]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11.cxx
Radiator to Pad goes static.
[u/mrichter/AliRoot.git] / ITS / AliITSv11.cxx
index e973399698b1cb5f32124ab4b91a1d34df6d98d2..fa1e51ba5bf285db11e497a64b1f3944f21bc814 100644 (file)
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.5  2003/02/01 14:02:20  nilsen
-Work continues.
-
-Revision 1.4  2003/01/29 16:01:14  nilsen
-Update today's work.
-
-Revision 1.3  2003/01/28 17:59:54  nilsen
-Work continuing.
-
-Revision 1.2  2003/01/26 14:35:15  nilsen
-Some more geometry interface functions added and a start at the SSD support
-cone geometry. Committed to allow easy updates of partical work between authors.
-
-Revision 1.1  2003/01/20 23:32:49  nilsen
-New ITS geometry. Only a Skeleton for now.
-
-$Id$
-*/
+/* $Id$ */
 
 //////////////////////////////////////////////////////////////////////////////
 //                                                                          //
@@ -50,32 +31,34 @@ $Id$
 //                                                                          //
 //////////////////////////////////////////////////////////////////////////////
 // See AliITSv11::StepManager().
-#include <Riostream.h>
+// General C/C++ includes
 #include <stdio.h>
 #include <stdlib.h>
+// General Root includes
+#include <Riostream.h>
 #include <TMath.h>
-#include <TGeometry.h>
-#include <TNode.h>
-#include <TTUBE.h>
-#include <TTUBS.h>
-#include <TPCON.h>
 #include <TFile.h>    // only required for Tracking function?
-#include <TCanvas.h>
 #include <TObjArray.h>
+#include <TClonesArray.h>
 #include <TLorentzVector.h>
 #include <TObjString.h>
-#include <TClonesArray.h>
-#include <TBRIK.h>
-#include <TSystem.h>
-
-
+// Root Geometry includes
+#include <TGeoManager.h>
+#include <TGeoVolume.h>
+#include <TGeoPcon.h>
+#include <TGeoTube.h> // contaings TGeoTubeSeg
+#include <TGeoArb8.h>
+#include <TGeoCompositeShape.h>
+#include <TGeoMatrix.h>
+#include <TGeoNode.h>
+#include <TGeoMaterial.h>
+#include <TGeoMedium.h>
+// General AliRoot includes
 #include "AliRun.h"
 #include "AliMagF.h"
 #include "AliConst.h"
-#include "AliITSGeant3Geometry.h"
+// ITS specific includes
 #include "AliITShit.h"
-#include "AliITS.h"
-#include "AliITSv11.h"
 #include "AliITSgeom.h"
 #include "AliITSgeomSPD.h"
 #include "AliITSgeomSDD.h"
@@ -93,12 +76,51 @@ $Id$
 #include "AliITSClusterFinderSPD.h"
 #include "AliITSClusterFinderSDD.h"
 #include "AliITSClusterFinderSSD.h"
-//
-#include "AliITSGeometrySSDCone.h"
+#include "AliITSBaseGeometry.h"
+#include "AliITSv11.h"
+
+// Units, Convert from k?? to cm,degree,GeV,seconds,
+const Double_t kmm = 0.10; // Convert mm to TGeom's cm.
+const Double_t kcm = 1.00; // Convert cv to TGeom's cm.
+const Double_t kDegree = 1.0; // Convert degrees to TGeom's degrees
+const Double_t kRadian = TMath::DegToRad(); // conver to Radians
+
+#define SQ(A) ((A)*(A))
+
+#define printArb8(A)  \
+   cout << A->GetName() << ":"; \
+  for(Int_t iii=0;iii<8;iii+=2){ cout <<"("<<A->GetVertices()[iii]<<","     \
+                          <<A->GetVertices()[iii+1]<<","<<-A->GetDz()<<")";}\
+  for(Int_t iii=8;iii<16;iii+=2){ cout <<"("<<A->GetVertices()[iii]<<","     \
+                          <<A->GetVertices()[iii+1]<<","<<A->GetDz()<<")";}\
+   cout << endl;
 
+#define printPcon(A) \
+     cout << A->GetName() << ": N=" << A->GetNz() << " Phi1=" << A->GetPhi1() \
+          << ", Dphi=" << A->GetDphi() << endl;                              \
+     cout << "i\t   Z   \t  Rmin \t  Rmax" << endl;                          \
+     for(Int_t iii=0;iii<A->GetNz();iii++){                                 \
+         cout << iii << "\t" << A->GetZ(iii) << "\t" << A->GetRmin(iii)     \
+              << "\t" << A->GetRmax(iii) << endl;                           \
+     } // end for iii
+
+#define printTube(A) \
+   cout << A->GetName() <<": Rmin="<<A->GetRmin()\
+                          <<" Rmax=" <<A->GetRmax()<<" Dz="<<A->GetDz()<<endl;
+
+#define printTubeSeg(A)  \
+    cout << A->GetName() <<": Phi1="<<A->GetPhi1()<< \
+                           " Phi2="<<A->GetPhi2()<<" Rmin="<<A->GetRmin()\
+                          <<" Rmax=" <<A->GetRmax()<<" Dz="<<A->GetDz()<<endl;
 
 ClassImp(AliITSv11)
 
+/*
+  Some temparary #define's used untill ROOT has addoppted the proper
+  Getter in it's classes.
+  These Below are for TGeoPcon functions.
+*/
+
 //______________________________________________________________________
 AliITSv11::AliITSv11() : AliITS() {
     // Standard default constructor for the ITS version 11.
@@ -109,19 +131,23 @@ AliITSv11::AliITSv11() : AliITS() {
     // Return
     //   A default constructed AliITSv11 class.
 
-    fc = 0;
+    //fITSV = 0;
+    //fcS = 0;
+//   fcD = 0;
 }
 //______________________________________________________________________
 AliITSv11::AliITSv11(const char *title) : AliITS("ITS", title){
     // Standard constructor for the ITS version 11.
     // Inputs:
-    //   none.
+    //   const char *title  The title of for this geometry.
     // Outputs:
     //   none.
     // Return
     //   A Standard constructed AliITSv11 class.
 
-    fc = 0;
+    //fITSV = 0;
+    //fcS = 0;
+//    fcD = 0;
 }
 //______________________________________________________________________
 AliITSv11::~AliITSv11() {
@@ -133,49 +159,1998 @@ AliITSv11::~AliITSv11() {
     // Return
     //   none.
 
-    if(fc!=0) delete fc;
+//    if(fITSV!=0) delete fITSV;
+//    if(fcS!=0) delete fcS;
+//    if(fcD!=0) delete fcD;
+}
+//______________________________________________________________________
+AliITSv11::AliITSv11(const AliITSv11 &source) : AliITS(source){
+    //     Copy Constructor for ITS version 11.
+    // Inputs:
+    //   AliITSv11 &source  class to be copied from.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+
+    if(&source == this) return;
+    Error("Copy Constructor","Not allowed to copy AliITSv11");
+    return;
+}
+//______________________________________________________________________
+AliITSv11& AliITSv11::operator=(const AliITSv11 &source){
+    //    Assignment operator for the ITS version 11.
+    // Inputs:
+    //   AliITSv11 &source  class to be copied from.
+    // Outputs:
+    //   none.
+    // Return
+    //   none.
+
+    if(&source == this) return *this;
+    Error("= operator","Not allowed to copy AliITSv11");
+    return *this;
 }
 //______________________________________________________________________
 void AliITSv11::BuildGeometry(){
-    // This routine defines and Creates the geometry for version 11 of the ITS
-    // for use in the simulation display routines. This is a very simplified
-    // geometry for speed of viewing.
+    // This routine defines and Creates the geometry for version 11 of 
+    // the ITS for use in the simulation display routines. This is a 
+    // very simplified geometry for speed of viewing.
     // Inputs:
     //   none.
     // Outputs:
     //   none.
     // Return
     //   none.
+    TVector3 t(0.0,0.0,0.0);
 
-    if(fc==0) fc = new AliITSGeometrySSDCone(new TVector3(0.0,0.0,0.0),"TSV",0);
+    //if(fITSV==0) fITSV = new AliITSGeometryITSV(this,"ALIC");
+    //if(fcS==0) fcS = new AliITSGeometrySSDCone(this,t,"TSV",1);
 
-    fc->BuildDisplayGeometry();
+    //fcS->BuildDisplayGeometry();
 }
 //______________________________________________________________________
 void AliITSv11::CreateGeometry(){
-    // This routine defines and Creates the geometry for version 11 of the ITS.
+    // This routine defines and Creates the geometry for version 11 of 
+    // the ITS. The geometry is used by the particle trasport routines,
+    // and therefore, is very detailed.
     // Inputs:
     //   none.
     // Outputs:
     //   none.
     // Return
     //   none.
-
-    if(fc==0) fc = new AliITSGeometrySSDCone(new TVector3(0.0,0.0,0.0),"TSV",0);
     TVector3 t(0.0,0.0,0.0);
-    fc->CreateG3Geometry(t,"ITSV",0);
+
+    TGeoManager *mgr = gGeoManager;
+    TGeoVolume *ALIC = mgr->GetTopVolume();
+
+    TGeoPcon *itsv = new TGeoPcon("ITS Top Volume, Daughter of ALIC",
+                                  0.0,360.0,2);
+    // DefineSection(section number, Z, Rmin, Rmax).
+    itsv->DefineSection(0,-100.0*kcm,0.01*kcm,50.0*kcm);
+    itsv->DefineSection(1,+100.0*kcm,0.01*kcm,50.0*kcm);
+    TGeoVolume *ITSV = new TGeoVolume("ITSV",itsv,0);
+    //mgr->AddVolume(ITSV);
+    ITSV->SetVisibility(kFALSE);
+    ALIC->AddNode(ITSV,1,0);
+    //
+    SPDCone(ITSV);
+    SDDCone(ITSV);
+    SSDCone(ITSV);
+}
+//______________________________________________________________________
+Double_t AliITSv11::RmaxFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){
+    // functions Require at parts of Volume A to be already defined.
+    // Retruns the value of Rmax corresponding to point z alone the line
+    // defined by the two points p.Rmax(i1),p-GetZ(i1) and p->GetRmax(i2),
+    // p->GetZ(i2).
+
+    return p->GetRmax(i2)+(p->GetRmax(i1)-p->GetRmax(i2))*(z-p->GetZ(i2))/
+     (p->GetZ(i1)-p->GetZ(i2));
+}
+//______________________________________________________________________
+Double_t AliITSv11::RminFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){
+    // Retruns the value of Rmin corresponding to point z alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2),  p->GetZ(i2).
+
+    return p->GetRmin(i2)+(p->GetRmin(i1)-p->GetRmin(i2))*(z-p->GetZ(i2))/
+     (p->GetZ(i1)-p->GetZ(i2));
+}
+//______________________________________________________________________
+Double_t AliITSv11::RFrom2Points(Double_t *p,Double_t *Z,Int_t i1,
+                                 Int_t i2,Double_t z){
+    // Retruns the value of Rmin corresponding to point z alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2), p->GetZ(i2).
+
+    return p[i2]+(p[i1]-p[i2])*(z-Z[i2])/(Z[i1]-Z[i2]);
+}
+//______________________________________________________________________
+Double_t AliITSv11::Zfrom2MinPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmin(i1),p->GetZ(i1) and 
+    // p->GetRmin(i2),p->GetZ(i2)
+
+    return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmin(i2))/
+     (p->GetRmin(i1)-p->GetRmin(i2));
+}
+//______________________________________________________________________
+Double_t AliITSv11::Zfrom2MaxPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmax(i1),p->GetZ(i1) and 
+    // p->GetRmax(i2),p->GetZ(i2)
+
+    return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmax(i2))/
+     (p->GetRmax(i1)-p->GetRmax(i2));
+}
+//______________________________________________________________________
+Double_t AliITSv11::Zfrom2Points(Double_t *Z,Double_t *p,Int_t i1,
+                                 Int_t i2,Double_t r){
+    // Retruns the value of Z corresponding to point R alone the line
+    // defined by the two points p->GetRmax(i1),p->GetZ(i1) and 
+    // p->GetRmax(i2),p->GetZ(i2)
+
+    return Z[i2]+(Z[i1]-Z[i2])*(r-p[i2])/(p[i1]-p[i2]);
+}
+//______________________________________________________________________
+Double_t AliITSv11::RmaxFromZpCone(TGeoPcon *p,Double_t tc,Double_t z,
+                                   Double_t th){
+    // General SSD Outer Cone surface equation Rmax.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return -tantc*(z-p->GetZ(4))+p->GetRmax(4)+th/costc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::RmaxFromZpCone(Double_t *GetRmax,Double_t *GetZ,
+                                   Double_t tc,Double_t z,Double_t th){
+    // General SSD Outer Cone surface equation Rmax.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return -tantc*(z-GetZ[4])+GetRmax[4]+th/costc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::RminFromZpCone(TGeoPcon *p,Double_t tc,Double_t z,
+                                   Double_t th){
+    // General SSD Inner Cone surface equation Rmin.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return -tantc*(z-p->GetZ(3))+p->GetRmin(3)+th/costc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::RminFromZpCone(Double_t *GetRmin,Double_t *GetZ,
+                                   Double_t tc,Double_t z,Double_t th){
+    // General SSD Inner Cone surface equation Rmin.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return -tantc*(z-GetZ[3])+GetRmin[3]+th/costc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::ZFromRmaxpCone(TGeoPcon *p,Double_t tc,Double_t r,
+                                   Double_t th){
+    // General SSD Outer cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return p->GetZ(4)+(p->GetRmax(4)+th/costc-r)/tantc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::ZFromRmaxpCone(Double_t *GetRmax,Double_t *GetZ,
+                                   Double_t tc,Double_t r,Double_t th){
+    // General SSD Outer cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return GetZ[4]+(GetRmax[4]+th/costc-r)/tantc;
+}
+//______________________________________________________________________
+Double_t AliITSv11::ZFromRminpCone(TGeoPcon *p,Double_t tc,Double_t r,
+                                   Double_t th){
+    // General SSD Inner cone Surface equation for z.
+    Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
+    Double_t costc = TMath::Cos(tc*TMath::DegToRad());
+
+    return p->GetZ(3)+(p->GetRmin(3)+th/costc-r)/tantc;
+}
+//______________________________________________________________________
+void AliITSv11::RadiusOfCurvature(Double_t rc,Double_t theta0,Double_t z0,
+                 Double_t r0,Double_t theta1,Double_t &z1,
+                 Double_t &r1){
+    // Given a initial point z0,r0, the initial angle theta0, and the radius
+    // of curvature, returns the point z1, r1 at the angle theta1. Theta
+    // measured from the r axis in the clock wise direction [degrees].
+    Double_t sin0 = TMath::Sin(theta0*TMath::DegToRad());
+    Double_t cos0 = TMath::Cos(theta0*TMath::DegToRad());
+    Double_t sin1 = TMath::Sin(theta1*TMath::DegToRad());
+    Double_t cos1 = TMath::Cos(theta1*TMath::DegToRad());
+
+    z1 = rc*(sin1-sin0)+z0;
+    r1 = rc*(cos1-cos0)+r0;
+    return;
+}
+//______________________________________________________________________
+void AliITSv11::SPDCone(TGeoVolume *Moth){
+    // Define the detail SPD support cone geometry.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //  none.
+    // Return:
+    //  none.
+
+    SPDThermalSheald(Moth);
+}
+//______________________________________________________________________
+void AliITSv11::SPDThermalSheald(TGeoVolume *Moth){
+    // Define the detail SPD Thermal Sheld geometry.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //  none.
+    // Return:
+    //  none.
+    // From ALICE-Thermal Screen (SPD) "Cylinder" file thermal-screen2_a3.ps
+    // Volumes A1,A2,A2,Ah1,Ah2,Ah3, and B1,B2,B3,Bh1,Bh2,Bh3;
+    // "CONE TRANSITION" file thermal-screen1_a3.ps Volumes C1,C2,C3,Ch1,Ch2,
+    // Ch3; "FLANGE" file thermal-screen4_a3.ps Volumes D,Ds,Dw,Dws; and 
+    // "HALF ASSEMBLY" file thermal-screen3_a3.ps. This object, both halfs,
+    // are incased inside of a single minimum sized mother volume called M,
+    // which is a union of two parts M1 and 4 copies of M2.
+    const Double_t TSCarbonFiberThA = 0.03*kmm; // 
+    //const Double_t TSCarbonFiberThB = 0.10*kmm; //
+    const Double_t TSCLengthB  = 50.0*kmm; //
+    const Double_t TSCLengthA  = 900.0*kmm-2.0*TSCLengthB; //
+    const Double_t TSCLengthC  = 290.0*kmm; //
+    const Double_t TSCLengthD  = 15.0*kmm; //
+    const Double_t TSCAngle    = 36.0*kDegree;//Rep. angle of cent. accordin
+    const Double_t TSCRoutA    = 99.255*kmm; // Outer radii
+    const Double_t TSCRinA     = 81.475*kmm; // Iner radii
+    const Double_t TSCRoutB    = 99.955*kmm; // Outer radii
+    const Double_t TSCRinB     = 80.775*kmm; // Iner radii
+    const Double_t TSCRoutCp   = 390.0*kmm;  // Outer radii
+    const Double_t TSCRinCp    = 373.0*kmm;  // Iner radii
+    Double_t TSCRoutC,TSCRinC; // values need to be calculated
+    const Double_t TSCRwingD   = 492.5*kmm;  // Outer radii
+    const Double_t TSCRoutD    = 0.5*840.*kmm;// Outer radii
+    const Double_t TSCRinD     = 373.0*kmm;  // Iner radii
+    const Double_t TSCAngleDD  = 60.*kmm/TSCRwingD/kRadian;//angular wing width
+    //angular wing width of fill material
+    const Double_t TSCAngleDDs = (60.*kmm-2.*TSCarbonFiberThA)/TSCRwingD/kRadian;
+    const Double_t TSCAngleD0  = 45.*kDegree;//Strting angle of wing
+    const Double_t TSCoutSA    = 24.372*kmm; // The other one Calculated
+    const Double_t TSCinLA     = 31.674*kmm; // The ohter one Calculated
+    const Double_t TSCoutSB    = 24.596*kmm; // The other one Calculated
+    const Double_t TSCinLB     = 31.453*kmm; // The ohter one Calculated
+    const Double_t TSCoutSC    = 148.831*kmm;// The other one Calculated
+    const Double_t TSCinLC     = 90.915*kmm; // The ohter one Calculated
+    Int_t i,k;
+    Double_t th;
+    Double_t xo[7],yo[7],xi[7],yi[7];
+    Double_t xbo[7],ybo[7],xbi[7],ybi[7];
+    Double_t xco[7],yco[7],xci[7],yci[7];
+    TGeoArb8 *A1,*A2,*A3,*Ah1,*Ah2,*Ah3,*B1,*B2,*B3,*Bh1,*Bh2,*Bh3;
+    TGeoArb8 *C1,*C2,*C3,*Ch1,*Ch2,*Ch3;
+    TGeoTube  *D,*Ds;
+    TGeoTubeSeg *Dw,*Dws,*M2;
+    TGeoPcon *M1;
+    TGeoCompositeShape *M;
+    TGeoRotation *rot;
+    TGeoTranslation *tranb,*tranbm,*tranc;
+    TGeoTranslation *tranITSspdShealdVVt0;
+    TGeoCombiTrans *rotITSspdShealdVVt1,*rotITSspdShealdVVt2;
+    TGeoCombiTrans *rotITSspdShealdVVt3;
+    TGeoMedium *SPDcf  = 0; // SPD support cone Carbon Fiber materal number.
+    TGeoMedium *SPDfs  = 0; // SPD support cone inserto stesalite 4411w.
+    TGeoMedium *SPDfo  = 0; // SPD support cone foam, Rohacell 50A.
+    TGeoMedium *SPDss  = 0; // SPD support cone screw material,Stainless steal
+    TGeoMedium *SPDair = 0; // SPD support cone Air
+    //TGeoMedium *SPDal  = 0; // SPD support cone SDD mounting bracket Al
+
+    TSCRoutC = TMath::Sqrt(TSCRoutCp*TSCRoutCp-0.25*TSCoutSC*TSCoutSC);
+    TSCRinC  = TMath::Sqrt(TSCRinCp *TSCRinCp -0.25*TSCinLC *TSCinLC );
+    A1  = new TGeoArb8("ITS SPD Therm Screen Clyinder A1",0.5*TSCLengthA);
+    A2  = new TGeoArb8("ITS SPD Therm Screen Clyinder A2",0.5*TSCLengthA);
+    A3  = new TGeoArb8("ITS SPD Therm Screen Clyinder A3",0.5*TSCLengthA);
+    Ah1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah1",0.5*TSCLengthA);
+    Ah2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah2",0.5*TSCLengthA);
+    Ah3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah3",0.5*TSCLengthA);
+    B1  = new TGeoArb8("ITS SPD Therm Screen Clyinder B1",0.5*TSCLengthB);
+    B2  = new TGeoArb8("ITS SPD Therm Screen Clyinder B2",0.5*TSCLengthB);
+    B3  = new TGeoArb8("ITS SPD Therm Screen Clyinder B3",0.5*TSCLengthB);
+    Bh1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh1",0.5*TSCLengthB);
+    Bh2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh2",0.5*TSCLengthB);
+    Bh3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh3",0.5*TSCLengthB);
+    C1  = new TGeoArb8("ITS SPD Therm Screen Clyinder C1",0.5*TSCLengthC);
+    C2  = new TGeoArb8("ITS SPD Therm Screen Clyinder C2",0.5*TSCLengthC);
+    C3  = new TGeoArb8("ITS SPD Therm Screen Clyinder C3",0.5*TSCLengthC);
+    Ch1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch1",0.5*TSCLengthC);
+    Ch2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch2",0.5*TSCLengthC);
+    Ch3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch3",0.5*TSCLengthC);
+    D = new TGeoTube("ITS SPD Therm Screen Flange D",TSCRinD,TSCRoutD,
+                    0.5*TSCLengthD);
+    Ds = new TGeoTube("ITS SPD Therm Screen Flange fill Ds",
+                      TSCRinD+TSCarbonFiberThA,TSCRoutD-TSCarbonFiberThA,
+                      0.5*TSCLengthD);
+    //printTube(D);
+    //printTube(Ds);
+    Dw = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Dw",
+                         TSCRoutD,TSCRwingD ,0.5*TSCLengthD,
+                         TSCAngleD0-0.5*TSCAngleDD,TSCAngleD0+0.5*TSCAngleDD);
+    Dws = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Fill Ds",
+                          TSCRoutD,TSCRwingD-TSCarbonFiberThA,
+                          0.5*TSCLengthD,TSCAngleD0-0.5*TSCAngleDDs,
+                          TSCAngleD0+0.5*TSCAngleDDs);
+    //printTubeSeg(Dw);
+    //printTubeSeg(Dws);
+    k = 0;
+    for(i=-1;i<2;i++){
+      th = ((Double_t)(i+1))*TSCAngle*kRadian;
+      xo[k] = TSCRoutA*TMath::Sin(th) - 0.5*TSCoutSA*TMath::Cos(th);
+      yo[k] = TSCRoutA*TMath::Cos(th) + 0.5*TSCoutSA*TMath::Sin(th);
+      xi[k] = TSCRinA *TMath::Sin(th) - 0.5*TSCinLA *TMath::Cos(th);
+      yi[k] = TSCRinA *TMath::Cos(th) + 0.5*TSCinLA *TMath::Sin(th);
+      xbo[k] = TSCRoutB*TMath::Sin(th) - 0.5*TSCoutSB*TMath::Cos(th);
+      ybo[k] = TSCRoutB*TMath::Cos(th) + 0.5*TSCoutSB*TMath::Sin(th);
+      xbi[k] = TSCRinB *TMath::Sin(th) - 0.5*TSCinLB *TMath::Cos(th);
+      ybi[k] = TSCRinB *TMath::Cos(th) + 0.5*TSCinLB *TMath::Sin(th);
+      xco[k] = TSCRoutC*TMath::Sin(th) - 0.5*TSCoutSC*TMath::Cos(th);
+      yco[k] = TSCRoutC*TMath::Cos(th) + 0.5*TSCoutSC*TMath::Sin(th);
+      xci[k] = TSCRinC *TMath::Sin(th) - 0.5*TSCinLC *TMath::Cos(th);
+      yci[k] = TSCRinC *TMath::Cos(th) + 0.5*TSCinLC *TMath::Sin(th);
+      k++;
+      xo[k] = TSCRoutA*TMath::Sin(th) + 0.5*TSCoutSA*TMath::Cos(th);
+      yo[k] = TSCRoutA*TMath::Cos(th) - 0.5*TSCoutSA*TMath::Sin(th);
+      xi[k] = TSCRinA *TMath::Sin(th) + 0.5*TSCinLA *TMath::Cos(th);
+      yi[k] = TSCRinA *TMath::Cos(th) - 0.5*TSCinLA *TMath::Sin(th);
+      xbo[k] = TSCRoutB*TMath::Sin(th) + 0.5*TSCoutSB*TMath::Cos(th);
+      ybo[k] = TSCRoutB*TMath::Cos(th) - 0.5*TSCoutSB*TMath::Sin(th);
+      xbi[k] = TSCRinB *TMath::Sin(th) + 0.5*TSCinLB *TMath::Cos(th);
+      ybi[k] = TSCRinB *TMath::Cos(th) - 0.5*TSCinLB *TMath::Sin(th);
+      xco[k] = TSCRoutC*TMath::Sin(th) + 0.5*TSCoutSC*TMath::Cos(th);
+      yco[k] = TSCRoutC*TMath::Cos(th) - 0.5*TSCoutSC*TMath::Sin(th);
+      xci[k] = TSCRinC *TMath::Sin(th) + 0.5*TSCinLC *TMath::Cos(th);
+      yci[k] = TSCRinC *TMath::Cos(th) - 0.5*TSCinLC *TMath::Sin(th);
+      k++;
+    } // end for i
+    xo[6] = xo[5];
+    yo[6] = 0.0;
+    xi[6] = xi[5];
+    yi[6] = 0.0;
+    xbo[6] = xbo[5];
+    ybo[6] = 0.0;
+    xbi[6] = xbi[5];
+    ybi[6] = 0.0;
+    xco[6] = xco[5];
+    yco[6] = 0.0;
+    xci[6] = xci[5];
+    yci[6] = 0.0;/*
+    cout.precision(4);
+    cout.width(7);
+    cout <<"i     \t  xo  yo    \t  xi yi     \t  xbo ybo   \t   xbi ybi  \t   xco yco   \t   xci yxi"<<endl;
+    for(i=0;i<7;i++){
+        cout << i <<"\t"<<xo[i]<<","<<yo[i];
+        cout      <<"\t"<<xi[i]<<","<<yi[i];
+        cout      <<"\t"<<xbo[i]<<","<<ybo[i];
+        cout      <<"\t"<<xbi[i]<<","<<ybi[i];
+        cout      <<"\t"<<xco[i]<<","<<yco[i];
+        cout      <<"\t"<<xci[i]<<","<<yci[i];
+        cout<<endl;} */
+    //+++++++++++++++++++++++++
+    A1->SetVertex(0,xo[0],yo[0]);
+    A1->SetVertex(1,xo[1],yo[1]);
+    A1->SetVertex(2,xi[1],yi[1]);
+    A1->SetVertex(3,xi[0],yi[0]);
+    //
+    A2->SetVertex(0,xo[1],yo[1]);
+    A2->SetVertex(1,xo[2],yo[2]);
+    A2->SetVertex(2,xi[2],yi[2]);
+    A2->SetVertex(3,xi[1],yi[1]);
+    //
+    A3->SetVertex(0,xo[5],yo[5]);
+    A3->SetVertex(1,xo[6],yo[6]);
+    A3->SetVertex(2,xi[6],yi[6]);
+    A3->SetVertex(3,xi[5],yi[5]);
+    //--------------------------
+    B1->SetVertex(0,xbo[0],ybo[0]);
+    B1->SetVertex(1,xbo[1],ybo[1]);
+    B1->SetVertex(2,xbi[1],ybi[1]);
+    B1->SetVertex(3,xbi[0],ybi[0]);
+    //
+    B2->SetVertex(0,xbo[1],ybo[1]);
+    B2->SetVertex(1,xbo[2],ybo[2]);
+    B2->SetVertex(2,xbi[2],ybi[2]);
+    B2->SetVertex(3,xbi[1],ybi[1]);
+    //
+    B3->SetVertex(0,xbo[5],ybo[5]);
+    B3->SetVertex(1,xbo[6],ybo[6]);
+    B3->SetVertex(2,xbi[6],ybi[6]);
+    B3->SetVertex(3,xbi[5],ybi[5]);
+    //--------------------------
+    C1->SetVertex(0,xco[0],yco[0]);
+    C1->SetVertex(1,xco[1],yco[1]);
+    C1->SetVertex(2,xci[1],yci[1]);
+    C1->SetVertex(3,xci[0],yci[0]);
+    //
+    C2->SetVertex(0,xco[1],yco[1]);
+    C2->SetVertex(1,xco[2],yco[2]);
+    C2->SetVertex(2,xci[2],yci[2]);
+    C2->SetVertex(3,xci[1],yci[1]);
+    //
+    C3->SetVertex(0,xco[5],yco[5]);
+    C3->SetVertex(1,xco[6],yco[6]);
+    C3->SetVertex(2,xci[6],yci[6]);
+    C3->SetVertex(3,xci[5],yci[5]);
+    // Defining the hole, filled with air
+    Double_t p1,c1,x,y;
+    p1 = (xo[0]-xi[0])/(yo[0]-yi[0]);
+    c1 = xo[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[0]-xi[0])+
+                                                SQ(yo[0]-yi[0]))/(xo[0]-xi[0]);
+    y = TSCRoutA-2.*TSCarbonFiberThA;
+    x = p1*(y-yo[0])+c1;
+    Ah1->SetVertex(0,x,y);
+    Bh1->SetVertex(0,x,y);
+    Ch1->SetVertex(0,x,y);
+    y = TSCRinA+TSCarbonFiberThA;
+    x = p1*(y-yo[0])+c1;
+    Ah1->SetVertex(3,x,y);
+    Bh1->SetVertex(3,x,y);
+    Ch1->SetVertex(3,x,y);
+    p1 = (xo[1]-xi[1])/(yo[1]-yi[1]);
+    c1 = xo[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[1]-xi[1])+
+                                                SQ(yo[1]-yi[1]))/(xo[1]-xi[1]);
+    y = TSCRoutA-2.*TSCarbonFiberThA;
+    x = p1*(y-yo[1])+c1;
+    Ah1->SetVertex(1,x,y);
+    Bh1->SetVertex(1,x,y);
+    Ch1->SetVertex(1,x,y);
+    y = TSCRinA+TSCarbonFiberThA;
+    x = p1*(y-yo[1])+c1;
+    Ah1->SetVertex(2,x,y);
+    Bh1->SetVertex(2,x,y);
+    Ch1->SetVertex(2,x,y);
+    //
+    // The easist way to get the points for the hole in volume A2 is to
+    // rotate it to the Y axis where the y coordinates are easier to know
+    // and then rotate it back.
+    Double_t xp,yp,xa,ya,xb,yb;
+    th = 0.5*TSCAngle*kRadian;
+    xa = TMath::Cos(th)*xo[1]-TMath::Sin(th)*yo[1];
+    ya = TMath::Sin(th)*xo[1]+TMath::Cos(th)*yo[1];
+    xb = TMath::Cos(th)*xi[1]-TMath::Sin(th)*yi[1];
+    yb = TMath::Sin(th)*xi[1]+TMath::Cos(th)*yi[1];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(0,xp,yp);
+    Bh2->SetVertex(0,xp,yp);
+    Ch2->SetVertex(0,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(3,xp,yp);
+    Bh2->SetVertex(3,xp,yp);
+    Ch2->SetVertex(3,xp,yp);
+    xa = TMath::Cos(th)*xo[2]-TMath::Sin(th)*yo[2];
+    ya = TMath::Sin(th)*xo[2]+TMath::Cos(th)*yo[2];
+    xb = TMath::Cos(th)*xi[2]-TMath::Sin(th)*yi[2];
+    yb = TMath::Sin(th)*xi[2]+TMath::Cos(th)*yi[2];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(1,xp,yp);
+    Bh2->SetVertex(1,xp,yp);
+    Ch2->SetVertex(1,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ah2->SetVertex(2,xp,yp);
+    Bh2->SetVertex(2,xp,yp);
+    Ch2->SetVertex(2,xp,yp);
+    //
+    p1 = (yo[5]-yi[5])/(xo[5]-xi[5]);
+    c1 = yo[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yo[5]-yi[5])+
+                                                SQ(xo[5]-xi[5]))/(yo[5]-yi[5]);
+    x = xo[5]-TSCarbonFiberThA;
+    y = p1*(x-xo[5])+c1;
+    Ah3->SetVertex(0,x,y);
+    Bh3->SetVertex(0,x,y);
+    Ch3->SetVertex(0,x,y);
+    x = xi[5]+2.0*TSCarbonFiberThA;
+    y = p1*(x-xo[5])+c1;
+    Ah3->SetVertex(3,x,y);
+    Bh3->SetVertex(3,x,y);
+    Ch3->SetVertex(3,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xo[5]-TSCarbonFiberThA;
+    Ah3->SetVertex(1,x,y);
+    Bh3->SetVertex(1,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xi[5]+2.0*TSCarbonFiberThA;
+    Ah3->SetVertex(2,x,y);
+    Bh3->SetVertex(2,x,y);
+    Ch3->SetVertex(2,x,y);
+    //
+    for(i=0;i<4;i++){ // define points at +dz
+      A1->SetVertex(i+4,(A1->GetVertices())[2*i],(A1->GetVertices())[1+2*i]);
+      A2->SetVertex(i+4,(A2->GetVertices())[2*i],(A2->GetVertices())[1+2*i]);
+      A3->SetVertex(i+4,(A3->GetVertices())[2*i],(A3->GetVertices())[1+2*i]);
+      //
+      B1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]);
+      B2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]);
+      B3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]);
+      // C's are a cone which must match up with B's.
+      C1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]);
+      C2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]);
+      C3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]);
+      //
+      Ah1->SetVertex(i+4,(Ah1->GetVertices())[2*i],
+                         (Ah1->GetVertices())[1+2*i]);
+      Ah2->SetVertex(i+4,(Ah2->GetVertices())[2*i],
+                         (Ah2->GetVertices())[1+2*i]);
+      Ah3->SetVertex(i+4,(Ah3->GetVertices())[2*i],
+                         (Ah3->GetVertices())[1+2*i]);
+      //
+      Bh1->SetVertex(i+4,(Bh1->GetVertices())[2*i],
+                         (Bh1->GetVertices())[1+2*i]);
+      Bh2->SetVertex(i+4,(Bh2->GetVertices())[2*i],
+                         (Bh2->GetVertices())[1+2*i]);
+      Bh3->SetVertex(i+4,(Bh3->GetVertices())[2*i],
+                         (Bh3->GetVertices())[1+2*i]);
+    } // end for
+    //printArb8(A1);
+    //printArb8(Ah1);
+    //printArb8(A2);
+    //printArb8(Ah2);
+    //printArb8(A3);
+    //printArb8(Ah3);
+    //printArb8(B1);
+    //printArb8(Bh1);
+    //printArb8(B2);
+    //printArb8(Bh2);
+    //printArb8(B3);
+    //printArb8(Bh3);
+    //
+    p1 = (xco[0]-xci[0])/(yco[0]-yci[0]);
+    c1 = xco[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[0]-xci[0])+
+                                           SQ(yco[0]-yci[0]))/(xco[0]-xci[0]);
+    y = TSCRoutC-2.*TSCarbonFiberThA;
+    x = p1*(y-yco[0])+c1;
+    Ch1->SetVertex(4,x,y);
+    y = TSCRinC+TSCarbonFiberThA;
+    x = p1*(y-yci[0])+c1;
+    Ch1->SetVertex(6,x,y);
+    p1 = (xco[1]-xci[1])/(yco[1]-yci[1]);
+    c1 = xco[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[1]-xci[1])+
+                                           SQ(yco[1]-yci[1]))/(xco[1]-xci[1]);
+    y = TSCRoutC-2.*TSCarbonFiberThA;
+    x = p1*(y-yco[1])+c1;
+    Ch1->SetVertex(5,x,y);
+    y = TSCRinC+TSCarbonFiberThA;
+    x = p1*(y-yci[1])+c1;
+    Ch1->SetVertex(7,x,y);
+    //
+    th = 0.5*TSCAngle*kRadian;
+    xa = TMath::Cos(th)*xco[1]-TMath::Sin(th)*yco[1];
+    ya = TMath::Sin(th)*xco[1]+TMath::Cos(th)*yco[1];
+    xb = TMath::Cos(th)*xci[1]-TMath::Sin(th)*yci[1];
+    yb = TMath::Sin(th)*xci[1]+TMath::Cos(th)*yci[1];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    yp = ya-TSCarbonFiberThA;
+    xp = p1*(y-ya)+c1;
+    Ch2->SetVertex(4,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(6,xp,yp);
+    xa = TMath::Cos(th)*xco[2]-TMath::Sin(th)*yco[2];
+    ya = TMath::Sin(th)*xco[2]+TMath::Cos(th)*yco[2];
+    xb = TMath::Cos(th)*xci[2]-TMath::Sin(th)*yci[2];
+    yb = TMath::Sin(th)*xci[2]+TMath::Cos(th)*yci[2];
+    p1 = (xa-xb)/(ya-yb);
+    c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb);
+    y = ya-TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(5,xp,yp);
+    y = yb+2.0*TSCarbonFiberThA;
+    x = p1*(y-ya)+c1;
+    xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y;
+    yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y;
+    Ch2->SetVertex(7,xp,yp);
+    //
+    p1 = (yco[5]-yci[5])/(xco[5]-xci[5]);
+    c1 = yco[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yco[5]-yci[5])+
+                                          SQ(xco[5]-xci[5]))/(yco[5]-yci[5]);
+    x = xco[5]-TSCarbonFiberThA;
+    y = p1*(x-xco[5])+c1;
+    Ch3->SetVertex(4,x,y);
+    x = xci[5]+2.0*TSCarbonFiberThA;
+    y = p1*(x-xci[5])+c1;
+    Ch3->SetVertex(6,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xco[5]-TSCarbonFiberThA;
+    Ch3->SetVertex(5,x,y);
+    y = 2.0*TSCarbonFiberThA;
+    x = xci[5]+2.0*TSCarbonFiberThA;
+    Ch3->SetVertex(7,x,y);
+    //printArb8(C1);
+    //printArb8(Ch1);
+    //printArb8(C2);
+    //printArb8(Ch2);
+    //printArb8(C3);
+    //printArb8(Ch3);
+    //
+    // Define Minimal volume to inclose this SPD Thermal Sheald.
+    M1 = new TGeoPcon("ITSspdShealdVV",0.0,360.0,9);
+    M1->Z(0)    = 0.5*TSCLengthA+TSCLengthB;
+    M1->Rmin(0) = TSCRinB;
+    x = B1->GetVertices()[0]; // [0][0]
+    y = B1->GetVertices()[1]; // [0][1]
+    M1->Rmax(0) = TMath::Sqrt(x*x+y*y);
+    M1->Z(1)    = M1->GetZ(0)-TSCLengthB;
+    M1->Rmin(1) = M1->GetRmin(0);
+    M1->Rmax(1) = M1->GetRmax(0);
+    M1->Z(2)    = M1->GetZ(1);
+    M1->Rmin(2) = TSCRinA;
+    x = A1->GetVertices()[0]; // [0]0]
+    y = A1->GetVertices()[1]; // [0][1]
+    M1->Rmax(2) = TMath::Sqrt(x*x+y*y);
+    M1->Z(3)    = -(M1->GetZ(0)-TSCLengthB);
+    M1->Rmin(3) = M1->GetRmin(2);
+    M1->Rmax(3) = M1->GetRmax(2);
+    M1->Z(4)    = M1->GetZ(3);
+    M1->Rmin(4) = M1->GetRmin(1);
+    M1->Rmax(4) = M1->GetRmax(1);
+    M1->Z(5)    = -(M1->GetZ(0));
+    M1->Rmin(5) = M1->GetRmin(0);
+    M1->Rmax(5) = M1->GetRmax(0);
+    M1->Z(6)    = M1->GetZ(5) - TSCLengthC;
+    M1->Rmin(6) = TSCRinC;
+    x = C1->GetVertices()[0]; // [0][0]
+    y = C1->GetVertices()[1]; // [0][1]
+    M1->Rmax(6) = TMath::Sqrt(x*x+y*y);
+    M1->Z(7)    = M1->GetZ(6);
+    M1->Rmin(7) = D->GetRmin();
+    M1->Rmax(7) = D->GetRmax();
+    M1->Z(8)    = M1->Z(7) - TSCLengthD;
+    M1->Rmin(8) = M1->GetRmin(7);
+    M1->Rmax(8) = M1->GetRmax(7);
+    M2 = new TGeoTubeSeg("ITSspdShealdWingVV",
+         M1->GetRmax(8),Dw->GetRmax(),Dw->GetDz(),Dw->GetPhi1(),Dw->GetPhi2());
+    //printTubeSeg(M2);
+    //
+    x = 0.5*(M1->GetZ(8) + M1->GetZ(7));
+    tranITSspdShealdVVt0 = new TGeoTranslation("ITSspdShealdVVt0",0.0,0.0,x);
+    tranITSspdShealdVVt0->RegisterYourself();
+    TGeoRotation rotz90("",0.0,0.0,90.0); // never registered.
+    rotITSspdShealdVVt1 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz90);
+    rotITSspdShealdVVt1->SetName("ITSspdShealdVVt1");
+    rotITSspdShealdVVt1->RegisterYourself();
+    TGeoRotation rotz180("",0.0,0.0,180.0); // never registered
+    rotITSspdShealdVVt2 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz180);
+    rotITSspdShealdVVt2->SetName("ITSspdShealdVVt2");
+    rotITSspdShealdVVt2->RegisterYourself();
+    TGeoRotation rotz270("",0.0,0.0,270.0); // never registered
+    rotITSspdShealdVVt3 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz270);
+    rotITSspdShealdVVt3->SetName("ITSspdShealdVVt3");
+    rotITSspdShealdVVt3->RegisterYourself();
+    M = new TGeoCompositeShape("ITS SPD Thermal sheald volume",
+                              "ITSspdShealdVV+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt0+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt1+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt2+"
+                              "ITSspdShealdWingVV:ITSspdShealdVVt3");
+    //
+    TGeoManager *mgr = gGeoManager;
+    SPDcf = mgr->GetMedium("ITSspdCarbonFiber");
+    SPDfs = mgr->GetMedium("ITSspdStaselite4411w");
+    SPDfo = mgr->GetMedium("ITSspdRohacell50A");
+    SPDss = mgr->GetMedium("ITSspdStainlessSteal");
+    SPDair= mgr->GetMedium("ITSspdAir");
+    TGeoVolume *A1v,*A2v,*A3v,*Ah1v,*Ah2v,*Ah3v;
+    TGeoVolume *B1v,*B2v,*B3v,*Bh1v,*Bh2v,*Bh3v;
+    TGeoVolume *C1v,*C2v,*C3v,*Ch1v,*Ch2v,*Ch3v;
+    TGeoVolume *Dv,*Dsv,*Dwv,*Dwsv,*Mv;
+    Mv = new TGeoVolume("ITSspdThermalSheald",M,SPDair);
+    Mv->SetVisibility(kTRUE);
+    Mv->SetLineColor(7); // light Blue
+    Mv->SetLineWidth(1);
+    Mv->SetFillColor(Mv->GetLineColor());
+    Mv->SetFillStyle(4090); // 90% transparent
+    Moth->AddNode(Mv,1,0); ///////////////////// Virtual Volume ////////
+    A1v = new TGeoVolume("ITSspdCentCylA1CF",A1,SPDcf);
+    A1v->SetVisibility(kTRUE);
+    A1v->SetLineColor(4);
+    A1v->SetLineWidth(1);
+    A2v = new TGeoVolume("ITSspdCentCylA2CF",A2,SPDcf);
+    A2v->SetVisibility(kTRUE);
+    A2v->SetLineColor(4);
+    A2v->SetLineWidth(1);
+    A3v = new TGeoVolume("ITSspdCentCylA3CF",A3,SPDcf);
+    A3v->SetVisibility(kTRUE);
+    A3v->SetLineColor(4);
+    A3v->SetLineWidth(1);
+    B1v = new TGeoVolume("ITSspdCentCylB1CF",B1,SPDcf);
+    B1v->SetVisibility(kTRUE);
+    B1v->SetLineColor(4);
+    B1v->SetLineWidth(1);
+    B2v = new TGeoVolume("ITSspdCentCylB2CF",B2,SPDcf);
+    B2v->SetVisibility(kTRUE);
+    B2v->SetLineColor(4);
+    B2v->SetLineWidth(1);
+    B3v = new TGeoVolume("ITSspdCentCylB3CF",B3,SPDcf);
+    B3v->SetVisibility(kTRUE);
+    B3v->SetLineColor(4);
+    B3v->SetLineWidth(1);
+    C1v = new TGeoVolume("ITSspdCentCylC1CF",C1,SPDcf);
+    C1v->SetVisibility(kTRUE);
+    C1v->SetLineColor(4);
+    C1v->SetLineWidth(1);
+    C2v = new TGeoVolume("ITSspdCentCylC2CF",C2,SPDcf);
+    C2v->SetVisibility(kTRUE);
+    C2v->SetLineColor(4);
+    C2v->SetLineWidth(1);
+    C3v = new TGeoVolume("ITSspdCentCylC3CF",C3,SPDcf);
+    C3v->SetVisibility(kTRUE);
+    C3v->SetLineColor(4);
+    C3v->SetLineWidth(1);
+    Ah1v = new TGeoVolume("ITSspdCentCylA1AirA",Ah1,SPDair);
+    Ah1v->SetVisibility(kTRUE);
+    Ah1v->SetLineColor(5); // Yellow
+    Ah1v->SetFillColor(Ah1v->GetLineColor());
+    Ah1v->SetFillStyle(4090); // 90% transparent
+    Ah2v = new TGeoVolume("ITSspdCentCylA2AirA",Ah2,SPDair);
+    Ah2v->SetVisibility(kTRUE);
+    Ah2v->SetLineColor(5); // Yellow
+    Ah2v->SetFillColor(Ah2v->GetLineColor());
+    Ah2v->SetFillStyle(4090); // 90% transparent
+    Ah3v = new TGeoVolume("ITSspdCentCylA3AirA",Ah3,SPDair);
+    Ah3v->SetVisibility(kTRUE);
+    Ah3v->SetLineColor(5); // Yellow
+    Ah3v->SetFillColor(Ah3v->GetLineColor());
+    Ah3v->SetFillStyle(4090); // 90% transparent
+    Bh1v = new TGeoVolume("ITSspdCentCylA1AirB",Bh1,SPDair);
+    Bh1v->SetVisibility(kTRUE);
+    Bh1v->SetLineColor(5); // Yellow
+    Bh1v->SetFillColor(Bh1v->GetLineColor());
+    Bh1v->SetFillStyle(4090); // 90% transparent
+    Bh2v = new TGeoVolume("ITSspdCentCylA2AirB",Bh2,SPDair);
+    Bh2v->SetVisibility(kTRUE);
+    Bh2v->SetLineColor(5); // Yellow
+    Bh2v->SetFillColor(Bh2v->GetLineColor());
+    Bh2v->SetFillStyle(4090); // 90% transparent
+    Bh3v = new TGeoVolume("ITSspdCentCylA3AirB",Bh3,SPDair);
+    Bh3v->SetVisibility(kTRUE);
+    Bh3v->SetLineColor(5); // Yellow
+    Bh3v->SetFillColor(Bh3v->GetLineColor());
+    Bh3v->SetFillStyle(4090); // 90% transparent
+    Ch1v = new TGeoVolume("ITSspdCentCylA1AirC",Ch1,SPDair);
+    Ch1v->SetVisibility(kTRUE);
+    Ch1v->SetLineColor(5); // Yellow
+    Ch1v->SetFillColor(Ch1v->GetLineColor());
+    Ch1v->SetFillStyle(4090); // 90% transparent
+    Ch2v = new TGeoVolume("ITSspdCentCylA2AirC",Ch2,SPDair);
+    Ch2v->SetVisibility(kTRUE);
+    Ch2v->SetLineColor(5); // Yellow
+    Ch2v->SetFillColor(Ch2v->GetLineColor());
+    Ch2v->SetFillStyle(4090); // 90% transparent
+    Ch3v = new TGeoVolume("ITSspdCentCylA3AirC",Ch3,SPDair);
+    Ch3v->SetVisibility(kTRUE);
+    Ch3v->SetLineColor(5); // Yellow
+    Ch3v->SetFillColor(Ch3v->GetLineColor());
+    Ch3v->SetFillStyle(4090); // 90% transparent
+    Dv = new TGeoVolume("ITSspdCentCylA1CD",D,SPDcf);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(4);
+    Dv->SetLineWidth(1);
+    Dwv = new TGeoVolume("ITSspdCentCylA1CDw",Dw,SPDcf);
+    Dwv->SetVisibility(kTRUE);
+    Dwv->SetLineColor(4);
+    Dwv->SetLineWidth(1);
+    Dsv = new TGeoVolume("ITSspdCentCylA1Dfill",Ds,SPDfs);
+    Dsv->SetVisibility(kTRUE);
+    Dsv->SetLineColor(3); // Green
+    Dsv->SetFillColor(Dsv->GetLineColor());
+    Dsv->SetFillStyle(4010); // 10% transparent
+    Dwsv = new TGeoVolume("ITSspdCentCylA1DwingFill",Dws,SPDfs);
+    Dwsv->SetVisibility(kTRUE);
+    Dwsv->SetLineColor(3); // Green
+    Dwsv->SetFillColor(Dwsv->GetLineColor());
+    Dwsv->SetFillStyle(4010); // 10% transparent
+    //
+    A1v->AddNode(Ah1v,1,0);
+    A2v->AddNode(Ah2v,1,0);
+    A3v->AddNode(Ah3v,1,0);
+    B1v->AddNode(Bh1v,1,0);
+    B2v->AddNode(Bh2v,1,0);
+    B3v->AddNode(Bh3v,1,0);
+    C1v->AddNode(Ch1v,1,0);
+    C2v->AddNode(Ch2v,1,0);
+    C3v->AddNode(Ch3v,1,0);
+    Dv ->AddNode(Dsv ,1,0);
+    Dwv->AddNode(Dwsv,1,0);
+    //
+    Mv->AddNode(A1v,1,0);
+    Mv->AddNode(A2v,1,0);
+    Mv->AddNode(A3v,1,0);
+    tranb  = new TGeoTranslation("",0.0,0.0,0.5*(TSCLengthA+TSCLengthB));
+    tranbm = new TGeoTranslation("",0.0,0.0,0.5*(-TSCLengthA-TSCLengthB));
+    Mv->AddNode(B1v,1,tranb);
+    Mv->AddNode(B2v,1,tranb);
+    Mv->AddNode(B3v,1,tranb);
+    Mv->AddNode(B1v,2,tranbm);
+    Mv->AddNode(B2v,2,tranbm);
+    Mv->AddNode(B3v,2,tranbm);
+    // Muon side (rb26) is at -Z.
+    tranc = new TGeoTranslation("",0.0,0.0,
+                                0.5*(-TSCLengthA-TSCLengthB-TSCLengthC));
+    Mv->AddNode(C1v,1,tranc);
+    Mv->AddNode(C2v,1,tranc);
+    Mv->AddNode(C3v,1,tranc);
+    Mv->AddNode(Dv,1,tranITSspdShealdVVt0);
+    Mv->AddNode(Dwv,1,tranITSspdShealdVVt0);
+    Mv->AddNode(Dwv,2,rotITSspdShealdVVt1);
+    Mv->AddNode(Dwv,3,rotITSspdShealdVVt2);
+    Mv->AddNode(Dwv,4,rotITSspdShealdVVt3);
+    k=2;
+    for(i=1;i<10;i++) {
+      th = ((Double_t)i)*TSCAngle*kDegree;
+      rot = new TGeoRotation("",0.0,0.0,th);
+      Mv->AddNode(A1v,i+1,rot);
+      Mv->AddNode(B1v,i+2,new TGeoCombiTrans(*tranb,*rot));
+      Mv->AddNode(B1v,i+12,new TGeoCombiTrans(*tranbm,*rot));
+      Mv->AddNode(C1v,i+1,new TGeoCombiTrans(*tranc,*rot));
+      if(i!=0||i!=2||i!=7){
+        Mv->AddNode(A2v,k++,rot);
+        Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranb,*rot));
+        Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranbm,*rot));
+        Mv->AddNode(C2v,k++,new TGeoCombiTrans(*tranc,*rot));
+      } // end if
+      if(i==5) {
+        Mv->AddNode(A3v,2,rot);
+        Mv->AddNode(B3v,3,new TGeoCombiTrans(*tranb,*rot));
+        Mv->AddNode(B3v,4,new TGeoCombiTrans(*tranbm,*rot));
+        Mv->AddNode(C3v,2,new TGeoCombiTrans(*tranc,*rot));
+      } // end if
+    } // end for i
+    rot = new TGeoRotation("",180.,0.0,0.0);
+    Mv->AddNode(A3v,3,rot);
+    Mv->AddNode(B3v,5,new TGeoCombiTrans(*tranb,*rot));
+    Mv->AddNode(B3v,6,new TGeoCombiTrans(*tranbm,*rot));
+    Mv->AddNode(C3v,3,new TGeoCombiTrans(*tranc,*rot));
+    rot = new TGeoRotation("",180.,0.0,180.0);
+    Mv->AddNode(A3v,4,rot);
+    Mv->AddNode(B3v,7,new TGeoCombiTrans(*tranb,*rot));
+    Mv->AddNode(B3v,8,new TGeoCombiTrans(*tranbm,*rot));
+    Mv->AddNode(C3v,4,new TGeoCombiTrans(*tranc,*rot));
+}
+//______________________________________________________________________
+void AliITSv11::SDDCone(TGeoVolume *Moth){
+    // Define the detail SDD support cone geometry.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //  none.
+    // Return:
+    //  none.
+    //
+    // From Cilindro Centrale - Lavorazioni, ALR 0816/1 04/08/03 File
+    // name SDD/Cilindro.hpgl
+    const Double_t TSLength       = 790.0*kmm; // Thermal Sheeld length
+    const Double_t TSInsertoLength= 15.0*kmm;    // ????
+    const Double_t TSOuterR       = 0.5*(220.+10.)*kmm; // ????
+    const Double_t TSInnerR       = 0.5*(220.-10.)*kmm; // ????
+    const Double_t TSCarbonFiberth= 0.02*kmm;     // ????
+    const Double_t TSBoltDiameter = 6.0*kmm; // M6 screw
+    const Double_t TSBoltDepth    = 6.0*kmm; // in volume C
+    const Double_t TSBoltRadius   = 0.5*220.*kmm; // Radius in volume C
+    const Double_t TSBoltAngle0   = 0.0*kDegree; // Angle in volume C
+    const Double_t TSBoltdAngle   = 30.0*kDegree; // Angle in Volume C
+    Double_t x,y,z,t;
+    Int_t i,n;
+    TGeoTube *A,*B,*C,*D;
+    TGeoTranslation *tran;
+    TGeoRotation *rot;
+    TGeoCombiTrans *rotran;
+    TGeoMedium *SDDcf,*SDDfs,*SDDfo,*SDDss;
+
+    A = new TGeoTube("ITS SDD Central Cylinder",TSInnerR,TSOuterR,.5*TSLength);
+    B = new TGeoTube("ITS SDD CC Foam",TSInnerR+TSCarbonFiberth,
+                    TSOuterR-TSCarbonFiberth,
+                    0.5*(TSLength-2.0*TSInsertoLength));
+    C = new TGeoTube("ITS SDD CC Inserto",TSInnerR+TSCarbonFiberth,
+                    TSOuterR-TSCarbonFiberth,0.5*TSLength);
+    D = new TGeoTube("ITS SDD CC M6 bolt end",0.0,0.5*TSBoltDiameter,
+                    0.5*TSBoltDepth);
+    printTube(A);
+    printTube(B);
+    printTube(C);
+    printTube(D);
+    //
+    TGeoManager *mgr = gGeoManager;
+    SDDcf = mgr->GetMedium("ITSssdCarbonFiber");
+    SDDfs = mgr->GetMedium("ITSssdStaselite4411w");
+    SDDfo = mgr->GetMedium("ITSssdRohacell50A");
+    SDDss = mgr->GetMedium("ITSssdStainlessSteal");
+    TGeoVolume *Av,*Bv,*Cv,*Dv;
+    Av = new TGeoVolume("ITSsddCentCylCF",A,SDDcf);
+    Av->SetVisibility(kTRUE);
+    Av->SetLineColor(4);
+    Av->SetLineWidth(1);
+    Av->SetFillColor(Av->GetLineColor());
+    Av->SetFillStyle(4000); // 0% transparent
+    Bv = new TGeoVolume("ITSsddCentCylF",B,SDDfo);
+    Bv->SetVisibility(kTRUE);
+    Bv->SetLineColor(3);
+    Bv->SetLineWidth(1);
+    Bv->SetFillColor(Bv->GetLineColor());
+    Bv->SetFillStyle(4000); // 0% transparent
+    Cv = new TGeoVolume("ITSsddCentCylSt",C,SDDfs);
+    Cv->SetVisibility(kTRUE);
+    Cv->SetLineColor(2);
+    Cv->SetLineWidth(1);
+    Cv->SetFillColor(Cv->GetLineColor());
+    Cv->SetFillStyle(4000); // 0% transparent
+    Dv = new TGeoVolume("ITSsddCentCylSS",D,SDDss);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(1);
+    Dv->SetLineWidth(1);
+    Dv->SetFillColor(Dv->GetLineColor());
+    Dv->SetFillStyle(4000); // 0% transparent
+    //
+    Moth->AddNode(Av,1,0);
+    Av->AddNode(Cv,1,0);
+    Cv->AddNode(Bv,1,0);
+    n = (Int_t)((360.*kDegree)/TSBoltdAngle);
+    for(i=0;i<n;i++){
+        t = TSBoltAngle0+((Double_t)i)*TSBoltdAngle;
+        x = TSBoltRadius*TMath::Cos(t*kRadian);
+        y = TSBoltRadius*TMath::Sin(t*kRadian);
+        z = 0.5*(TSLength-TSBoltDepth);
+        tran = new TGeoTranslation("",x,y,z);
+        Cv->AddNode(Dv,i+1,tran);
+        tran = new TGeoTranslation("",x,y,-z);
+        Cv->AddNode(Dv,i+n+1,tran);
+    } // end for i
+    // SDD Suport Cone
+    //
+    //
+    const Double_t Thickness = 10.5*kmm; // Thickness of Rohacell+carbon fiber
+    const Double_t Cthick    = 1.5*kmm; // Carbon finber thickness
+    const Double_t Rcurv     = 15.0*kmm; // Radius of curvature.
+    const Double_t Tc        = 45.0; // angle of SSD cone [degrees].
+    const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad());
+    const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad());
+    const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad());
+    const Double_t ZouterMilled = 23.0*kmm;
+    const Double_t Zcylinder    = 186.0*kmm;
+    const Double_t Z0           = Zcylinder + 0.5*TSLength;
+    //const Int_t Nspoaks         = 12;
+    //const Int_t Nmounts         = 4;
+    //const Double_t DmountAngle  = 9.0; // degrees
+    const Double_t RoutMax      = 0.5*560.0*kmm;
+    //const Double_t RoutHole     = 0.5*965.0*kmm;
+    const Double_t RoutMin      = 0.5*539.0*kmm;
+    const Double_t RholeMaxOut  = 214.5*kmm;
+    const Double_t RholeMaxIn   = 115.5*kmm;
+    //const Double_t RholeMin     = 0.5*740.0*kmm;
+    //const Double_t RpostMin     = 316.0*kmm;
+    const Int_t NpostsOut       = 6;
+    const Int_t NpostsIn        = 3;
+    const Double_t Phi0PostOut  = 0.0; // degree
+    const Double_t Phi0PostIn   = 0.0; // degree
+    const Double_t dRpostOut    = 16.0*kmm;
+    const Double_t dRpostIn     = 16.0*kmm;
+    const Double_t ZpostMaxOut  = 116.0*kmm;
+    const Double_t ZpostMaxIn   = 190.0*kmm;
+    const Double_t RinMax       = 0.5*216*kmm;
+    const Double_t RinCylinder  = 0.5*231.0*kmm;
+    const Double_t RinHole      = 0.5*220.0*kmm;
+    const Double_t RinMin       = 0.5*210.0*kmm;
+    const Double_t dZin         = 15.0*kmm; // ???
+    //
+    Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc;
+    Double_t Z,Rmin,Rmax; // Temp variables.
+    if(dza<=0){ // The number or order of the points are in error for a proper
+     // call to pcons!
+     Error("SDDcone","The definition of the points for a call to PCONS is"
+           " in error. abort.");
+     return;
+    } // end if
+    TGeoPcon *E = new TGeoPcon("ITS SDD Suport cone Carbon Fiber Surface outer",
+                               0.0,360.0,12);
+    E->Z(0)    = 0.0;
+    E->Rmin(0) = RoutMin;
+    E->Rmax(0) = RoutMax;
+    E->Z(1)    = ZouterMilled - dza;
+    E->Rmin(1) = E->GetRmin(0);
+    E->Rmax(1) = E->GetRmax(0);
+    E->Z(2)    = ZouterMilled;
+    E->Rmax(2) = E->GetRmax(0);
+    RadiusOfCurvature(Rcurv,0.,E->GetZ(1),E->GetRmin(1),Tc,Z,Rmin);
+    E->Z(3)    = Z;
+    E->Rmin(3) = Rmin;
+    E->Rmin(2) = RminFrom2Points(E,3,1,E->GetZ(2));
+    RadiusOfCurvature(Rcurv,0.,E->GetZ(2),E->GetRmax(2),Tc,Z,Rmax);
+    E->Z(4)    = Z;
+    E->Rmax(4) = Rmax;
+    E->Rmin(4) = RminFromZpCone(E,Tc,E->GetZ(4),0.0);
+    E->Rmax(3) = RmaxFrom2Points(E,4,2,E->GetZ(3));
+    E->Rmin(7) = RinMin;
+    E->Rmin(8) = RinMin;
+    RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,Rmax);
+    E->Rmax(8) = Rmax;
+    E->Z(8)    = ZFromRmaxpCone(E,Tc,E->GetRmax(8));
+    E->Z(9)    = Zcylinder;
+    E->Rmin(9) = RinMin;
+    E->Z(10)    = E->GetZ(9);
+    E->Rmin(10) = RinCylinder;
+    E->Rmin(11) = RinCylinder;
+    E->Rmax(11) = E->GetRmin(11);
+    Rmin        = E->GetRmin(8);
+    RadiusOfCurvature(Rcurv,90.0-Tc,E->GetZ(8),E->GetRmax(8),90.0,Z,Rmax);
+    Rmax = RinMax;
+    E->Z(11)    = Z+(E->GetZ(8)-Z)*(E->GetRmax(11)-Rmax)/(E->GetRmax(8)-Rmax);
+    E->Rmax(9) = RmaxFrom2Points(E,11,8,E->GetZ(9));
+    E->Rmax(10) = E->GetRmax(9);
+    E->Z(6)    = Z-dZin;
+    E->Z(7)    = E->GetZ(6);
+    E->Rmax(6) = RmaxFromZpCone(E,Tc,E->GetZ(6));
+    E->Rmax(7) = E->GetRmax(6);
+    RadiusOfCurvature(Rcurv,90.,E->GetZ(6),0.0,90.0-Tc,Z,Rmin);
+    E->Z(5)    = Z;
+    E->Rmin(5) = RminFromZpCone(E,Tc,Z);
+    E->Rmax(5) = RmaxFromZpCone(E,Tc,Z);
+    RadiusOfCurvature(Rcurv,90.-Tc,0.0,E->Rmin(5),90.0,Z,Rmin);
+    E->Rmin(6) = Rmin;
+    printPcon(E);
+    // Inner Core, Inserto material
+    TGeoPcon *F = new TGeoPcon("ITS SDD Suport cone Inserto Stesalite",
+                               0.0,360.0,9);
+    F->Z(0)    = E->GetZ(0);
+    F->Rmin(0) = E->GetRmin(0)+Cthick;
+    F->Rmax(0) = E->GetRmax(0)-Cthick;
+    F->Z(1)    = E->GetZ(1);
+    F->Rmin(1) = F->GetRmin(0);
+    F->Rmax(1) = F->GetRmax(0);
+    F->Z(2)    = E->GetZ(2);
+    F->Rmax(2) = F->GetRmax(1);
+    RadiusOfCurvature(Rcurv-Cthick,0.,F->GetZ(1),F->GetRmax(1),Tc,Z,Rmin);
+    F->Z(3)    = Z;
+    F->Rmin(3) = Rmin;
+    F->Rmin(2) = RminFrom2Points(F,3,1,F->GetZ(2));
+    RadiusOfCurvature(Rcurv+Cthick,0.,F->GetZ(2),F->GetRmax(2),Tc,Z,Rmax);
+    F->Z(4)    = Z;
+    F->Rmax(4) = Rmax;
+    F->Rmin(4) = RmaxFromZpCone(E,Tc,F->GetZ(4),-Cthick);
+    F->Rmax(3) = RmaxFrom2Points(F,4,2,F->GetZ(3));
+    F->Rmin(7) = E->GetRmin(7);
+    F->Rmin(8) = E->GetRmin(8);
+    F->Z(6)    = E->GetZ(6)+Cthick;
+    F->Rmin(6) = E->GetRmin(6);
+    F->Z(7)    = F->GetZ(6);
+    F->Rmax(8) = E->GetRmax(8)-Cthick*Sintc;
+    RadiusOfCurvature(Rcurv+Cthick,90.,F->GetZ(6),F->GetRmin(6),90.-Tc,Z,Rmin);
+    F->Z(5)    = Z;
+    F->Rmin(5) = Rmin;
+    F->Rmax(5) = RmaxFromZpCone(F,Tc,Z);
+    F->Rmax(6) = RmaxFromZpCone(F,Tc,F->GetZ(6));
+    F->Rmax(7) = F->GetRmax(6);
+    F->Z(8)    = ZFromRmaxpCone(F,Tc,F->GetRmax(8),-Cthick);
+    //F->Rmin(9) = F->Rmin(7);
+    //F->Z(9)    = F->GetZ(9);
+    //F->Rmax(9) = (E->GetRmax(8)-E->GetRmax(11))/(E->GetZ(8)-E->GetZ(11))*
+    //                                (F->GetZ(9)-F->GetZ(8))+F->GetRmax(8);
+    printPcon(F);
+    // Inner Core, Inserto material
+    TGeoPcon *G = new TGeoPcon("ITS SDD Suport cone Foam core",
+                               0.0,360.0,4);
+    RadiusOfCurvature(Rcurv+Cthick,0.0,F->GetZ(1),F->GetRmin(1),Tc,Z,Rmin);
+    G->Z(0)    = Z;
+    G->Rmin(0) = Rmin;
+    G->Rmax(0) = G->GetRmin(0);
+    G->Z(1)    = G->GetZ(0)+(Thickness-2.0*Cthick)/Sintc;;
+    G->Rmin(1) = RminFromZpCone(F,Tc,G->GetZ(1));
+    G->Rmax(1) = RmaxFromZpCone(F,Tc,G->GetZ(1));
+    G->Z(2)    = E->GetZ(5)-Cthick;
+    G->Rmin(2) = RminFromZpCone(F,Tc,G->GetZ(2));
+    G->Rmax(2) = RmaxFromZpCone(F,Tc,G->GetZ(2));
+    G->Z(3)    = F->GetZ(5)+(Thickness-2.0*Cthick)*Costc;
+    G->Rmax(3) = RmaxFromZpCone(F,Tc,G->GetZ(3));
+    G->Rmin(3) = G->GetRmax(3);
+    printPcon(G);
+    //
+    TGeoVolume *Ev,*Fv,*Gv;
+    Ev = new TGeoVolume("ITSsddConeE",E,SDDcf);
+    Ev->SetVisibility(kTRUE);
+    Ev->SetLineColor(4);
+    Ev->SetLineWidth(1);
+    Ev->SetFillColor(Ev->GetLineColor());
+    Ev->SetFillStyle(4000); // 0% transparent
+    Fv = new TGeoVolume("ITSsddConeF",F,SDDfs);
+    Fv->SetVisibility(kTRUE);
+    Fv->SetLineColor(2);
+    Fv->SetLineWidth(1);
+    Fv->SetFillColor(Fv->GetLineColor());
+    Fv->SetFillStyle(4010); // 10% transparent
+    Gv = new TGeoVolume("ITSsddConeG",G,SDDfo);
+    Gv->SetVisibility(kTRUE);
+    Gv->SetLineColor(7);
+    Gv->SetLineWidth(1);
+    Gv->SetFillColor(Gv->GetLineColor());
+    Gv->SetFillStyle(4050); // 50% transparent
+    //
+    Fv->AddNode(Gv,1,0);
+    Ev->AddNode(Fv,1,0);
+    tran = new TGeoTranslation("",0.0,0.0,-Z0);
+    Moth->AddNode(Ev,1,tran);
+    rot = new TGeoRotation("",0.0,180.0*kDegree,0.0);
+    rotran = new TGeoCombiTrans("",0.0,0.0,Z0,rot);
+    Moth->AddNode(Ev,2,rotran);
+}
+//______________________________________________________________________
+void AliITSv11::SSDCone(TGeoVolume *Moth){
+    // Define the detail SSD support cone geometry.
+    // Inputs:
+    //   none.
+    // Outputs:
+    //  none.
+    // Return:
+    //  none.
+    const Double_t ZThCylinder = 1140.0*kmm;//
+    //
+    const Double_t Thickness = 13.0*kmm; // Thickness of Rohacell+carbon fiber
+    const Double_t Cthick    = 1.5*kmm; // Carbon finber thickness
+    const Double_t Rcurv     = 15.0*kmm; // Radius of curvature.
+    const Double_t Tc        = 51.0; // angle of SSD cone [degrees].
+    const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad());
+    const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad());
+    const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad());
+    const Double_t ZouterMilled = (13.5-5.0)*kmm;
+    const Double_t Zcylinder    = 170.0*kmm;
+    const Double_t Z0           = Zcylinder + 0.5*ZThCylinder;
+    const Int_t Nspoaks         = 12;
+    const Int_t Nmounts         = 4;
+    const Double_t DmountAngle  = 9.0; // degrees
+    const Double_t RoutMax      = 0.5*985.0*kmm;
+    const Double_t RoutHole     = 0.5*965.0*kmm;
+    const Double_t RoutMin      = 0.5*945.0*kmm;
+    const Double_t RholeMax     = 0.5*890.0*kmm;
+    const Double_t RholeMin     = 0.5*740.0*kmm;
+    const Double_t RpostMin     = 316.0*kmm;
+    const Double_t ZpostMax     = 196.0*kmm;
+    const Int_t Nposts          = 6;
+    const Double_t Phi0Post     = 0.0; // degree
+    const Double_t dRpost       = 23.0*kmm;
+    const Double_t RinMax       = 0.5*590.0*kmm;
+    const Double_t RinCylinder  = 0.5*597.0*kmm;
+    const Double_t RinHole      = 0.5*575.0*kmm;
+    const Double_t RinMin       = 0.5*562.0*kmm;
+    const Double_t dZin         = 15.0*kmm;
+    // SSD-SDD Thermal/Mechanical cylinder mounts
+    const Int_t NinScrews          = 40;
+    const Double_t Phi0Screws      = 0.5*360.0/((const Double_t)NinScrews);//d
+    const Double_t RcylinderScrews = 0.5*570.0*kmm;//from older drawing????
+    const Double_t DscrewHead      = 8.0*kmm;
+    const Double_t DscrewShaft     = 4.6*kmm;
+    const Double_t ThScrewHeadHole = 8.5*kmm;
+    // SDD mounting bracket, SSD part
+    const Double_t NssdSupports      = 3;// mounting of U and T
+    const Double_t DssdsddBracketAngle = 9.0; // degrees
+    const Double_t Phi0SDDsupports   = 0.0; // degree
+    const Double_t RsddSupportPlate  = 0.5*585.0*kmm;
+    const Double_t ThSDDsupportPlate = 4.0*kmm;
+    const Double_t WsddSupportPlate  = 70.0*kmm;
+    TGeoMedium *SSDcf  = 0; // SSD support cone Carbon Fiber materal number.
+    TGeoMedium *SSDfs  = 0; // SSD support cone inserto stesalite 4411w.
+    TGeoMedium *SSDfo  = 0; // SSD support cone foam, Rohacell 50A.
+    TGeoMedium *SSDss  = 0; // SSD support cone screw material,Stainless steal
+    TGeoMedium *SSDair = 0; // SSD support cone Air
+    TGeoMedium *SSDal  = 0; // SSD support cone SDD mounting bracket Al
+
+    // Lets start with the upper left outer carbon fiber surface.
+    // Between za[2],rmaxa[2] and za[4],rmaxa[4] there is a curved section
+    // given by rmaxa = rmaxa[2]-r*Sind(t) for 0<=t<=Tc and 
+    // za = za[2] + r*Cosd(t) for 0<=t<=Tc. Simularly between za[1],rmina[1
+    // and za[3],rmina[3] there is a curve section given by
+    // rmina = rmina[1]-r*Sind(t) for 0<=t<=Tc and za = za[1]+r&Sind(t)
+    // for t<=0<=Tc. These curves have been replaced by straight lines
+    // between the equivelent points for simplicity.
+    Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc;
+    Int_t i,j;
+    Double_t x,y,z[9],rn[9],rx[9],phi,dphi;
+    Double_t t,t0,Z,Rmin,Rmax; // Temp variables.
+    if(dza<=0){ // The number or order of the points are in error for a proper
+     // call to pcons!
+     Error("SSDcone","The definition of the points for a call to PCONS is"
+           " in error. abort.");
+     return;
+    } // end if
+    // Poly-cone Volume A. Top part of SSD cone Carbon Fiber.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = 0.0;
+    rn[0] = RoutMin;
+    rx[0] = RoutMax;
+    z[1]  = z[0]+ZouterMilled - dza; // za[2] - dza.
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    z[2]  = z[0]+ZouterMilled;//From Drawing ALR-0767 and ALR-0767/3
+    rx[2] = rx[0];
+    RadiusOfCurvature(Rcurv,0.,z[1],rn[1],Tc,z[3],rn[3]);
+    rn[2] = RFrom2Points(rn,z,3,1,z[2]);
+    RadiusOfCurvature(Rcurv,0.,z[2],rx[2],Tc,z[4],rx[4]);
+    rn[4] = RminFromZpCone(rn,z,Tc,z[4]);
+    rx[3] = RFrom2Points(rx,z,4,2,z[3]);
+    rn[5] = RholeMax;
+    z[5]  = Zfrom2Points(z,rn,4,3,rn[5]);
+    rx[5] = RmaxFromZpCone(rx,z,Tc,z[5]);
+    rn[6] = RholeMax;
+    rx[6] = rn[6];
+    z[6]  = ZFromRmaxpCone(rx,z,Tc,rx[6]);
+    TGeoPcon *A = new TGeoPcon("ITS SSD Suport cone Carbon Fiber "
+                       "Surface outer left",phi,dphi,7);
+    for(i=0;i<A->GetNz();i++){
+             //if(fDebug) cout<<i<<"A: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     A->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    // Poly-cone Volume B. Stesalite inside volume A.
+    // Now lets define the Inserto Stesalite 4411w material volume.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = A->GetZ(0);
+    rn[0] = A->GetRmin(0)+Cthick;
+    rx[0] = A->GetRmax(0)-Cthick;
+    z[1]  = A->GetZ(1);
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    z[2]  = A->GetZ(2);
+    rx[2] = rx[1];
+    RadiusOfCurvature(Rcurv-Cthick,0.,z[2],rx[2],Tc,z[3],rx[3]);
+    RadiusOfCurvature(Rcurv+Cthick,0.,z[1],rn[1],Tc,z[4],rn[4]);
+    rn[2] = RFrom2Points(rn,z,4,1,z[2]);
+    rn[3] = RFrom2Points(rn,z,4,1,z[3]);
+    z[5]  = z[4]+(Thickness-2.0*Cthick)/Sintc;
+    rn[5] = RmaxFromZpCone(A,Tc,z[5],-Cthick);
+    rx[5] = rn[5];
+    rx[4] = RFrom2Points(rx,z,5,3,z[4]);
+    TGeoPcon *B = new TGeoPcon("ITS SSD Suport cone Inserto Stesalite "
+                       "left edge",phi,dphi,6);
+    for(i=0;i<B->GetNz();i++){
+             //if(fDebug) cout<<i<<"B: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     B->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    // Poly-cone Volume C. Foam inside volume A.
+    // Now lets define the Rohacell foam material volume.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = B->GetZ(4);
+    rn[0] = B->GetRmin(4);
+    rx[0] = rn[0];
+    z[1]  = B->GetZ(5);
+    rx[1] = B->GetRmin(5);
+    rn[2] = A->GetRmin(5)+Cthick;//space for carbon fiber covering hole
+    z[2]  = ZFromRminpCone(A,Tc,rn[2],+Cthick);
+    rn[1] = RFrom2Points(rn,z,2,0,z[1]);
+    rx[3] = A->GetRmin(6)+Cthick;
+    rn[3] = rx[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    rx[2] = RFrom2Points(rx,z,3,1,z[2]);
+    TGeoPcon *C = new TGeoPcon("ITS SSD Suport cone Rohacell foam "
+                       "left edge",phi,dphi,4);
+    for(i=0;i<C->GetNz();i++){
+             //if(fDebug) cout<<i<<"C: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     C->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    // In volume SCB, th Inserto Stesalite 4411w material volume, there
+    // are a number of Stainless steel screw and pin studs which will be
+    // filled with screws/studs.
+    rn[0] = 0.0*kmm,rx[0] = 6.0*kmm,z[0] = 0.5*10.0*kmm; // mm
+    TGeoTube *D = new TGeoTube("ITS Screw+stud used to mount things to "
+                       "the SSD support cone",rn[0],rx[0],z[0]);
+    rn[0] = 0.0*kmm;rx[0] = 6.0*kmm;z[0] = 0.5*12.0*kmm; // mm
+    TGeoTube *E = new TGeoTube("ITS pin used to mount things to the "
+                       "SSD support cone",rn[0],rx[0],z[0]);
+    //
+    // Poly-cone Volume F. Foam in spoak reagion, inside volume A.
+    // There is no carbon fiber between this upper left section and the
+    // SSD spoaks. We remove it by replacing it with Rohacell foam.
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get
+    // the carbon fiber thickness uniform in this phi direction. We can only
+    // make it a fixed angular thickness.
+    t *= 180.0/TMath::Pi();
+    phi  = 12.5+t; // degrees see drawing ALR-0767.
+    dphi  = 5.0 - 2.0*t; // degrees
+    z[0]  = C->GetZ(2);
+    rn[0] = C->GetRmin(3);
+    rx[0] = rn[0];
+    rn[1] = A->GetRmin(5);
+    rx[1] = rn[0];
+    z[1]  = ZFromRminpCone(A,Tc,rn[1],+Cthick);
+    z[2]  = C->GetZ(3);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    rn[3] = A->GetRmin(6);
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    TGeoPcon *F = new TGeoPcon("ITS SSD Top Suport cone Rohacell foam "
+                       "Spoak",phi,dphi,4);
+    for(i=0;i<F->GetNz();i++){
+             //if(fDebug) cout<<i<<"F: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     F->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //=================================================================
+     // Poly-cone Volume G.
+    // Now for the spoak part of the SSD cone.
+    // It is not posible to inclue the radius of curvature between
+    // the spoak part and the upper left part of the SSD cone or lowwer right
+    // part. This would be discribed by the following curves.
+    // R = Rmax - (5mm)*Sin(t) phi = phi0+(5mm*180/(Pi*RoutHole))*Sin(t) 
+    // where 0<=t<=90 For the inner curve a simular equiation holds.
+    phi   = 12.5; // degrees see drawing ALR-0767.
+    dphi  = 5.0; // degrees
+    z[0]  = A->GetZ(5);
+    rn[0] = A->GetRmin(5);
+    rx[0] = rn[0];
+    z[1]  = A->GetZ(6);
+    rn[1] = RminFromZpCone(A,Tc,z[1]);
+    rx[1] = rx[0];
+    rn[2] = RholeMin;
+    z[2]  = ZFromRminpCone(A,Tc,rn[2]);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3]);
+    TGeoPcon *G = new TGeoPcon("ITS SSD spoak carbon fiber surfaces",
+                       phi,dphi,4);
+    for(i=0;i<G->GetNz();i++){
+             //if(fDebug) cout<<i<<"G: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     G->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // For the foam core.
+    // Poly-cone Volume H.
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the
+    // carbon fiber thickness uniform in this phi direction. We can only
+    // make it a fixed angular thickness.
+    t *= 180.0/TMath::Pi();
+    phi   = 12.5+t; // degrees
+    dphi  = 5.0 - 2.0*t; // degrees see drawing ALR-0767.
+    z[0]  = F->GetZ(1);
+    rn[0] = G->GetRmin(0);
+    rx[0] = rn[0];
+    z[1]  = F->GetZ(3);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    rx[1] = rx[0];
+    z[2]  = ZFromRminpCone(A,Tc,G->GetRmin(2),+Cthick);
+    rn[2] = G->GetRmin(2);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    z[3]  = ZFromRmaxpCone(A,Tc,G->GetRmin(3),-Cthick);
+    rn[3] = G->GetRmin(3);
+    rx[3] = rn[3];
+    TGeoPcon *H = new TGeoPcon("ITS SSD support cone Rohacell foam Spoak",
+                       phi,dphi,4); 
+    for(i=0;i<H->GetNz();i++){
+             //if(fDebug) cout<<i<<"H: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     H->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    //==================================================================
+    // Now for the Inner most part of the SSD cone.
+    //Poly-cone Volume I.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = G->GetZ(2);
+    rn[0] = G->GetRmin(2);
+    rx[0] = rn[0];
+    z[1]  = G->GetZ(3);
+    rn[1] = RminFromZpCone(A,Tc,z[1]);
+    rx[1] = rx[0];
+    rn[4] = RinMin;
+    rn[5] = RinMin;
+    RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,rx[5]); // z dummy
+    z[5]  = ZFromRmaxpCone(A,Tc,rx[5]);
+    z[6]  = Zcylinder;
+    rn[6] = RinMin;
+    z[7]  = z[6];
+    rn[7] = RinCylinder;
+    rn[8] = RinCylinder;
+    rx[8] = rn[8];
+    Rmin   = rn[5];
+    RadiusOfCurvature(Rcurv,90.0-Tc,z[5],rx[5],90.0,Z,Rmax);
+    Rmax   = RinMax;
+    z[8]  = Z+(z[5]-Z)*(rx[8]-Rmax)/(rx[5]-Rmax);
+    rx[6] = RFrom2Points(rx,z,8,5,z[6]);
+    rx[7] = rx[6];
+    z[3]  = Z-dZin;
+    z[4]  = z[3];
+    rx[3] = RmaxFromZpCone(A,Tc,z[3]);
+    rx[4] = rx[3];
+    //rmin dummy
+    RadiusOfCurvature(Rcurv,90.,z[3],0.,90.-Tc,z[2],Rmin);
+    rn[2] = RminFromZpCone(A,Tc,z[2]);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    // z dummy
+    RadiusOfCurvature(Rcurv,90.-Tc,0.0,rn[2],90.0,Z,rn[3]);
+    TGeoPcon *I = new TGeoPcon("ITS SSD lower/inner right part of SSD "
+                       "cone",phi,dphi,9);
+    for(i=0;i<I->GetNz();i++){
+             //if(fDebug) cout<<i<<"I: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     I->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Now for Inserto volume at the inner most radius.
+    // Poly-cone Volume K.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[1]  = I->GetZ(3)+Cthick;
+    rn[1] = I->GetRmin(3);
+    z[2]  = z[1];
+    rn[2] = I->GetRmin(4);
+    rn[3] = rn[2];
+    rn[4] = rn[2];
+    rx[4] = I->GetRmax(5)-Cthick*Sintc;
+    RadiusOfCurvature(Rcurv+Cthick,90.0,z[1],rn[1],90.0-Tc,z[0],rn[0]);
+    rx[0] = rn[0];
+    z[3]  = z[0]+(Thickness-2.0*Cthick)*Costc;;
+    rx[3] = rx[0]+(Thickness-2.0*Cthick)*Sintc;
+    rx[1] = RFrom2Points(rx,z,3,0,z[1]);
+    rx[2] = rx[1];
+    z[4]  = ZFromRmaxpCone(A,Tc,rx[4],-Cthick);
+    rn[5] = rn[2];
+    z[5]  = I->GetZ(6);
+    rx[5] = (I->GetRmax(5)-I->GetRmax(8))/(I->GetZ(5)-I->GetZ(8))*(z[5]-z[4])+
+          rx[4];
+    TGeoPcon *K = new TGeoPcon("ITS SSD inner most inserto material",
+                       phi,dphi,6);
+    for(i=0;i<K->GetNz();i++){
+             //if(fDebug) cout<<i<<"K: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     K->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Now for foam core at the inner most radius.
+    // Poly-cone Volume J.
+    phi   = 0.0;
+    dphi  = 360.0;
+    rn[0] = I->GetRmin(0)-Cthick;
+    z[0]  = ZFromRminpCone(A,Tc,rn[0],+Cthick);
+    rx[0] = rn[0];
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1],-Cthick);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    z[2]  = K->GetZ(0);
+    rn[2] = K->GetRmin(0);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    z[3]  = K->GetZ(3);
+    rn[3] = K->GetRmax(3);
+    rx[3] = rn[3];
+    TGeoPcon *J = new TGeoPcon("ITS SSD inner most foam core",phi,dphi,4); 
+    for(i=0;i<J->GetNz();i++){
+             //if(fDebug) cout<<i<<"J: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     J->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Now for foam core at the top of the inner most radius where 
+    // the spoaks are.
+    t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the
+    // carbon fiber thickness uniform in this phi direction. We can only
+    // make it a fixed angular thickness.
+    // Poly-cone Volume L.
+    t *= 180.0/TMath::Pi();
+    phi   = 12.5+t; // degrees
+    dphi  = 5.0 - 2.0*t; // degrees see drawing ALR-0767.
+    z[0]  = H->GetZ(2);
+    rn[0] = H->GetRmin(2);
+    rx[0] = rn[0];
+    z[1]  = J->GetZ(0);
+    rn[1] = J->GetRmin(0);
+    rx[1] = I->GetRmax(1);
+    z[2]  = H->GetZ(3);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    z[3]  = J->GetZ(1);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    TGeoPcon *L = new TGeoPcon("ITS SSD Bottom cone Rohacell foam Spoak",
+                       phi,dphi,4);
+    for(i=0;i<L->GetNz();i++){
+             //if(fDebug) cout<<i<<"L: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     L->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Now for the SSD mounting posts
+    // Poly-cone Volume O.
+    dphi  = 180.0*dRpost/(RpostMin+0.5*dRpost)/TMath::Pi(); //
+    phi   = Phi0Post-0.5*dphi; // degrees
+    rn[0] = RpostMin+dRpost;
+    rx[0] = rn[0];
+    z[0]  = ZFromRmaxpCone(A,Tc,rx[0]);
+    rn[1] = RpostMin;
+    z[1]  = ZFromRmaxpCone(A,Tc,rn[1]);
+    rx[1] = rx[0];
+    z[2]  = ZpostMax;
+    rn[2] = RpostMin;
+    rx[2] = rn[2]+dRpost;
+    TGeoPcon *O = new TGeoPcon("ITS SSD mounting post, carbon fiber",
+                       phi,dphi,3);
+    for(i=0;i<O->GetNz();i++){
+             //if(fDebug) cout<<i<<"O: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     O->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Now for the SSD mounting posts
+    // Poly-cone Volume P.
+    t = 180.0*Cthick/(RpostMin+0.5*dRpost)/TMath::Pi();
+    dphi  = O->GetDphi()-2.0*t; // degrees
+    phi   = O->GetPhi1()+t; //
+    rn[0] = O->GetRmin(0)-Cthick;
+    rx[0] = rn[0];
+    z[0]  = ZFromRmaxpCone(A,Tc,rx[0]);
+    rn[1] = O->GetRmin(1)+Cthick;
+    rx[1] = O->GetRmin(0)-Cthick;
+    z[1]  = ZFromRmaxpCone(A,Tc,rn[1]);
+    rn[2] = rn[1];
+    rx[2] = rx[1];
+    z[2]  = ZpostMax;
+    TGeoPcon *P = new TGeoPcon("ITS SSD mounting post, Inserto",
+                       phi,dphi,3);
+    for(i=0;i<P->GetNz();i++){
+             //if(fDebug) cout<<i<<"P: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     P->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // This insrto continues into the SSD cone displacing the foam
+    // and the carbon fiber surface at those points where the posts are.
+    //Poly-cone Vol. M
+    phi   = P->GetPhi1();
+    dphi  = P->GetDphi();
+    rn[0] = RpostMin+dRpost-Cthick;
+    rx[0] = rn[0];
+    z[0]  = ZFromRminpCone(A,Tc,rn[0],+Cthick);
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1],-Cthick);
+    rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick);
+    rn[2] = RpostMin+Cthick;
+    z[2]  = ZFromRminpCone(A,Tc,rn[2],+Cthick);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3],-Cthick);
+    TGeoPcon *M = new TGeoPcon("ITS SSD mounting post foam substitute, "
+                       "Inserto",phi,dphi,4);
+    for(i=0;i<M->GetNz();i++){
+             //if(fDebug) cout<<i<<"M: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     M->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    //Poly-cone Vol. N
+    phi   = P->GetPhi1();
+    dphi  = P->GetDphi();
+    z[0]  = M->GetZ(1);
+    rn[0] = M->GetRmax(1);
+    rx[0] = rn[0];
+    rx[1] = rx[0];
+    z[1]  = ZFromRmaxpCone(A,Tc,rx[1]);
+    rn[1] = RmaxFromZpCone(A,Tc,z[1],-Cthick);
+    z[2]  = M->GetZ(3);
+    rn[2] = M->GetRmin(3);
+    rx[2] = RmaxFromZpCone(A,Tc,z[2]);
+    rn[3] = rn[2];
+    rx[3] = rn[3];
+    z[3]  = ZFromRmaxpCone(A,Tc,rx[3]);
+    TGeoPcon *N = new TGeoPcon("ITS SSD mounting post CF subsititute, "
+                       "Inserto",phi,dphi,4);
+    for(i=0;i<N->GetNz();i++){ 
+             //if(fDebug) cout<<i<<"N: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     N->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // Bolt heads holding the SSD-SDD tube to the SSD cone.
+    // Bolt -- PolyCone
+    //Poly-cone Volume Q.
+    phi   = 0.0;
+    dphi  = 360.0;
+    z[0]  = I->GetZ(4)+ThSDDsupportPlate;
+    rn[0] = 0.0;
+    rx[0] = 0.5*DscrewHead;
+    z[1]  = I->GetZ(4)+ThScrewHeadHole;
+    rn[1] = 0.0;
+    rx[1] = 0.5*DscrewHead;
+    z[2]  = z[1];
+    rn[2] = 0.0;
+    rx[2] = 0.5*DscrewShaft;
+    z[3]  = I->GetZ(6);
+    rn[3] = 0.0;
+    rx[3] = rx[2];
+    TGeoPcon *Q = new TGeoPcon("ITS SSD Thermal sheal stainless steel "
+                       "bolts",phi,dphi,4);
+    for(i=0;i<Q->GetNz();i++){
+             //if(fDebug) cout<<i<<"Q: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     Q->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    // air infront of bolt (stasolit Volume K) -- Tube
+    z[0]  = 0.5*(ThSDDsupportPlate-Cthick);
+    rn[0] = 0.0*kmm;
+    rx[0] = 0.5*DscrewHead;
+    TGeoTube *R = new TGeoTube("ITS Air in front of bolt (in stasolit)",
+                       rn[0],rx[0],z[0]);
+    // air infront of bolt (carbon fiber volume I) -- Tube
+    z[0]  = 0.5*Cthick;
+    rn[0] = 0.0*kmm;
+    rx[0] = R->GetRmax();
+    TGeoTube *S = new TGeoTube("ITS Air in front of Stainless Steal "
+                       "Screw end, N6",rn[0],rx[0],z[0]);
+    // SDD support plate, SSD side.
+    //Poly-cone Volume T.
+    dphi  = TMath::RadToDeg()*TMath::ATan2(0.5*WsddSupportPlate,RsddSupportPlate);
+    phi   = Phi0SDDsupports-0.5*dphi;
+    z[0]  = K->GetZ(2);
+    rn[0] = I->GetRmin(4);
+    rx[0] = RsddSupportPlate;
+    z[1]  = I->GetZ(4) - ThSDDsupportPlate;
+    rn[1] = rn[0];
+    rx[1] = rx[0];
+    TGeoPcon *T = new TGeoPcon("ITS SSD-SDD mounting bracket Inserto->Al.",
+                       phi,dphi,2);
+    for(i=0;i<T->GetNz();i++){
+             //if(fDebug) cout<<i<<"T: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     T->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    // Poly-cone Volume U.
+    TGeoPcon *U;
+    if(I->GetRmin(3)<T->GetRmax(0)){
+     dphi  = T->GetDphi();
+     phi   = T->GetPhi1();
+     z[2]  = I->GetZ(4);
+     rn[2] = T->GetRmin(0);
+     rx[2] = T->GetRmax(0);
+     z[3]  = K->GetZ(2);
+     rn[3] = rn[2];
+     rx[3] = rx[2];
+     z[1]  = z[2];
+     rn[1] = I->GetRmin(3);
+     rx[1] = rx[3];
+     rx[0] = T->GetRmax(0);
+     rn[0] = rx[0];
+     z[0]  = Zfrom2MinPoints(I,2,3,rn[0]);
+     U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,4);
+    }else{
+     dphi  = T->GetDphi();
+     phi   = T->GetPhi1();
+     z[0]  = I->GetZ(4);
+     rn[0] = T->GetRmin(0);
+     rx[0] = T->GetRmax(0);
+     z[1]  = K->GetZ(2);
+     rn[1] = rn[0];
+     rx[1] = rx[0];
+     U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,2);
+    }// end if
+    for(i=0;i<U->GetNz();i++){
+             //if(fDebug) cout<<i<<"U: z="<<z[i]<<" Rmin="<<rn[i]<<" Rmax="<<rx[i]<<endl;
+     U->DefineSection(i,z[i],rn[i],rx[i]);
+    } // end for i
+    //
+    TGeoManager *mgr = gGeoManager;
+    SSDcf = mgr->GetMedium("ITSssdCarbonFiber");
+    SSDfs = mgr->GetMedium("ITSssdStaselite4411w");
+    SSDfo = mgr->GetMedium("ITSssdRohacell50A");
+    SSDss = mgr->GetMedium("ITSssdStainlessSteal");
+    SSDair= mgr->GetMedium("ITSssdAir");
+    SSDal = mgr->GetMedium("ITSssdAl");
+    TGeoVolume *Av,*Bv,*Cv,*Dv,*Ev,*Fv,*Gv,*Hv,*Iv,*Jv,*Kv,*Lv,*Mv,*Nv,
+            *Ov,*Pv,*Qv,*Rv,*Sv,*Tv,*Uv;
+    Av = new TGeoVolume("ITSssdConeA",A,SSDcf);
+    Av->SetVisibility(kTRUE);
+    Av->SetLineColor(4); // blue
+    Av->SetLineWidth(1);
+    Av->SetFillColor(Av->GetLineColor());
+    Av->SetFillStyle(4010); // 10% transparent
+    Bv = new TGeoVolume("ITSssdConeB",B,SSDfs);
+    Bv->SetVisibility(kTRUE);
+    Bv->SetLineColor(2); // red
+    Bv->SetLineWidth(1);
+    Bv->SetFillColor(Bv->GetLineColor());
+    Bv->SetFillStyle(4010); // 10% transparent
+    Cv = new TGeoVolume("ITSssdConeC",C,SSDfo);
+    Cv->SetVisibility(kTRUE);
+    Cv->SetLineColor(3); // green
+    Cv->SetLineWidth(1);
+    Cv->SetFillColor(Cv->GetLineColor());
+    Cv->SetFillStyle(4010); // 10% transparent
+    Dv = new TGeoVolume("ITSssdConeD",D,SSDss);
+    Dv->SetVisibility(kTRUE);
+    Dv->SetLineColor(1); // black
+    Dv->SetLineWidth(1);
+    Dv->SetFillColor(Dv->GetLineColor());
+    Dv->SetFillStyle(4010); // 10% transparent
+    Ev = new TGeoVolume("ITSssdConeE",E,SSDss);
+    Ev->SetVisibility(kTRUE);
+    Ev->SetLineColor(1); // black
+    Ev->SetLineWidth(1);
+    Ev->SetFillColor(Ev->GetLineColor());
+    Ev->SetFillStyle(4010); // 10% transparent
+    Fv = new TGeoVolume("ITSssdConeF",F,SSDfo);
+    Fv->SetVisibility(kTRUE);
+    Fv->SetLineColor(3); // green
+    Fv->SetLineWidth(1);
+    Fv->SetFillColor(Fv->GetLineColor());
+    Fv->SetFillStyle(4010); // 10% transparent
+    Gv = new TGeoVolume("ITSssdConeG",G,SSDcf);
+    Gv->SetVisibility(kTRUE);
+    Gv->SetLineColor(4); // blue
+    Gv->SetLineWidth(2);
+    Gv->SetFillColor(Gv->GetLineColor());
+    Gv->SetFillStyle(4010); // 10% transparent
+    Hv = new TGeoVolume("ITSssdConeH",H,SSDfo);
+    Hv->SetVisibility(kTRUE);
+    Hv->SetLineColor(3); // green
+    Hv->SetLineWidth(1);
+    Hv->SetFillColor(Hv->GetLineColor());
+    Hv->SetFillStyle(4010); // 10% transparent
+    Iv = new TGeoVolume("ITSssdConeI",I,SSDcf);
+    Iv->SetVisibility(kTRUE);
+    Iv->SetLineColor(4); // blue
+    Iv->SetLineWidth(1);
+    Iv->SetFillColor(Iv->GetLineColor());
+    Iv->SetFillStyle(4010); // 10% transparent
+    Jv = new TGeoVolume("ITSssdConeJ",J,SSDfo);
+    Jv->SetVisibility(kTRUE);
+    Jv->SetLineColor(3); // green
+    Jv->SetLineWidth(3);
+    Jv->SetFillColor(Jv->GetLineColor());
+    Jv->SetFillStyle(4010); // 10% transparent
+    Kv = new TGeoVolume("ITSssdConeK",K,SSDfs);
+    Kv->SetVisibility(kTRUE);
+    Kv->SetLineColor(2); // red
+    Kv->SetLineWidth(1);
+    Kv->SetFillColor(Kv->GetLineColor());
+    Kv->SetFillStyle(4010); // 10% transparent
+    Lv = new TGeoVolume("ITSssdConeL",L,SSDfo);
+    Lv->SetVisibility(kTRUE);
+    Lv->SetLineColor(3); // green
+    Lv->SetLineWidth(3);
+    Lv->SetFillColor(Lv->GetLineColor());
+    Lv->SetFillStyle(4010); // 10% transparent
+    Mv = new TGeoVolume("ITSssdConeM",M,SSDfs);
+    Mv->SetVisibility(kTRUE);
+    Mv->SetLineColor(2); // red
+    Mv->SetLineWidth(1);
+    Mv->SetFillColor(Mv->GetLineColor());
+    Mv->SetFillStyle(4010); // 10% transparent
+    Nv = new TGeoVolume("ITSssdConeN",N,SSDfs);
+    Nv->SetVisibility(kTRUE);
+    Nv->SetLineColor(2); // red
+    Nv->SetLineWidth(1);
+    Nv->SetFillColor(Nv->GetLineColor());
+    Nv->SetFillStyle(4010); // 10% transparent
+    Ov = new TGeoVolume("ITSssdConeO",O,SSDcf);
+    Ov->SetVisibility(kTRUE);
+    Ov->SetLineColor(4); // blue
+    Ov->SetLineWidth(1);
+    Ov->SetFillColor(Iv->GetLineColor());
+    Ov->SetFillStyle(4010); // 10% transparent
+    Pv = new TGeoVolume("ITSssdConeP",P,SSDfs);
+    Pv->SetVisibility(kTRUE);
+    Pv->SetLineColor(2); // red
+    Pv->SetLineWidth(1);
+    Pv->SetFillColor(Pv->GetLineColor());
+    Pv->SetFillStyle(4010); // 10% transparent
+    Qv = new TGeoVolume("ITSssdConeQ",Q,SSDss);
+    Qv->SetVisibility(kTRUE);
+    Qv->SetLineColor(1); // black
+    Qv->SetLineWidth(1);
+    Qv->SetFillColor(Qv->GetLineColor());
+    Qv->SetFillStyle(4010); // 10% transparent
+    Rv = new TGeoVolume("ITSssdConeR",R,SSDair);
+    Rv->SetVisibility(kTRUE);
+    Rv->SetLineColor(5); // yellow
+    Rv->SetLineWidth(1);
+    Rv->SetFillColor(Rv->GetLineColor());
+    Rv->SetFillStyle(4010); // 10% transparent
+    Sv = new TGeoVolume("ITSssdConeS",S,SSDair);
+    Sv->SetVisibility(kTRUE);
+    Sv->SetLineColor(5); // yellow
+    Sv->SetLineWidth(1);
+    Sv->SetFillColor(Sv->GetLineColor());
+    Sv->SetFillStyle(4010); // 10% transparent
+    Tv = new TGeoVolume("ITSssdConeT",T,SSDal);
+    Tv->SetVisibility(kTRUE);
+    Tv->SetLineColor(17); // gray
+    Tv->SetLineWidth(1);
+    Tv->SetFillColor(Tv->GetLineColor());
+    Tv->SetFillStyle(4010); // 10% transparent
+    Uv = new TGeoVolume("ITSssdConeU",U,SSDal);
+    Uv->SetVisibility(kTRUE);
+    Uv->SetLineColor(17); // gray
+    Uv->SetLineWidth(1);
+    Uv->SetFillColor(Uv->GetLineColor());
+    Uv->SetFillStyle(4010); // 10% transparent
+    //
+    TGeoTranslation *tran = new TGeoTranslation("ITSssdConeTrans",0.0,0.0,-Z0);
+    TGeoRotation *rot180  = new TGeoRotation("ITSssdConeRot180",0.0,180.0,0.0);
+    TGeoCombiTrans *flip  = new TGeoCombiTrans("ITSssdConeFlip",0.0,0.0,Z0,rot180);
+    TGeoTranslation *tranR,*tranS;
+    TGeoCombiTrans *fliptran,*rottran;
+    TGeoRotation *rot,*zspoaks,*zspoaks180;
+    Int_t NcD=1,NcE=1,NcQ=1,NcR=1,NcS=1,NcT=1,NcU=1;
+    Av->AddNode(Bv,1,0);
+    Av->AddNode(Cv,1,0);
+    Moth->AddNode(Av,1,tran); // RB24 side
+    Moth->AddNode(Av,2,flip); // RB26 side (Absorber)
+    Moth->AddNode(Iv,1,tran); // RB24 side
+    Moth->AddNode(Iv,2,flip); // RB26 side (Absorber)
+    Gv->AddNode(Hv,1,0);
+    for(i=0;i<Nspoaks;i++){ // SSD Cone Spoaks
+     zspoaks = new TGeoRotation("",0.0,0.0,
+                       ((Double_t)i*360.)/((Double_t)Nspoaks));
+     rottran = new TGeoCombiTrans("",0.0,0.0,-Z0,zspoaks);
+     Moth->AddNode(Gv,i+1,rottran); // RB24 side
+     Av->AddNode(Fv,i+1,zspoaks);
+     Iv->AddNode(Lv,i+1,zspoaks);
+     zspoaks180 =  new TGeoRotation("",0.0,180.0,
+                           ((Double_t)i*360.)/((Double_t)Nspoaks));
+     fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zspoaks180);
+     Moth->AddNode(Gv,Nspoaks+i+1,fliptran); // RB26 side
+    } // end for i
+    Iv->AddNode(Jv,1,0);
+    Iv->AddNode(Kv,1,0);
+    Ov->AddNode(Pv,1,0);
+    t0 = (P->GetPhi1()+0.5*P->GetDphi())*kRadian;
+    t  = (0.25* P->GetDphi())*kRadian;
+    z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))+0.25*(P->GetRmax(2)-P->GetRmin(2));
+    x = z[0]*TMath::Cos(t0+t);
+    y = z[0]*TMath::Sin(t0+t);
+    tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3));
+    Pv->AddNode(Qv,NcQ++,tran); // Screw head
+    z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))-0.25*(P->GetRmax(2)-P->GetRmin(2));
+    x = z[0]*TMath::Cos(t0-t);
+    y = z[0]*TMath::Sin(t0-t);
+    tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3));
+    Pv->AddNode(Qv,NcQ++,tran); // Screw head
+    //Pv->AddNode(Vv,1,?); // Air hole in Posts
+    //Pv->AddNode(Vv,2,?); // Air hole in Posts
+    //Mv->AddNode(Wv,1,?); // Air hole in Posts
+    //Mv->AddNode(Wv,2,?); // Air hole in Posts
+    //Nv->AddNode(Xv,1,?); // Air hole in Posts
+    //Nv->AddNode(Xv,2,?); // Air hole in Posts
+    TGeoRotation *zposts,*zposts180;
+    for(i=0;i<Nposts;i++){ // SSD Cone mounting posts
+        zposts = new TGeoRotation("",0.0,0.0,
+                                  ((Double_t)i*360.)/((Double_t)Nposts));
+        rottran = new TGeoCombiTrans("",0.0,0.0,-Z0,zposts);
+        Moth->AddNode(Ov,i+1,rottran); // RB24 side
+        Jv->AddNode(Mv,i+1,zposts);
+        Iv->AddNode(Nv,i+1,zposts);
+        //Jv->AddNode(Xv,2*i+3,?); // Air hole in Posts
+        //Jv->AddNode(Xv,2*i+4,?); // Air hole in Posts
+        zposts180 = new TGeoRotation("",0.0,180.0,
+                                     ((Double_t)i*360.)/((Double_t)Nposts));
+        fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zposts180);
+        Moth->AddNode(Ov,Nposts+i+1,fliptran); // RB26 side
+    } // end for i
+    //
+    for(i=0;i<NinScrews;i++){
+        t = (Phi0Screws+360.*((Double_t)i)/((Double_t)NinScrews))*kRadian;
+        tran= new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                  RcylinderScrews*TMath::Sin(t),0.0);
+        Kv->AddNode(Qv,NcQ++,tran);
+        if(/*not where volumes U and T are*/kTRUE){
+            tranR = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                        RcylinderScrews*TMath::Sin(t),
+                                        K->GetZ(2)+R->GetDz());
+            tranS = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t),
+                                        RcylinderScrews*TMath::Sin(t),
+                                        I->GetZ(4)+S->GetDz());
+            Kv->AddNode(Rv,NcR++,tranR);
+            Iv->AddNode(Sv,NcS++,tranS);
+        } // end if
+    } // end for i
+    const Int_t Nbscrew=2,Nbpins=3,Nrailsc=4,Nrailp=2;
+    Double_t da[] = {-3.5,-1.5,1.5,3.5};
+    for(i=0;i<2;i++){ // Mounting for ITS-TPC bracket or ITS-Rails
+        t0 = 180.*((Double_t)i)*kRadian;
+        for(j=-Nbscrew/2;j<=Nbscrew/2;j++)if(j!=0){//screws per ITS-TPC bracket
+            t = t0 + 5.0*((Double_t)j)*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+           //if(fDebug) cout << "D: NcD="<<NcD<<endl;
+        } // end or j
+        for(j=-Nbpins/2;j<=Nbpins/2;j++){ // pins per ITS-TPC bracket
+            t = t0 + 3.0*((Double_t)j)*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+            //if(fDebug) cout << "E: NcE="<<NcE<<endl;
+        } // end or j
+        t0 = (96.5+187.*((Double_t)i))*kRadian;
+        for(j=0;j<Nrailsc;j++){ // screws per ITS-rail bracket
+            t = t0+da[j]*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+            //if(fDebug) cout << "D2: NcD="<<NcD<<endl;
+        } // end or j
+        t0 = (91.5+184.*((Double_t)i))*kRadian;
+        for(j=-Nrailp/2;j<=Nrailp/2;j++)if(j!=0){ // pins per ITS-rail bracket
+            t = t0+(7.0*((Double_t)j))*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+            //if(fDebug) cout << "E2: NcE="<<NcE<<endl;
+        } // end or j
+    } // end for i
+    for(i=0;i<Nmounts;i++){ // mounting points for SPD-cone+Beam-pipe support
+        t0 = (45.0+((Double_t)i)*360./((Double_t)Nmounts))*kRadian;
+        for(j=-1;j<=1;j++)if(j!=0){ // 2 screws per bracket
+            t = t0+((Double_t)j)*0.5*DmountAngle*kRadian;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Dv,NcD++,tran);
+            //if(fDebug) cout << "D3: NcD="<<NcD<<endl;
+        } // end for j
+        for(j=0;j<1;j++){ // 1 pin per bracket
+            t = t0;
+            tran = new TGeoTranslation("",RoutHole*TMath::Cos(t),
+                                       RoutHole*TMath::Sin(t),
+                                       B->GetZ(0)+D->GetDz());
+            Bv->AddNode(Ev,NcE++,tran);
+            //if(fDebug) cout << "E3: NcE="<<NcE<<endl;
+        } // end for j
+    } // end for i
+    t = (T->GetPhi1()+0.5*T->GetDphi())*kRadian;
+    tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t),
+                               T->GetZ(T->GetNz()-1)+R->GetDz());
+    Tv->AddNode(Rv,NcR++,tran);
+    t = (U->GetPhi1()+0.5*U->GetDphi())*kRadian;
+    tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t),
+                               U->GetZ(U->GetNz()-1)+S->GetDz());
+    Uv->AddNode(Sv,NcS++,tran);
+    for(i=0;i<NssdSupports;i++){ // mounting braclets for SSD/SDD 
+        t0 = ((Double_t)i*360./((Double_t)NssdSupports));
+        rot = new TGeoRotation("",0.0,0.0,t0);
+        Kv->AddNode(Tv,NcT++,rot);
+        Iv->AddNode(Uv,NcU++,rot);
+             //if(fDebug) cout << "T/U: copy number="<<i+1<<endl;
+             //for(j=0;j<1;j++){ // 1 screws per bracket
+             //    t = t0;
+             //} // end for j
+        for(j=0;j<2;j++)if(j!=0){ // 2 pin per bracket
+            t = t0 + ((Double_t)j)*0.5*DssdsddBracketAngle;
+            tran = new TGeoTranslation("",RinHole*TMath::Cos(t),
+                                       RinHole*TMath::Sin(t),
+                                       T->GetZ(T->GetNz()-1)-E->GetDz());
+            Kv->AddNode(Ev,NcE++,tran);
+        } // end for j
+    } // end for i
 }
 //______________________________________________________________________
 void AliITSv11::CreateMaterials(){
     // Create ITS materials
     //     This function defines the default materials used in the Geant
-    // Monte Carlo simulations for the geometries AliITSv1, AliITSv3,
-    // AliITSv11.
+    // Monte Carlo simulations for the geometries AliITSv11.
     // In general it is automatically replaced by
-    // the CreatMaterials routine defined in AliITSv?. Should the function
-    // CreateMaterials not exist for the geometry version you are using this
-    // one is used. See the definition found in AliITSv5 or the other routine
-    // for a complete definition.
     // Inputs:
     //   none.
     // Outputs:
@@ -183,15 +2158,63 @@ void AliITSv11::CreateMaterials(){
     // Return
     //   none.
 
-    if(fc==0) fc = new AliITSGeometrySSDCone(new TVector3(0.0,0.0,0.0),"TSV",0);
-
-    fc->CreateG3Materials();
+    //TGeoMaterial *C  = new TGeoMaterial("ITSCarbon",12.0,6.0,2.265);
+    TGeoMaterial *Al = new TGeoMaterial("ITSAluminum",26.981539,13.0,2.07);
+    TGeoMixture *Cfiber = new TGeoMixture("ITSCarbonFiber",6,1.930);
+    TGeoMixture *Rohacell = new TGeoMixture("ITSRohacell",6,1.930);
+    TGeoMixture *Staselite = new TGeoMixture("ITSStaselite4411w",6,1.930);
+    TGeoMixture *Air = new TGeoMixture("ITSAir",6,1.205*1.E-3);
+    TGeoMixture *Stainless = new TGeoMixture("ITSStainless",6,1.930);
+    //
+    Double_t SPDcone[20];
+    SPDcone[0] = 1.0; // imat
+    SPDcone[1] = 0.0; // isvol
+    SPDcone[2] = gAlice->Field()->Integ(); // ifield
+    SPDcone[3] = gAlice->Field()->Max(); // fieldm
+    SPDcone[4] = 1.0; // tmaxfd [degrees]
+    SPDcone[5] = 1.0; // stemax [cm]
+    SPDcone[6] = 0.5; // deemax [fraction]
+    SPDcone[7] = 1.0E-3; // epsil [cm]
+    SPDcone[8] = 0.0; // stmin [cm]
+    new TGeoMedium("ITSspdCarbonFiber",1,Cfiber,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdStaselite4411w",2,Staselite,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdRohacell50A",3,Rohacell,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdStainlesSteal",4,Stainless,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdAir",5,Air,SPDcone);
+    SPDcone[0] += 1.0;
+    new TGeoMedium("ITSspdAl",6,Al,SPDcone);
+    //
+    Double_t SSDcone[20];
+    SSDcone[0] = 1.0; // imat
+    SSDcone[1] = 0.0; // isvol
+    SSDcone[2] = gAlice->Field()->Integ(); // ifield
+    SSDcone[3] = gAlice->Field()->Max(); // fieldm
+    SSDcone[4] = 1.0; // tmaxfd [degrees]
+    SSDcone[5] = 1.0; // stemax [cm]
+    SSDcone[6] = 0.5; // deemax [fraction]
+    SSDcone[7] = 1.0E-3; // epsil [cm]
+    SSDcone[8] = 0.0; // stmin [cm]
+    new TGeoMedium("ITSssdCarbonFiber",1,Cfiber,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdStaselite4411w",2,Staselite,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdRohacell50A",3,Rohacell,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdStainlesSteal",4,Stainless,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdAir",5,Air,SSDcone);
+    SSDcone[0] += 1.0;
+    new TGeoMedium("ITSssdAl",6,Al,SSDcone);
 }
 //______________________________________________________________________
 void AliITSv11::InitAliITSgeom(){
     // Based on the geometry tree defined in Geant 3.21, this
-    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS geometry
-    // sturture.
+    // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS 
+    // geometry sturture.
     // Inputs:
     //   none.
     // Outputs:
@@ -211,7 +2234,10 @@ void AliITSv11::Init(){
 }
 //______________________________________________________________________
 void AliITSv11::SetDefaults(){
-    // sets the default segmentation, response, digit and raw cluster classes
+    // Sets the default segmentation, response, digit and raw cluster 
+    // classes to be used. These defaults can be overwritten in the
+    // macros that do these later steps. Defaults are give hear for the
+    // general user.
     // Inputs:
     //   none.
     // Outputs:
@@ -221,7 +2247,7 @@ void AliITSv11::SetDefaults(){
 }
 //______________________________________________________________________
 void AliITSv11::DrawModule(){
-    // Draw a shaded view of the ITS version 11.
+    // Draw a standard set of shaded view of the ITS version 11.
     // Inputs:
     //   none.
     // Outputs:
@@ -237,6 +2263,6 @@ void AliITSv11::StepManager(){
     // printing of information to a file which can be used to create a .det
     // file read in by the routine CreateGeometry(). If set to 0 or any other
     // value except 1, the default behavior, then no such file is created nor
-    // it the extra variables and the like used in the printing allocated.
+    // is the extra variables and the like used in the printing allocated.
 }