeoMedium *SSDcf  = 0; // SSD support cone Carbon Fiber materal number.
+    TGeoMedium *SSDfs  = 0; // SSD support cone inserto stesalite 4411w.
+    TGeoMedium *SSDfo  = 0; // SSD support cone foam, Rohacell 50A.
+    TGeoMedium *SSDss  = 0; // SSD support cone screw material,Stainless steal
+    TGeoMedium *SSDair = 0; // SSD support cone Air
+    TGeoMedium *SSDal  = 0; // SSD support cone SDD mounting bracket Al
+    TGeoManager *mgr = gGeoManager;
+    SSDcf = mgr->GetMedium("ITSssdCarbonFiber");
+    SSDfs = mgr->GetMedium("ITSssdStaselite4411w");
+    SSDfo = mgr->GetMedium("ITSssdRohacell50A");
+    SSDss = mgr->GetMedium("ITSssdStainlessSteal");
+    SSDair= mgr->GetMedium("ITSssdAir");
+    SSDal = mgr->GetMedium("ITSssdAl");
+    //
+    // SSD Central cylinder/Thermal Sheald.
+    const Double_t ZThCylinder = 1140.0*kmm; //
+    const Double_t ZThCylFoam  = 1020.0*kmm; //
+    const Double_t RThCylOuter = 0.5*595.0*kmm; //
+    const Double_t CthickThCyl = 0.64*kmm; //
+    const Double_t FoamThickTh = 5.0*kmm; //
+    const Double_t dZThCylThEnd = 6.0*kmm; //
+    const Double_t RThCylInerEnd= 0.5*560.5*kmm; //
+    TGeoPcon *CA,*CB;
+    TGeoTube*CC;
+    //
+    CA = new TGeoPcon("ITS SSD Thermal Centeral CylinderA",0.0,360.0,6);
+    CB = new TGeoPcon("ITS SSD Thermal Centeral CylinderB",0.0,360.0,6);
+    CC = new TGeoTube("ITS SSD Thermal Centeral CylinderC",
+                      RThCylOuter-CthickThCyl-FoamThickTh,
+                      RThCylOuter-CthickThCyl,0.5*ZThCylFoam);
+    CA->Z(0)    = -0.5*ZThCylinder;
+    CA->Rmin(0) = RThCylInerEnd;
+    CA->Rmax(0) = RThCylOuter;
+    CA->Z(1)    = CA->GetZ(0) + dZThCylThEnd;
+    CA->Rmin(1) = CA->GetRmin(0);
+    CA->Rmax(1) = CA->GetRmax(0);
+    CA->Z(2)    = -0.5*ZThCylFoam;
+    CA->Rmin(2) = RThCylOuter - 2.0*CthickThCyl-FoamThickTh;
+    CA->Rmax(2) = CA->GetRmax(0);
+    CA->Z(3)    = -CA->GetZ(2);
+    CA->Rmin(3) = CA->GetRmin(2);
+    CA->Rmax(3) = CA->GetRmax(2);
+    CA->Z(4)    = -CA->GetZ(1);
+    CA->Rmin(4) = CA->GetRmin(1);
+    CA->Rmax(4) = CA->GetRmax(1);
+    CA->Z(5)    = -CA->GetZ(0);
+    CA->Rmin(5) = CA->GetRmin(0);
+    CA->Rmax(5) = CA->GetRmax(0);
+    //
+    CB->Z(0)    = CA->GetZ(0);
+    CB->Rmin(0) = CA->GetRmin(0) + CthickThCyl;
+    CB->Rmax(0) = CA->GetRmax(0) - CthickThCyl;
+    CB->Z(1)    = CA->GetZ(1);
+    CB->Rmin(1) = CA->GetRmin(1) + CthickThCyl;
+    CB->Rmax(1) = CA->GetRmax(1) - CthickThCyl;
+    CB->Z(2)    = CA->GetZ(2);
+    CB->Rmin(2) = CA->GetRmin(2) + CthickThCyl;
+    CB->Rmax(2) = CA->GetRmax(2) - CthickThCyl;
+    CB->Z(3)    = CA->GetZ(3);
+    CB->Rmin(3) = CA->GetRmin(3) + CthickThCyl;
+    CB->Rmax(3) = CA->GetRmax(3) - CthickThCyl;
+    CB->Z(4)    = CA->GetZ(4);
+    CB->Rmin(4) = CA->GetRmin(4) + CthickThCyl;
+    CB->Rmax(4) = CA->GetRmax(4) - CthickThCyl;
+    CB->Z(5)    = CA->GetZ(5);
+    CB->Rmin(5) = CA->GetRmin(5) + CthickThCyl;
+    CB->Rmax(5) = CA->GetRmax(5) - CthickThCyl;
+    //
+    printPcon(CA);
+    printPcon(CB);
+    printTube(CC);
+    TGeoVolume *CAv,*CBv,*CCv;
+    CAv = new TGeoVolume("ITSssdCentCylCA",CA,SSDcf);
+    CAv->SetVisibility(kTRUE);
+    CAv->SetLineColor(4); // blue
+    CAv->SetLineWidth(1);
+    CAv->SetFillColor(CAv->GetLineColor());
+    CAv->SetFillStyle(4010); // 10% transparent
+    CBv = new TGeoVolume("ITSssdCentCylCB",CB,SSDfs);
+    CBv->SetVisibility(kTRUE);
+    CBv->SetLineColor(2); // red
+    CBv->SetLineWidth(1);
+    CBv->SetFillColor(CBv->GetLineColor());
+    CBv->SetFillStyle(4010); // 10% transparent
+    CCv = new TGeoVolume("ITSssdCentCylCC",CC,SSDfo);
+    CCv->SetVisibility(kTRUE);
+    CCv->SetLineColor(3); // green
+    CCv->SetLineWidth(1);
+    CCv->SetFillColor(CCv->GetLineColor());
+    CCv->SetFillStyle(4010); // 10% transparent
+    CBv->AddNode(CCv,1,0);
+    CAv->AddNode(CBv,1,0);
+    Moth->AddNode(CAv,1,0);
+    if(GetDebug()){
+        CAv->PrintNodes();
+        CBv->PrintNodes();
+        CCv->PrintNodes();
+    } // end if
+    //
+    const Double_t Thickness = 13.0*kmm; // Thickness of Rohacell+carbon fiber
+    const Double_t Cthick    = 1.5*kmm; // Carbon finber thickness
+    const Double_t Rcurv     = 15.0*kmm; // Radius of curvature.
+    const Double_t Tc        = 51.0; // angle of SSD cone [degrees].
+    const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad());
+    const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad());
+    const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad());
+    const Double_t ZouterMilled = (13.5-5.0)*kmm;
+    const Double_t Zcylinder    = 170.0*kmm;
+    const Double_t Z0           = Zcylinder + 0.5*ZThCylinder;
+    const Int_t Nspoaks         = 12;
+    const Int_t Nmounts         = 4;
+    const Double_t DmountAngle  = 9.0; // degrees
+    const Double_t RoutMax      = 0.5*985.0*kmm;
+    const Double_t RoutHole     = 0.5*965.0*kmm;
+    const Double_t RoutMin      = 0.5*945.0*kmm;
+    const Double_t RholeMax     = 0.5*890.0*kmm;
+    const Double_t RholeMin     = 0.5*740.0*kmm;
+    const Double_t RpostMin     = 316.0*kmm;
+    const Double_t ZpostMax     = 196.0*kmm;
+    const Int_t Nposts          = 6;
+    const Double_t Phi0Post     = 0.0; // degree
+    const Double_t dRpost       = 23.0*kmm;
+    const Double_t RinMax       = 0.5*590.0*kmm;
+    const Double_t RinCylinder  = 0.5*597.0*kmm;
+    const Double_t RinHole      = 0.5*575.0*kmm;
+    const Double_t RinMin       = 0.5*562.0*kmm;
+    const Double_t dZin         = 15.0*kmm;
+    // SSD-SDD Thermal/Mechanical cylinder mounts
+    const Int_t NinScrews          = 40;
+    const Double_t Phi0Screws      = 0.5*360.0/((const Double_t)NinScrews);//d
+    const Double_t RcylinderScrews = 0.5*570.0*kmm;//from older drawing????
+    const Double_t DscrewHead      = 8.0*kmm;
+    const Double_t DscrewShaft     = 4.6*kmm;
+    const Double_t ThScrewHeadHole = 8.5*kmm;
+    // SDD mounting bracket, SSD part
+    const Double_t NssdSupports      = 3;// mounting of U and T
+    const Double_t DssdsddBracketAngle = 9.0; // degrees
+    const Double_t Phi0SDDsupports   = 0.0; // degree
+    const Double_t RsddSupportPlate  = 0.5*585.0*kmm;
+    const Double_t ThSDDsupportPlate = 4.0*kmm;
+    const Double_t WsddSupportPlate  = 70.0*kmm;
+    //
     // Lets start with the upper left outer carbon fiber surface.
     // Between za[2],rmaxa[2] and za[4],rmaxa[4] there is a curved section
-    // given by rmaxa = rmaxa[2]-r*Sind(t) for 0<=t<=tc and 
-    // za = za[2] + r*Cosd(t) for 0<=t<=tc. Simularly between za[1],rmina[1
+    // given by rmaxa = rmaxa[2]-r*Sind(t) for 0<=t<=Tc and 
+    // za = za[2] + r*Cosd(t) for 0<=t<=Tc. Simularly between za[1],rmina[1
     // and za[3],rmina[3] there is a curve section given by
-    // rmina = rmina[1]-r*Sind(t) for 0<=t<=tc and za = za[1]+r&Sind(t)
-    // for t<=0<=tc. These curves have been replaced by straight lines
+    // rmina = rmina[1]-r*Sind(t) for 0<=t<=Tc and za = za[1]+r&Sind(t)
+    // for t<=0<=Tc. These curves have been replaced by straight lines
     // between the equivelent points for simplicity.
-    Double_t dza = th/sintc-(Routmax-Routmin)/tantc;
+    Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc;
+    Int_t i,j;
+    Double_t x,y,z[9],rn[9],rx[9],phi,dphi;
+    Double_t t,t0,Z,Rmin,Rmax; // Temp variables.
     if(dza<=0){ // The number or order of the points are in error for a proper
-       // call to pcons!
-       Error("SSDcone","The definition of the points for a call to PCONS is"
-             " in error. abort.");
-       return;
+     // call to pcons!
+     Error("SSDcone","The definition of the points for a call to PCONS is"
+           " in error. abort.");
+     return;
     } // end if
-    nz = 7;
-    Double_t *za    = new Double_t[nz];
-    Double_t *rmina = new Double_t[nz];
-    Double_t *rmaxa = new Double_t[nz];
-    za[0]    = z0;
-    rmina[0] = Routmin;
-    rmaxa[0] = Routmax;
-    za[1]    = za[0]+13.5-5.0 - dza; // za[2] - dza.
-    rmina[1] = rmina[0];
-    rmaxa[1] =rmaxa[0];
-    za[2]    = za[0]+13.5-5.0; // From Drawing ALR-0767 and ALR-0767/3
-    rmaxa[2] = rmaxa[0];
-    za[3]    = za[1]+rc*sintc;
-    rmina[3] = rmina[1]-rc*sintc;
-    rmina[2] = rmina[1]+(rmina[3]-rmina[1])*(za[2]-za[1])/(za[3]-za[1]);
-    za[4]    = za[2]+rc*sintc;
-    rmaxa[4] = rmaxa[2]-rc*sintc;
-    rmaxa[3] = rmaxa[2]+(rmaxa[4]-rmaxa[2])*(za[3]-za[2])/(za[4]-za[2]);
-    rmina[5] = Rholemax;
-    za[5]    = za[3]+(za[4]-za[3])*(rmina[5]-rmina[3])/(rmina[4]-rmina[3]);
-    rmina[4] = rmina[3]+(rmina[5]-rmina[3])*(za[4]-za[3])/(za[5]-za[3]);
-    za[6]    = th/sinth+za[5];
-    rmina[6] = Rholemax;
-    rmaxa[6] = rmina[6];
-    rmaxa[5] = rmaxa[4]+(rmaxa[6]-rmaxa[4])*(za[5]-za[4])/(za[6]-za[4]);
-    //
-    PolyCone("SCA","SSD Suport cone Carbon Fiber Surface outer left",
-            phi0,dphi,nz,*z,*rmin,*rmax,SSDcf);
-    Pos("SCA",1,moth,trans.x(),trans.y(),trans.z(),0);
-    XMatrix(1,180.0);
-    Pos("SCA",2,moth,trans.x(),trans.y(),-trans.z(),1);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDcf,"Carbon Fiber for SSD support cone",Z,W,dens,2);
+    // Poly-cone Volume A. Top part of SSD cone Carbon Fiber.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = 0.0;
+    rn[0] = RoutMin;
+    rx[0] = RoutMax;
+    z[1]  = z[0]+ZouterMilled - dza; // za[2] - dza.
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    z[2]  = z[0]+ZouterMilled;//From Drawing ALR-0767 and ALR-0767/3
+    rx[2] = rx[0];
+    RadiusOfCurvature(Rcurv,0.,z[1],rn[1],Tc,z[3],rn[3]);
+    rn[2] = RFrom2Points(rn,z,3,1,z[2]);
+    RadiusOfCurvature(Rcurv,0.,z[2],rx[2],Tc,z[4],rx[4]);
+    rn[4] = RminFromZpCone(rn,z,Tc,z[4]);
+    rx[3] = RFrom2Points(rx,z,4,2,z[3]);
+    rn[5] = RholeMax;
+    z[5]  = Zfrom2Points(z,rn,4,3,rn[5]);
+    rx[5] = RmaxFromZpCone(rx,z,Tc,z[5]);
+    rn[6] = RholeMax;
+    rx[6] = rn[6];
+    z[6]  = ZFromRmaxpCone(rx,z,Tc,rx[6]);
+    TGeoPcon *A = new TGeoPcon("ITS SSD Suport cone Carbon Fiber "
+                       "Surface outer left",phi,dphi,7);
+    for(i=0;i<A->GetNz();i++){
+        A->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(A);
     //
+    // Poly-cone Volume B. Stesalite inside volume A.
     // Now lets define the Inserto Stesalite 4411w material volume.
-    nz = 6;
-    Double_t *zb    = new Double_t[nz];
-    Double_t *rminb = new Double_t[nz];
-    Double_t *rmaxb = new Double_t[nz];
-    zb[0] = z0;
-    rminb[0] = rmina[0]+ct;
-    rmaxb[0] = rmaxa[0]-ct;
-    zb[1] = za[1];
-    rminb[1] = rminb[0];
-    rmaxb[1] = rmaxb[0];
-    zb[2] = za[2];
-    rmaxb[2] = rmaxb[1];
-    zb[3] = za[4] - ct/sintc;
-    rmaxb[3] = rmaxb[2] - (rc-ct)*sintc;
-    zb[4] = za[3]+ct/sintc;
-    rminb[4] = rminb[1]-(rc-ct)*sintc;
-    rminb[2] = rminb[1]+(rminb[4]-rminb[1])*(zb[2]-zb[1])/(zb[4]-zb[1]);
-    rminb[3] = rminb[1]+(rminb[4]-rminb[1])*(zb[3]-zb[1])/(zb[4]-zb[1]);
-    zb[5] = zb[4]+(ct-2.*ct)/sintc;
-    rminb[5] = rminb[4]+(ct-2.*ct)*tantc;
-    rmaxb[5] = rminb[5];
-    rmaxb[4] = rmaxb[3]+(rmaxb[5]-rmaxb[3])*(zb[4]-zb[3])/(zb[5]-zb[3]);
-    PolyCone("SCB","SSD Suport cone Inserto Stesalite left edge",
-            phi0,dphi,nz,*zb,*rminb,*rmaxb,SSDfs);
-    Pos("SCB",1,"SCA",0.0,.0,0.0,0);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDfs,"Inserto stealite 4411w for SSD support cone",
-                   Z,W,dens,3);
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = A->GetZ(0);
+    rn[0] = A->GetRmin(0)+Cthick;
+    rx[0] = A->GetRmax(0)-Cthick;
+    z[1]  = A->GetZ(1);
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    z[2]  = A->GetZ(2);
+    rx[2] = rx[1];
+    RadiusOfCurvature(Rcurv-Cthick,0.,z[2],rx[2],Tc,z[3],rx[3]);
+    RadiusOfCurvature(Rcurv+Cthick,0.,z[1],rn[1],Tc,z[4],rn[4]);
+    rn[2] = RFrom2Points(rn,z,4,1,z[2]);
+    rn[3] = RFrom2Points(rn,z,4,1,z[3]);
+    z[5]  = z[4]+(Thickness-2.0*Cthick)/Sintc;
+    rn[5] = RmaxFromZpCone(A,Tc,z[5],-Cthick);
+    rx[5] = rn[5];
+    rx[4] = RFrom2Points(rx,z,5,3,z[4]);
+    TGeoPcon *B = new TGeoPcon("ITS SSD Suport cone Inserto Stesalite "
+                       "left edge",phi,dphi,6);
+    for(i=0;i<B->GetNz();i++){
+        B->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(B);
     //
+    // Poly-cone Volume C. Foam inside volume A.
     // Now lets define the Rohacell foam material volume.
-    nz = 4;
-    Double_t *zc    = new Double_t[nz];
-    Double_t *rminc = new Double_t[nz];
-    Double_t *rmaxc = new Double_t[nz];
-    zc[0] = zb[4];
-    rminc[0] = rminb[4];
-    rmaxc[0] = rmminc[0];
-    zc[1] = zb[5];
-    rmaxc[1] = rminb[5];
-    zc[2] = za[5] + ct/sintc;
-    rminc[2] = rmina[5]+ct; // leave space for carbon fiber covering hole.
-    rminc[1] = rminc[0] +(rminc[2]-rminc[0])*(zc[1]-zc[0])/(zc[2]-zc[0]);
-    zc[3] = za[6] - ct/sintc;
-    rminc[3] = rmina[6]+ct;
-    rmaxc[3] = rminc[3];
-    rmaxc[2] = rmaxc[1]+(rmaxc[3]-rmaxc[1])*(zc[2]-zc[1])/(zc[3]-zc[1]);
-    PolyCone("SCC","SSD Suport cone Rohacell foam left edge",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDfo);
-    Pos("SCC",1,"SCA",0.0,.0,0.0,0);
-    Za[0] = 1.; Wa[0] = ; // Hydrogen Content
-    Za[1] = 6.; Wa[1] = ; // Carbon Content
-    MixtureByWeight(SSDfo,"Foam core (Rohacell 50A) for SSD support cone",
-                   Z,W,dens,3);
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = B->GetZ(4);
+    rn[0] = B->GetRmin(4);
+    rx[0] = rn[0];
+    z[1]  = B->GetZ(5);
+    rx[1] = B->GetRmin(5);
+    rn[2] = A->GetRmin(5)+Cthick;//space for carbon fiber covering hole
+    z[2]  = ZFromRminpCone(A,Tc,rn[2],+Cthick);
+    rn[1] = RFrom2Points(rn,z,2,0,z[1]);
+    rx[3] = A->GetRmin(6)+Cthick;
+    rn[3] = rx[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    rx[2] = RFrom2Points(rx,z,3,1,z[2]);
+    TGeoPcon *C = new TGeoPcon("ITS SSD Suport cone Rohacell foam "
+                       "left edge",phi,dphi,4);
+    for(i=0;i<C->GetNz();i++){
+        C->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(C);
     //
     // In volume SCB, th Inserto Stesalite 4411w material volume, there
     // are a number of Stainless steel screw and pin studs which will be
     // filled with screws/studs.
-    Double_t rmin=0.0,rmax=6.0,dz=0.5*10.0; // mm
-    Tube("SCD","Screw+stud used to mount things to the SSD support cone",
-        rmin,rmax,dz,SSDsw);
-    rmin=0.0;rmax=6.0;dz=0.5*12.0; // mm
-    Tube("SCE","pin used to mount things to the SSD support cone",
-        rmin,rmax,dz,SSDsw);
-    Za[0] =  6.; Wa[0] = ; // Carbon Content
-    Za[1] = 25.; Wa[1] = ; // Iron Content
-    MixtureByWeight(SSDsw,"Stainless steal screw, pin, and stud material",
-                   Z,W,dens,3);
-    k=l=0;
-    for(i=0;i<2;i++){ // position for ITS-TPC mounting brackets
-       for(j=0;j<2;j++){ // 2 screws per bracket
-           k++;
-           t = -5.0+10.0*((Double_t)j)+180.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCD",k,"SCB",x,y,z,0);
-       } // end for j
-       for(j=0;j<3;j++){ // 3 pins per bracket
-           l++;
-           t = -3.0+3.0*((Double_t)j)+180.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCE",l,"SCB",x,y,z,0);
-       } // end for j
-    } // end for i
-    for(i=0;i<2;i++){ // position for ITS-rail mounting brackets
-       for(j=0;j<4;j++){ // 4 screws per bracket
-           Double_t a[4]={0.0,2.0,5.0,7.0}; // Relative angles.
-           k++;
-           t = 90.0-a[j]+187.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCD",k,"SCB",x,y,z,0);
-       } // end for j
-       for(j=0;j<2;j++){ // 2 pins per bracket
-           l++;
-           t = 88+7.0*((Double_t)j)+184.*((Double_t)i);
-           x = RoutHole*Sind(t);
-           y = RoutHole*Cosd(t);
-           z = dz;
-           Pos("SCE",l,"SCB",x,y,z,0);
-       } // end for j
-    } // end for i
+    rn[0] = 0.0*kmm,rx[0] = 6.0*kmm,z[0] = 0.5*10.0*kmm; // mm
+    TGeoTube *D = new TGeoTube("ITS Screw+stud used to mount things to "
+                       "the SSD support cone",rn[0],rx[0],z[0]);
+    printTube(D);
+    rn[0] = 0.0*kmm;rx[0] = 6.0*kmm;z[0] = 0.5*12.0*kmm; // mm
+    TGeoTube *E = new TGeoTube("ITS pin used to mount things to the "
+                       "SSD support cone",rn[0],rx[0],z[0]);
+    printTube(E);
     //
+    // Poly-cone Volume F. Foam in spoak reagion, inside volume A.
     // There is no carbon fiber between this upper left section and the
     // SSD spoaks. We remove it by replacing it with Rohacell foam.
-    nz = 4;
-    Double_t *zf    = new Double_t[nz];
-    Double_t *rminf = new Double_t[nz];
-    Double_t *rmaxf = new Double_t[nz];
-    zf[0] = zc[2];
-    rminf[0] = rminc[3];
-    rmaxf[0] = rminf[0];
-    rminf[1] = rmina[5];
-    rmaxf[1] = rminf[0];
-    zf[1] = zc[0]+(zc[2]-zc[0])*(rminf[1]-rminc[0])/(rminc[2]-rminc[0]);
-    zf[2] = zc[3];
-    rminf[2] = rminf[1];
-    rmaxf[2] = rmaxf[1];
-    zf[3] = zc[1]+(zc[3]-zc[1])*(rmaxf[3]-rmaxc[1])/(rmaxc[3]-rmaxc[1]);
-    rminf[3] = rmina[5];
-    rmaxf[3] = rminf[3];
-    PolyCone("SCF","SSD Suport cone Rohacell foam left edge",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDfo);
-    Pos("SCF",1,"SCA",0.0,.0,0.0,0);
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get
+    // the carbon fiber thickness uniform in this phi direction. We can only
+    // make it a fixed angular thickness.
+    t *= 180.0/TMath::Pi();
+    phi  = 12.5+t; // degrees see drawing ALR-0767.
+    dphi  = 5.0 - 2.0*t; // degrees
+    z[0]  = C->GetZ(2);
+    rn[0] = C->GetRmin(3);
+    rx[0] = rn[0];
+    rn[1] = A->GetRmin(5);
+    rx[1] = rn[0];
+    z[1]  = ZFromRminpCone(A,Tc,rn[1],+Cthick);
+    z[2]  = C->GetZ(3);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    rn[3] = A->GetRmin(6);
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    TGeoPcon *F = new TGeoPcon("ITS SSD Top Suport cone Rohacell foam "
+                       "Spoak",phi,dphi,4);
+    for(i=0;i<F->GetNz();i++){
+        F->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(F);
     //=================================================================
+     // Poly-cone Volume G.
     // Now for the spoak part of the SSD cone.
     // It is not posible to inclue the radius of curvature between
     // the spoak part and the upper left part of the SSD cone or lowwer right
     // part. This would be discribed by the following curves.
     // R = Rmax - (5mm)*Sin(t) phi = phi0+(5mm*180/(Pi*RoutHole))*Sin(t) 
     // where 0<=t<=90 For the inner curve a simular equiation holds.
-    phi0 = 12.5; // degrees see drawing ALR-0767.
-    dphi = 5.0; // degrees
-    nz = 4;
-    Double_t *zg    = new Double_t[nz];
-    Double_t *rming = new Double_t[nz];
-    Double_t *rmaxg = new Double_t[nz];
-    zg[0] = zb[5];
-    rming[0] = rmina[5];
-    rmaxg[0] = rming[0];
-    zg[1] = za[6];
-    rming[1] = -thatc*(zg[1]-za[3])+rmina[3];
-    rmaxg[1] = rmaxg[0];
-    rming[2] = Rholemin;
-    zg[2] = za[3]-(rming[2]-rmina[3])/tantc;
-    rmaxg[2] = -thatc*(zg[2]-za[4])+rmaxa[4];
-    rming[3] = rming[2];
-    rmaxg[3] = rming[3];
-    zg[3] = za[4]-(rmaxg[3]-rmaxa[4])/tantc;
-    PolyCone("SCG","SSD spoak carbon fiber surfaces",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDcf);
-    Zmatrix(irot,360./((Double_t)nspoaks));
-    Pos("SCG",i+1,"SCA",0.0,.0,0.0,0);
-    for(i=1;i<nspoaks;i++){
-       Zmatrix(irot+i,360./((Double_t)nspoaks));
-       Pos("SCG",i+1,"SCA",0.0,.0,0.0,irot+i);
+    phi   = 12.5; // degrees see drawing ALR-0767.
+    dphi  = 5.0; // degrees
+    z[0]  = A->GetZ(5);
+    rn[0] = A->GetRmin(5);
+    rx[0] = rn[0];
+    z[1]  = A->GetZ(6);
+    rn[1] = RminFromZpCone(A,Tc,z[1]);
+    rx[1] = rx[0];
+    rn[2] = RholeMin;
+    z[2]  = ZFromRminpCone(A,Tc,rn[2]);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3]);
+    TGeoPcon *G = new TGeoPcon("ITS SSD spoak carbon fiber surfaces",
+                       phi,dphi,4);
+    for(i=0;i<G->GetNz();i++){
+        G->DefineSection(i,z[i],rn[i],rx[i]);
     } // end for i
+    printPcon(G);
     // For the foam core.
-    t = ct/(0.5*(Rholemax+Rholemin));// It is not posible to get the
+    // Poly-cone Volume H.
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the
     // carbon fiber thickness uniform in this phi direction. We can only
     // make it a fixed angular thickness.
     t *= 180.0/TMath::Pi();
-    dphi = 5.0 - 2.0*t; // degrees
-    phi0 = 12.5+t; // degrees see drawing ALR-0767.
-    nz = 4;
-    Double_t *zh    = new Double_t[nz];
-    Double_t *rminh = new Double_t[nz];
-    Double_t *rmaxh = new Double_t[nz];
-    zh[0] = zf[2];
-    rminh[0] = rming[0];
-    rmaxh[0] = rmaxg[0];
-    zh[1] = zf[3];
-    rminh[1] = rming[1]-(ct/sintc-(zg[1]-zh[1]))*tantc;
-    rmaxh[1] = rmaxh[0];
-    zh[2] = zg[2]+ct/tanth;
-    rminh[2] = rming[2];
-    rmaxh[2] = rmaxg[2]-(ct/sintc-(zg[2]-zh[2]))*tantc;
-    zh[3] = zg[3]-ct/sintc;
-    rminh[3] = rminh[2];
-    rmaxh[3] = rminh[3];
-    PolyCone("SCG","SSD spoak carbon fiber surfaces",
-            phi0,dphi,nz,*zc,*rminc,*rmaxc,SSDcf);
-    Pos("SCH",1,"SCG",0.0,.0,0.0,0);
+    phi   = 12.5+t; // degrees
+    dphi  = 5.0 - 2.0*t; // degrees see drawing ALR-0767.
+    z[0]  = F->GetZ(1);
+    rn[0] = G->GetRmin(0);
+    rx[0] = rn[0];
+    z[1]  = F->GetZ(3);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    rx[1] = rx[0];
+    z[2]  = ZFromRminpCone(A,Tc,G->GetRmin(2),+Cthick);
+    rn[2] = G->GetRmin(2);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    z[3]  = ZFromRmaxpCone(A,Tc,G->GetRmin(3),-Cthick);
+    rn[3] = G->GetRmin(3);
+    rx[3] = rn[3];
+    TGeoPcon *H = new TGeoPcon("ITS SSD support cone Rohacell foam Spoak",
+                       phi,dphi,4); 
+    for(i=0;i<H->GetNz();i++){
+        H->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(H);
     //
     //==================================================================
-
+    // Now for the Inner most part of the SSD cone.
+    //Poly-cone Volume I.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = G->GetZ(2);
+    rn[0] = G->GetRmin(2);
+    rx[0] = rn[0];
+    z[1]  = G->GetZ(3);
+    rn[1] = RminFromZpCone(A,Tc,z[1]);
+    rx[1] = rx[0];
+    rn[4] = RinMin;
+    rn[5] = RinMin;
+    RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,rx[5]); // z dummy
+    z[5]  = ZFromRmaxpCone(A,Tc,rx[5]);
+    z[6]  = Zcylinder;
+    rn[6] = RinMin;
+    z[7]  = z[6];
+    rn[7] = RinCylinder;
+    rn[8] = RinCylinder;
+    rx[8] = rn[8];
+    Rmin   = rn[5];
+    RadiusOfCurvature(Rcurv,90.0-Tc,z[5],rx[5],90.0,Z,Rmax);
+    Rmax   = RinMax;
+    z[8]  = Z+(z[5]-Z)*(rx[8]-Rmax)/(rx[5]-Rmax);
+    rx[6] = RFrom2Points(rx,z,8,5,z[6]);
+    rx[7] = rx[6];
+    z[3]  = Z-dZin;
+    z[4]  = z[3];
+    rx[3] = RmaxFromZpCone(A,Tc,z[3]);
+    rx[4] = rx[3];
+    //rmin dummy
+    RadiusOfCurvature(Rcurv,90.,z[3],0.,90.-Tc,z[2],Rmin);
+    rn[2] = RminFromZpCone(A,Tc,z[2]);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    // z dummy
+    RadiusOfCurvature(Rcurv,90.-Tc,0.0,rn[2],90.0,Z,rn[3]);
+    TGeoPcon *I = new TGeoPcon("ITS SSD lower/inner right part of SSD "
+                       "cone",phi,dphi,9);
+    for(i=0;i<I->GetNz();i++){
+        I->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(I);
+    // Now for Inserto volume at the inner most radius.
+    // Poly-cone Volume K.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[1]  = I->GetZ(3)+Cthick;
+    rn[1] = I->GetRmin(3);
+    z[2]  = z[1];
+    rn[2] = I->GetRmin(4);
+    rn[3] = rn[2];
+    rn[4] = rn[2];
+    rx[4] = I->GetRmax(5)-Cthick*Sintc;
+    RadiusOfCurvature(Rcurv+Cthick,90.0,z[1],rn[1],90.0-Tc,z[0],rn[0]);
+    rx[0] = rn[0];
+    z[3]  = z[0]+(Thickness-2.0*Cthick)*Costc;;
+    rx[3] = rx[0]+(Thickness-2.0*Cthick)*Sintc;
+    rx[1] = RFrom2Points(rx,z,3,0,z[1]);
+    rx[2] = rx[1];
+    z[4]  = ZFromRmaxpCone(A,Tc,rx[4],-Cthick);
+    rn[5] = rn[2];
+    z[5]  = I->GetZ(6);
+    rx[5] = (I->GetRmax(5)-I->GetRmax(8))/(I->GetZ(5)-I->GetZ(8))*(z[5]-z[4])+
+          rx[4];
+    TGeoPcon *K = new TGeoPcon("ITS SSD inner most inserto material",
+                       phi,dphi,6);
+    for(i=0;i<K->GetNz();i++){
+        K->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(K);
+    // Now for foam core at the inner most radius.
+    // Poly-cone Volume J.
+    phi   = 0.0;
+    dphi  = 360.0;
+    rn[0] = I->GetRmin(0)-Cthick;
+    z[0]  = ZFromRminpCone(A,Tc,rn[0],+Cthick);
+    rx[0] = rn[0];
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1],-Cthick);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    z[2]  = K->GetZ(0);
+    rn[2] = K->GetRmin(0);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    z[3]  = K->GetZ(3);
+    rn[3] = K->GetRmax(3);
+    rx[3] = rn[3];
+    TGeoPcon *J = new TGeoPcon("ITS SSD inner most foam core",phi,dphi,4); 
+    for(i=0;i<J->GetNz();i++){
+        J->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(J);
+    // Now for foam core at the top of the inner most radius where 
+    // the spoaks are.
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the
+    // carbon fiber thickness uniform in this phi direction. We can only
+    // make it a fixed angular thickness.
+    // Poly-cone Volume L.
+    t *= 180.0/TMath::Pi();
+    phi   = 12.5+t; // degrees
+    dphi  = 5.0 - 2.0*t; // degrees see drawing ALR-0767.
+    z[0]  = H->GetZ(2);
+    rn[0] = H->GetRmin(2);
+    rx[0] = rn[0];
+    z[1]  = J->GetZ(0);
+    rn[1] = J->GetRmin(0);
+    rx[1] = I->GetRmax(1);
+    z[2]  = H->GetZ(3);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    z[3]  = J->GetZ(1);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    TGeoPcon *L = new TGeoPcon("ITS SSD Bottom cone Rohacell foam Spoak",
+                       phi,dphi,4);
+    for(i=0;i<L->GetNz();i++){
+        L->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(L);
+    // Now for the SSD mounting posts
+    // Poly-cone Volume O.
+    dphi  = 180.0*dRpost/(RpostMin+0.5*dRpost)/TMath::Pi(); //
+    phi   = Phi0Post-0.5*dphi; // degrees
+    rn[0] = RpostMin+dRpost;
+    rx[0] = rn[0];
+    z[0]  = ZFromRmaxpCone(A,Tc,rx[0]);
+    rn[1] = RpostMin;
+    z[1]  = ZFromRmaxpCone(A,Tc,rn[1]);
+    rx[1] = rx[0];
+    z[2]  = ZpostMax;
+    rn[2] = RpostMin;
+    rx[2] = rn[2]+dRpost;
+    TGeoPcon *O = new TGeoPcon("ITS SSD mounting post, carbon fiber",
+                       phi,dphi,3);
+    for(i=0;i<O->GetNz();i++){
+        O->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(O);
+    // Now for the SSD mounting posts
+    // Poly-cone Volume P.
+    t = 180.0*Cthick/(RpostMin+0.5*dRpost)/TMath::Pi();
+    dphi  = O->GetDphi()-2.0*t; // degrees
+    phi   = O->GetPhi1()+t; //
+    rn[0] = O->GetRmin(0)-Cthick;
+    rx[0] = rn[0];
+    z[0]  = ZFromRmaxpCone(A,Tc,rx[0]);
+    rn[1] = O->GetRmin(1)+Cthick;
+    rx[1] = O->GetRmin(0)-Cthick;
+    z[1]  = ZFromRmaxpCone(A,Tc,rn[1]);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    z[2]  = ZpostMax;
+    TGeoPcon *P = new TGeoPcon("ITS SSD mounting post, Inserto",
+                       phi,dphi,3);
+    for(i=0;i<P->GetNz();i++){
+        P->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(P);
+    // This insrto continues into the SSD cone displacing the foam
+    // and the carbon fiber surface at those points where the posts are.
+    //Poly-cone Vol. M
+    phi   = P->GetPhi1();
+    dphi  = P->GetDphi();
+    rn[0] = RpostMin+dRpost-Cthick;
+    rx[0] = rn[0];
+    z[0]  = ZFromRminpCone(A,Tc,rn[0],+Cthick);
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1],-Cthick);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    rn[2] = RpostMin+Cthick;
+    z[2]  = ZFromRminpCone(A,Tc,rn[2],+Cthick);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    TGeoPcon *M = new TGeoPcon("ITS SSD mounting post foam substitute, "
+                       "Inserto",phi,dphi,4);
+    for(i=0;i<M->GetNz();i++){
+        M->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(M);
     //
-    //Now for the carbon fiber on the sides of the spoakes.
-    //==============================================================
-    delete[] za;delete[] rmina;delete[] rmaxa;
-    delete[] zb;delete[] rminb;delete[] rmaxb;
-    delete[] zc;delete[] rminc;delete[] rmaxc;
-    delete[] zd;delete[] rmind;delete[] rmaxd;
-    delete[] ze;delete[] rmine;delete[] rmaxe;
-    delete[] zf;delete[] rminf;delete[] rmaxf;
-    delete[] zg;delete[] rming;delete[] rmaxg;
-    delete[] zh;delete[] rminh;delete[] rmaxh;
-    delete[] zi;delete[] rmini;delete[] rmaxi;
-    delete[] zj;delete[] rminj;delete[] rmaxj;
-    // Set back to cm default scale before exiting.
-    SetScalecm();
-    return;
+    //Poly-cone Vol. N
+    phi   = P->GetPhi1();
+    dphi  = P->GetDphi();
+    z[0]  = M->GetZ(1);
+    rn[0] = M->GetRmax(1);
+    rx[0] = rn[0];
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1]);
+    rn[1] = RmaxFromZpCone(A,Tc,z[1],-Cthick);
+    z[2]  = M->GetZ(3);
+    rn[2] = M->GetRmin(3);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3]);
+    TGeoPcon *N = new TGeoPcon("ITS SSD mounting post CF subsititute, "
+                       "Inserto",phi,dphi,4);
+    for(i=0;i<N->GetNz();i++){ 
+        N->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(N);
+    // Bolt heads holding the SSD-SDD tube to the SSD cone.
+    // Bolt -- PolyCone
+    //Poly-cone Volume Q.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = I->GetZ(4)+ThSDDsupportPlate;
+    rn[0] = 0.0;
+    rx[0] = 0.5*DscrewHead;
+    z[1]  = I->GetZ(4)+ThScrewHeadHole;
+    rn[1] = 0.0;
+    rx[1] = 0.5*DscrewHead;
+    z[2]  = z[1];
+    rn[2] = 0.0;
+    rx[2] = 0.5*DscrewShaft;
+    z[3]  = I->GetZ(6);
+    rn[3] = 0.0;
+    rx[3] = rx[2];
+    TGeoPcon *Q = new TGeoPcon("ITS SSD Thermal sheal stainless steel "
+                       "bolts",phi,dphi,4);
+    for(i=0;i<Q->GetNz();i++){
+        Q->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(Q);
+    // air infront of bolt (stasolit Volume K) -- Tube
+    z[0]  = 0.5*(ThSDDsupportPlate-Cthick);
+    rn[0] = 0.0*kmm;
+    rx[0] = 0.5*DscrewHead;
+    TGeoTube *R = new TGeoTube("ITS Air in front of bolt (in stasolit)",
+                       rn[0],rx[0],z[0]);
+    // air infront of bolt (carbon fiber volume I) -- Tube
+    z[0]  = 0.5*Cthick;
+    rn[0] = 0.0*kmm;
+    rx[0] = R->GetRmax();
+    TGeoTube *S = new TGeoTube("ITS Air in front of Stainless Steal "
+                       "Screw end, N6",rn[0],rx[0],z[0]);
+    printTube(S);
+    // SDD support plate, SSD side.
+    //Poly-cone Volume T.
+    dphi  = TMath::RadToDeg()*TMath::ATan2(0.5*WsddSupportPlate,
+                                           RsddSupportPlate);
+    phi   = Phi0SDDsupports-0.5*dphi;
+    z[0]  = K->GetZ(2);
+    rn[0] = I->GetRmin(4);
+    rx[0] = RsddSupportPlate;
+    z[1]  = I->GetZ(4) - ThSDDsupportPlate;
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    TGeoPcon *T = new TGeoPcon("ITS SSD-SDD mounting bracket Inserto->Al.",
+                       phi,dphi,2);
+    for(i=0;i<T->GetNz();i++){
+        T->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(T);
+    //
+    // Poly-cone Volume U.
+    TGeoPcon *U;
+    if(I->GetRmin(3)<T->GetRmax(0)){
+     dphi  = T->GetDphi();
+     phi   = T->GetPhi1();
+     z[2]  = I->GetZ(4);
+     rn[2] = T->GetRmin(0);
+     rx[2] = T->GetRmax(0);
+     z[3]  = K->GetZ(2);
+     rn[3] = rn[2];
+     rx[3] = rx[2];
+     z[1]  = z[2];
+     rn[1] = I->GetRmin(3);
+     rx[1] = rx[3];
+     rx[0] = T->GetRmax(0);
+     rn[0] = rx[0];
+     z[0]  = Zfrom2MinPoints(I,2,3,rn[0]);
+     U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,4);
+    }else{
+     dphi  = T->GetDphi();
+     phi   = T->GetPhi1();
+     z[0]  = I->GetZ(4);
+     rn[0] = T->GetRmin(0);
+     rx[0] = T->GetRmax(0);
+     z[1]  = K->GetZ(2);
+     rn[1] = rn[0];
+     rx[1] = rx[0];
+     U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,2);
+    }// end if
+    for(i=0;i<U->GetNz();i++){
+        U->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    printPcon(U);
+    //
+    TGeoVolume *Av,*Bv,*Cv,*Dv,*Ev,*Fv,*Gv,*Hv,*Iv,*Jv,*Kv,*Lv,*Mv,*Nv,
+            *Ov,*Pv,*Qv,*Rv,*Sv,*Tv,*Uv;
+    Av = new TGeoVolume("ITSssdConeA",A,SSDcf);
+    Av->SetVisibility(kTRUE);
+    Av->SetLineColor(4); // blue
+    Av->SetLineWidth(1);
+    Av->SetFillColor(Av->GetLineColor());
+    Av->SetFillStyle(4010); // 10% transparent
+    Bv = new TGeoVolume("ITSssdConeB",B,SSDfs);
+    Bv->SetVisibility(kTRUE);
+    Bv->SetLineColor(2); // red
+    Bv->SetLineWidth(1);
+    Bv->SetFillColor(Bv->GetLineColor());
+    Bv->SetFillStyle(4010); // 10% transparent
+    Cv = new TGeoVolume("ITSssdConeC",C,SSDfo);
+    Cv->SetVisibility(kTRUE);
+    Cv->SetLineColor(3); // green
+    Cv->SetLineWidth(1);
+    Cv->SetFillColor(Cv->GetLineColor());
+    Cv->SetFillStyle(4010); // 10% transparent
+    Dv = new TGeoVolume("ITSssdConeD",D,SSDss);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(1); // black
+    Dv->SetLineWidth(1);
+    Dv->SetFillColor(Dv->GetLineColor());
+    Dv->SetFillStyle(4010); // 10% transparent
+    Ev = new TGeoVolume("ITSssdConeE",E,SSDss);
+    Ev->SetVisibility(kTRUE);
+    Ev->SetLineColor(1); // black
+    Ev->SetLineWidth(1);
+    Ev->SetFillColor(Ev->GetLineColor());
+    Ev->SetFillStyle(4010); // 10% transparent
+    Fv = new TGeoVolume("ITSssdConeF",F,SSDfo);
+    Fv->SetVisibility(kTRUE);
+    Fv->SetLineColor(3); // green
+    Fv->SetLineWidth(1);
+    Fv->SetFillColor(Fv->GetLineColor());
+    Fv->SetFillStyle(4010); // 10% transparent
+    Gv = new TGeoVolume("ITSssdConeG",G,SSDcf);
+    Gv->SetVisibility(kTRUE);
+    Gv->SetLineColor(4); // blue
+    Gv->SetLineWidth(2);
+    Gv->SetFillColor(Gv->GetLineColor());
+    Gv->SetFillStyle(4010); // 10% transparent
+    Hv = new TGeoVolume("ITSssdConeH",H,SSDfo);
+    Hv->SetVisibility(kTRUE);
+    Hv->SetLineColor(3); // green
+    Hv->SetLineWidth(1);
+    Hv->SetFillColor(Hv->GetLineColor());
+    Hv->SetFillStyle(4010); // 10% transparent
+    Iv = new TGeoVolume("ITSssdConeI",I,SSDcf);
+    Iv->SetVisibility(kTRUE);
+    Iv->SetLineColor(4); // blue
+    Iv->SetLineWidth(1);
+    Iv->SetFillColor(Iv->GetLineColor());
+    Iv->SetFillStyle(4010); // 10% transparent
+    Jv = new TGeoVolume("ITSssdConeJ",J,SSDfo);
+    Jv->SetVisibility(kTRUE);
+    Jv->SetLineColor(3); // green
+    Jv->SetLineWidth(3);
+    Jv->SetFillColor(Jv->GetLineColor());
+    Jv->SetFillStyle(4010); // 10% transparent
+    Kv = new TGeoVolume("ITSssdConeK",K,SSDfs);
+    Kv->SetVisibility(kTRUE);
+    Kv->SetLineColor(2); // red
+    Kv->SetLineWidth(1);
+    Kv->SetFillColor(Kv->GetLineColor());
+    Kv->SetFillStyle(4010); // 10% transparent
+    Lv = new TGeoVolume("ITSssdConeL",L,SSDfo);
+    Lv->SetVisibility(kTRUE);
+    Lv->SetLineColor(3); // green
+    Lv->SetLineWidth(3);
+    Lv->SetFillColor(Lv->GetLineColor());
+    Lv->SetFillStyle(4010); // 10% transparent
+    Mv = new TGeoVolume("ITSssdConeM",M,SSDfs);
+    Mv->SetVisibility(kTRUE);
+    Mv->SetLineColor(2); // red
+    Mv->SetLineWidth(1);
+    Mv->SetFillColor(Mv->GetLineColor());
+    Mv->SetFillStyle(4010); // 10% transparent
+    Nv = new TGeoVolume("ITSssdConeN",N,SSDfs);
+    Nv->SetVisibility(kTRUE);
+    Nv->SetLineColor(2); // red
+    Nv->SetLineWidth(1);
+    Nv->SetFillColor(Nv->GetLineColor());
+    Nv->SetFillStyle(4010); // 10% transparent
+    Ov = new TGeoVolume("ITSssdConeO",O,SSDcf);
+    Ov->SetVisibility(kTRUE);
+    Ov->SetLineColor(4); // blue
+    Ov->SetLineWidth(1);
+    Ov->SetFillColor(Iv->GetLineColor());
+    Ov->SetFillStyle(4010); // 10% transparent
+    Pv = new TGeoVolume("ITSssdConeP",P,SSDfs);
+    Pv->SetVisibility(kTRUE);
+    Pv->SetLineColor(2); // red
+    Pv->SetLineWidth(1);
+    Pv->SetFillColor(Pv->GetLineColor());
+    Pv->SetFillStyle(4010); // 10% transparent
+    Qv = new TGeoVolume("ITSssdConeQ",Q,SSDss);
+    Qv->SetVisibility(kTRUE);
+    Qv->SetLineColor(1); // black
+    Qv->SetLineWidth(1);
+    Qv->SetFillColor(Qv->GetLineColor());
+    Qv->SetFillStyle(4010); // 10% transparent
+    Rv = new TGeoVolume("ITSssdConeR",R,SSDair);
+    Rv->SetVisibility(kTRUE);
+    Rv->SetLineColor(5); // yellow
+    Rv->SetLineWidth(1);
+    Rv->SetFillColor(Rv->GetLineColor());
+    Rv->SetFillStyle(4010); // 10% transparent
+    Sv = new TGeoVolume("ITSssdConeS",S,SSDair);
+    Sv->SetVisibility(kTRUE);
+    Sv->SetLineColor(5); // yellow
+    Sv->SetLineWidth(1);
+    Sv->SetFillColor(Sv->GetLineColor());
+    Sv->SetFillStyle(4010); // 10% transparent
+    Tv = new TGeoVolume("ITSssdConeT",T,SSDal);
+    Tv->SetVisibility(kTRUE);
+    Tv->SetLineColor(17); // gray
+    Tv->SetLineWidth(1);
+    Tv->SetFillColor(Tv->GetLineColor());
+    Tv->SetFillStyle(4010); // 10% transparent
+    Uv = new TGeoVolume("ITSssdConeU",U,SSDal);
+    Uv->SetVisibility(kTRUE);
+    Uv->SetLineColor(17); // gray
+    Uv->SetLineWidth(1);
+    Uv->SetFillColor(Uv->GetLineColor());
+    Uv->SetFillStyle(4010); // 10% transparent
+    //
+    TGeoTranslation *tran = new TGeoTranslation("ITSssdConeTrans",0.0,0.0,-Z0);
+    TGeoRotation *rot180  = new TGeoRotation("",0.0,180.0,0.0);
+    TGeoCombiTrans *flip  = new TGeoCombiTrans("ITSssdConeFlip",0.0,0.0,Z0,rot180);
+    delete rot180;// rot not explicity used in AddNode functions.
+    TGeoTranslation *tranR,*tranS;
+    TGeoCombiTrans *fliptran,*rottran;
+    TGeoRotation *rot,*zspoaks,*zspoaks180;
+    Int_t NcD=1,NcE=1,NcQ=1,NcR=1,NcS=1,NcT=1,NcU=1;
+    Av->AddNode(Bv,1,0);
+    Av->AddNode(Cv,1,0);
+    Moth->AddNode(Av,1,tran); // RB24 side
+    Moth->AddNode(Av,2,flip); // RB26 side (Absorber)
+    Moth->AddNode(Iv,1,tran); // RB24 side
+    Moth->AddNode(Iv,2,flip); // RB26 side (Absorber)
+    Gv->AddNode(Hv,1,0);
+    for(i=0;i<Nspoaks;i++){ // SSD Cone Spoaks
+     zspoaks = new TGeoRotation("",0.0,0.0,
+                       ((Double_t)i*360.)/((Double_t)Nspoaks));
+     rottran = new TGeoCombiTrans("",0.0,0.0,-Z0,zspoaks);
+     Moth->AddNode(Gv,i+1,rottran); // RB24 side
+     Av->AddNode(Fv,i+1,zspoaks);
+     Iv->AddNode(Lv,i+1,zspoaks);
+     zspoaks180 =  new TGeoRotation("",0.0,180.0,
+                           ((Double_t)i*360.)/((Double_t)Nspoaks));
+     fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zspoaks180);
+     delete zspoaks180;// rot not explicity used in AddNode functions.
+     Moth->AddNode(Gv,Nspoaks+i+1,fliptran); // RB26 side
+    } // end for i
+    Iv->AddNode(Jv,1,0);
+    Iv->AddNode(Kv,1,0);
+    Ov->AddNode(Pv,1,0);
+    t0 = (P->GetPhi1()+0.5*P->GetDphi())*kRadian;
+    t  = (0.25* P->GetDphi())*kRadian;
+    z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))+
+          0.25*(P->GetRmax(2)-P->GetRmin(2));
+    x = z[0]*TMath::Cos(t0+t);
+    y = z[0]*TMath::Sin(t0+t);
+    tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3));
+    Pv->AddNode(Qv,NcQ++,tran); // Screw head
+    z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))-
+          0.25*(P->GetRmax(2)-P->GetRmin(2));
+    x = z[0]*TMath::Cos(t0-t);
+    y = z[0]*TMath::Sin(t0-t);
+    tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3));
+    Pv->AddNode(Qv,NcQ++,tran); // Screw head
+    //Pv->AddNode(Vv,1,?); // Air hole in Posts
+    //Pv->AddNode(Vv,2,?); // Air hole in Posts
+    //Mv->AddNode(Wv,1,?); // Air hole in Posts
+    //Mv->AddNode(Wv,2,?); // Air hole in Posts
+    //Nv->AddNode(Xv,1,?); // Air hole in Posts
+    //Nv->AddNode(Xv,2,?); // Air hole in Posts
+    TGeoRotation *zposts,*zposts180;
+    for(i=0;i<Nposts;i++){ // SSD Cone mounting posts
+        zposts = new TGeoRotation("",0.0,0.0,
+                                  ((Double_t)i*360.)/((Double_t)Nposts));
+        rottran = new TGeoCombiTrans("",0.0,0.0,-Z0,zposts);
+        Moth->AddNode(Ov,i+1,rottran); // RB24 side
+        Jv->AddNode(Mv,i+1,zposts);
+        Iv->AddNode(Nv,i+1,zposts);
+        //Jv->AddNode(Xv,2*i+3,?); // Air hole in Posts
+        //Jv->AddNode(Xv,2*i+4,?); // Air hole in Posts
+        zposts180 = new TGeoRotation("",0.0,180.0,
+                                     ((Double_t)i*360.)/((Double_t)Nposts));
+        fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zposts180);
+        delete zposts180;// rot not explicity used in AddNode functions.
+        Moth->AddNode(Ov,Nposts+i+1,fliptran); // RB26 side
+    } // end for i
+    //
+    for(i=0;i<NinScrews;i++){
+        t = (Phi0Screws+360.*((Double_t)i)/((Double_t)NinScrews))*kRadian;
+        tran= new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                  RcylinderScrews*TMath::Sin(t),0.0);
+        Kv->AddNode(Qv,NcQ++,tran);
+        tran = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                  RcylinderScrews*TMath::Sin(t),
+                                   CB->GetZ(0)+D->GetDz());
+        CBv->AddNode(Dv,NcD++,tran);
+        tran = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                  RcylinderScrews*TMath::Sin(t),
+                                   CB->GetZ(5)-D->GetDz());
+        CBv->AddNode(Dv,NcD++,tran);
+        if(/*not where volumes U and T are*/kTRUE){
+            tranR = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                        RcylinderScrews*TMath::Sin(t),
+                                        K->GetZ(2)+R->GetDz());
+            tranS = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                        RcylinderScrews*TMath::Sin(t),
+                                        I->GetZ(4)+S->GetDz());
+            Kv->AddNode(Rv,NcR++,tranR);
+            Iv->AddNode(Sv,NcS++,tranS);
+        } // end if
+    } // end for i
+    const Int_t Nbscrew=2,Nbpins=3,Nrailsc=4,Nrailp=2;
+    Double_t da[] = {-3.5,-1.5,1.5,3.5};
+    for(i=0;i<2;i++){ // Mounting for ITS-TPC bracket or ITS-Rails
+        t0 = 180.*((Double_t)i)*kRadian;
+        for(j=-Nbscrew/2;j<=Nbscrew/2;j++)if(j!=0){//screws per ITS-TPC bracket
+            t = t0 + 5.0*((Double_t)j)*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+        } // end or j
+        for(j=-Nbpins/2;j<=Nbpins/2;j++){ // pins per ITS-TPC bracket
+            t = t0 + 3.0*((Double_t)j)*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+        } // end or j
+        t0 = (96.5+187.*((Double_t)i))*kRadian;
+        for(j=0;j<Nrailsc;j++){ // screws per ITS-rail bracket
+            t = t0+da[j]*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+        } // end or j
+        t0 = (91.5+184.*((Double_t)i))*kRadian;
+        for(j=-Nrailp/2;j<=Nrailp/2;j++)if(j!=0){ // pins per ITS-rail bracket
+            t = t0+(7.0*((Double_t)j))*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+        } // end or j
+    } // end for i
+    for(i=0;i<Nmounts;i++){ // mounting points for SPD-cone+Beam-pipe support
+        t0 = (45.0+((Double_t)i)*360./((Double_t)Nmounts))*kRadian;
+        for(j=-1;j<=1;j++)if(j!=0){ // 2 screws per bracket
+            t = t0+((Double_t)j)*0.5*DmountAngle*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+        } // end for j
+        for(j=0;j<1;j++){ // 1 pin per bracket
+            t = t0;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+        } // end for j
+    } // end for i
+    t = (T->GetPhi1()+0.5*T->GetDphi())*kRadian;
+    tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t),
+                               T->GetZ(T->GetNz()-1)+R->GetDz());
+    Tv->AddNode(Rv,NcR++,tran);
+    t = (U->GetPhi1()+0.5*U->GetDphi())*kRadian;
+    tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t),
+                               U->GetZ(U->GetNz()-1)+S->GetDz());
+    Uv->AddNode(Sv,NcS++,tran);
+    for(i=0;i<NssdSupports;i++){ // mounting braclets for SSD/SDD 
+        t0 = ((Double_t)i*360./((Double_t)NssdSupports));
+        rot = new TGeoRotation("",0.0,0.0,t0);
+        Kv->AddNode(Tv,NcT++,rot);
+        Iv->AddNode(Uv,NcU++,rot);
+        for(j=0;j<2;j++)if(j!=0){ // 2 pin per bracket
+            t = t0 + ((Double_t)j)*0.5*DssdsddBracketAngle;
+            tran = new TGeoTranslation("",RinHole*TMath::Cos(t),
+                                       RinHole*TMath::Sin(t),
+                                       T->GetZ(T->GetNz()-1)-E->GetDz());
+            Kv->AddNode(Ev,NcE++,tran);
+        } // end for j
+    } // end for i
+    if(GetDebug()){
+        Av->PrintNodes();
+        Bv->PrintNodes();
+        Cv->PrintNodes();
+        Dv->PrintNodes();
+        Ev->PrintNodes();
+        Fv->PrintNodes();
+        Gv->PrintNodes();
+        Hv->PrintNodes();
+        Iv->PrintNodes();
+        Jv->PrintNodes();
+        Kv->PrintNodes();
+        Lv->PrintNodes();
+        Mv->PrintNodes();
+        Nv->PrintNodes();
+        Ov->PrintNodes();
+        Pv->PrintNodes();
+        Qv->PrintNodes();
+        Rv->PrintNodes();
+        Sv->PrintNodes();
+        Tv->PrintNodes();
+        Uv->PrintNodes();
+    } // end if
 }
 //______________________________________________________________________
-void AliITSv11::CreateGeometry(){
-    ////////////////////////////////////////////////////////////////////////
-    // This routine defines and Creates the geometry for version 11 of the ITS.
-    ////////////////////////////////////////////////////////////////////////
+void AliITSv11::CreateMaterials(){
+    // Create ITS materials
+    //     This function defines the default materials used in the Geant
+    // Monte Carlo simulations for the geometries AliITSv11.
+    // In general it is automatically replaced by
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+
+    //TGeoMaterial *C  = new TGeoMaterial("ITSCarbon",12.0,6.0,2.265);
+    TGeoMaterial *Al = new TGeoMaterial("ITSAluminum",26.981539,13.0,2.07);
+    TGeoMixture *Cfiber = new TGeoMixture("ITSCarbonFiber",6,1.930);
+    TGeoMixture *Rohacell = new TGeoMixture("ITSRohacell",6,1.930);
+    TGeoMixture *Staselite = new TGeoMixture("ITSStaselite4411w",6,1.930);
+    TGeoMixture *Air = new TGeoMixture("ITSAir",6,1.205*1.E-3);
+    TGeoMixture *Stainless = new TGeoMixture("ITSStainless",6,1.930);
+    //
+    Double_t SPDcone[20];
+    SPDcone[0] = 1.0; // imat
+    SPDcone[1] = 0.0; // isvol
+    SPDcone[2] = gAlice->Field()->Integ(); // ifield
+    SPDcone[3] = gAlice->Field()->Max(); // fieldm
+    SPDcone[4] = 1.0; // tmaxfd [degrees]
+    SPDcone[5] = 1.0; // stemax [cm]
+    SPDcone[6] = 0.5; // deemax [fraction]
+    SPDcone[7] = 1.0E-3; // epsil [cm]
+    SPDcone[8] = 0.0; // stmin [cm]
+    new TGeoMedium("ITSspdCarbonFiber",1,Cfiber,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdStaselite4411w",2,Staselite,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdRohacell50A",3,Rohacell,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdStainlesSteal",4,Stainless,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdAir",5,Air,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdAl",6,Al,SPDcone);
+    //
+    Double_t SSDcone[20];
+    SSDcone[0] = 1.0; // imat
+    SSDcone[1] = 0.0; // isvol
+    SSDcone[2] = gAlice->Field()->Integ(); // ifield
+    SSDcone[3] = gAlice->Field()->Max(); // fieldm
+    SSDcone[4] = 1.0; // tmaxfd [degrees]
+    SSDcone[5] = 1.0; // stemax [cm]
+    SSDcone[6] = 0.5; // deemax [fraction]
+    SSDcone[7] = 1.0E-3; // epsil [cm]
+    SSDcone[8] = 0.0; // stmin [cm]
+    new TGeoMedium("ITSssdCarbonFiber",1,Cfiber,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdStaselite4411w",2,Staselite,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdRohacell50A",3,Rohacell,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdStainlesSteal",4,Stainless,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdAir",5,Air,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdAl",6,Al,SSDcone);
 }
 //______________________________________________________________________
-void AliITSv11::CreateMaterials(){
-////////////////////////////////////////////////////////////////////////
-  //
-  // Create ITS materials
-  //     This function defines the default materials used in the Geant
-  // Monte Carlo simulations for the geometries AliITSv1, AliITSv3,
-  // AliITSv11.
-  // In general it is automatically replaced by
-  // the CreatMaterials routine defined in AliITSv?. Should the function
-  // CreateMaterials not exist for the geometry version you are using this
-  // one is used. See the definition found in AliITSv5 or the other routine
-  // for a complete definition.
-  //
+void AliITSv11::ServicesCableSupport(TGeoVolume *Moth){
+    // Define the detail ITS cable support trays on both the RB24 and 
+    // RB26 sides..
+    // Inputs:
+    //   none.
+    // Outputs:
+    //  none.
+    // Return:
+    //  none.
+    // Based on the Drawings SSup_201A.jpg unless otherwise stated, 
+    // Volumes A..., 
+    TGeoMedium *SUPcf    = 0; // SUP support cone Carbon Fiber materal number.
+    TGeoMedium *SUPfs    = 0; // SUP support cone inserto stesalite 4411w.
+    TGeoMedium *SUPfo    = 0; // SUP support cone foam, Rohacell 50A.
+    TGeoMedium *SUPss    = 0; // SUP support cone screw material,Stainless
+    TGeoMedium *SUPair   = 0; // SUP support cone Air
+    TGeoMedium *SUPal    = 0; // SUP support cone SDD mounting bracket Al
+    TGeoMedium *SUPwater = 0; // SUP support cone Water
+    TGeoManager *mgr = gGeoManager;
+    SUPcf    = mgr->GetMedium("ITSssdCarbonFiber");
+    SUPfs    = mgr->GetMedium("ITSssdStaselite4411w");
+    SUPfo    = mgr->GetMedium("ITSssdRohacell50A");
+    SUPss    = mgr->GetMedium("ITSssdStainlessSteal");
+    SUPair   = mgr->GetMedium("ITSssdAir");
+    SUPal    = mgr->GetMedium("ITSssdAl");
+    SUPwater = mgr->GetMedium("ITSssdWater");
+    //
+    Int_t i,j;
+    Double_t x,y,z,t,t0,dt,di,r;
+
+    // RB 24 side
+    const Double_t Z024         = 900*kmm;//SSup_203A.jpg
+    const Double_t ThssFrame24  = 5.0*kmm;
+    const Double_t RssFrame24   = 444.5*kmm-ThssFrame24; // SSup_204A.jpg
+    const Double_t WidthFrame24 = 10.0*kmm;
+    const Double_t HightFrame24 = 10.0*kmm;
+    const Double_t Phi0Frame24  = 15.2*kDegree; // SSup_602A.jpg
+    const Double_t Phi1Frame24  = (90.0-7.6)*kDegree; // SSup_802A.jpg
+    const Double_t ZssFrameSection24 = (415.0-10.0)*kmm;
+    const Int_t    NZsections24      = 4;
+    const Int_t    NPhiSections24    = 4;
+    const Int_t    NFramesPhi24      = 4;
+    TGeoTubeSeg *A24,*M24; // Cylinderial support structure
+    TGeoBBox    *B24; // Cylinderial support structure
+
+    M24 = new TGeoTubeSeg("ITS sup Cable tray support frame mother volume M24",
+                          RssFrame24,RssFrame24+ThssFrame24,
+                          0.5*(4.*ZssFrameSection24+5*WidthFrame24),
+                          Phi0Frame24,Phi1Frame24);
+    A24 = new TGeoTubeSeg("ITS sup Cable tray support frame radial section A24",
+                          RssFrame24,RssFrame24+ThssFrame24,0.5*WidthFrame24,
+                          Phi0Frame24,Phi1Frame24);
+    B24 = new TGeoBBox("ITS sup Cable tray support frame Z section B24",
+                       0.5*ThssFrame24,0.5*HightFrame24,0.5*ZssFrameSection24);
+    printTubeSeg(A24);
+    printTubeSeg(M24);
+    printBBox(B24);
+    TGeoVolume *A24v,*B24v,*M24v;
+    TGeoTranslation *tran;
+    TGeoRotation    *rot;
+    TGeoCombiTrans  *tranrot;
+    //
+    A24v = new TGeoVolume("ITSsupFrameA24",A24,SUPss);
+    A24v->SetVisibility(kTRUE);
+    A24v->SetLineColor(1); // black
+    A24v->SetLineWidth(1);
+    A24v->SetFillColor(A24v->GetLineColor());
+    A24v->SetFillStyle(4000); // 0% transparent
+    B24v = new TGeoVolume("ITSsupFrameB24",B24,SUPss);
+    B24v->SetVisibility(kTRUE);
+    B24v->SetLineColor(1); // black
+    B24v->SetLineWidth(1);
+    B24v->SetFillColor(B24v->GetLineColor());
+    B24v->SetFillStyle(4000); // 0% transparent
+    M24v = new TGeoVolume("ITSsupFrameM24",M24,SUPair);
+    M24v->SetVisibility(kTRUE);
+    M24v->SetLineColor(7); // light blue
+    M24v->SetLineWidth(1);
+    M24v->SetFillColor(M24v->GetLineColor());
+    M24v->SetFillStyle(4090); // 90% transparent
+    //
+    Int_t NcA24=1,NcB24=1;
+    t0 = Phi0Frame24;
+    dt = (Phi1Frame24-Phi0Frame24)/((Double_t)NPhiSections24);
+    for(i=0;i<=NZsections24;i++){
+        di = (Double_t) i;
+        z = -M24->GetDz()+A24->GetDz() + di*(ZssFrameSection24+WidthFrame24);
+        tran = new TGeoTranslation("",0.0,0.0,z);
+        M24v->AddNode(A24v,NcA24++,tran);
+        r = RssFrame24+B24->GetDX();
+        z = z + A24->GetDz()+B24->GetDZ();
+       if(i<NZsections24) for(j=0;j<=NPhiSections24;j++){
+            t = t0 + ((Double_t)j)*dt;
+            rot = new TGeoRotation("",0.0,0.0,t);
+            y = r*TMath::Sin(t*kRadian);
+            x = r*TMath::Cos(t*kRadian);
+            tranrot = new TGeoCombiTrans("",x,y,z,rot);
+            delete rot;// rot not explicity used in AddNode functions.
+            M24v->AddNode(B24v,NcB24++,tranrot);
+        } // end for j
+    } // end for i
+    tran = new TGeoTranslation("",0.0,0.0,Z024+M24->GetDz());
+    Moth->AddNode(M24v,1,tran);
+    for(i=1;i<NFramesPhi24;i++){
+        di = (Double_t) i;
+        rot = new TGeoRotation("",0.0,0.0,90.0*di);
+        tranrot = new TGeoCombiTrans("",0.0,0.0,Z024+M24->GetDz(),rot);
+        delete rot;// rot not explicity used in AddNode functions.
+        Moth->AddNode(M24v,i+1,tranrot);
+    } // end for i
+    if(GetDebug()){
+        A24v->PrintNodes();
+        B24v->PrintNodes();
+        M24v->PrintNodes();
+    } // end if
+    // Cable support tray 
+    // Material is Aluminum
+    const Double_t RS24in     = TMath::Max(RssFrame24,444.5*kmm);
+                                           // SSup_204A & SSup_206A
+    const Double_t RS24Airout = 459.5*kmm; // SSup_204A & SSup_206A
+    const Double_t RS24out    = 494.5*kmm; // SSup_206A & SSup_204A
+    const Double_t RS24PPout  = 550.0*kmm; // SSup_206A
+    const Double_t LS24PP     = 350.0*kmm; // SSup_202A
+    const Double_t LS24       = (2693.0-900.0)*kmm; //SSup_205A & SSup_207A
+    const Double_t ThS24wall  = 1.0*kmm; // SSup_209A & SSup_210A
+    const Double_t WbS24      = 42.0*kmm; // SSup_209A & SSup_210A
+    const Double_t WtS24      = 46.9*kmm; // SSup_209A & SSup_210A
+    const Double_t WcapS24    = 50.0*kmm; // SSup_209A & SSup_210A
+    const Double_t WdS24      = 41.0*kmm; // SSup_209A ? should be 41.46938776
+    const Double_t HS24       = 50.0*kmm; // SSup_209A & SSup_210A
+    const Double_t OutDcoolTub= 12.0*kmm; // SSup_209A
+    const Double_t InDcoolTub = 10.0*kmm; // SSup_209A
+    const Double_t BlkNozInDS24= 6.0*kmm; // SSup_209A
+    // The following are deduced or guessed at
+    const Double_t LtopLipS24 = 6.0*kmm; // Guessed at.
+    const Double_t LdLipS24   = 6.0*kmm; // Guessed at.
+    const Double_t HdS24      = OutDcoolTub; //
+    const Double_t BlkNozZS24 = 6.0*kmm; // Guessed at.
+    // Simplifided exterior shape. The side wall size is 2.5*thicker than
+    // it should be (due to simplification).
+    TGeoArb8 *C24 = new TGeoArb8("ITS Sup Cable Tray Element C24",0.5*LS24);
+    C24->SetVertex(0,-0.5*WcapS24,HS24+ThS24wall);
+    C24->SetVertex(1,+0.5*WcapS24,HS24+ThS24wall);
+    C24->SetVertex(2,+0.5*WbS24,0.0);
+    C24->SetVertex(3,-0.5*WbS24,0.0);
+    C24->SetVertex(4,-0.5*WcapS24,HS24+ThS24wall);
+    C24->SetVertex(5,+0.5*WcapS24,HS24+ThS24wall);
+    C24->SetVertex(6,+0.5*WbS24,0.0);
+    C24->SetVertex(7,-0.5*WbS24,0.0);
+    TGeoArb8 *D24 = new TGeoArb8("ITS Sup Cable Tray lower Element D24",
+                                 0.5*LS24);
+    // Because of question about the value of WdS24, compute what it
+    // should be assuming cooling tube fixes hight of volume.
+    x = OutDcoolTub*(0.5*WcapS24-0.5*WbS24-ThS24wall)/(HS24-ThS24wall);
+    D24->SetVertex(0,-x,OutDcoolTub+ThS24wall);
+    D24->SetVertex(1,+x,OutDcoolTub+ThS24wall);
+    D24->SetVertex(2,+0.5*WbS24-ThS24wall,ThS24wall);
+    D24->SetVertex(3,-0.5*WbS24+ThS24wall,ThS24wall);
+    D24->SetVertex(4,-x,OutDcoolTub+ThS24wall);
+    D24->SetVertex(5,+x,OutDcoolTub+ThS24wall);
+    D24->SetVertex(6,+0.5*WbS24-ThS24wall,ThS24wall);
+    D24->SetVertex(7,-0.5*WbS24+ThS24wall,ThS24wall);
+    TGeoTube *E24 = new TGeoTube("ITS Sup Cooling Tube E24",0.5*InDcoolTub,
+                                 0.5*OutDcoolTub,0.5*LS24-BlkNozZS24);
+    TGeoArb8 *F24 = new TGeoArb8("ITS Sup Cable Tray lower Element block F24",
+                                 0.5*BlkNozZS24);
+    for(i=0;i<8;i++) F24->SetVertex(i,D24->GetVertices()[i*2+0],
+                                      D24->GetVertices()[i*2+1]); //
+    TGeoTube *G24 = new TGeoTube("ITS Sup Cooling Tube hole in block G24",
+                                 0.0,0.5*BlkNozInDS24,0.5*BlkNozZS24);
+    TGeoArb8 *H24 = new TGeoArb8("ITS Sup Cable Tray upper Element H24",
+                                 0.5*(LS24- LS24PP));
+    H24->SetVertex(0,C24->GetVertices()[0*2+0]+2.*ThS24wall,
+                     C24->GetVertices()[0*2+1]-ThS24wall);
+    H24->SetVertex(1,C24->GetVertices()[1*2+0]-2.*ThS24wall,
+                     C24->GetVertices()[1*2+1]-ThS24wall);
+    H24->SetVertex(2,D24->GetVertices()[1*2+0]-ThS24wall,
+                     D24->GetVertices()[1*2+1]+ThS24wall);
+    H24->SetVertex(3,D24->GetVertices()[0*2+0]+ThS24wall,
+                     D24->GetVertices()[0*2+1]+ThS24wall);
+    for(i=4;i<8;i++) H24->SetVertex(i,H24->GetVertices()[(i-4)*2+0],
+                                      H24->GetVertices()[(i-4)*2+1]); //
+    printArb8(C24);
+    printArb8(D24);
+    printTube(E24);
+    printArb8(F24);
+    printTube(G24);
+    printArb8(H24);
+    TGeoVolume *C24v,*D24v,*E24v,*F24v,*Ga24v,*Gw24v,*Gf24v,*H24v;
+    //
+    C24v = new TGeoVolume("ITSsupCableTrayC24",C24,SUPal);
+    C24v->SetVisibility(kTRUE);
+    C24v->SetLineColor(6); //
+    C24v->SetLineWidth(1);
+    C24v->SetFillColor(C24v->GetLineColor());
+    C24v->SetFillStyle(4000); // 0% transparent
+    D24v = new TGeoVolume("ITSsupCableTrayLowerD24",D24,SUPair);
+    D24v->SetVisibility(kTRUE);
+    D24v->SetLineColor(6); //
+    D24v->SetLineWidth(1);
+    D24v->SetFillColor(D24v->GetLineColor());
+    D24v->SetFillStyle(4000); // 0% transparent
+    E24v = new TGeoVolume("ITSsupCableTrayCoolTubeE24",E24,SUPss);
+    E24v->SetVisibility(kTRUE);
+    E24v->SetLineColor(6); //
+    E24v->SetLineWidth(1);
+    E24v->SetFillColor(E24v->GetLineColor());
+    E24v->SetFillStyle(4000); // 0% transparent
+    F24v = new TGeoVolume("ITSsupCableTrayBlockF24",F24,SUPal);
+    F24v->SetVisibility(kTRUE);
+    F24v->SetLineColor(6); //
+    F24v->SetLineWidth(1);
+    F24v->SetFillColor(F24v->GetLineColor());
+    F24v->SetFillStyle(4000); // 0% transparent
+    Gw24v = new TGeoVolume("ITSsupCableTrayCoolantWaterG24",G24,SUPwater);
+    Gw24v->SetVisibility(kTRUE);
+    Gw24v->SetLineColor(6); //
+    Gw24v->SetLineWidth(1);
+    Gw24v->SetFillColor(Gw24v->GetLineColor());
+    Gw24v->SetFillStyle(4000); // 0% transparent
+    Ga24v = new TGeoVolume("ITSsupCableTrayCoolantAirG24",G24,SUPair);
+    Ga24v->SetVisibility(kTRUE);
+    Ga24v->SetLineColor(6); //
+    Ga24v->SetLineWidth(1);
+    Ga24v->SetFillColor(Ga24v->GetLineColor());
+    Ga24v->SetFillStyle(4000); // 0% transparent
+    H24v = new TGeoVolume("ITSsupCableTrayUpperC24",H24,SUPair);
+    H24v->SetVisibility(kTRUE);
+    H24v->SetLineColor(6); //
+    H24v->SetLineWidth(1);
+    H24v->SetFillColor(H24v->GetLineColor());
+    H24v->SetFillStyle(4000); // 0% transparent
+    //
+    tran = new TGeoTranslation("",-OutDcoolTub,OutDcoolTub+ThS24wall,0.0);
+    F24v->AddNode(Gw24v,1,tran);
+    D24v->AddNode(E24v,1,tran);
+    tran = new TGeoTranslation("",0.0,OutDcoolTub+ThS24wall,0.0);
+    F24v->AddNode(Gw24v,2,tran);
+    D24v->AddNode(E24v,2,tran);
+    tran = new TGeoTranslation("",+OutDcoolTub,OutDcoolTub+ThS24wall,0.0);
+    F24v->AddNode(Gw24v,3,tran);
+    D24v->AddNode(E24v,3,tran);
+    tran = new TGeoTranslation("",0.0,0.0,0.5*LS24-0.5*BlkNozZS24);
+    D24v->AddNode(F24v,1,tran);
+    tran = new TGeoTranslation("",0.0,0.0,-(0.5*LS24-0.5*BlkNozZS24));
+    D24v->AddNode(F24v,2,tran);
+    C24v->AddNode(D24v,1,0);
+    C24v->AddNode(H24v,1,0);
+    //==================================================================
+    //
+    // RB 26 side
+    const Double_t Z026         = -900*kmm;//SSup_203A.jpg
+    const Double_t ThssFrame26  = 5.0*kmm;
+    const Double_t R0ssFrame26  = 444.5*kmm-ThssFrame26; // SSup_204A.jpg
+    const Double_t R1ssFrame26  = 601.6*kmm-ThssFrame26; // SSup_208A.jpg
+    const Double_t WidthFrame26 = 10.0*kmm;
+    //const Double_t HightFrame26 = 10.0*kmm;
+    const Double_t Phi0Frame26  = 15.2*kDegree; // SSup_602A.jpg
+    const Double_t Phi1Frame26  = (90.0-7.6)*kDegree; // SSup_802A.jpg
+    const Double_t ZssFrameSection26 = (415.0-10.0)*kmm;
+    const Int_t    NZsections26      = 4;
+    const Int_t    NPhiSections26    = 4;
+    const Int_t    NFramesPhi26      = 4;
+    TGeoConeSeg *A26[NZsections26+1],*M26; // Cylinderial support structure
+    TGeoArb8     *B26; // Cylinderial support structure
+    Char_t name[100];
+    Double_t r1,r2,m;
+
+    M26 = new TGeoConeSeg("ITS sup Cable tray support frame mother volume M26",
+                         0.5*(4.*ZssFrameSection26+5*WidthFrame26),
+                          R1ssFrame26,R1ssFrame26+ThssFrame26,
+                          R0ssFrame26,R0ssFrame26+ThssFrame26,
+                          Phi0Frame26,Phi1Frame26);
+    m = -((R1ssFrame26-R0ssFrame26)/
+         (((Double_t)NZsections26)*(ZssFrameSection26+WidthFrame26)));
+    for(i=0;i<NZsections26+1;i++){
+        di = ((Double_t) i)*(ZssFrameSection26+WidthFrame26);
+        sprintf(name,
+                "ITS sup Cable tray support frame radial section A26[%d]",i);
+        r1 = R1ssFrame26+m*di;
+        r2 = R1ssFrame26+m*(di+WidthFrame26);
+        A26[i] = new TGeoConeSeg(name,0.5*WidthFrame26,r2,r2+ThssFrame26,
+                                 r1,r1+ThssFrame26,Phi0Frame26,Phi1Frame26);
+    } // end for i
+    B26 = new TGeoArb8("ITS sup Cable tray support frame Z section B26",
+                       0.5*ZssFrameSection26);
+    r = 0.25*(A26[0]->GetRmax1()+A26[0]->GetRmin1()+
+              A26[1]->GetRmax2()+A26[1]->GetRmin2());
+    B26->SetVertex(0,A26[0]->GetRmax2()-r,+0.5*WidthFrame26);
+    B26->SetVertex(1,A26[0]->GetRmax2()-r,-0.5*WidthFrame26);
+    B26->SetVertex(2,A26[0]->GetRmin2()-r,-0.5*WidthFrame26);
+    B26->SetVertex(3,A26[0]->GetRmin2()-r,+0.5*WidthFrame26);
+    B26->SetVertex(4,A26[1]->GetRmax1()-r,+0.5*WidthFrame26);
+    B26->SetVertex(5,A26[1]->GetRmax1()-r,-0.5*WidthFrame26);
+    B26->SetVertex(6,A26[1]->GetRmin1()-r,-0.5*WidthFrame26);
+    B26->SetVertex(7,A26[1]->GetRmin1()-r,+0.5*WidthFrame26);
+    for(i=0;i<NZsections26+1;i++) printConeSeg(A26[i]);
+    printConeSeg(M26);
+    printArb8(B26);
+    TGeoVolume *A26v[NZsections26+1],*B26v,*M26v;
+    //
+    for(i=0;i<NZsections26+1;i++){
+        sprintf(name,"ITSsupFrameA26[%d]",i);
+        A26v[i] = new TGeoVolume(name,A26[i],SUPss);
+        A26v[i]->SetVisibility(kTRUE);
+        A26v[i]->SetLineColor(1); // black
+        A26v[i]->SetLineWidth(1);
+        A26v[i]->SetFillColor(A26v[i]->GetLineColor());
+        A26v[i]->SetFillStyle(4000); // 0% transparent
+    } // end for i
+    B26v = new TGeoVolume("ITSsupFrameB26",B26,SUPss);
+    B26v->SetVisibility(kTRUE);
+    B26v->SetLineColor(1); // black
+    B26v->SetLineWidth(1);
+    B26v->SetFillColor(B26v->GetLineColor());
+    B26v->SetFillStyle(4000); // 0% transparent
+    M26v = new TGeoVolume("ITSsupFrameM26",M26,SUPair);
+    M26v->SetVisibility(kTRUE);
+    M26v->SetLineColor(7); // light blue
+    M26v->SetLineWidth(1);
+    M26v->SetFillColor(M26v->GetLineColor());
+    M26v->SetFillStyle(4090); // 90% transparent
+    //
+    Int_t NcB26=1;
+    t0 = Phi0Frame26;
+    dt = (Phi1Frame26-Phi0Frame26)/((Double_t)NPhiSections26);
+    for(i=0;i<=NZsections26;i++){
+        di = ((Double_t) i)*(ZssFrameSection26+WidthFrame26);
+        z = -M26->GetDz()+A26[i]->GetDz() + di;
+        tran = new TGeoTranslation("",0.0,0.0,z);
+        M26v->AddNode(A26v[i],1,tran);
+        z = z+B26->GetDz();
+        if(i<NZsections26)for(j=0;j<=NPhiSections26;j++){
+            r = 0.25*(A26[i]->GetRmax1()+A26[i]->GetRmin1()+
+                      A26[i+1]->GetRmax2()+A26[i+1]->GetRmin2());
+            t = t0 + ((Double_t)j)*dt;
+            rot = new TGeoRotation("",0.0,0.0,t);
+            y = r*TMath::Sin(t*kRadian);
+            x = r*TMath::Cos(t*kRadian);
+            tranrot = new TGeoCombiTrans("",x,y,z,rot);
+            delete rot; // rot not explicity used in AddNode functions.
+            M26v->AddNode(B26v,NcB26++,tranrot);
+        } // end for j
+    } // end for i
+    tran = new TGeoTranslation("",0.0,0.0,Z026-M26->GetDz());
+    Moth->AddNode(M26v,1,tran);
+    for(i=1;i<NFramesPhi26;i++){
+        rot = new TGeoRotation("",0.0,0.0,90.0*((Double_t)i));
+        tranrot = new TGeoCombiTrans(*tran,*rot);
+        delete rot; // rot not explicity used in AddNode functions.
+        Moth->AddNode(M26v,i+1,tranrot);
+    } // end for i
+    if(GetDebug()){
+        for(i=0;i<NZsections26+1;i++) A26v[i]->PrintNodes();
+        B26v->PrintNodes();
+        M26v->PrintNodes();
+    } // end if
 }
 //______________________________________________________________________
 void AliITSv11::InitAliITSgeom(){
-    //     Based on the geometry tree defined in Geant 3.21, this
-    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS geometry
-    // sturture.
+    // Based on the geometry tree defined in Geant 3.21, this
+    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS 
+    // geometry sturture.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 }
-
 //______________________________________________________________________
 void AliITSv11::Init(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Initialise the ITS after it has been created.
-    ////////////////////////////////////////////////////////////////////////
+    // Initialise the ITS after it has been created.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 }
 //______________________________________________________________________
 void AliITSv11::SetDefaults(){
-    // sets the default segmentation, response, digit and raw cluster classes
+    // Sets the default segmentation, response, digit and raw cluster 
+    // classes to be used. These defaults can be overwritten in the
+    // macros that do these later steps. Defaults are give hear for the
+    // general user.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 }
 //______________________________________________________________________
 void AliITSv11::DrawModule(){
-    ////////////////////////////////////////////////////////////////////////
-    //     Draw a shaded view of the FMD version 11.
-    ////////////////////////////////////////////////////////////////////////
+    // Draw a standard set of shaded view of the ITS version 11.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
 }
 //______________________________________________________________________
 void AliITSv11::StepManager(){
-    ////////////////////////////////////////////////////////////////////////
-    //    Called for every step in the ITS, then calles the AliITShit class
+    // Called for every step in the ITS, then calles the AliITShit class
     // creator with the information to be recoreded about that hit.
-    //     The value of the macro ALIITSPRINTGEOM if set to 1 will allow the
+    //  The value of the macro ALIITSPRINTGEOM if set to 1 will allow the
     // printing of information to a file which can be used to create a .det
     // file read in by the routine CreateGeometry(). If set to 0 or any other
     // value except 1, the default behavior, then no such file is created nor
-    // it the extra variables and the like used in the printing allocated.
-    ////////////////////////////////////////////////////////////////////////
+    // is the extra variables and the like used in the printing allocated.
 }