]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PWG/FLOW/Base/AliFlowAnalysisWithQCumulants.cxx
Moving/split PWG2/FLOW to PWGCF/FLOW, PWG/FLOW/Base, PWG/FLOW/Tasks, PWG/Glauber
[u/mrichter/AliRoot.git] / PWG / FLOW / Base / AliFlowAnalysisWithQCumulants.cxx
diff --git a/PWG/FLOW/Base/AliFlowAnalysisWithQCumulants.cxx b/PWG/FLOW/Base/AliFlowAnalysisWithQCumulants.cxx
new file mode 100644 (file)
index 0000000..463cc29
--- /dev/null
@@ -0,0 +1,14210 @@
+/*************************************************************************
+* Copyright(c) 1998-2008, ALICE Experiment at CERN, All rights reserved. *
+*                                                                        *
+* Author: The ALICE Off-line Project.                                    *
+* Contributors are mentioned in the code where appropriate.              *
+*                                                                        *
+* Permission to use, copy, modify and distribute this software and its   *
+* documentation strictly for non-commercial purposes is hereby granted   *
+* without fee, provided that the above copyright notice appears in all   *
+* copies and that both the copyright notice and this permission notice   *
+* appear in the supporting documentation. The authors make no claims     *
+* about the suitability of this software for any purpose. It is          *
+* provided "as is" without express or implied warranty.                  * 
+**************************************************************************/
+
+/********************************** 
+ * flow analysis with Q-cumulants * 
+ *                                * 
+ * author: Ante Bilandzic         * 
+ *        (abilandzic@gmail.com)  *
+ *********************************/ 
+
+#define AliFlowAnalysisWithQCumulants_cxx
+
+#include "Riostream.h"
+#include "AliFlowCommonConstants.h"
+#include "AliFlowCommonHist.h"
+#include "AliFlowCommonHistResults.h"
+#include "TChain.h"
+
+#include "TFile.h"
+#include "TList.h"
+#include "TGraph.h"
+#include "TParticle.h"
+#include "TRandom3.h"
+#include "TStyle.h"
+#include "TProfile.h"
+#include "TProfile2D.h" 
+#include "TMath.h"
+#include "TArrow.h"
+#include "TPaveLabel.h"
+#include "TCanvas.h"
+#include "AliFlowEventSimple.h"
+#include "AliFlowTrackSimple.h"
+#include "AliFlowAnalysisWithQCumulants.h"
+#include "TArrayD.h"
+#include "TRandom.h"
+#include "TF1.h"
+
+class TH1;
+class TH2;
+class TGraph;
+class TPave;
+class TLatex;
+class TMarker;
+class TRandom3;
+class TObjArray;
+class TList;
+class TCanvas;
+class TSystem;
+class TROOT;
+class AliFlowVector;
+class TVector;
+
+//================================================================================================================
+
+ClassImp(AliFlowAnalysisWithQCumulants)
+
+AliFlowAnalysisWithQCumulants::AliFlowAnalysisWithQCumulants(): 
+ // 0.) base:
+ fHistList(NULL),
+ // 1.) common:
+ fBookOnlyBasicCCH(kFALSE),
+ fCommonHists(NULL),
+ fCommonHists2nd(NULL), 
+ fCommonHists4th(NULL),
+ fCommonHists6th(NULL),
+ fCommonHists8th(NULL),
+ fCommonHistsResults2nd(NULL),
+ fCommonHistsResults4th(NULL),
+ fCommonHistsResults6th(NULL),
+ fCommonHistsResults8th(NULL),
+ fnBinsPhi(0),
+ fPhiMin(0),
+ fPhiMax(0),
+ fPhiBinWidth(0),
+ fnBinsPt(0),
+ fPtMin(0),
+ fPtMax(0),
+ fPtBinWidth(0),
+ fnBinsEta(0),
+ fEtaMin(0),
+ fEtaMax(0),
+ fEtaBinWidth(0),
+ fCommonConstants(NULL),
+ fFillMultipleControlHistograms(kFALSE),
+ fHarmonic(2),
+ fAnalysisLabel(NULL),
+ // 2a.) particle weights:
+ fWeightsList(NULL),
+ fUsePhiWeights(kFALSE),
+ fUsePtWeights(kFALSE),
+ fUseEtaWeights(kFALSE),
+ fUseTrackWeights(kFALSE),
+ fUseParticleWeights(NULL),
+ fPhiWeights(NULL),
+ fPtWeights(NULL),
+ fEtaWeights(NULL),
+ // 2b.) event weights:
+ fMultiplicityWeight(NULL),
+ // 3.) integrated flow:
+ fIntFlowList(NULL), 
+ fIntFlowProfiles(NULL),
+ fIntFlowResults(NULL),
+ fIntFlowAllCorrelationsVsM(NULL),
+ fIntFlowFlags(NULL),
+ fApplyCorrectionForNUA(kFALSE),  
+ fApplyCorrectionForNUAVsM(kFALSE),
+ fnBinsMult(10000),
+ fMinMult(0.),  
+ fMaxMult(10000.), 
+ fPropagateErrorAlsoFromNIT(kFALSE), 
+ fCalculateCumulantsVsM(kFALSE),
+ fCalculateAllCorrelationsVsM(kFALSE), 
+ fMinimumBiasReferenceFlow(kTRUE), 
+ fForgetAboutCovariances(kFALSE), 
+ fStorePhiDistributionForOneEvent(kFALSE),
+ fReQ(NULL),
+ fImQ(NULL),
+ fSpk(NULL),
+ fIntFlowCorrelationsEBE(NULL),
+ fIntFlowEventWeightsForCorrelationsEBE(NULL),
+ fIntFlowCorrelationsAllEBE(NULL),
+ fReferenceMultiplicityEBE(0.),  
+ fAvMultiplicity(NULL),
+ fIntFlowCorrelationsPro(NULL),
+ fIntFlowSquaredCorrelationsPro(NULL),
+ fIntFlowCorrelationsAllPro(NULL),
+ fIntFlowExtraCorrelationsPro(NULL),
+ fIntFlowProductOfCorrelationsPro(NULL),
+ fIntFlowProductOfCorrectionTermsForNUAPro(NULL),
+ fIntFlowCorrelationsHist(NULL),
+ fIntFlowCorrelationsAllHist(NULL),
+ fIntFlowCovariances(NULL),
+ fIntFlowSumOfProductOfEventWeights(NULL),
+ fIntFlowCovariancesNUA(NULL),
+ fIntFlowSumOfProductOfEventWeightsNUA(NULL),
+ fIntFlowQcumulants(NULL),
+ fIntFlowQcumulantsRebinnedInM(NULL), 
+ fIntFlowQcumulantsErrorSquaredRatio(NULL), 
+ fIntFlow(NULL),
+ fIntFlowRebinnedInM(NULL),
+ fIntFlowDetectorBias(NULL),
+ // 4.) differential flow:
+ fDiffFlowList(NULL),
+ fDiffFlowProfiles(NULL),
+ fDiffFlowResults(NULL),
+ fDiffFlow2D(NULL),
+ fDiffFlowFlags(NULL),
+ fCalculateDiffFlow(kTRUE),
+ fCalculate2DDiffFlow(kFALSE),
+ fCalculateDiffFlowVsEta(kTRUE),
+ // 5.) other differential correlators:
+ fOtherDiffCorrelatorsList(NULL),
+ // 6.) distributions:
+ fDistributionsList(NULL),
+ fDistributionsFlags(NULL),
+ fStoreDistributions(kFALSE),
+ // 7.) various:
+ fVariousList(NULL),
+ fPhiDistributionForOneEvent(NULL),
+ // x.) debugging and cross-checking:
+ fNestedLoopsList(NULL),
+ fEvaluateIntFlowNestedLoops(kFALSE),
+ fEvaluateDiffFlowNestedLoops(kFALSE),
+ fMaxAllowedMultiplicity(10),
+ fEvaluateNestedLoops(NULL),
+ fIntFlowDirectCorrelations(NULL),
+ fIntFlowExtraDirectCorrelations(NULL),
+ fCrossCheckInPtBinNo(10),
+ fCrossCheckInEtaBinNo(20),
+ fNoOfParticlesInBin(NULL)
+ {
+  // constructor  
+  
+  // base list to hold all output objects:
+  fHistList = new TList();
+  fHistList->SetName("cobjQC");
+  fHistList->SetOwner(kTRUE);
+  
+  // list to hold histograms with phi, pt and eta weights:      
+  fWeightsList = new TList();
+  
+  // multiplicity weight:
+  fMultiplicityWeight = new TString("combinations");
+    
+  // analysis label;
+  fAnalysisLabel = new TString();
+      
+  // initialize all arrays:  
+  this->InitializeArraysForIntFlow();
+  this->InitializeArraysForDiffFlow();
+  this->InitializeArraysForDistributions();
+  this->InitializeArraysForVarious();
+  this->InitializeArraysForNestedLoops();
+  
+ } // end of constructor
+//================================================================================================================  
+
+AliFlowAnalysisWithQCumulants::~AliFlowAnalysisWithQCumulants()
+{
+ // destructor
+ delete fHistList;
+
+} // end of AliFlowAnalysisWithQCumulants::~AliFlowAnalysisWithQCumulants()
+
+//================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Init()
+{
+ // a) Cross check if the settings make sense before starting the QC adventure;
+ // b) Access all common constants;
+ // c) Book all objects;
+ // d) Store flags for integrated and differential flow;
+ // e) Store flags for distributions of corelations;
+ // f) Store harmonic which will be estimated.
+  
+ //save old value and prevent histograms from being added to directory
+ //to avoid name clashes in case multiple analaysis objects are used
+ //in an analysis
+ Bool_t oldHistAddStatus = TH1::AddDirectoryStatus();
+ TH1::AddDirectory(kFALSE);
+ // a) Cross check if the settings make sense before starting the QC adventure; 
+ this->CrossCheckSettings();
+ // b) Access all common constants and book a profile to hold them:
+ this->CommonConstants("Init");
+ // c) Book all objects:
+ this->BookAndFillWeightsHistograms(); 
+ this->BookAndNestAllLists();
+ this->BookCommonHistograms();
+ this->BookEverythingForIntegratedFlow(); 
+ this->BookEverythingForDifferentialFlow(); 
+ this->BookEverythingFor2DDifferentialFlow(); 
+ this->BookEverythingForDistributions();
+ this->BookEverythingForVarious();
+ this->BookEverythingForNestedLoops();
+ // d) Store flags for integrated and differential flow:
+ this->StoreIntFlowFlags();
+ this->StoreDiffFlowFlags();
+ // e) Store flags for distributions of corelations:
+ this->StoreFlagsForDistributions();
+ // f) Store harmonic which will be estimated:
+ this->StoreHarmonic();
+ TH1::AddDirectory(oldHistAddStatus);
+} // end of void AliFlowAnalysisWithQCumulants::Init()
+
+//================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Make(AliFlowEventSimple* anEvent)
+{
+ // Running over data only in this method.
+ // a) Check all pointers used in this method;
+ // b) Define local variables;
+ // c) Fill the common control histograms and call the method to fill fAvMultiplicity;
+ // d) Loop over data and calculate e-b-e quantities Q_{n,k}, S_{p,k} and s_{p,k};
+ // e) Calculate the final expressions for S_{p,k} and s_{p,k} (important !!!!); 
+ // f) Call the methods which calculate correlations for reference flow;
+ // g) Call the methods which calculate correlations for differential flow;
+ // h) Call the methods which calculate correlations for 2D differential flow;
+ // i) Call the methods which calculate other differential correlators;
+ // j) Distributions of correlations;
+ // k) Store phi distribution for one event to illustrate flow;
+ // l) Cross-check with nested loops correlators for reference flow;
+ // m) Cross-check with nested loops correlators for differential flow;
+ // n) Reset all event-by-event quantities (very important !!!!). 
+ // a) Check all pointers used in this method:
+ this->CheckPointersUsedInMake();
+ // b) Define local variables:
+ Double_t dPhi = 0.; // azimuthal angle in the laboratory frame
+ Double_t dPt  = 0.; // transverse momentum
+ Double_t dEta = 0.; // pseudorapidity
+ Double_t wPhi = 1.; // phi weight
+ Double_t wPt  = 1.; // pt weight
+ Double_t wEta = 1.; // eta weight
+ Double_t wTrack = 1.; // track weight
+ Int_t nRP = anEvent->GetEventNSelTracksRP(); // number of RPs (i.e. number of reference particles)
+ fReferenceMultiplicityEBE = anEvent->GetReferenceMultiplicity(); // reference multiplicity for current event
+ Double_t ptEta[2] = {0.,0.}; // 0 = dPt, 1 = dEta
+  
+ // c) Fill the common control histograms and call the method to fill fAvMultiplicity:
+ this->FillCommonControlHistograms(anEvent);                                                               
+ this->FillAverageMultiplicities(nRP);                                                                  
+                                                                                                                                                                                                                                                                                        
+ // d) Loop over data and calculate e-b-e quantities Q_{n,k}, S_{p,k} and s_{p,k}:
+ Int_t nPrim = anEvent->NumberOfTracks();  // nPrim = total number of primary tracks, i.e. nPrim = nRP + nPOI where:
+                                           //  nRP   = # of reference particles;
+                                           //  nPOI  = # of particles of interest.
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Int_t n = fHarmonic; // shortcut for the harmonic 
+ for(Int_t i=0;i<nPrim;i++) 
+ { 
+  aftsTrack=anEvent->GetTrack(i);
+  if(aftsTrack)
+  {
+   if(!(aftsTrack->InRPSelection() || aftsTrack->InPOISelection())){continue;} // safety measure: consider only tracks which are RPs or POIs
+   if(aftsTrack->InRPSelection()) // RP condition:
+   {    
+    dPhi = aftsTrack->Phi();
+    dPt  = aftsTrack->Pt();
+    dEta = aftsTrack->Eta();
+    if(fUsePhiWeights && fPhiWeights && fnBinsPhi) // determine phi weight for this particle:
+    {
+     wPhi = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(dPhi*fnBinsPhi/TMath::TwoPi())));
+    }
+    if(fUsePtWeights && fPtWeights && fnBinsPt) // determine pt weight for this particle:
+    {
+     wPt = fPtWeights->GetBinContent(1+(Int_t)(TMath::Floor((dPt-fPtMin)/fPtBinWidth))); 
+    }              
+    if(fUseEtaWeights && fEtaWeights && fEtaBinWidth) // determine eta weight for this particle: 
+    {
+     wEta = fEtaWeights->GetBinContent(1+(Int_t)(TMath::Floor((dEta-fEtaMin)/fEtaBinWidth))); 
+    }      
+    // Access track weight:
+    if(fUseTrackWeights)
+    {
+     wTrack = aftsTrack->Weight(); 
+    }
+    // Calculate Re[Q_{m*n,k}] and Im[Q_{m*n,k}] for this event (m = 1,2,...,6, k = 0,1,...,8):
+    for(Int_t m=0;m<6;m++) // to be improved - hardwired 6 
+    {
+     for(Int_t k=0;k<9;k++) // to be improved - hardwired 9
+     {
+      (*fReQ)(m,k)+=pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1)*n*dPhi); 
+      (*fImQ)(m,k)+=pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1)*n*dPhi); 
+     } 
+    }
+    // Calculate S_{p,k} for this event (Remark: final calculation of S_{p,k} follows after the loop over data bellow):
+    for(Int_t p=0;p<8;p++)
+    {
+     for(Int_t k=0;k<9;k++)
+     {     
+      (*fSpk)(p,k)+=pow(wPhi*wPt*wEta*wTrack,k);
+     }
+    } 
+    // Differential flow:
+    if(fCalculateDiffFlow || fCalculate2DDiffFlow)
+    {
+     ptEta[0] = dPt; 
+     ptEta[1] = dEta; 
+     // Calculate r_{m*n,k} and s_{p,k} (r_{m,k} is 'p-vector' for RPs): 
+     for(Int_t k=0;k<9;k++) // to be improved - hardwired 9
+     {
+      for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+      {
+       if(fCalculateDiffFlow)
+       {
+        for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+        {
+         fReRPQ1dEBE[0][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+         fImRPQ1dEBE[0][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);          
+         if(m==0) // s_{p,k} does not depend on index m
+         {
+          fs1dEBE[0][pe][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k),1.);
+         } // end of if(m==0) // s_{p,k} does not depend on index m
+        } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+       } // end of if(fCalculateDiffFlow) 
+       if(fCalculate2DDiffFlow)
+       {
+        fReRPQ2dEBE[0][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+        fImRPQ2dEBE[0][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);      
+        if(m==0) // s_{p,k} does not depend on index m
+        {
+         fs2dEBE[0][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k),1.);
+        } // end of if(m==0) // s_{p,k} does not depend on index m
+       } // end of if(fCalculate2DDiffFlow)
+      } // end of for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+     } // end of for(Int_t k=0;k<9;k++) // to be improved - hardwired 9
+     // Checking if RP particle is also POI particle:      
+     if(aftsTrack->InPOISelection())
+     {
+      // Calculate q_{m*n,k} and s_{p,k} ('q-vector' and 's' for RPs && POIs): 
+      for(Int_t k=0;k<9;k++) // to be improved - hardwired 9
+      {
+       for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+       {
+        if(fCalculateDiffFlow)
+        {
+         for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+         {
+          fReRPQ1dEBE[2][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+          fImRPQ1dEBE[2][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);          
+          if(m==0) // s_{p,k} does not depend on index m
+          {
+           fs1dEBE[2][pe][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k),1.);
+          } // end of if(m==0) // s_{p,k} does not depend on index m
+         } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+        } // end of if(fCalculateDiffFlow) 
+        if(fCalculate2DDiffFlow)
+        {
+         fReRPQ2dEBE[2][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+         fImRPQ2dEBE[2][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);      
+         if(m==0) // s_{p,k} does not depend on index m
+         {
+          fs2dEBE[2][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k),1.);
+         } // end of if(m==0) // s_{p,k} does not depend on index m
+        } // end of if(fCalculate2DDiffFlow)
+       } // end of for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+      } // end of for(Int_t k=0;k<9;k++) // to be improved - hardwired 9    
+     } // end of if(aftsTrack->InPOISelection())  
+    } // end of if(fCalculateDiffFlow || fCalculate2DDiffFlow)         
+   } // end of if(pTrack->InRPSelection())
+   if(aftsTrack->InPOISelection())
+   {
+    dPhi = aftsTrack->Phi();
+    dPt  = aftsTrack->Pt();
+    dEta = aftsTrack->Eta();
+    wPhi = 1.;
+    wPt  = 1.;
+    wEta = 1.;
+    wTrack = 1.;
+    if(fUsePhiWeights && fPhiWeights && fnBinsPhi && aftsTrack->InRPSelection()) // determine phi weight for POI && RP particle:
+    {
+     wPhi = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(dPhi*fnBinsPhi/TMath::TwoPi())));
+    }
+    if(fUsePtWeights && fPtWeights && fnBinsPt && aftsTrack->InRPSelection()) // determine pt weight for POI && RP particle:
+    {
+     wPt = fPtWeights->GetBinContent(1+(Int_t)(TMath::Floor((dPt-fPtMin)/fPtBinWidth))); 
+    }              
+    if(fUseEtaWeights && fEtaWeights && fEtaBinWidth && aftsTrack->InRPSelection()) // determine eta weight for POI && RP particle: 
+    {
+     wEta = fEtaWeights->GetBinContent(1+(Int_t)(TMath::Floor((dEta-fEtaMin)/fEtaBinWidth))); 
+    }      
+    // Access track weight for POI && RP particle:
+    if(aftsTrack->InRPSelection() && fUseTrackWeights)
+    {
+     wTrack = aftsTrack->Weight(); 
+    }
+    ptEta[0] = dPt;
+    ptEta[1] = dEta;
+    // Calculate p_{m*n,k} ('p-vector' for POIs): 
+    for(Int_t k=0;k<9;k++) // to be improved - hardwired 9
+    {
+     for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+     {
+      if(fCalculateDiffFlow)
+      {
+       for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+       {
+        fReRPQ1dEBE[1][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+        fImRPQ1dEBE[1][pe][m][k]->Fill(ptEta[pe],pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);          
+       } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+      } // end of if(fCalculateDiffFlow) 
+      if(fCalculate2DDiffFlow)
+      {
+       fReRPQ2dEBE[1][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Cos((m+1.)*n*dPhi),1.);
+       fImRPQ2dEBE[1][m][k]->Fill(dPt,dEta,pow(wPhi*wPt*wEta*wTrack,k)*TMath::Sin((m+1.)*n*dPhi),1.);      
+      } // end of if(fCalculate2DDiffFlow)
+     } // end of for(Int_t m=0;m<4;m++) // to be improved - hardwired 4
+    } // end of for(Int_t k=0;k<9;k++) // to be improved - hardwired 9    
+   } // end of if(pTrack->InPOISelection())    
+  } else // to if(aftsTrack)
+    {
+     printf("\n WARNING (QC): No particle (i.e. aftsTrack is a NULL pointer in AFAWQC::Make())!!!!\n\n");
+    }
+ } // end of for(Int_t i=0;i<nPrim;i++) 
+
+ // e) Calculate the final expressions for S_{p,k} and s_{p,k} (important !!!!):
+ for(Int_t p=0;p<8;p++)
+ {
+  for(Int_t k=0;k<9;k++)
+  {
+   (*fSpk)(p,k)=pow((*fSpk)(p,k),p+1);
+   // ... for the time being s_{p,k} dosn't need higher powers, so no need to finalize it here ...
+  } // end of for(Int_t k=0;k<9;k++)  
+ } // end of for(Int_t p=0;p<8;p++)
+ // f) Call the methods which calculate correlations for reference flow:
+ if(!fEvaluateIntFlowNestedLoops)
+ {
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   if(nRP>1){this->CalculateIntFlowCorrelations();} // without using particle weights
+  } else // to if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     if(nRP>1){this->CalculateIntFlowCorrelationsUsingParticleWeights();} // with using particle weights   
+    }        
+  // Whether or not using particle weights the following is calculated in the same way:  
+  if(nRP>3){this->CalculateIntFlowProductOfCorrelations();}
+  if(nRP>1){this->CalculateIntFlowSumOfEventWeights();}
+  if(nRP>1){this->CalculateIntFlowSumOfProductOfEventWeights();}  
+  // Non-isotropic terms:
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   if(nRP>0){this->CalculateIntFlowCorrectionsForNUASinTerms();}
+   if(nRP>0){this->CalculateIntFlowCorrectionsForNUACosTerms();}
+  } else // to if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     if(nRP>0){this->CalculateIntFlowCorrectionsForNUASinTermsUsingParticleWeights();}
+     if(nRP>0){this->CalculateIntFlowCorrectionsForNUACosTermsUsingParticleWeights();}     
+    }      
+  // Whether or not using particle weights the following is calculated in the same way:  
+  if(nRP>0){this->CalculateIntFlowProductOfCorrectionTermsForNUA();}     
+  if(nRP>0){this->CalculateIntFlowSumOfEventWeightsNUA();}     
+  if(nRP>0){this->CalculateIntFlowSumOfProductOfEventWeightsNUA();}      
+ } // end of if(!fEvaluateIntFlowNestedLoops)
+
+ // g) Call the methods which calculate correlations for differential flow:
+ if(!fEvaluateDiffFlowNestedLoops && fCalculateDiffFlow)
+ {
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   // Without using particle weights:
+   this->CalculateDiffFlowCorrelations("RP","Pt"); 
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrelations("RP","Eta");}
+   this->CalculateDiffFlowCorrelations("POI","Pt");
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrelations("POI","Eta");}
+   // Non-isotropic terms:
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("RP","Pt");
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUASinTerms("RP","Eta");}
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("POI","Pt");
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUASinTerms("POI","Eta");}
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("RP","Pt");
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUACosTerms("RP","Eta");}
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("POI","Pt");
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUACosTerms("POI","Eta");}   
+  } else // to if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     // With using particle weights:   
+     this->CalculateDiffFlowCorrelationsUsingParticleWeights("RP","Pt"); 
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrelationsUsingParticleWeights("RP","Eta");} 
+     this->CalculateDiffFlowCorrelationsUsingParticleWeights("POI","Pt"); 
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrelationsUsingParticleWeights("POI","Eta");} 
+     // Non-isotropic terms:
+     this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("RP","Pt");
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("RP","Eta");}
+     this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("POI","Pt");
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("POI","Eta");}
+     this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("RP","Pt");
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("RP","Eta");}
+     this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("POI","Pt");
+     if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("POI","Eta");}   
+    }     
+  // Whether or not using particle weights the following is calculated in the same way:  
+  this->CalculateDiffFlowProductOfCorrelations("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowProductOfCorrelations("RP","Eta");}
+  this->CalculateDiffFlowProductOfCorrelations("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowProductOfCorrelations("POI","Eta");}
+  this->CalculateDiffFlowSumOfEventWeights("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowSumOfEventWeights("RP","Eta");}
+  this->CalculateDiffFlowSumOfEventWeights("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowSumOfEventWeights("POI","Eta");}
+  this->CalculateDiffFlowSumOfProductOfEventWeights("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowSumOfProductOfEventWeights("RP","Eta");}
+  this->CalculateDiffFlowSumOfProductOfEventWeights("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowSumOfProductOfEventWeights("POI","Eta");}   
+ } // end of if(!fEvaluateDiffFlowNestedLoops && fCalculateDiffFlow)
+
+ // h) Call the methods which calculate correlations for 2D differential flow:
+ if(!fEvaluateDiffFlowNestedLoops && fCalculate2DDiffFlow)
+ {
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   // Without using particle weights:
+   this->Calculate2DDiffFlowCorrelations("RP"); 
+   this->Calculate2DDiffFlowCorrelations("POI");
+   // Non-isotropic terms:
+   // ... to be ctd ...
+  } else // to if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     // With using particle weights:   
+     // ... to be ctd ...  
+     // Non-isotropic terms:
+     // ... to be ctd ...
+    }     
+  // Whether or not using particle weights the following is calculated in the same way:  
+  // ... to be ctd ...   
+ } // end of if(!fEvaluateDiffFlowNestedLoops && fCalculate2DDiffFlow)
+ // i) Call the methods which calculate other differential correlators:
+ if(!fEvaluateDiffFlowNestedLoops && fCalculateDiffFlow)
+ {
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   // Without using particle weights:
+   this->CalculateOtherDiffCorrelators("RP","Pt"); 
+   if(fCalculateDiffFlowVsEta){this->CalculateOtherDiffCorrelators("RP","Eta");}
+   this->CalculateOtherDiffCorrelators("POI","Pt"); 
+   if(fCalculateDiffFlowVsEta){this->CalculateOtherDiffCorrelators("POI","Eta");}     
+  } else // to if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     // With using particle weights:   
+     // ... to be ctd ...  
+    }     
+  // Whether or not using particle weights the following is calculated in the same way:  
+  // ... to be ctd ...   
+ } // end of if(!fEvaluateDiffFlowNestedLoops)
+ // j) Distributions of correlations:
+ if(fStoreDistributions){this->StoreDistributionsOfCorrelations();}
+ // k) Store phi distribution for one event to illustrate flow: 
+ if(fStorePhiDistributionForOneEvent){this->StorePhiDistributionForOneEvent(anEvent);}
+   
+ // l) Cross-check with nested loops correlators for reference flow:
+ if(fEvaluateIntFlowNestedLoops){this->EvaluateIntFlowNestedLoops(anEvent);} 
+
+ // m) Cross-check with nested loops correlators for differential flow:
+ if(fEvaluateDiffFlowNestedLoops){this->EvaluateDiffFlowNestedLoops(anEvent);} 
+ // n) Reset all event-by-event quantities (very important !!!!):
+ this->ResetEventByEventQuantities();
+} // end of AliFlowAnalysisWithQCumulants::Make(AliFlowEventSimple* anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Finish()
+{
+ // Calculate the final results.
+ // a) Check all pointers used in this method;
+ // b) Acces the constants;
+ // c) Access the flags;
+ // d) Calculate reference cumulants (not corrected for detector effects);
+ // e) Correct reference cumulants for detector effects;
+ // f) Calculate reference flow;
+ // g) Store results for reference flow in AliFlowCommonHistResults and print them on the screen;
+ // h) Calculate the final results for differential flow (without/with weights);
+ // i) Correct the results for differential flow (without/with weights) for effects of non-uniform acceptance (NUA);
+ // j) Calculate the final results for integrated flow (RP/POI) and store in AliFlowCommonHistResults;
+ // k) Store results for differential flow in AliFlowCommonHistResults;
+ // l) Print the final results for integrated flow (RP/POI) on the screen; 
+ // m) Cross-checking: Results from Q-vectors vs results from nested loops.
+ // a) Check all pointers used in this method:
+ this->CheckPointersUsedInFinish();
+  
+ // b) Acces the constants:
+ this->CommonConstants("Finish");          
+ if(fCommonHists && fCommonHists->GetHarmonic()) // to be improved (moved somewhere else)
+ {
+  fHarmonic = (Int_t)(fCommonHists->GetHarmonic())->GetBinContent(1);
+ } 
+ // c) Access the flags: // to be improved (implement a method for this? should I store again the flags becose they can get modified with redoFinish?)
+ fUsePhiWeights = (Bool_t)fUseParticleWeights->GetBinContent(1); 
+ fUsePtWeights = (Bool_t)fUseParticleWeights->GetBinContent(2); 
+ fUseEtaWeights = (Bool_t)fUseParticleWeights->GetBinContent(3);  
+ fUseTrackWeights = (Bool_t)fUseParticleWeights->GetBinContent(4);  
+ fApplyCorrectionForNUA = (Bool_t)fIntFlowFlags->GetBinContent(3); 
+ fPrintFinalResults[0] = (Bool_t)fIntFlowFlags->GetBinContent(4);
+ fPrintFinalResults[1] = (Bool_t)fIntFlowFlags->GetBinContent(5);
+ fPrintFinalResults[2] = (Bool_t)fIntFlowFlags->GetBinContent(6);
+ fPrintFinalResults[3] = (Bool_t)fIntFlowFlags->GetBinContent(7);
+ fApplyCorrectionForNUAVsM = (Bool_t)fIntFlowFlags->GetBinContent(8);  
+ fPropagateErrorAlsoFromNIT = (Bool_t)fIntFlowFlags->GetBinContent(9);  
+ fCalculateCumulantsVsM = (Bool_t)fIntFlowFlags->GetBinContent(10); 
+ fMinimumBiasReferenceFlow = (Bool_t)fIntFlowFlags->GetBinContent(11); 
+ fForgetAboutCovariances = (Bool_t)fIntFlowFlags->GetBinContent(12);
+ fStorePhiDistributionForOneEvent = (Bool_t)fIntFlowFlags->GetBinContent(13);
+ fFillMultipleControlHistograms = (Bool_t)fIntFlowFlags->GetBinContent(14); 
+ fCalculateAllCorrelationsVsM = (Bool_t)fIntFlowFlags->GetBinContent(15);
+ fEvaluateIntFlowNestedLoops = (Bool_t)fEvaluateNestedLoops->GetBinContent(1);
+ fEvaluateDiffFlowNestedLoops = (Bool_t)fEvaluateNestedLoops->GetBinContent(2); 
+ fCrossCheckInPtBinNo = (Int_t)fEvaluateNestedLoops->GetBinContent(3);
+ fCrossCheckInEtaBinNo = (Int_t)fEvaluateNestedLoops->GetBinContent(4); 
+          
+ // d) Calculate reference cumulants (not corrected for detector effects):
+ this->FinalizeCorrelationsIntFlow();
+ this->CalculateCovariancesIntFlow();
+ this->CalculateCumulantsIntFlow();
+
+ // e) Correct reference cumulants for detector effects:
+ this->FinalizeCorrectionTermsForNUAIntFlow();
+ this->CalculateCovariancesNUAIntFlow(); 
+ this->CalculateQcumulantsCorrectedForNUAIntFlow();  
+
+ // f) Calculate reference flow:
+ this->CalculateReferenceFlow(); 
+  
+ // g) Store results for reference flow in AliFlowCommonHistResults and print them on the screen:
+ this->FillCommonHistResultsIntFlow();  
+ if(fPrintFinalResults[0]){this->PrintFinalResultsForIntegratedFlow("RF");}
+ if(fPrintFinalResults[3] && fCalculateCumulantsVsM){this->PrintFinalResultsForIntegratedFlow("RF, rebinned in M");}
+ // h) Calculate the final results for differential flow (without/with weights):
+ if(fCalculateDiffFlow)
+ {
+  this->FinalizeReducedCorrelations("RP","Pt"); 
+  if(fCalculateDiffFlowVsEta){this->FinalizeReducedCorrelations("RP","Eta");} 
+  this->FinalizeReducedCorrelations("POI","Pt"); 
+  if(fCalculateDiffFlowVsEta){this->FinalizeReducedCorrelations("POI","Eta");}
+  this->CalculateDiffFlowCovariances("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCovariances("RP","Eta");}
+  this->CalculateDiffFlowCovariances("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCovariances("POI","Eta");}
+  this->CalculateDiffFlowCumulants("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCumulants("RP","Eta");}
+  this->CalculateDiffFlowCumulants("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCumulants("POI","Eta");}
+  this->CalculateDiffFlow("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlow("RP","Eta");}
+  this->CalculateDiffFlow("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlow("POI","Eta");}
+ } // if(fCalculateDiffFlow)
+ // i) Correct the results for differential flow (without/with weights) for effects of non-uniform acceptance (NUA):
+ if(fCalculateDiffFlow)
+ {
+  this->FinalizeCorrectionTermsForNUADiffFlow("RP","Pt");
+  if(fCalculateDiffFlowVsEta){this->FinalizeCorrectionTermsForNUADiffFlow("RP","Eta");}
+  this->FinalizeCorrectionTermsForNUADiffFlow("POI","Pt");
+  if(fCalculateDiffFlowVsEta){this->FinalizeCorrectionTermsForNUADiffFlow("POI","Eta");}      
+  this->CalculateDiffFlowCumulantsCorrectedForNUA("RP","Pt");   
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCumulantsCorrectedForNUA("RP","Eta");}   
+  this->CalculateDiffFlowCumulantsCorrectedForNUA("POI","Pt");   
+  if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCumulantsCorrectedForNUA("POI","Eta");}  
+  if(fApplyCorrectionForNUA)
+  {
+   this->CalculateDiffFlowCorrectedForNUA("RP","Pt"); 
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectedForNUA("RP","Eta");} 
+   this->CalculateDiffFlowCorrectedForNUA("POI","Pt"); 
+   if(fCalculateDiffFlowVsEta){this->CalculateDiffFlowCorrectedForNUA("POI","Eta");} 
+  }
+ } // end of if(fCalculateDiffFlow && fApplyCorrectionForNUA)
+ // i) Calcualate final results for 2D differential flow: 
+ if(fCalculate2DDiffFlow)
+ {
+  this->Calculate2DDiffFlowCumulants("RP");
+  this->Calculate2DDiffFlowCumulants("POI");
+  this->Calculate2DDiffFlow("RP");  
+  this->Calculate2DDiffFlow("POI");  
+ } // end of if(fCalculate2DDiffFlow)
+    
+ // j) Calculate the final results for integrated flow (RP/POI) and store in AliFlowCommonHistResults:
+ if(fCalculateDiffFlow)
+ {
+  this->CalculateFinalResultsForRPandPOIIntegratedFlow("RP");
+  this->CalculateFinalResultsForRPandPOIIntegratedFlow("POI");
+ }
+ // k) Store results for differential flow in AliFlowCommonHistResults:
+ if(fCalculateDiffFlow)
+ {
+  this->FillCommonHistResultsDiffFlow("RP");
+  this->FillCommonHistResultsDiffFlow("POI");
+ }
+ // l) Print the final results for integrated flow (RP/POI) on the screen:
+ if(fPrintFinalResults[1] && fCalculateDiffFlow){this->PrintFinalResultsForIntegratedFlow("RP");} 
+ if(fPrintFinalResults[2] && fCalculateDiffFlow){this->PrintFinalResultsForIntegratedFlow("POI");}
+    
+ // m) Cross-checking: Results from Q-vectors vs results from nested loops:
+ //  m1) Reference flow:
+ if(fEvaluateIntFlowNestedLoops)
+ {
+  this->CrossCheckIntFlowCorrelations();
+  this->CrossCheckIntFlowCorrectionTermsForNUA(); 
+  if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights){this->CrossCheckIntFlowExtraCorrelations();}     
+ } // end of if(fEvaluateIntFlowNestedLoops)  
+ //  m2) Differential flow: 
+ if(fEvaluateDiffFlowNestedLoops && fCalculateDiffFlow) 
+ {
+  // Correlations:
+  this->PrintNumberOfParticlesInSelectedBin();
+  this->CrossCheckDiffFlowCorrelations("RP","Pt");  
+  if(fCalculateDiffFlowVsEta){this->CrossCheckDiffFlowCorrelations("RP","Eta");} 
+  this->CrossCheckDiffFlowCorrelations("POI","Pt");  
+  if(fCalculateDiffFlowVsEta){this->CrossCheckDiffFlowCorrelations("POI","Eta");}
+  // Correction terms for non-uniform acceptance:
+  this->CrossCheckDiffFlowCorrectionTermsForNUA("RP","Pt");      
+  if(fCalculateDiffFlowVsEta){this->CrossCheckDiffFlowCorrectionTermsForNUA("RP","Eta");}       
+  this->CrossCheckDiffFlowCorrectionTermsForNUA("POI","Pt");      
+  if(fCalculateDiffFlowVsEta){this->CrossCheckDiffFlowCorrectionTermsForNUA("POI","Eta");}
+  // Other differential correlators:       
+  this->CrossCheckOtherDiffCorrelators("RP","Pt");  
+  if(fCalculateDiffFlowVsEta){this->CrossCheckOtherDiffCorrelators("RP","Eta");} 
+  this->CrossCheckOtherDiffCorrelators("POI","Pt");  
+  if(fCalculateDiffFlowVsEta){this->CrossCheckOtherDiffCorrelators("POI","Eta");}
+ } // end of if(fEvaluateDiffFlowNestedLoops)
+                                                                                                                                                                                                                                                                                                                                   
+} // end of AliFlowAnalysisWithQCumulants::Finish()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateIntFlowNestedLoops(AliFlowEventSimple* anEvent)
+{
+ // Evalauted all correlators for reference flow with nested loops.
+ Int_t nPrim = anEvent->NumberOfTracks(); // nPrim = nRP + nPOI 
+ if(nPrim>0 && nPrim<=fMaxAllowedMultiplicity) // by default fMaxAllowedMultiplicity = 10 
+ {
+  // Without using particle weights:
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   // Correlations:
+   this->CalculateIntFlowCorrelations(); // from Q-vectors
+   this->EvaluateIntFlowCorrelationsWithNestedLoops(anEvent); // from nested loops (to be improved: do I have to pass here anEvent or not?)
+   // Correction for non-uniform acceptance:
+   this->CalculateIntFlowCorrectionsForNUASinTerms(); // from Q-vectors (sin terms)
+   this->CalculateIntFlowCorrectionsForNUACosTerms(); // from Q-vectors (cos terms)
+   this->EvaluateIntFlowCorrectionsForNUAWithNestedLoops(anEvent); // from nested loops (both sin and cos terms)
+  }
+  // Using particle weights:
+  if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+  {
+   // Correlations
+   this->CalculateIntFlowCorrelationsUsingParticleWeights(); // from Q-vectors
+   this->EvaluateIntFlowCorrelationsWithNestedLoopsUsingParticleWeights(anEvent); // from nested loops (to be improved: do I have to pass here anEvent or not?)
+   // Correction for non-uniform acceptance:
+   this->CalculateIntFlowCorrectionsForNUASinTermsUsingParticleWeights(); // from Q-vectors (sin terms)
+   this->CalculateIntFlowCorrectionsForNUACosTermsUsingParticleWeights(); // from Q-vectors (cos terms)
+   this->EvaluateIntFlowCorrectionsForNUAWithNestedLoopsUsingParticleWeights(anEvent); // from nested loops (both sin and cos terms)   
+  }
+ } else if(nPrim>fMaxAllowedMultiplicity) // to if(nPrim>0 && nPrim<=fMaxAllowedMultiplicity)
+   {
+    cout<<endl;
+    cout<<"Skipping the event because multiplicity is "<<nPrim<<". Too high to evaluate nested loops!"<<endl;
+   } else
+     {
+      cout<<endl;
+      cout<<"Skipping the event because multiplicity is "<<nPrim<<"."<<endl;      
+     } 
+
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateIntFlowNestedLoops(AliFlowEventSimple* anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowNestedLoops(AliFlowEventSimple* anEvent)
+{
+ // Evalauted all correlators for differential flow with nested loops.
+
+ if(!fCalculateDiffFlow){return;}
+
+ Int_t nPrim = anEvent->NumberOfTracks(); // nPrim = nRP + nPOI 
+ if(nPrim>0 && nPrim<=fMaxAllowedMultiplicity) // by default fMaxAllowedMultiplicity = 10
+ {
+  // Without using particle weights:
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   // 1.) Reduced correlations:
+   //  Q-vectors:
+   this->CalculateDiffFlowCorrelations("RP","Pt");
+   this->CalculateDiffFlowCorrelations("RP","Eta");
+   this->CalculateDiffFlowCorrelations("POI","Pt");
+   this->CalculateDiffFlowCorrelations("POI","Eta");
+   //  Nested loops:
+   this->EvaluateDiffFlowCorrelationsWithNestedLoops(anEvent,"RP","Pt"); 
+   this->EvaluateDiffFlowCorrelationsWithNestedLoops(anEvent,"RP","Eta"); 
+   this->EvaluateDiffFlowCorrelationsWithNestedLoops(anEvent,"POI","Pt"); 
+   this->EvaluateDiffFlowCorrelationsWithNestedLoops(anEvent,"POI","Eta"); 
+   // 2.) Reduced corrections for non-uniform acceptance:
+   //  Q-vectors:
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("RP","Pt");
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("RP","Eta");
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("POI","Pt");
+   this->CalculateDiffFlowCorrectionsForNUASinTerms("POI","Eta");
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("RP","Pt");
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("RP","Eta");
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("POI","Pt");
+   this->CalculateDiffFlowCorrectionsForNUACosTerms("POI","Eta");
+   //  Nested loops:
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(anEvent,"RP","Pt");
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(anEvent,"RP","Eta");
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(anEvent,"POI","Pt"); 
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(anEvent,"POI","Eta"); 
+   // 3.) Other differential correlators:
+   //  Q-vectors:
+   this->CalculateOtherDiffCorrelators("RP","Pt");
+   this->CalculateOtherDiffCorrelators("RP","Eta");
+   this->CalculateOtherDiffCorrelators("POI","Pt");
+   this->CalculateOtherDiffCorrelators("POI","Eta");   
+   //  Nested loops:
+   this->EvaluateOtherDiffCorrelatorsWithNestedLoops(anEvent,"RP","Pt");
+   this->EvaluateOtherDiffCorrelatorsWithNestedLoops(anEvent,"RP","Eta");
+   this->EvaluateOtherDiffCorrelatorsWithNestedLoops(anEvent,"POI","Pt");
+   this->EvaluateOtherDiffCorrelatorsWithNestedLoops(anEvent,"POI","Eta");   
+  } // end of if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  // Using particle weights:
+  if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+  {
+   this->CalculateDiffFlowCorrelationsUsingParticleWeights("RP","Pt"); 
+   this->CalculateDiffFlowCorrelationsUsingParticleWeights("RP","Eta"); 
+   this->CalculateDiffFlowCorrelationsUsingParticleWeights("POI","Pt"); 
+   this->CalculateDiffFlowCorrelationsUsingParticleWeights("POI","Eta"); 
+   this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("RP","Pt");
+   this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("RP","Eta");
+   this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("POI","Pt");
+   this->CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights("POI","Eta");
+   this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("RP","Pt");
+   this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("RP","Eta");
+   this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("POI","Pt");
+   this->CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights("POI","Eta");
+   this->EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(anEvent,"RP","Pt"); 
+   this->EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(anEvent,"RP","Eta");
+   this->EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(anEvent,"POI","Pt"); 
+   this->EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(anEvent,"POI","Eta");   
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(anEvent,"RP","Pt"); 
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(anEvent,"RP","Eta"); 
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(anEvent,"POI","Pt"); 
+   this->EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(anEvent,"POI","Eta"); 
+  } // end of if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+ } // end of if(nPrim>0 && nPrim<=fMaxAllowedMultiplicity) // by default fMaxAllowedMultiplicity = 10
+
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowNestedLoops(AliFlowEventSimple* anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUACosTerms()
+{
+ // Calculate correction terms for non-uniform acceptance of the detector for reference flow (cos terms).
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+        
+ //                                  *************************************************************
+ //                                  **** corrections for non-uniform acceptance (cos terms): ****
+ //                                  *************************************************************
+ //
+ // Remark 1: corrections for non-uniform acceptance (cos terms) calculated with non-weighted Q-vectors 
+ //           are stored in 1D profile fQCorrectionsCos.
+ // Remark 2: binning of fIntFlowCorrectionTermsForNUAPro[1] is organized as follows:
+ // --------------------------------------------------------------------------------------------------------------------
+ // 1st bin: <<cos(n*(phi1))>> = cosP1n
+ // 2nd bin: <<cos(n*(phi1+phi2))>> = cosP1nP1n
+ // 3rd bin: <<cos(n*(phi1-phi2-phi3))>> = cosP1nM1nM1n
+ // 4th bin: <<cos(n*(2phi1-phi2))>> = cosP2nM1n
+ // --------------------------------------------------------------------------------------------------------------------
+  
+ // 1-particle:
+ Double_t cosP1n = 0.; // <<cos(n*(phi1))>>
+   
+ if(dMult>0)
+ {
+  cosP1n = dReQ1n/dMult; 
+  
+  // average non-weighted 1-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(1,cosP1n);
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->SetBinContent(1,dMult);
+  
+  // final average non-weighted 1-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(0.5,cosP1n,dMult);  
+  if(fCalculateCumulantsVsM){fIntFlowCorrectionTermsForNUAVsMPro[1][0]->Fill(dMult+0.5,cosP1n,dMult);}    
+ } 
+ // 2-particle:
+ Double_t cosP1nP1n = 0.; // <<cos(n*(phi1+phi2))>>
+ Double_t cosP2nM1n = 0.; // <<cos(n*(2phi1-phi2))>>
+ if(dMult>1)
+ {
+  cosP1nP1n = (pow(dReQ1n,2)-pow(dImQ1n,2)-dReQ2n)/(dMult*(dMult-1)); 
+  cosP2nM1n = (dReQ2n*dReQ1n+dImQ2n*dImQ1n-dReQ1n)/(dMult*(dMult-1)); 
+  
+  // average non-weighted 2-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(2,cosP1nP1n);
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(4,cosP2nM1n);
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->SetBinContent(2,dMult*(dMult-1));
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->SetBinContent(4,dMult*(dMult-1));
+      
+  // final average non-weighted 2-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(1.5,cosP1nP1n,dMult*(dMult-1));  
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(3.5,cosP2nM1n,dMult*(dMult-1));
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrectionTermsForNUAVsMPro[1][1]->Fill(dMult+0.5,cosP1nP1n,dMult*(dMult-1));  
+   fIntFlowCorrectionTermsForNUAVsMPro[1][3]->Fill(dMult+0.5,cosP2nM1n,dMult*(dMult-1));
+  }
+ } 
+ // 3-particle:
+ Double_t cosP1nM1nM1n = 0.; // <<cos(n*(phi1-phi2-phi3))>>
+ if(dMult>2)
+ {
+  cosP1nM1nM1n = (dReQ1n*(pow(dReQ1n,2)+pow(dImQ1n,2))-dReQ1n*dReQ2n-dImQ1n*dImQ2n-2.*(dMult-1)*dReQ1n)
+               / (dMult*(dMult-1)*(dMult-2)); 
+  
+  // average non-weighted 3-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(3,cosP1nM1nM1n);
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->SetBinContent(3,dMult*(dMult-1)*(dMult-2));
+  
+  // final average non-weighted 3-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(2.5,cosP1nM1nM1n,dMult*(dMult-1)*(dMult-2));
+  if(fCalculateCumulantsVsM){fIntFlowCorrectionTermsForNUAVsMPro[1][2]->Fill(dMult+0.5,cosP1nM1nM1n,dMult*(dMult-1)*(dMult-2));}  
+ } 
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUACosTerms()
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUASinTerms()
+{
+ // calculate corrections for non-uniform acceptance of the detector for no-name integrated flow (sin terms)
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+        
+ //                                  *************************************************************
+ //                                  **** corrections for non-uniform acceptance (sin terms): ****
+ //                                  *************************************************************
+ //
+ // Remark 1: corrections for non-uniform acceptance (sin terms) calculated with non-weighted Q-vectors 
+ //           are stored in 1D profile fQCorrectionsSin.
+ // Remark 2: binning of fIntFlowCorrectionTermsForNUAPro[0] is organized as follows:
+ // --------------------------------------------------------------------------------------------------------------------
+ // 1st bin: <<sin(n*(phi1))>> = sinP1n
+ // 2nd bin: <<sin(n*(phi1+phi2))>> = sinP1nP1n
+ // 3rd bin: <<sin(n*(phi1-phi2-phi3))>> = sinP1nM1nM1n
+ // 4th bin: <<sin(n*(2phi1-phi2))>> = sinP2nM1n
+ // --------------------------------------------------------------------------------------------------------------------
+ // 1-particle:
+ Double_t sinP1n = 0.; // <sin(n*(phi1))>
+ if(dMult>0)
+ {
+  sinP1n = dImQ1n/dMult; 
+     
+  // average non-weighted 1-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(1,sinP1n);  
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->SetBinContent(1,dMult);
+  
+  // final average non-weighted 1-particle correction (sin terms) for non-uniform acceptance for all events:   
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(0.5,sinP1n,dMult);  
+  if(fCalculateCumulantsVsM){fIntFlowCorrectionTermsForNUAVsMPro[0][0]->Fill(dMult+0.5,sinP1n,dMult);} 
+ } 
+ // 2-particle:
+ Double_t sinP1nP1n = 0.; // <<sin(n*(phi1+phi2))>>
+ Double_t sinP2nM1n = 0.; // <<sin(n*(2phi1-phi2))>>
+ if(dMult>1)
+ {
+  sinP1nP1n = (2.*dReQ1n*dImQ1n-dImQ2n)/(dMult*(dMult-1)); 
+  sinP2nM1n = (dImQ2n*dReQ1n-dReQ2n*dImQ1n-dImQ1n)/(dMult*(dMult-1)); 
+     
+  // average non-weighted 2-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(2,sinP1nP1n);
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(4,sinP2nM1n);
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->SetBinContent(2,dMult*(dMult-1));
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->SetBinContent(4,dMult*(dMult-1));
+  
+  // final average non-weighted 1-particle correction (sin terms) for non-uniform acceptance for all events:      
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(1.5,sinP1nP1n,dMult*(dMult-1));  
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(3.5,sinP2nM1n,dMult*(dMult-1));  
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrectionTermsForNUAVsMPro[0][1]->Fill(dMult+0.5,sinP1nP1n,dMult*(dMult-1));  
+   fIntFlowCorrectionTermsForNUAVsMPro[0][3]->Fill(dMult+0.5,sinP2nM1n,dMult*(dMult-1));    
+  }
+ } 
+ // 3-particle:
+ Double_t sinP1nM1nM1n = 0.; // <<sin(n*(phi1-phi2-phi3))>>
+ if(dMult>2)
+ {
+  sinP1nM1nM1n = (-dImQ1n*(pow(dReQ1n,2)+pow(dImQ1n,2))+dReQ1n*dImQ2n-dImQ1n*dReQ2n+2.*(dMult-1)*dImQ1n)
+               / (dMult*(dMult-1)*(dMult-2)); 
+  
+  // average non-weighted 3-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(3,sinP1nM1nM1n);
+  // event weights for NUA terms:
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->SetBinContent(3,dMult*(dMult-1)*(dMult-2));
+  
+  // final average non-weighted 3-particle correction (sin terms) for non-uniform acceptance for all events:  
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(2.5,sinP1nM1nM1n,dMult*(dMult-1)*(dMult-2));
+  if(fCalculateCumulantsVsM){fIntFlowCorrectionTermsForNUAVsMPro[0][2]->Fill(dMult+0.5,sinP1nM1nM1n,dMult*(dMult-1)*(dMult-2));}  
+ } 
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUASinTerms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetOutputHistograms(TList *outputListHistos)
+{
+ // a) Get pointers for common control and common result histograms;
+ // b) Get pointers for histograms holding particle weights;
+ // c) Get pointers for reference flow histograms;
+ // d) Get pointers for differential flow histograms;
+ // e) Get pointers for 2D differential flow histograms;
+ // f) Get pointers for other differential correlators;
+ // g) Get pointers for nested loops' histograms.
+ if(outputListHistos)
+ {     
+  this->SetHistList(outputListHistos);
+  if(!fHistList)
+  {
+   printf("\n WARNING (QC): fHistList is NULL in AFAWQC::GOH() !!!!\n\n");
+   exit(0);
+  }
+  this->GetPointersForCommonHistograms(); 
+  this->GetPointersForParticleWeightsHistograms(); 
+  this->GetPointersForIntFlowHistograms();
+  this->GetPointersForDiffFlowHistograms(); 
+  this->GetPointersFor2DDiffFlowHistograms(); 
+  this->GetPointersForOtherDiffCorrelators();  
+  this->GetPointersForNestedLoopsHistograms(); 
+ } else 
+   {
+    printf("\n WARNING (QC): outputListHistos is NULL in AFAWQC::GOH() !!!!\n\n");
+    exit(0);
+   }
+   
+} // end of void AliFlowAnalysisWithQCumulants::GetOutputHistograms(TList *outputListHistos)
+
+//================================================================================================================================
+
+TProfile* AliFlowAnalysisWithQCumulants::MakePtProjection(TProfile2D *profilePtEta) const
+{
+ // project 2D profile onto pt axis to get 1D profile
+ Int_t nBinsPt   = profilePtEta->GetNbinsX();
+ Double_t dPtMin = (profilePtEta->GetXaxis())->GetXmin();
+ Double_t dPtMax = (profilePtEta->GetXaxis())->GetXmax();
+ Int_t nBinsEta   = profilePtEta->GetNbinsY();
+ TProfile *profilePt = new TProfile("","",nBinsPt,dPtMin,dPtMax); 
+ for(Int_t p=1;p<=nBinsPt;p++)
+ {
+  Double_t contentPt = 0.;
+  Double_t entryPt = 0.;
+  Double_t spreadPt = 0.;
+  Double_t sum1 = 0.;
+  Double_t sum2 = 0.;
+  Double_t sum3 = 0.;
+  for(Int_t e=1;e<=nBinsEta;e++)
+  {
+   contentPt += (profilePtEta->GetBinContent(profilePtEta->GetBin(p,e)))
+              * (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)));
+   entryPt   += (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)));
+   
+   sum1 += (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)))
+         * (pow(profilePtEta->GetBinError(profilePtEta->GetBin(p,e)),2.)
+            + pow(profilePtEta->GetBinContent(profilePtEta->GetBin(p,e)),2.)); 
+   sum2 += (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)));
+   sum3 += (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)))
+         * (profilePtEta->GetBinContent(profilePtEta->GetBin(p,e)));            
+  }
+  if(sum2>0. && sum1/sum2-pow(sum3/sum2,2.) > 0.)
+  {
+   spreadPt = pow(sum1/sum2-pow(sum3/sum2,2.),0.5);
+  }
+  profilePt->SetBinContent(p,contentPt);
+  profilePt->SetBinEntries(p,entryPt);
+  {
+   profilePt->SetBinError(p,spreadPt);
+  }
+  
+ }
+ return profilePt;
+} // end of TProfile* AliFlowAnalysisWithQCumulants::MakePtProjection(TProfile2D *profilePtEta)
+
+
+//================================================================================================================================
+
+
+TProfile* AliFlowAnalysisWithQCumulants::MakeEtaProjection(TProfile2D *profilePtEta) const
+{
+ // project 2D profile onto eta axis to get 1D profile
+ Int_t nBinsEta   = profilePtEta->GetNbinsY();
+ Double_t dEtaMin = (profilePtEta->GetYaxis())->GetXmin();
+ Double_t dEtaMax = (profilePtEta->GetYaxis())->GetXmax();
+ Int_t nBinsPt = profilePtEta->GetNbinsX();
+ TProfile *profileEta = new TProfile("","",nBinsEta,dEtaMin,dEtaMax); 
+ for(Int_t e=1;e<=nBinsEta;e++)
+ {
+  Double_t contentEta = 0.;
+  Double_t entryEta = 0.;
+  for(Int_t p=1;p<=nBinsPt;p++)
+  {
+   contentEta += (profilePtEta->GetBinContent(profilePtEta->GetBin(p,e)))
+              * (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)));
+   entryEta   += (profilePtEta->GetBinEntries(profilePtEta->GetBin(p,e)));
+  }
+  profileEta->SetBinContent(e,contentEta);
+  profileEta->SetBinEntries(e,entryEta);
+ }
+ return profileEta;
+} // end of TProfile* AliFlowAnalysisWithQCumulants::MakeEtaProjection(TProfile2D *profilePtEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::PrintFinalResultsForIntegratedFlow(TString type)
+{
+ // Printing on the screen the final results for integrated flow (RF, POI and RP). 
+ Int_t n = fHarmonic; 
+ Double_t dVn[4] = {0.}; // array to hold Vn{2}, Vn{4}, Vn{6} and Vn{8}   
+ Double_t dVnErr[4] = {0.}; // array to hold errors of Vn{2}, Vn{4}, Vn{6} and Vn{8}   
+ if(type == "RF")
+ {
+  for(Int_t b=0;b<4;b++)
+  {
+   dVn[0] = (fCommonHistsResults2nd->GetHistIntFlow())->GetBinContent(1); 
+   dVnErr[0] = (fCommonHistsResults2nd->GetHistIntFlow())->GetBinError(1); 
+   dVn[1] = (fCommonHistsResults4th->GetHistIntFlow())->GetBinContent(1); 
+   dVnErr[1] = (fCommonHistsResults4th->GetHistIntFlow())->GetBinError(1); 
+   dVn[2] = (fCommonHistsResults6th->GetHistIntFlow())->GetBinContent(1); 
+   dVnErr[2] = (fCommonHistsResults6th->GetHistIntFlow())->GetBinError(1); 
+   dVn[3] = (fCommonHistsResults8th->GetHistIntFlow())->GetBinContent(1); 
+   dVnErr[3] = (fCommonHistsResults8th->GetHistIntFlow())->GetBinError(1);    
+  }  
+ } else if(type == "RP")
+   {
+    dVn[0] = (fCommonHistsResults2nd->GetHistIntFlowRP())->GetBinContent(1); 
+    dVnErr[0] = (fCommonHistsResults2nd->GetHistIntFlowRP())->GetBinError(1); 
+    dVn[1] = (fCommonHistsResults4th->GetHistIntFlowRP())->GetBinContent(1); 
+    dVnErr[1] = (fCommonHistsResults4th->GetHistIntFlowRP())->GetBinError(1); 
+    dVn[2] = (fCommonHistsResults6th->GetHistIntFlowRP())->GetBinContent(1); 
+    dVnErr[2] = (fCommonHistsResults6th->GetHistIntFlowRP())->GetBinError(1); 
+    dVn[3] = (fCommonHistsResults8th->GetHistIntFlowRP())->GetBinContent(1); 
+    dVnErr[3] = (fCommonHistsResults8th->GetHistIntFlowRP())->GetBinError(1); 
+   } else if(type == "POI")
+     {
+      dVn[0] = (fCommonHistsResults2nd->GetHistIntFlowPOI())->GetBinContent(1); 
+      dVnErr[0] = (fCommonHistsResults2nd->GetHistIntFlowPOI())->GetBinError(1); 
+      dVn[1] = (fCommonHistsResults4th->GetHistIntFlowPOI())->GetBinContent(1); 
+      dVnErr[1] = (fCommonHistsResults4th->GetHistIntFlowPOI())->GetBinError(1); 
+      dVn[2] = (fCommonHistsResults6th->GetHistIntFlowPOI())->GetBinContent(1); 
+      dVnErr[2] = (fCommonHistsResults6th->GetHistIntFlowPOI())->GetBinError(1); 
+      dVn[3] = (fCommonHistsResults8th->GetHistIntFlowPOI())->GetBinContent(1); 
+      dVnErr[3] = (fCommonHistsResults8th->GetHistIntFlowPOI())->GetBinError(1); 
+     } else if(type == "RF, rebinned in M" && fCalculateCumulantsVsM)
+       {
+        for(Int_t b=0;b<4;b++)
+        {
+         dVn[b] = fIntFlowRebinnedInM->GetBinContent(b+1); 
+         dVnErr[b] = fIntFlowRebinnedInM->GetBinError(b+1);
+        }  
+       }
+ TString title = " flow estimates from Q-cumulants"; 
+ TString subtitle = "    ("; 
+ TString subtitle2 = "       (rebinned in M)"; 
+ if(type != "RF, rebinned in M")
+ {
+  if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+  {
+   subtitle.Append(type);
+   subtitle.Append(", without weights)");
+  } else  
+    {
+     subtitle.Append(type);
+     subtitle.Append(", with weights)");
+    }
+ } else
+   {
+    if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+    {
+     subtitle.Append("RF");
+     subtitle.Append(", without weights)");
+    } else  
+      {
+       subtitle.Append("RF");
+       subtitle.Append(", with weights)");      
+      }
+   } 
+   
+ cout<<endl;
+ cout<<"*************************************"<<endl;
+ cout<<"*************************************"<<endl;
+ cout<<title.Data()<<endl; 
+ cout<<subtitle.Data()<<endl; 
+ if(type == "RF, rebinned in M"){cout<<subtitle2.Data()<<endl;}
+ cout<<endl;
+  
+ for(Int_t i=0;i<4;i++)
+ {
+  cout<<"  v_"<<n<<"{"<<2*(i+1)<<"} = "<<dVn[i]<<" +/- "<<dVnErr[i]<<endl;
+ }
+ cout<<endl;
+ if(type == "RF")
+ {
+  if(fApplyCorrectionForNUA)
+  {
+   cout<<" detector bias (corrected for): "<<endl;
+  } else
+    {
+     cout<<" detector bias (not corrected for):"<<endl;  
+    }
+  cout<<"  to QC{2}: "<<fIntFlowDetectorBias->GetBinContent(1)<<" +/- "<<fIntFlowDetectorBias->GetBinError(1)<<endl;
+  cout<<"  to QC{4}: "<<fIntFlowDetectorBias->GetBinContent(2)<<" +/- "<<fIntFlowDetectorBias->GetBinError(2)<<endl;
+  cout<<endl;
+ }
+ if(type == "RF" || type == "RF, rebinned in M")
+ {
+  cout<<"     nEvts = "<<(Int_t)fCommonHists->GetHistMultRP()->GetEntries()<<", <M> = "<<(Double_t)fCommonHists->GetHistMultRP()->GetMean()<<endl; 
+ }
+ else if (type == "RP")
+ {
+  cout<<"     nEvts = "<<(Int_t)fCommonHists->GetHistMultRP()->GetEntries()<<", <M> = "<<(Double_t)fCommonHists->GetHistMultRP()->GetMean()<<endl;  
+ } 
+ else if (type == "POI")
+ {
+  cout<<"     nEvts = "<<(Int_t)fCommonHists->GetHistMultPOI()->GetEntries()<<", <M> = "<<(Double_t)fCommonHists->GetHistMultPOI()->GetMean()<<endl;
+ }  
+ cout<<"*************************************"<<endl;
+ cout<<"*************************************"<<endl;
+ cout<<endl; 
+  
+}// end of AliFlowAnalysisWithQCumulants::PrintFinalResultsForIntegratedFlow(TString type="RF");
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::WriteHistograms(TString outputFileName)
+{
+ //store the final results in output .root file
+ TFile *output = new TFile(outputFileName.Data(),"RECREATE");
+ //output->WriteObject(fHistList, "cobjQC","SingleKey");
+ fHistList->Write(fHistList->GetName(), TObject::kSingleKey);
+ delete output;
+}
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::WriteHistograms(TDirectoryFile *outputFileName)
+{
+ //store the final results in output .root file
+ fHistList->SetName("cobjQC");
+ fHistList->SetOwner(kTRUE);
+ outputFileName->Add(fHistList);
+ outputFileName->Write(outputFileName->GetName(), TObject::kSingleKey);
+}
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookCommonHistograms()
+{
+ // Book common control histograms and common histograms for final results.
+ //  a) Book common control histograms;
+ //  b) Book common result histograms.
+ // a) Book common control histograms: 
+ //  Common control histograms (all events):
+ TString commonHistsName = "AliFlowCommonHistQC";
+ commonHistsName += fAnalysisLabel->Data();
+ fCommonHists = new AliFlowCommonHist(commonHistsName.Data(),commonHistsName.Data(),fBookOnlyBasicCCH);
+ fHistList->Add(fCommonHists);  
+ //  Common control histograms (selected events):
+ if(fFillMultipleControlHistograms)
+ {
+  // Common control histogram filled for events with 2 and more reference particles:
+  TString commonHists2ndOrderName = "AliFlowCommonHist2ndOrderQC";
+  commonHists2ndOrderName += fAnalysisLabel->Data();
+  fCommonHists2nd = new AliFlowCommonHist(commonHists2ndOrderName.Data(),commonHists2ndOrderName.Data(),fBookOnlyBasicCCH);
+  fHistList->Add(fCommonHists2nd);  
+  // Common control histogram filled for events with 2 and more reference particles:
+  TString commonHists4thOrderName = "AliFlowCommonHist4thOrderQC";
+  commonHists4thOrderName += fAnalysisLabel->Data();
+  fCommonHists4th = new AliFlowCommonHist(commonHists4thOrderName.Data(),commonHists4thOrderName.Data(),fBookOnlyBasicCCH);
+  fHistList->Add(fCommonHists4th);  
+  // Common control histogram filled for events with 6 and more reference particles:
+  TString commonHists6thOrderName = "AliFlowCommonHist6thOrderQC";
+  commonHists6thOrderName += fAnalysisLabel->Data();
+  fCommonHists6th = new AliFlowCommonHist(commonHists6thOrderName.Data(),commonHists6thOrderName.Data(),fBookOnlyBasicCCH);
+  fHistList->Add(fCommonHists6th);  
+  // Common control histogram filled for events with 8 and more reference particles:
+  TString commonHists8thOrderName = "AliFlowCommonHist8thOrderQC";
+  commonHists8thOrderName += fAnalysisLabel->Data();
+  fCommonHists8th = new AliFlowCommonHist(commonHists8thOrderName.Data(),commonHists8thOrderName.Data(),fBookOnlyBasicCCH);
+  fHistList->Add(fCommonHists8th);    
+ } // end of if(fFillMultipleControlHistograms)
+ // b) Book common result histograms: 
+ //  Common result histograms for QC{2}:
+ TString commonHistResults2ndOrderName = "AliFlowCommonHistResults2ndOrderQC";
+ commonHistResults2ndOrderName += fAnalysisLabel->Data();
+ fCommonHistsResults2nd = new AliFlowCommonHistResults(commonHistResults2ndOrderName.Data(),"",fHarmonic);
+ fHistList->Add(fCommonHistsResults2nd);  
+ //  Common result histograms for QC{4}:
+ TString commonHistResults4thOrderName = "AliFlowCommonHistResults4thOrderQC";
+ commonHistResults4thOrderName += fAnalysisLabel->Data();
+ fCommonHistsResults4th = new AliFlowCommonHistResults(commonHistResults4thOrderName.Data(),"",fHarmonic);
+ fHistList->Add(fCommonHistsResults4th); 
+ //  Common result histograms for QC{6}:
+ TString commonHistResults6thOrderName = "AliFlowCommonHistResults6thOrderQC";
+ commonHistResults6thOrderName += fAnalysisLabel->Data();
+ fCommonHistsResults6th = new AliFlowCommonHistResults(commonHistResults6thOrderName.Data(),"",fHarmonic);
+ fHistList->Add(fCommonHistsResults6th);  
+ //  Common result histograms for QC{8}:
+ TString commonHistResults8thOrderName = "AliFlowCommonHistResults8thOrderQC";
+ commonHistResults8thOrderName += fAnalysisLabel->Data();
+ fCommonHistsResults8th = new AliFlowCommonHistResults(commonHistResults8thOrderName.Data(),"",fHarmonic);
+ fHistList->Add(fCommonHistsResults8th); 
+} // end of void AliFlowAnalysisWithQCumulants::BookCommonHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookAndFillWeightsHistograms()
+{
+ // Book and fill histograms which hold phi, pt and eta weights.
+
+ if(!fWeightsList)
+ {
+  printf("\n WARNING (QC): fWeightsList is NULL in AFAWQC::BAFWH() !!!! \n\n");
+  exit(0);  
+ }
+    
+ TString fUseParticleWeightsName = "fUseParticleWeightsQC";
+ fUseParticleWeightsName += fAnalysisLabel->Data();
+ fUseParticleWeights = new TProfile(fUseParticleWeightsName.Data(),"0 = particle weight not used, 1 = particle weight used ",4,0,4);
+ fUseParticleWeights->SetLabelSize(0.06);
+ (fUseParticleWeights->GetXaxis())->SetBinLabel(1,"w_{#phi}");
+ (fUseParticleWeights->GetXaxis())->SetBinLabel(2,"w_{p_{T}}");
+ (fUseParticleWeights->GetXaxis())->SetBinLabel(3,"w_{#eta}");
+ (fUseParticleWeights->GetXaxis())->SetBinLabel(4,"w_{track}");
+ fUseParticleWeights->Fill(0.5,(Int_t)fUsePhiWeights);
+ fUseParticleWeights->Fill(1.5,(Int_t)fUsePtWeights);
+ fUseParticleWeights->Fill(2.5,(Int_t)fUseEtaWeights);
+ fUseParticleWeights->Fill(3.5,(Int_t)fUseTrackWeights);
+ fWeightsList->Add(fUseParticleWeights); 
+  
+ if(fUsePhiWeights)
+ {
+  if(fWeightsList->FindObject("phi_weights"))
+  {
+   fPhiWeights = dynamic_cast<TH1F*>(fWeightsList->FindObject("phi_weights"));
+   if(!fPhiWeights)
+   {
+    printf("\n WARNING (QC): fPhiWeights is NULL in AFAWQC::BAFWH() !!!!\n\n");
+    exit(0);
+   }
+   if(TMath::Abs(fPhiWeights->GetBinWidth(1)-fPhiBinWidth)>pow(10.,-6.))
+   {
+    cout<<endl;
+    cout<<"WARNING (QC): Inconsistent binning in histograms for phi-weights throughout the code."<<endl;
+    cout<<endl;
+    //exit(0);
+   }
+  } else 
+    {
+     cout<<"WARNING: fWeightsList->FindObject(\"phi_weights\") is NULL in AFAWQC::BAFWH() !!!!"<<endl;
+     exit(0);
+    }
+ } // end of if(fUsePhiWeights)
+ if(fUsePtWeights) 
+ {
+  if(fWeightsList->FindObject("pt_weights"))
+  {
+   fPtWeights = dynamic_cast<TH1D*>(fWeightsList->FindObject("pt_weights"));
+   if(!fPtWeights)
+   {
+    printf("\n WARNING (QC): fPtWeights is NULL in AFAWQC::BAFWH() !!!!\n\n");
+    exit(0);
+   }
+   if(TMath::Abs(fPtWeights->GetBinWidth(1)-fPtBinWidth)>pow(10.,-6.))
+   {
+    cout<<endl;
+    cout<<"WARNING (QC): Inconsistent binning in histograms for pt-weights throughout the code."<<endl;
+    cout<<endl;
+    //exit(0);
+   }
+  } else 
+    {
+     cout<<"WARNING: fWeightsList->FindObject(\"pt_weights\") is NULL in AFAWQC::BAFWH() !!!!"<<endl;
+     exit(0);
+    }
+ } // end of if(fUsePtWeights)    
+
+ if(fUseEtaWeights) 
+ {
+  if(fWeightsList->FindObject("eta_weights"))
+  {
+   fEtaWeights = dynamic_cast<TH1D*>(fWeightsList->FindObject("eta_weights"));
+   if(!fEtaWeights)
+   {
+    printf("\n WARNING (QC): fEtaWeights is NULL in AFAWQC::BAFWH() !!!!\n\n");
+    exit(0);
+   }
+   if(TMath::Abs(fEtaWeights->GetBinWidth(1)-fEtaBinWidth)>pow(10.,-6.))
+   {
+    cout<<endl;
+    cout<<"WARNING (QC): Inconsistent binning in histograms for eta-weights throughout the code."<<endl;
+    cout<<endl;
+    //exit(0);
+   }
+  } else 
+    {
+     cout<<"WARNING: fUseEtaWeights && fWeightsList->FindObject(\"eta_weights\") is NULL in AFAWQC::BAFWH() !!!!"<<endl;
+     exit(0);
+    }
+ } // end of if(fUseEtaWeights)
+} // end of AliFlowAnalysisWithQCumulants::BookAndFillWeightsHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingForIntegratedFlow()
+{
+ // Book all objects for integrated flow:
+ //  a) Book profile to hold all flags for integrated flow;
+ //  b) Book event-by-event quantities;
+ //  c) Book profiles; // to be improved (comment)
+ //  d) Book histograms holding the final results.
+ TString sinCosFlag[2] = {"sin","cos"}; // to be improved (should I promote this to data members?)
+ TString powerFlag[2] = {"linear","quadratic"}; // to be improved (should I promote this to data members?)
+ // a) Book profile to hold all flags for integrated flow:
+ TString intFlowFlagsName = "fIntFlowFlags";
+ intFlowFlagsName += fAnalysisLabel->Data();
+ fIntFlowFlags = new TProfile(intFlowFlagsName.Data(),"Flags for Integrated Flow",15,0,15);
+ fIntFlowFlags->SetTickLength(-0.01,"Y");
+ fIntFlowFlags->SetMarkerStyle(25);
+ fIntFlowFlags->SetLabelSize(0.04);
+ fIntFlowFlags->SetLabelOffset(0.02,"Y");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(1,"Particle Weights");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(2,"Event Weights");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(3,"Corrected for NUA?");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(4,"Print RF results");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(5,"Print RP results");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(6,"Print POI results");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(7,"Print RF (rebinned in M) results");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(8,"Corrected for NUA vs M?");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(9,"Propagate errors to v_{n} from correlations?");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(10,"Calculate cumulants vs M");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(11,"fMinimumBiasReferenceFlow");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(12,"fForgetAboutCovariances");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(13,"fStorePhiDistributionForOneEvent");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(14,"fFillMultipleControlHistograms");
+ fIntFlowFlags->GetXaxis()->SetBinLabel(15,"Calculate all correlations vs M");
+ fIntFlowList->Add(fIntFlowFlags);
+
+ // b) Book event-by-event quantities:
+ // Re[Q_{m*n,k}], Im[Q_{m*n,k}] and S_{p,k}^M: 
+ fReQ  = new TMatrixD(6,9);
+ fImQ  = new TMatrixD(6,9);
+ fSpk = new TMatrixD(8,9);
+ // average correlations <2>, <4>, <6> and <8> for single event (bining is the same as in fIntFlowCorrelationsPro and fIntFlowCorrelationsHist):
+ TString intFlowCorrelationsEBEName = "fIntFlowCorrelationsEBE";
+ intFlowCorrelationsEBEName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsEBE = new TH1D(intFlowCorrelationsEBEName.Data(),intFlowCorrelationsEBEName.Data(),4,0,4);
+ // weights for average correlations <2>, <4>, <6> and <8> for single event:
+ TString intFlowEventWeightsForCorrelationsEBEName = "fIntFlowEventWeightsForCorrelationsEBE";
+ intFlowEventWeightsForCorrelationsEBEName += fAnalysisLabel->Data();
+ fIntFlowEventWeightsForCorrelationsEBE = new TH1D(intFlowEventWeightsForCorrelationsEBEName.Data(),intFlowEventWeightsForCorrelationsEBEName.Data(),4,0,4);
+ // average all correlations for single event (bining is the same as in fIntFlowCorrelationsAllPro and fIntFlowCorrelationsAllHist):
+ TString intFlowCorrelationsAllEBEName = "fIntFlowCorrelationsAllEBE";
+ intFlowCorrelationsAllEBEName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsAllEBE = new TH1D(intFlowCorrelationsAllEBEName.Data(),intFlowCorrelationsAllEBEName.Data(),64,0,64);
+ // average correction terms for non-uniform acceptance for single event 
+ // (binning is the same as in fIntFlowCorrectionTermsForNUAPro[2] and fIntFlowCorrectionTermsForNUAHist[2]):
+ TString fIntFlowCorrectionTermsForNUAEBEName = "fIntFlowCorrectionTermsForNUAEBE";
+ fIntFlowCorrectionTermsForNUAEBEName += fAnalysisLabel->Data();
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  fIntFlowCorrectionTermsForNUAEBE[sc] = new TH1D(Form("%s: %s terms",fIntFlowCorrectionTermsForNUAEBEName.Data(),sinCosFlag[sc].Data()),Form("Correction terms for non-uniform acceptance (%s terms)",sinCosFlag[sc].Data()),4,0,4);  
+ }
+ // event weights for terms for non-uniform acceptance: 
+ TString fIntFlowEventWeightForCorrectionTermsForNUAEBEName = "fIntFlowEventWeightForCorrectionTermsForNUAEBE";
+ fIntFlowEventWeightForCorrectionTermsForNUAEBEName += fAnalysisLabel->Data();
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[sc] = new TH1D(Form("%s: %s terms",fIntFlowEventWeightForCorrectionTermsForNUAEBEName.Data(),sinCosFlag[sc].Data()),Form("Event weights for terms for non-uniform acceptance (%s terms)",sinCosFlag[sc].Data()),4,0,4); // to be improved - 4  
+ }
+ // c) Book profiles: // to be improved (comment)
+ // profile to hold average multiplicities and number of events for events with nRP>=0, nRP>=1, ... , and nRP>=8:
+ TString avMultiplicityName = "fAvMultiplicity";
+ avMultiplicityName += fAnalysisLabel->Data();
+ fAvMultiplicity = new TProfile(avMultiplicityName.Data(),"Average multiplicities of reference particles (RPs)",9,0,9);
+ fAvMultiplicity->SetTickLength(-0.01,"Y");
+ fAvMultiplicity->SetMarkerStyle(25);
+ fAvMultiplicity->SetLabelSize(0.05);
+ fAvMultiplicity->SetLabelOffset(0.02,"Y");
+ fAvMultiplicity->SetYTitle("Average multiplicity");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(1,"all evts");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(2,"n_{RP} #geq 1");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(3,"n_{RP} #geq 2");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(4,"n_{RP} #geq 3");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(5,"n_{RP} #geq 4");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(6,"n_{RP} #geq 5");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(7,"n_{RP} #geq 6");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(8,"n_{RP} #geq 7");
+ (fAvMultiplicity->GetXaxis())->SetBinLabel(9,"n_{RP} #geq 8");
+ fIntFlowProfiles->Add(fAvMultiplicity);
+ // Average correlations <<2>>, <<4>>, <<6>> and <<8>> for all events (with wrong errors!):
+ TString correlationFlag[4] = {"#LT#LT2#GT#GT","#LT#LT4#GT#GT","#LT#LT6#GT#GT","#LT#LT8#GT#GT"};
+ TString intFlowCorrelationsProName = "fIntFlowCorrelationsPro";
+ intFlowCorrelationsProName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsPro = new TProfile(intFlowCorrelationsProName.Data(),"Average correlations for all events",4,0,4,"s");
+ fIntFlowCorrelationsPro->Sumw2();
+ fIntFlowCorrelationsPro->SetTickLength(-0.01,"Y");
+ fIntFlowCorrelationsPro->SetMarkerStyle(25);
+ fIntFlowCorrelationsPro->SetLabelSize(0.06);
+ fIntFlowCorrelationsPro->SetLabelOffset(0.01,"Y");
+ for(Int_t b=0;b<4;b++)
+ {
+  (fIntFlowCorrelationsPro->GetXaxis())->SetBinLabel(b+1,correlationFlag[b].Data());
+ }
+ fIntFlowProfiles->Add(fIntFlowCorrelationsPro);
+ // Average correlations squared <<2>^2>, <<4>^2>, <<6>^2> and <<8>^2> for all events:
+ TString squaredCorrelationFlag[4] = {"#LT#LT2#GT^{2}#GT","#LT#LT4#GT^{2}#GT","#LT#LT6#GT^{2}#GT","#LT#LT8#GT^{2}#GT"};
+ TString intFlowSquaredCorrelationsProName = "fIntFlowSquaredCorrelationsPro";
+ intFlowSquaredCorrelationsProName += fAnalysisLabel->Data();
+ fIntFlowSquaredCorrelationsPro = new TProfile(intFlowSquaredCorrelationsProName.Data(),"Average squared correlations for all events",4,0,4,"s");
+ fIntFlowSquaredCorrelationsPro->Sumw2();
+ fIntFlowSquaredCorrelationsPro->SetTickLength(-0.01,"Y");
+ fIntFlowSquaredCorrelationsPro->SetMarkerStyle(25);
+ fIntFlowSquaredCorrelationsPro->SetLabelSize(0.06);
+ fIntFlowSquaredCorrelationsPro->SetLabelOffset(0.01,"Y");
+ for(Int_t b=0;b<4;b++)
+ {
+  (fIntFlowSquaredCorrelationsPro->GetXaxis())->SetBinLabel(b+1,squaredCorrelationFlag[b].Data());
+ }
+ fIntFlowProfiles->Add(fIntFlowSquaredCorrelationsPro);
+ if(fCalculateCumulantsVsM)
+ {
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  {
+   // average correlations <<2>>, <<4>>, <<6>> and <<8>> versus multiplicity for all events (with wrong errors):
+   TString intFlowCorrelationsVsMProName = "fIntFlowCorrelationsVsMPro";
+   intFlowCorrelationsVsMProName += fAnalysisLabel->Data();
+   fIntFlowCorrelationsVsMPro[ci] = new TProfile(Form("%s, %s",intFlowCorrelationsVsMProName.Data(),correlationFlag[ci].Data()),
+                                                 Form("%s vs multiplicity",correlationFlag[ci].Data()),
+                                                 fnBinsMult,fMinMult,fMaxMult,"s");   
+   fIntFlowCorrelationsVsMPro[ci]->Sumw2();                                                                                       
+   fIntFlowCorrelationsVsMPro[ci]->GetYaxis()->SetTitle(correlationFlag[ci].Data());
+   fIntFlowCorrelationsVsMPro[ci]->GetXaxis()->SetTitle("M");
+   fIntFlowProfiles->Add(fIntFlowCorrelationsVsMPro[ci]);
+   // average squared correlations <<2>^2>, <<4>^2>, <<6>^2> and <<8>^2> versus multiplicity for all events:  
+   TString intFlowSquaredCorrelationsVsMProName = "fIntFlowSquaredCorrelationsVsMPro";
+   intFlowSquaredCorrelationsVsMProName += fAnalysisLabel->Data();
+   fIntFlowSquaredCorrelationsVsMPro[ci] = new TProfile(Form("%s, %s",intFlowSquaredCorrelationsVsMProName.Data(),squaredCorrelationFlag[ci].Data()),
+                                                        Form("%s vs multiplicity",squaredCorrelationFlag[ci].Data()),
+                                                        fnBinsMult,fMinMult,fMaxMult,"s");   
+   fIntFlowSquaredCorrelationsVsMPro[ci]->Sumw2();                                                                                              
+   fIntFlowSquaredCorrelationsVsMPro[ci]->GetYaxis()->SetTitle(squaredCorrelationFlag[ci].Data());
+   fIntFlowSquaredCorrelationsVsMPro[ci]->GetXaxis()->SetTitle("M");
+   fIntFlowProfiles->Add(fIntFlowSquaredCorrelationsVsMPro[ci]);
+  } // end of for(Int_t ci=0;ci<4;ci++) // correlation index  
+ } // end of if(fCalculateCumulantsVsM)
+ // averaged all correlations for all events (with wrong errors!):
+ TString intFlowCorrelationsAllProName = "fIntFlowCorrelationsAllPro";
+ intFlowCorrelationsAllProName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsAllPro = new TProfile(intFlowCorrelationsAllProName.Data(),"Average all correlations for all events",64,0,64);
+ fIntFlowCorrelationsAllPro->Sumw2();
+ fIntFlowCorrelationsAllPro->SetTickLength(-0.01,"Y");
+ fIntFlowCorrelationsAllPro->SetMarkerStyle(25);
+ fIntFlowCorrelationsAllPro->SetLabelSize(0.03);
+ fIntFlowCorrelationsAllPro->SetLabelOffset(0.01,"Y");
+ // 2-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(1,"#LT#LT2#GT#GT_{n|n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(2,"#LT#LT2#GT#GT_{2n|2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(3,"#LT#LT2#GT#GT_{3n|3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(4,"#LT#LT2#GT#GT_{4n|4n}");
+ // 3-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(6,"#LT#LT3#GT#GT_{2n|n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(7,"#LT#LT3#GT#GT_{3n|2n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(8,"#LT#LT3#GT#GT_{4n|2n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(9,"#LT#LT3#GT#GT_{4n|3n,n}");
+ // 4-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(11,"#LT#LT4#GT#GT_{n,n|n,n}"); 
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(12,"#LT#LT4#GT#GT_{2n,n|2n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(13,"#LT#LT4#GT#GT_{2n,2n|2n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(14,"#LT#LT4#GT#GT_{3n|n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(15,"#LT#LT4#GT#GT_{3n,n|3n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(16,"#LT#LT4#GT#GT_{3n,n|2n,2n}"); 
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(17,"#LT#LT4#GT#GT_{4n|2n,n,n}");
+ // 5-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(19,"#LT#LT5#GT#GT_{2n,n|n,n,n}"); 
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(20,"#LT#LT5#GT#GT_{2n,2n|2n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(21,"#LT#LT5#GT#GT_{3n,n|2n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(22,"#LT#LT5#GT#GT_{4n|n,n,n,n}");
+ // 6-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(24,"#LT#LT6#GT#GT_{n,n,n|n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(25,"#LT#LT6#GT#GT_{2n,n,n|2n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(26,"#LT#LT6#GT#GT_{2n,2n|n,n,n,n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(27,"#LT#LT6#GT#GT_{3n,n|n,n,n,n}");
+ // 7-p correlations:  
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(29,"#LT#LT7#GT#GT_{2n,n,n|n,n,n,n}");
+ // 8-p correlations:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(31,"#LT#LT8#GT#GT_{n,n,n,n|n,n,n,n}");
+ //  EXTRA correlations for v3{5} study:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(33,"#LT#LT4#GT#GT_{4n,2n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(34,"#LT#LT5#GT#GT_{3n,3n|2n,2n,2n}");
+ //  EXTRA correlations for Teaney-Yan study:
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(35,"#LT#LT2#GT#GT_{5n|5n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(36,"#LT#LT2#GT#GT_{6n|6n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(37,"#LT#LT3#GT#GT_{5n|3n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(38,"#LT#LT3#GT#GT_{5n|4n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(39,"#LT#LT3#GT#GT_{6n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(40,"#LT#LT3#GT#GT_{6n|4n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(41,"#LT#LT3#GT#GT_{6n|5n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(42,"#LT#LT4#GT#GT_{6n|3n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(43,"#LT#LT4#GT#GT_{3n,2n|3n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(44,"#LT#LT4#GT#GT_{4n,1n|3n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(45,"#LT#LT4#GT#GT_{3n,3n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(46,"#LT#LT4#GT#GT_{4n,2n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(47,"#LT#LT4#GT#GT_{5n,1n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(48,"#LT#LT4#GT#GT_{4n,2n|4n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(49,"#LT#LT4#GT#GT_{5n,1n|4n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(50,"#LT#LT4#GT#GT_{5n|3n,1n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(51,"#LT#LT4#GT#GT_{5n|2n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(52,"#LT#LT4#GT#GT_{5n,1n|5n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(53,"#LT#LT5#GT#GT_{3n,3n|3n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(54,"#LT#LT5#GT#GT_{4n,2n|3n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(55,"#LT#LT5#GT#GT_{3n,2n|3n,1n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(56,"#LT#LT5#GT#GT_{3n,2n|2n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(57,"#LT#LT5#GT#GT_{5n,1n|3n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(58,"#LT#LT6#GT#GT_{3n,2n,1n|3n,2n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(59,"#LT#LT4#GT#GT_{6n|4n,1n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(60,"#LT#LT4#GT#GT_{6n|2n,2n,2n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(61,"#LT#LT5#GT#GT_{6n|2n,2n,1n,1n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(62,"#LT#LT5#GT#GT_{4n,1n,1n|3n,3n}");
+ (fIntFlowCorrelationsAllPro->GetXaxis())->SetBinLabel(63,"#LT#LT6#GT#GT_{3n,3n|2n,2n,1n,1n}");
+ fIntFlowProfiles->Add(fIntFlowCorrelationsAllPro);
+ // average all correlations versus multiplicity (errors via Sumw2 - to be improved):
+ if(fCalculateAllCorrelationsVsM)
+ {
+  // 2-p correlations vs M:  
+  fIntFlowCorrelationsAllVsMPro[0] = new TProfile("two1n1n","#LT#LT2#GT#GT_{n|n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[0]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[0]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[0]);  
+  fIntFlowCorrelationsAllVsMPro[1] = new TProfile("two2n2n","#LT#LT2#GT#GT_{2n|2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[1]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[1]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[1]);
+  fIntFlowCorrelationsAllVsMPro[2] = new TProfile("two3n3n","#LT#LT2#GT#GT_{3n|3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[2]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[2]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[2]);
+  fIntFlowCorrelationsAllVsMPro[3] = new TProfile("two4n4n","#LT#LT2#GT#GT_{4n|4n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[3]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[3]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[3]);
+  // 3-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[5] = new TProfile("three2n1n1n","#LT#LT3#GT#GT_{2n|n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[5]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[5]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[5]);
+  fIntFlowCorrelationsAllVsMPro[6] = new TProfile("three3n2n1n","#LT#LT3#GT#GT_{3n|2n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[6]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[6]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[6]);
+  fIntFlowCorrelationsAllVsMPro[7] = new TProfile("three4n2n2n","#LT#LT3#GT#GT_{4n|2n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[7]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[7]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[7]);
+  fIntFlowCorrelationsAllVsMPro[8] = new TProfile("three4n3n1n","#LT#LT3#GT#GT_{4n|3n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[8]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[8]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[8]);
+  // 4-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[10] = new TProfile("four1n1n1n1n","#LT#LT4#GT#GT_{n,n|n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[10]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[10]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[10]);
+  fIntFlowCorrelationsAllVsMPro[11] = new TProfile("four2n1n2n1n","#LT#LT4#GT#GT_{2n,n|2n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[11]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[11]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[11]);
+  fIntFlowCorrelationsAllVsMPro[12] = new TProfile("four2n2n2n2n","#LT#LT4#GT#GT_{2n,2n|2n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[12]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[12]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[12]);
+  fIntFlowCorrelationsAllVsMPro[13] = new TProfile("four3n1n1n1n","#LT#LT4#GT#GT_{3n|n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[13]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[13]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[13]);
+  fIntFlowCorrelationsAllVsMPro[14] = new TProfile("four3n1n3n1n","#LT#LT4#GT#GT_{3n,n|3n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[14]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[14]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[14]);
+  fIntFlowCorrelationsAllVsMPro[15] = new TProfile("four3n1n2n2n","#LT#LT4#GT#GT_{3n,n|2n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[15]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[15]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[15]);
+  fIntFlowCorrelationsAllVsMPro[16] = new TProfile("four4n2n1n1n","#LT#LT4#GT#GT_{4n|2n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[16]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[16]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[16]);
+  // 5-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[18] = new TProfile("five2n1n1n1n1n","#LT#LT5#GT#GT_{2n,n|n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[18]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[18]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[18]);
+  fIntFlowCorrelationsAllVsMPro[19] = new TProfile("five2n2n2n1n1n","#LT#LT5#GT#GT_{2n,2n|2n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[19]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[19]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[19]);
+  fIntFlowCorrelationsAllVsMPro[20] = new TProfile("five3n1n2n1n1n","#LT#LT5#GT#GT_{3n,n|2n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[20]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[20]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[20]);
+  fIntFlowCorrelationsAllVsMPro[21] = new TProfile("five4n1n1n1n1n","#LT#LT5#GT#GT_{4n|n,n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[21]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[21]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[21]);
+  // 6-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[23] = new TProfile("six1n1n1n1n1n1n","#LT#LT6#GT#GT_{n,n,n|n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[23]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[23]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[23]);
+  fIntFlowCorrelationsAllVsMPro[24] = new TProfile("six2n1n1n2n1n1n","#LT#LT6#GT#GT_{2n,n,n|2n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[24]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[24]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[24]);
+  fIntFlowCorrelationsAllVsMPro[25] = new TProfile("six2n2n1n1n1n1n","#LT#LT6#GT#GT_{2n,2n|n,n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[25]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[25]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[25]);
+  fIntFlowCorrelationsAllVsMPro[26] = new TProfile("six3n1n1n1n1n1n","#LT#LT6#GT#GT_{3n,n|n,n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[26]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[26]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[26]);
+  // 7-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[28] = new TProfile("seven2n1n1n1n1n1n1n","#LT#LT7#GT#GT_{2n,n,n|n,n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[28]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[28]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[28]);
+  // 8-p correlations vs M:
+  fIntFlowCorrelationsAllVsMPro[30] = new TProfile("eight1n1n1n1n1n1n1n1n","#LT#LT8#GT#GT_{n,n,n,n|n,n,n,n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[30]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[30]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[30]);
+  // EXTRA correlations vs M for v3{5} study (to be improved - put them in a right order somewhere):
+  fIntFlowCorrelationsAllVsMPro[32] = new TProfile("four4n2n3n3n","#LT#LT4#GT#GT_{4n,2n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[32]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[32]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[32]);
+  fIntFlowCorrelationsAllVsMPro[33] = new TProfile("five3n3n2n2n2n","#LT#LT5#GT#GT_{3n,3n|2n,2n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[33]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[33]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[33]);
+  // EXTRA correlations vs M for Teaney-Yan study (to be improved - put them in a right order somewhere):
+  fIntFlowCorrelationsAllVsMPro[34] = new TProfile("two5n5n","#LT#LT2#GT#GT_{5n|5n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[34]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[34]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[34]);  
+  fIntFlowCorrelationsAllVsMPro[35] = new TProfile("two6n6n","#LT#LT2#GT#GT_{6n|6n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[35]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[35]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[35]);  
+  fIntFlowCorrelationsAllVsMPro[36] = new TProfile("three5n3n2n","#LT#LT3#GT#GT_{5n|3n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[36]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[36]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[36]); 
+  fIntFlowCorrelationsAllVsMPro[37] = new TProfile("three5n4n1n","#LT#LT3#GT#GT_{5n|4n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[37]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[37]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[37]);
+  fIntFlowCorrelationsAllVsMPro[38] = new TProfile("three6n3n3n","#LT#LT3#GT#GT_{6n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[38]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[38]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[38]);  
+  fIntFlowCorrelationsAllVsMPro[39] = new TProfile("three6n4n2n","#LT#LT3#GT#GT_{6n|4n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[39]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[39]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[39]);
+  fIntFlowCorrelationsAllVsMPro[40] = new TProfile("three6n5n1n","#LT#LT3#GT#GT_{6n|5n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[40]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[40]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[40]);
+  fIntFlowCorrelationsAllVsMPro[41] = new TProfile("four6n3n2n1n","#LT#LT4#GT#GT_{6n|3n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[41]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[41]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[41]);
+  fIntFlowCorrelationsAllVsMPro[42] = new TProfile("four3n2n3n2n","#LT#LT4#GT#GT_{3n,2n|3n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[42]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[42]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[42]);
+  fIntFlowCorrelationsAllVsMPro[43] = new TProfile("four4n1n3n2n","#LT#LT4#GT#GT_{4n,1n|3n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[43]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[43]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[43]);
+  fIntFlowCorrelationsAllVsMPro[44] = new TProfile("four3n3n3n3n","#LT#LT4#GT#GT_{3n,3n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[44]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[44]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[44]);
+  fIntFlowCorrelationsAllVsMPro[45] = new TProfile("four4n2n3n3n","#LT#LT4#GT#GT_{4n,2n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[45]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[45]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[45]);
+  fIntFlowCorrelationsAllVsMPro[46] = new TProfile("four5n1n3n3n","#LT#LT4#GT#GT_{5n,1n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[46]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[46]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[46]);
+  fIntFlowCorrelationsAllVsMPro[47] = new TProfile("four4n2n4n2n","#LT#LT4#GT#GT_{4n,2n|4n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[47]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[47]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[47]);
+  fIntFlowCorrelationsAllVsMPro[48] = new TProfile("four5n1n4n2n","#LT#LT4#GT#GT_{5n,1n|4n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[48]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[48]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[48]);
+  fIntFlowCorrelationsAllVsMPro[49] = new TProfile("four5n3n1n1n","#LT#LT4#GT#GT_{5n|3n,1n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[49]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[49]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[49]);
+  fIntFlowCorrelationsAllVsMPro[50] = new TProfile("four5n2n2n1n","#LT#LT4#GT#GT_{5n|2n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[50]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[50]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[50]);
+  fIntFlowCorrelationsAllVsMPro[51] = new TProfile("four5n1n5n1n","#LT#LT4#GT#GT_{5n,1n|5n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[51]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[51]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[51]);
+  fIntFlowCorrelationsAllVsMPro[52] = new TProfile("five3n3n3n2n1n","#LT#LT5#GT#GT_{3n,3n|3n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[52]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[52]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[52]);
+  fIntFlowCorrelationsAllVsMPro[53] = new TProfile("five4n2n3n2n1n","#LT#LT5#GT#GT_{4n,2n|3n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[53]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[53]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[53]);
+  fIntFlowCorrelationsAllVsMPro[54] = new TProfile("five3n2n3n1n1n","#LT#LT5#GT#GT_{3n,2n|3n,1n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[54]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[54]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[54]);
+  fIntFlowCorrelationsAllVsMPro[55] = new TProfile("five3n2n2n2n1n","#LT#LT5#GT#GT_{3n,2n|2n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[55]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[55]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[55]);
+  fIntFlowCorrelationsAllVsMPro[56] = new TProfile("five5n1n3n2n1n","#LT#LT5#GT#GT_{5n,1n|3n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[56]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[56]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[56]);
+  fIntFlowCorrelationsAllVsMPro[57] = new TProfile("six3n2n1n3n2n1n","#LT#LT6#GT#GT_{3n,2n,1n|3n,2n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[57]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[57]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[57]);  
+  fIntFlowCorrelationsAllVsMPro[58] = new TProfile("four6n4n1n1n","#LT#LT4#GT#GT_{6n|4n,1n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[58]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[58]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[58]);
+  fIntFlowCorrelationsAllVsMPro[59] = new TProfile("four6n2n2n2n","#LT#LT4#GT#GT_{6n|2n,2n,2n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[59]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[59]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[59]);
+  fIntFlowCorrelationsAllVsMPro[60] = new TProfile("five6n2n2n1n1n","#LT#LT5#GT#GT_{6n|2n,2n,1n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[60]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[60]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[60]);
+  fIntFlowCorrelationsAllVsMPro[61] = new TProfile("five4n1n1n3n3n","#LT#LT5#GT#GT_{4n,1n,1n|3n,3n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[61]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[61]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[61]);
+  fIntFlowCorrelationsAllVsMPro[62] = new TProfile("six3n3n2n2n1n1n","#LT#LT6#GT#GT_{3n,3n|2n,2n,1n,1n}",fnBinsMult,fMinMult,fMaxMult);
+  fIntFlowCorrelationsAllVsMPro[62]->Sumw2();
+  fIntFlowCorrelationsAllVsMPro[62]->GetXaxis()->SetTitle("M");  
+  fIntFlowAllCorrelationsVsM->Add(fIntFlowCorrelationsAllVsMPro[62]);
+ } // end of if(fCalculateAllCorrelationsVsM)
+ // when particle weights are used some extra correlations appear:
+ if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights) 
+ {
+  TString intFlowExtraCorrelationsProName = "fIntFlowExtraCorrelationsPro";
+  intFlowExtraCorrelationsProName += fAnalysisLabel->Data();
+  fIntFlowExtraCorrelationsPro = new TProfile(intFlowExtraCorrelationsProName.Data(),"Average extra correlations for all events",100,0,100,"s");
+  fIntFlowExtraCorrelationsPro->SetTickLength(-0.01,"Y");
+  fIntFlowExtraCorrelationsPro->SetMarkerStyle(25);
+  fIntFlowExtraCorrelationsPro->SetLabelSize(0.03);
+  fIntFlowExtraCorrelationsPro->SetLabelOffset(0.01,"Y");
+  // extra 2-p correlations:
+  (fIntFlowExtraCorrelationsPro->GetXaxis())->SetBinLabel(1,"<<w1^3 w2 cos(n*(phi1-phi2))>>");
+  (fIntFlowExtraCorrelationsPro->GetXaxis())->SetBinLabel(2,"<<w1 w2 w3^2 cos(n*(phi1-phi2))>>");
+  fIntFlowProfiles->Add(fIntFlowExtraCorrelationsPro);
+ } // end of if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+ // average product of correlations <2>, <4>, <6> and <8>:  
+ TString productFlag[6] = {"#LT#LT2#GT#LT4#GT#GT","#LT#LT2#GT#LT6#GT#GT","#LT#LT2#GT#LT8#GT#GT",
+                           "#LT#LT4#GT#LT6#GT#GT","#LT#LT4#GT#LT8#GT#GT","#LT#LT6#GT#LT8#GT#GT"};
+ TString intFlowProductOfCorrelationsProName = "fIntFlowProductOfCorrelationsPro";
+ intFlowProductOfCorrelationsProName += fAnalysisLabel->Data();
+ fIntFlowProductOfCorrelationsPro = new TProfile(intFlowProductOfCorrelationsProName.Data(),"Average products of correlations",6,0,6);
+ fIntFlowProductOfCorrelationsPro->SetTickLength(-0.01,"Y");
+ fIntFlowProductOfCorrelationsPro->SetMarkerStyle(25); 
+ fIntFlowProductOfCorrelationsPro->SetLabelSize(0.05);
+ fIntFlowProductOfCorrelationsPro->SetLabelOffset(0.01,"Y");
+ for(Int_t b=0;b<6;b++)
+ {
+  (fIntFlowProductOfCorrelationsPro->GetXaxis())->SetBinLabel(b+1,productFlag[b].Data());
+ }
+ fIntFlowProfiles->Add(fIntFlowProductOfCorrelationsPro); 
+ // average product of correlations <2>, <4>, <6> and <8> versus multiplicity
+ // [0=<<2><4>>,1=<<2><6>>,2=<<2><8>>,3=<<4><6>>,4=<<4><8>>,5=<<6><8>>]  
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowProductOfCorrelationsVsMProName = "fIntFlowProductOfCorrelationsVsMPro";
+  intFlowProductOfCorrelationsVsMProName += fAnalysisLabel->Data();
+  for(Int_t pi=0;pi<6;pi++)
+  { 
+   fIntFlowProductOfCorrelationsVsMPro[pi] = new TProfile(Form("%s, %s",intFlowProductOfCorrelationsVsMProName.Data(),productFlag[pi].Data()),
+                                                          Form("%s versus multiplicity",productFlag[pi].Data()),
+                                                          fnBinsMult,fMinMult,fMaxMult);             
+   fIntFlowProductOfCorrelationsVsMPro[pi]->GetXaxis()->SetTitle("M");
+   fIntFlowProfiles->Add(fIntFlowProductOfCorrelationsVsMPro[pi]);
+  } // end of for(Int_t pi=0;pi<6;pi++)
+ } // end of if(fCalculateCumulantsVsM) 
+ // average product of correction terms for NUA:  
+ TString intFlowProductOfCorrectionTermsForNUAProName = "fIntFlowProductOfCorrectionTermsForNUAPro";
+ intFlowProductOfCorrectionTermsForNUAProName += fAnalysisLabel->Data();
+ fIntFlowProductOfCorrectionTermsForNUAPro = new TProfile(intFlowProductOfCorrectionTermsForNUAProName.Data(),"Average products of correction terms for NUA",27,0,27);
+ fIntFlowProductOfCorrectionTermsForNUAPro->SetTickLength(-0.01,"Y");
+ fIntFlowProductOfCorrectionTermsForNUAPro->SetMarkerStyle(25); 
+ fIntFlowProductOfCorrectionTermsForNUAPro->SetLabelSize(0.03);
+ fIntFlowProductOfCorrectionTermsForNUAPro->SetLabelOffset(0.01,"Y");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(1,"<<2><cos(#phi)>>");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(2,"<<2><sin(#phi)>>");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(3,"<<cos(#phi)><sin(#phi)>>");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(4,"Cov(<2>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(5,"Cov(<2>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(6,"Cov(<2>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(7,"Cov(<2>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(8,"Cov(<4>,<cos(#phi)>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(9,"Cov(<4>,<sin(#phi)>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(10,"Cov(<4>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(11,"Cov(<4>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(12,"Cov(<4>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(13,"Cov(<4>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(14,"Cov(<cos(#phi)>,<cos(#phi_{1}+#phi_{2})>)"); 
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(15,"Cov(<cos(#phi)>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(16,"Cov(<cos(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(17,"Cov(<cos(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(18,"Cov(<sin(#phi)>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(19,"Cov(<sin(#phi)>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(20,"Cov(<sin(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(21,"Cov(<sin(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(22,"Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(23,"Cov(<cos(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(24,"Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(25,"Cov(<sin(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(26,"Cov(<sin(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowProductOfCorrectionTermsForNUAPro->GetXaxis())->SetBinLabel(27,"Cov(<cos(#phi_{1}-#phi_{2}-#phi_{3}>,<sin(#phi_{1}-#phi_{2}-#phi_{3}>)");
+ fIntFlowProfiles->Add(fIntFlowProductOfCorrectionTermsForNUAPro);
+ // average correction terms for non-uniform acceptance (with wrong errors!):
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  TString intFlowCorrectionTermsForNUAProName = "fIntFlowCorrectionTermsForNUAPro";
+  intFlowCorrectionTermsForNUAProName += fAnalysisLabel->Data();
+  fIntFlowCorrectionTermsForNUAPro[sc] = new TProfile(Form("%s: %s terms",intFlowCorrectionTermsForNUAProName.Data(),sinCosFlag[sc].Data()),Form("Correction terms for non-uniform acceptance (%s terms)",sinCosFlag[sc].Data()),4,0,4,"s");
+  fIntFlowCorrectionTermsForNUAPro[sc]->SetTickLength(-0.01,"Y");
+  fIntFlowCorrectionTermsForNUAPro[sc]->SetMarkerStyle(25);
+  fIntFlowCorrectionTermsForNUAPro[sc]->SetLabelSize(0.05);
+  fIntFlowCorrectionTermsForNUAPro[sc]->SetLabelOffset(0.01,"Y");
+  (fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->SetBinLabel(1,Form("#LT#LT%s(n(#phi_{1}))#GT#GT",sinCosFlag[sc].Data()));
+  (fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->SetBinLabel(2,Form("#LT#LT%s(n(#phi_{1}+#phi_{2}))#GT#GT",sinCosFlag[sc].Data()));  
+  (fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->SetBinLabel(3,Form("#LT#LT%s(n(#phi_{1}-#phi_{2}-#phi_{3}))#GT#GT",sinCosFlag[sc].Data()));  
+  (fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->SetBinLabel(4,Form("#LT#LT%s(n(2#phi_{1}-#phi_{2}))#GT#GT",sinCosFlag[sc].Data()));  
+  fIntFlowProfiles->Add(fIntFlowCorrectionTermsForNUAPro[sc]);
+  // versus multiplicity:
+  if(fCalculateCumulantsVsM)
+  {
+   TString correctionTermFlag[4] = {"(n(phi1))","(n(phi1+phi2))","(n(phi1-phi2-phi3))","(n(2phi1-phi2))"}; // to be improved - hardwired 4
+   for(Int_t ci=0;ci<4;ci++) // correction term index (to be improved - hardwired 4)
+   {
+    TString intFlowCorrectionTermsForNUAVsMProName = "fIntFlowCorrectionTermsForNUAVsMPro";
+    intFlowCorrectionTermsForNUAVsMProName += fAnalysisLabel->Data();
+    fIntFlowCorrectionTermsForNUAVsMPro[sc][ci] = new TProfile(Form("%s: #LT#LT%s%s#GT#GT",intFlowCorrectionTermsForNUAVsMProName.Data(),sinCosFlag[sc].Data(),correctionTermFlag[ci].Data()),Form("#LT#LT%s%s#GT#GT vs M",sinCosFlag[sc].Data(),correctionTermFlag[ci].Data()),fnBinsMult,fMinMult,fMaxMult,"s");
+    fIntFlowProfiles->Add(fIntFlowCorrectionTermsForNUAVsMPro[sc][ci]);
+   }
+  } // end of if(fCalculateCumulantsVsM)
+ } // end of for(Int_t sc=0;sc<2;sc++) 
+ // d) Book histograms holding the final results:
+ // average correlations <<2>>, <<4>>, <<6>> and <<8>> for all events (with correct errors!):
+ TString intFlowCorrelationsHistName = "fIntFlowCorrelationsHist";
+ intFlowCorrelationsHistName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsHist = new TH1D(intFlowCorrelationsHistName.Data(),"Average correlations for all events",4,0,4);
+ fIntFlowCorrelationsHist->SetTickLength(-0.01,"Y");
+ fIntFlowCorrelationsHist->SetMarkerStyle(25);
+ fIntFlowCorrelationsHist->SetLabelSize(0.06);
+ fIntFlowCorrelationsHist->SetLabelOffset(0.01,"Y");
+ (fIntFlowCorrelationsHist->GetXaxis())->SetBinLabel(1,"#LT#LT2#GT#GT");
+ (fIntFlowCorrelationsHist->GetXaxis())->SetBinLabel(2,"#LT#LT4#GT#GT");
+ (fIntFlowCorrelationsHist->GetXaxis())->SetBinLabel(3,"#LT#LT6#GT#GT");
+ (fIntFlowCorrelationsHist->GetXaxis())->SetBinLabel(4,"#LT#LT8#GT#GT");
+ fIntFlowResults->Add(fIntFlowCorrelationsHist);
+ // average correlations <<2>>, <<4>>, <<6>> and <<8>> for all events (with correct errors!) vs M:
+ if(fCalculateCumulantsVsM)
+ {
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  {
+   TString intFlowCorrelationsVsMHistName = "fIntFlowCorrelationsVsMHist";
+   intFlowCorrelationsVsMHistName += fAnalysisLabel->Data();
+   fIntFlowCorrelationsVsMHist[ci] = new TH1D(Form("%s, %s",intFlowCorrelationsVsMHistName.Data(),correlationFlag[ci].Data()),
+                                              Form("%s vs multiplicity",correlationFlag[ci].Data()),
+                                              fnBinsMult,fMinMult,fMaxMult);                                            
+   fIntFlowCorrelationsVsMHist[ci]->GetYaxis()->SetTitle(correlationFlag[ci].Data());
+   fIntFlowCorrelationsVsMHist[ci]->GetXaxis()->SetTitle("M");
+   fIntFlowResults->Add(fIntFlowCorrelationsVsMHist[ci]);
+  } // end of for(Int_t ci=0;ci<4;ci++) // correlation index   
+ } // end of if(fCalculateCumulantsVsM) 
+ // average all correlations for all events (with correct errors!):
+ TString intFlowCorrelationsAllHistName = "fIntFlowCorrelationsAllHist";
+ intFlowCorrelationsAllHistName += fAnalysisLabel->Data();
+ fIntFlowCorrelationsAllHist = new TH1D(intFlowCorrelationsAllHistName.Data(),"Average correlations for all events",34,0,34);
+ fIntFlowCorrelationsAllHist->SetTickLength(-0.01,"Y");
+ fIntFlowCorrelationsAllHist->SetMarkerStyle(25);
+ fIntFlowCorrelationsAllHist->SetLabelSize(0.03);
+ fIntFlowCorrelationsAllHist->SetLabelOffset(0.01,"Y");
+ // 2-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(1,"<<2>>_{n|n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(2,"<<2>>_{2n|2n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(3,"<<2>>_{3n|3n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(4,"<<2>>_{4n|4n}");
+ // 3-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(6,"<<3>>_{2n|n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(7,"<<3>>_{3n|2n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(8,"<<3>>_{4n|2n,2n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(9,"<<3>>_{4n|3n,n}");
+ // 4-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(11,"<<4>>_{n,n|n,n}"); 
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(12,"<<4>>_{2n,n|2n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(13,"<<4>>_{2n,2n|2n,2n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(14,"<<4>>_{3n|n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(15,"<<4>>_{3n,n|3n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(16,"<<4>>_{3n,n|2n,2n}"); 
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(17,"<<4>>_{4n|2n,n,n}");
+ // 5-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(19,"<<5>>_{2n|n,n,n,n}"); 
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(20,"<<5>>_{2n,2n|2n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(21,"<<5>>_{3n,n|2n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(22,"<<5>>_{4n|n,n,n,n}");
+ // 6-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(24,"<<6>>_{n,n,n|n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(25,"<<6>>_{2n,n,n|2n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(26,"<<6>>_{2n,2n|n,n,n,n}");
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(27,"<<6>>_{3n,n|n,n,n,n}");
+ // 7-p correlations:  
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(29,"<<7>>_{2n,n,n|n,n,n,n}");
+ // 8-p correlations:
+ (fIntFlowCorrelationsAllHist->GetXaxis())->SetBinLabel(31,"<<8>>_{n,n,n,n|n,n,n,n}");
+ fIntFlowResults->Add(fIntFlowCorrelationsAllHist);
+ // average correction terms for non-uniform acceptance (with correct errors!):
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  TString intFlowCorrectionTermsForNUAHistName = "fIntFlowCorrectionTermsForNUAHist";
+  intFlowCorrectionTermsForNUAHistName += fAnalysisLabel->Data();
+  fIntFlowCorrectionTermsForNUAHist[sc] = new TH1D(Form("%s: %s terms",intFlowCorrectionTermsForNUAHistName.Data(),sinCosFlag[sc].Data()),Form("Correction terms for non-uniform acceptance (%s terms)",sinCosFlag[sc].Data()),4,0,4);
+  fIntFlowCorrectionTermsForNUAHist[sc]->SetTickLength(-0.01,"Y");
+  fIntFlowCorrectionTermsForNUAHist[sc]->SetMarkerStyle(25);
+  fIntFlowCorrectionTermsForNUAHist[sc]->SetLabelSize(0.05);
+  fIntFlowCorrectionTermsForNUAHist[sc]->SetLabelOffset(0.01,"Y");
+  (fIntFlowCorrectionTermsForNUAHist[sc]->GetXaxis())->SetBinLabel(1,Form("#LT#LT%s(n(#phi_{1}))#GT#GT",sinCosFlag[sc].Data()));
+  (fIntFlowCorrectionTermsForNUAHist[sc]->GetXaxis())->SetBinLabel(2,Form("#LT#LT%s(n(#phi_{1}+#phi_{2}))#GT#GT",sinCosFlag[sc].Data()));  
+  (fIntFlowCorrectionTermsForNUAHist[sc]->GetXaxis())->SetBinLabel(3,Form("#LT#LT%s(n(#phi_{1}-#phi_{2}-#phi_{3}))#GT#GT",sinCosFlag[sc].Data()));  
+  (fIntFlowCorrectionTermsForNUAHist[sc]->GetXaxis())->SetBinLabel(4,Form("#LT#LT%s(n(2#phi_{1}-#phi_{2}))#GT#GT",sinCosFlag[sc].Data()));   
+  fIntFlowResults->Add(fIntFlowCorrectionTermsForNUAHist[sc]);
+ } // end of for(Int_t sc=0;sc<2;sc++) 
+ // covariances (multiplied with weight dependent prefactor):
+ TString intFlowCovariancesName = "fIntFlowCovariances";
+ intFlowCovariancesName += fAnalysisLabel->Data();
+ fIntFlowCovariances = new TH1D(intFlowCovariancesName.Data(),"Covariances (multiplied with weight dependent prefactor)",6,0,6);
+ fIntFlowCovariances->SetLabelSize(0.04);
+ fIntFlowCovariances->SetMarkerStyle(25);
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(1,"Cov(#LT2#GT,#LT4#GT)");
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(2,"Cov(#LT2#GT,#LT6#GT)");
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(3,"Cov(#LT2#GT,#LT8#GT)");
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(4,"Cov(#LT4#GT,#LT6#GT)");
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(5,"Cov(#LT4#GT,#LT8#GT)");
+ (fIntFlowCovariances->GetXaxis())->SetBinLabel(6,"Cov(#LT6#GT,#LT8#GT)");  
+ fIntFlowResults->Add(fIntFlowCovariances);
+ // sum of linear and quadratic event weights for <2>, <4>, <6> and <8>:
+ TString intFlowSumOfEventWeightsName = "fIntFlowSumOfEventWeights";
+ intFlowSumOfEventWeightsName += fAnalysisLabel->Data();
+ for(Int_t power=0;power<2;power++)
+ {
+  fIntFlowSumOfEventWeights[power] = new TH1D(Form("%s: %s",intFlowSumOfEventWeightsName.Data(),powerFlag[power].Data()),Form("Sum of %s event weights for correlations",powerFlag[power].Data()),4,0,4);
+  fIntFlowSumOfEventWeights[power]->SetLabelSize(0.04);
+  fIntFlowSumOfEventWeights[power]->SetMarkerStyle(25);
+  if(power == 0)
+  {
+   (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(1,"#sum_{i=1}^{N} w_{#LT2#GT}");
+   (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(2,"#sum_{i=1}^{N} w_{#LT4#GT}");
+   (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(3,"#sum_{i=1}^{N} w_{#LT6#GT}");
+   (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(4,"#sum_{i=1}^{N} w_{#LT8#GT}");
+  } else if (power == 1) 
+    {
+     (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(1,"#sum_{i=1}^{N} w_{#LT2#GT}^{2}");
+     (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(2,"#sum_{i=1}^{N} w_{#LT4#GT}^{2}");
+     (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(3,"#sum_{i=1}^{N} w_{#LT6#GT}^{2}");
+     (fIntFlowSumOfEventWeights[power]->GetXaxis())->SetBinLabel(4,"#sum_{i=1}^{N} w_{#LT8#GT}^{2}");
+    }
+  fIntFlowResults->Add(fIntFlowSumOfEventWeights[power]);
+ } 
+ // sum of products of event weights for correlations <2>, <4>, <6> and <8>:  
+ TString intFlowSumOfProductOfEventWeightsName = "fIntFlowSumOfProductOfEventWeights";
+ intFlowSumOfProductOfEventWeightsName += fAnalysisLabel->Data();
+ fIntFlowSumOfProductOfEventWeights = new TH1D(intFlowSumOfProductOfEventWeightsName.Data(),"Sum of product of event weights for correlations",6,0,6);
+ fIntFlowSumOfProductOfEventWeights->SetLabelSize(0.04);
+ fIntFlowSumOfProductOfEventWeights->SetMarkerStyle(25);
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(1,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LT4#GT}");
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(2,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LT6#GT}");
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(3,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LT8#GT}");
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(4,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LT6#GT}");
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(5,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LT8#GT}");
+ (fIntFlowSumOfProductOfEventWeights->GetXaxis())->SetBinLabel(6,"#sum_{i=1}^{N} w_{#LT6#GT} w_{#LT8#GT}");
+ fIntFlowResults->Add(fIntFlowSumOfProductOfEventWeights);
+ // final result for covariances of correlations (multiplied with weight dependent prefactor) versus M
+ // [0=Cov(2,4),1=Cov(2,6),2=Cov(2,8),3=Cov(4,6),4=Cov(4,8),5=Cov(6,8)]:
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowCovariancesVsMName = "fIntFlowCovariancesVsM";
+  intFlowCovariancesVsMName += fAnalysisLabel->Data();
+  TString covarianceFlag[6] = {"Cov(<2>,<4>)","Cov(<2>,<6>)","Cov(<2>,<8>)","Cov(<4>,<6>)","Cov(<4>,<8>)","Cov(<6>,<8>)"};
+  for(Int_t ci=0;ci<6;ci++)
+  {
+   fIntFlowCovariancesVsM[ci] = new TH1D(Form("%s, %s",intFlowCovariancesVsMName.Data(),covarianceFlag[ci].Data()),
+                                         Form("%s vs multiplicity",covarianceFlag[ci].Data()),
+                                         fnBinsMult,fMinMult,fMaxMult);
+   fIntFlowCovariancesVsM[ci]->GetYaxis()->SetTitle(covarianceFlag[ci].Data());
+   fIntFlowCovariancesVsM[ci]->GetXaxis()->SetTitle("M");
+   fIntFlowResults->Add(fIntFlowCovariancesVsM[ci]);
+  }
+ } // end of if(fCalculateCumulantsVsM) 
+ // sum of linear and quadratic event weights for <2>, <4>, <6> and <8> versus multiplicity
+ // [0=sum{w_{<2>}},1=sum{w_{<4>}},2=sum{w_{<6>}},3=sum{w_{<8>}}][0=linear 1,1=quadratic]:
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowSumOfEventWeightsVsMName = "fIntFlowSumOfEventWeightsVsM";
+  intFlowSumOfEventWeightsVsMName += fAnalysisLabel->Data();
+  TString sumFlag[2][4] = {{"#sum_{i=1}^{N} w_{<2>}","#sum_{i=1}^{N} w_{<4>}","#sum_{i=1}^{N} w_{<6>}","#sum_{i=1}^{N} w_{<8>}"},
+                           {"#sum_{i=1}^{N} w_{<2>}^{2}","#sum_{i=1}^{N} w_{<4>}^{2}","#sum_{i=1}^{N} w_{<6>}^{2}","#sum_{i=1}^{N} w_{<8>}^{2}"}};
+  for(Int_t si=0;si<4;si++)
+  {
+   for(Int_t power=0;power<2;power++)
+   {
+    fIntFlowSumOfEventWeightsVsM[si][power] = new TH1D(Form("%s, %s",intFlowSumOfEventWeightsVsMName.Data(),sumFlag[power][si].Data()),
+                                                       Form("%s vs multiplicity",sumFlag[power][si].Data()),
+                                                       fnBinsMult,fMinMult,fMaxMult);    
+    fIntFlowSumOfEventWeightsVsM[si][power]->GetYaxis()->SetTitle(sumFlag[power][si].Data());  
+    fIntFlowSumOfEventWeightsVsM[si][power]->GetXaxis()->SetTitle("M");  
+    fIntFlowResults->Add(fIntFlowSumOfEventWeightsVsM[si][power]);
+   } // end of for(Int_t power=0;power<2;power++)
+  } // end of for(Int_t si=0;si<4;si++)   
+ } // end of if(fCalculateCumulantsVsM)
+ // sum of products of event weights for correlations <2>, <4>, <6> and <8> vs M
+ // [0=sum{w_{<2>}w_{<4>}},1=sum{w_{<2>}w_{<6>}},2=sum{w_{<2>}w_{<8>}},
+ //  3=sum{w_{<4>}w_{<6>}},4=sum{w_{<4>}w_{<8>}},5=sum{w_{<6>}w_{<8>}}]:  
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowSumOfProductOfEventWeightsVsMName = "fIntFlowSumOfProductOfEventWeightsVsM";
+  intFlowSumOfProductOfEventWeightsVsMName += fAnalysisLabel->Data();
+  TString sopowFlag[6] = {"#sum_{i=1}^{N} w_{<2>} w_{<4>}","#sum_{i=1}^{N} w_{<2>} w_{<6>}","#sum_{i=1}^{N} w_{<2>} w_{<8>}",
+                          "#sum_{i=1}^{N} w_{<4>} w_{<6>}","#sum_{i=1}^{N} w_{<4>} w_{<8>}","#sum_{i=1}^{N} w_{<6>} w_{<8>}"}; 
+  for(Int_t pi=0;pi<6;pi++)
+  {
+   fIntFlowSumOfProductOfEventWeightsVsM[pi] = new TH1D(Form("%s, %s",intFlowSumOfProductOfEventWeightsVsMName.Data(),sopowFlag[pi].Data()),
+                                                        Form("%s versus multiplicity",sopowFlag[pi].Data()),
+                                                        fnBinsMult,fMinMult,fMaxMult); 
+   fIntFlowSumOfProductOfEventWeightsVsM[pi]->GetXaxis()->SetTitle("M");
+   fIntFlowSumOfProductOfEventWeightsVsM[pi]->GetYaxis()->SetTitle(sopowFlag[pi].Data()); 
+   fIntFlowResults->Add(fIntFlowSumOfProductOfEventWeightsVsM[pi]);
+  } // end of for(Int_t pi=0;pi<6;pi++) 
+ } // end of if(fCalculateCumulantsVsM)
+ // covariances of NUA terms (multiplied with weight dependent prefactor):
+ TString intFlowCovariancesNUAName = "fIntFlowCovariancesNUA";
+ intFlowCovariancesNUAName += fAnalysisLabel->Data();
+ fIntFlowCovariancesNUA = new TH1D(intFlowCovariancesNUAName.Data(),"Covariances for NUA (multiplied with weight dependent prefactor)",27,0,27);
+ fIntFlowCovariancesNUA->SetLabelSize(0.04);
+ fIntFlowCovariancesNUA->SetMarkerStyle(25);
+ fIntFlowCovariancesNUA->GetXaxis()->SetLabelSize(0.02);
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(1,"Cov(<2>,<cos(#phi)>");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(2,"Cov(<2>,<sin(#phi)>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(3,"Cov(<cos(#phi)>,<sin(#phi)>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(4,"Cov(<2>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(5,"Cov(<2>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(6,"Cov(<2>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(7,"Cov(<2>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(8,"Cov(<4>,<cos(#phi)>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(9,"Cov(<4>,<sin(#phi)>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(10,"Cov(<4>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(11,"Cov(<4>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(12,"Cov(<4>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(13,"Cov(<4>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(14,"Cov(<cos(#phi)>,<cos(#phi_{1}+#phi_{2})>)"); 
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(15,"Cov(<cos(#phi)>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(16,"Cov(<cos(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(17,"Cov(<cos(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(18,"Cov(<sin(#phi)>,<cos(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(19,"Cov(<sin(#phi)>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(20,"Cov(<sin(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(21,"Cov(<sin(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(22,"Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}+#phi_{2})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(23,"Cov(<cos(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(24,"Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(25,"Cov(<sin(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(26,"Cov(<sin(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)");
+ (fIntFlowCovariancesNUA->GetXaxis())->SetBinLabel(27,"Cov(<cos(#phi_{1}-#phi_{2}-#phi_{3}>,<sin(#phi_{1}-#phi_{2}-#phi_{3}>)");
+ fIntFlowResults->Add(fIntFlowCovariancesNUA);
+ // sum of linear and quadratic event weights for NUA terms:
+ TString intFlowSumOfEventWeightsNUAName = "fIntFlowSumOfEventWeightsNUA";
+ intFlowSumOfEventWeightsNUAName += fAnalysisLabel->Data();
+ for(Int_t sc=0;sc<2;sc++)
+ {
+  for(Int_t power=0;power<2;power++)
+  {
+   fIntFlowSumOfEventWeightsNUA[sc][power] = new TH1D(Form("%s: %s, %s",intFlowSumOfEventWeightsNUAName.Data(),powerFlag[power].Data(),sinCosFlag[sc].Data()),Form("Sum of %s event weights for NUA %s terms",powerFlag[power].Data(),sinCosFlag[sc].Data()),4,0,4); // to be improved - 4
+   fIntFlowSumOfEventWeightsNUA[sc][power]->SetLabelSize(0.05);
+   fIntFlowSumOfEventWeightsNUA[sc][power]->SetMarkerStyle(25);
+   if(power == 0)
+   {
+    (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(1,Form("#sum_{i=1}^{N} w_{<%s(#phi)>}",sinCosFlag[sc].Data()));
+    (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(2,Form("#sum_{i=1}^{N} w_{<%s(#phi_{1}+#phi_{2})>}",sinCosFlag[sc].Data()));
+    (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(3,Form("#sum_{i=1}^{N} w_{<%s(#phi_{1}-#phi_{2}-#phi_{3})>}",sinCosFlag[sc].Data()));   
+    (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(4,Form("#sum_{i=1}^{N} w_{<%s(2#phi_{1}-#phi_{2})>}",sinCosFlag[sc].Data()));
+   } else if(power == 1) 
+     {
+      (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(1,Form("#sum_{i=1}^{N} w_{<%s(#phi)>}^{2}",sinCosFlag[sc].Data()));
+      (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(2,Form("#sum_{i=1}^{N} w_{<%s(#phi_{1}+#phi_{2})>}^{2}",sinCosFlag[sc].Data()));
+      (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(3,Form("#sum_{i=1}^{N} w_{<%s(#phi_{1}-#phi_{2}-#phi_{3})>}^{2}",sinCosFlag[sc].Data()));
+      (fIntFlowSumOfEventWeightsNUA[sc][power]->GetXaxis())->SetBinLabel(4,Form("#sum_{i=1}^{N} w_{<%s(2#phi_{1}-#phi_{2})>}^{2}",sinCosFlag[sc].Data()));
+     }
+   fIntFlowResults->Add(fIntFlowSumOfEventWeightsNUA[sc][power]);
+  }
+ }  
+ // sum of products of event weights for NUA terms:  
+ TString intFlowSumOfProductOfEventWeightsNUAName = "fIntFlowSumOfProductOfEventWeightsNUA";
+ intFlowSumOfProductOfEventWeightsNUAName += fAnalysisLabel->Data();
+ fIntFlowSumOfProductOfEventWeightsNUA = new TH1D(intFlowSumOfProductOfEventWeightsNUAName.Data(),"Sum of product of event weights for NUA terms",27,0,27);
+ fIntFlowSumOfProductOfEventWeightsNUA->SetLabelSize(0.02);
+ fIntFlowSumOfProductOfEventWeightsNUA->SetMarkerStyle(25);
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(1,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTcos(#phi)#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(2,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTsin(#phi)#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(3,"#sum_{i=1}^{N} w_{#LTcos(#phi)#GT} w_{#LTsin(#phi)#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(4,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTcos(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(5,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTsin(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(6,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(7,"#sum_{i=1}^{N} w_{#LT2#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(8,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTcos(#phi)#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(9,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTsin(#phi)#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(10,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTcos(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(11,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTsin(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(12,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(13,"#sum_{i=1}^{N} w_{#LT4#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(14,"#sum_{i=1}^{N} w_{#LTcos(#phi)#GT} w_{#LTcos(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(15,"#sum_{i=1}^{N} w_{#LTcos(#phi)#GT} w_{#LTsin(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(16,"#sum_{i=1}^{N} w_{#LTcos(#phi)#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(17,"#sum_{i=1}^{N} w_{#LTcos(#phi)#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(18,"#sum_{i=1}^{N} w_{#LTsin(#phi)#GT} w_{#LTcos(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(19,"#sum_{i=1}^{N} w_{#LTsin(#phi)#GT} w_{#LTsin(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(20,"#sum_{i=1}^{N} w_{#LTsin(#phi)#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(21,"#sum_{i=1}^{N} w_{#LTsin(#phi)#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(22,"#sum_{i=1}^{N} w_{#LTcos(#phi_{1}+#phi_{2})#GT} w_{#LTsin(#phi_{1}+#phi_{2})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(23,"#sum_{i=1}^{N} w_{#LTcos(#phi_{1}+#phi_{2})#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(24,"#sum_{i=1}^{N} w_{#LTcos(#phi_{1}+#phi_{2})#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(25,"#sum_{i=1}^{N} w_{#LTsin(#phi_{1}+#phi_{2})#GT} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(26,"#sum_{i=1}^{N} w_{#LTsin(#phi_{1}+#phi_{2})#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ (fIntFlowSumOfProductOfEventWeightsNUA->GetXaxis())->SetBinLabel(27,"#sum_{i=1}^{N} w_{#LTcos(#phi_{1}-#phi_{2}-#phi_{3})#GT} w_{#LTsin(#phi_{1}-#phi_{2}-#phi_{3})#GT}");
+ fIntFlowResults->Add(fIntFlowSumOfProductOfEventWeightsNUA);
+ // Final results for reference Q-cumulants:
+ TString cumulantFlag[4] = {"QC{2}","QC{4}","QC{6}","QC{8}"};
+ TString intFlowQcumulantsName = "fIntFlowQcumulants";
+ intFlowQcumulantsName += fAnalysisLabel->Data();
+ fIntFlowQcumulants = new TH1D(intFlowQcumulantsName.Data(),"Reference Q-cumulants",4,0,4);
+ if(fPropagateErrorAlsoFromNIT)
+ {
+  fIntFlowQcumulants->SetTitle("Reference Q-cumulants (error from non-isotropic terms also propagated)");
+ }
+ fIntFlowQcumulants->SetLabelSize(0.05);
+ fIntFlowQcumulants->SetMarkerStyle(25);
+ for(Int_t b=0;b<4;b++)
+ {
+  (fIntFlowQcumulants->GetXaxis())->SetBinLabel(b+1,cumulantFlag[b].Data());
+ } 
+ fIntFlowResults->Add(fIntFlowQcumulants);
+ // Final results for reference Q-cumulants rebinned in M: 
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowQcumulantsRebinnedInMName = "fIntFlowQcumulantsRebinnedInM";
+  intFlowQcumulantsRebinnedInMName += fAnalysisLabel->Data();
+  fIntFlowQcumulantsRebinnedInM = new TH1D(intFlowQcumulantsRebinnedInMName.Data(),"Reference Q-cumulants rebinned in M",4,0,4);
+  fIntFlowQcumulantsRebinnedInM->SetLabelSize(0.05);
+  fIntFlowQcumulantsRebinnedInM->SetMarkerStyle(25);
+  for(Int_t b=0;b<4;b++)
+  {
+   (fIntFlowQcumulantsRebinnedInM->GetXaxis())->SetBinLabel(b+1,cumulantFlag[b].Data());
+  } 
+  fIntFlowResults->Add(fIntFlowQcumulantsRebinnedInM);
+ } // end of if(fCalculateCumulantsVsM) 
+ // Ratio between error squared: with/without non-isotropic terms:
+ TString intFlowQcumulantsErrorSquaredRatioName = "fIntFlowQcumulantsErrorSquaredRatio";
+ intFlowQcumulantsErrorSquaredRatioName += fAnalysisLabel->Data();
+ fIntFlowQcumulantsErrorSquaredRatio = new TH1D(intFlowQcumulantsErrorSquaredRatioName.Data(),"Error squared of reference Q-cumulants: #frac{with NUA terms}{without NUA terms}",4,0,4);
+ fIntFlowQcumulantsErrorSquaredRatio->SetLabelSize(0.05);
+ fIntFlowQcumulantsErrorSquaredRatio->SetMarkerStyle(25);
+ for(Int_t b=0;b<4;b++)
+ {
+  (fIntFlowQcumulantsErrorSquaredRatio->GetXaxis())->SetBinLabel(b+1,cumulantFlag[b].Data());
+ } 
+ fIntFlowResults->Add(fIntFlowQcumulantsErrorSquaredRatio);
+ // final results for integrated Q-cumulants versus multiplicity:
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowQcumulantsVsMName = "fIntFlowQcumulantsVsM";
+  intFlowQcumulantsVsMName += fAnalysisLabel->Data();
+  for(Int_t co=0;co<4;co++) // cumulant order
+  {
+   fIntFlowQcumulantsVsM[co] = new TH1D(Form("%s, %s",intFlowQcumulantsVsMName.Data(),cumulantFlag[co].Data()),
+                                        Form("%s vs multipicity",cumulantFlag[co].Data()),
+                                        fnBinsMult,fMinMult,fMaxMult);
+   fIntFlowQcumulantsVsM[co]->GetXaxis()->SetTitle("M");                                     
+   fIntFlowQcumulantsVsM[co]->GetYaxis()->SetTitle(cumulantFlag[co].Data());  
+   fIntFlowResults->Add(fIntFlowQcumulantsVsM[co]);                                    
+  } // end of for(Int_t co=0;co<4;co++) // cumulant order
+ } // end of if(fCalculateCumulantsVsM)
+ // final integrated flow estimates from Q-cumulants:
+ TString flowFlag[4] = {Form("v_{%d}{2,QC}",fHarmonic),Form("v_{%d}{4,QC}",fHarmonic),Form("v_{%d}{6,QC}",fHarmonic),Form("v_{%d}{8,QC}",fHarmonic)};
+ TString intFlowName = "fIntFlow";
+ intFlowName += fAnalysisLabel->Data();  
+ // integrated flow from Q-cumulants:
+ fIntFlow = new TH1D(intFlowName.Data(),"Reference flow estimates from Q-cumulants",4,0,4);
+ fIntFlow->SetLabelSize(0.05);
+ fIntFlow->SetMarkerStyle(25);
+ for(Int_t b=0;b<4;b++)
+ {
+  (fIntFlow->GetXaxis())->SetBinLabel(b+1,flowFlag[b].Data()); 
+ }
+ fIntFlowResults->Add(fIntFlow); 
+ // Reference flow vs M rebinned in one huge bin:
+ if(fCalculateCumulantsVsM)
+ { 
+  TString intFlowRebinnedInMName = "fIntFlowRebinnedInM";
+  intFlowRebinnedInMName += fAnalysisLabel->Data();  
+  fIntFlowRebinnedInM = new TH1D(intFlowRebinnedInMName.Data(),"Reference flow estimates from Q-cumulants (rebinned in M)",4,0,4);
+  fIntFlowRebinnedInM->SetLabelSize(0.05);
+  fIntFlowRebinnedInM->SetMarkerStyle(25);
+  for(Int_t b=0;b<4;b++)
+  {
+   (fIntFlowRebinnedInM->GetXaxis())->SetBinLabel(b+1,flowFlag[b].Data()); 
+  }
+  fIntFlowResults->Add(fIntFlowRebinnedInM); 
+ } 
+ // integrated flow from Q-cumulants: versus multiplicity:
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowVsMName = "fIntFlowVsM";
+  intFlowVsMName += fAnalysisLabel->Data();
+  for(Int_t co=0;co<4;co++) // cumulant order
+  {
+   fIntFlowVsM[co] = new TH1D(Form("%s, %s",intFlowVsMName.Data(),flowFlag[co].Data()),
+                              Form("%s vs multipicity",flowFlag[co].Data()),
+                              fnBinsMult,fMinMult,fMaxMult);
+   fIntFlowVsM[co]->GetXaxis()->SetTitle("M");                                     
+   fIntFlowVsM[co]->GetYaxis()->SetTitle(flowFlag[co].Data());  
+   fIntFlowResults->Add(fIntFlowVsM[co]);                                    
+  } // end of for(Int_t co=0;co<4;co++) // cumulant order
+ } // end of if(fCalculateCumulantsVsM)
+ // quantifying detector effects effects to correlations:
+ TString intFlowDetectorBiasName = "fIntFlowDetectorBias";
+ intFlowDetectorBiasName += fAnalysisLabel->Data();  
+ fIntFlowDetectorBias = new TH1D(intFlowDetectorBiasName.Data(),"Quantifying detector bias",4,0,4);
+ fIntFlowDetectorBias->SetLabelSize(0.05);
+ fIntFlowDetectorBias->SetMarkerStyle(25);
+ for(Int_t ci=0;ci<4;ci++)
+ {  
+  (fIntFlowDetectorBias->GetXaxis())->SetBinLabel(ci+1,Form("#frac{corrected}{measured} %s",cumulantFlag[ci].Data()));
+ }
+ fIntFlowResults->Add(fIntFlowDetectorBias); 
+ // quantifying detector effects to correlations versus multiplicity:
+ if(fCalculateCumulantsVsM)
+ {
+  TString intFlowDetectorBiasVsMName = "fIntFlowDetectorBiasVsM";
+  intFlowDetectorBiasVsMName += fAnalysisLabel->Data();
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  {
+   fIntFlowDetectorBiasVsM[ci] = new TH1D(Form("%s for %s",intFlowDetectorBiasVsMName.Data(),cumulantFlag[ci].Data()),
+                                          Form("Quantifying detector bias for %s vs multipicity",cumulantFlag[ci].Data()),
+                                          fnBinsMult,fMinMult,fMaxMult);
+   fIntFlowDetectorBiasVsM[ci]->GetXaxis()->SetTitle("M");                                     
+   fIntFlowDetectorBiasVsM[ci]->GetYaxis()->SetTitle("#frac{corrected}{measured}");  
+   fIntFlowResults->Add(fIntFlowDetectorBiasVsM[ci]);                                    
+  } // end of for(Int_t co=0;co<4;co++) // cumulant order
+ } // end of if(fCalculateCumulantsVsM)
+   
+} // end of AliFlowAnalysisWithQCumulants::BookEverythingForIntegratedFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::InitializeArraysForNestedLoops()
+{
+ // Initialize arrays of all objects relevant for calculations with nested loops.
+ // integrated flow:
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  fIntFlowDirectCorrectionTermsForNUA[sc] = NULL;
+ } 
+
+ // differential flow:  
+ // correlations:
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t ci=0;ci<4;ci++) // correlation index
+   {
+    fDiffFlowDirectCorrelations[t][pe][ci] = NULL;
+   } // end of for(Int_t ci=0;ci<4;ci++) // correlation index  
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // correction terms for non-uniform acceptance:
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti] = NULL;
+    }   
+   }
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+
+ // other differential correlators: 
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t ci=0;ci<1;ci++) // correlator index
+    {
+     fOtherDirectDiffCorrelators[t][pe][sc][ci] = NULL;
+    }   
+   }
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+
+} // end of void AliFlowAnalysisWithQCumulants::InitializeArraysForNestedLoops()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingForNestedLoops()
+{
+ // Book all objects relevant for calculations with nested loops.
+ TString sinCosFlag[2] = {"sin","cos"}; // to be improved (should I promote this to data members?)
+ TString typeFlag[2] = {"RP","POI"}; // to be improved (should I promote this to data members?)
+ TString ptEtaFlag[2] = {"p_{T}","#eta"}; // to be improved (should I promote this to data members?)
+ TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"}; // to be improved (should I promote this to data members?)
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+
+ TString evaluateNestedLoopsName = "fEvaluateNestedLoops";
+ evaluateNestedLoopsName += fAnalysisLabel->Data();
+ fEvaluateNestedLoops = new TProfile(evaluateNestedLoopsName.Data(),"Flags for nested loops",4,0,4);
+ fEvaluateNestedLoops->SetLabelSize(0.03);
+ (fEvaluateNestedLoops->GetXaxis())->SetBinLabel(1,"fEvaluateIntFlowNestedLoops");
+ (fEvaluateNestedLoops->GetXaxis())->SetBinLabel(2,"fEvaluateDiffFlowNestedLoops");
+ (fEvaluateNestedLoops->GetXaxis())->SetBinLabel(3,"fCrossCheckInPtBinNo");
+ (fEvaluateNestedLoops->GetXaxis())->SetBinLabel(4,"fCrossCheckInEtaBinNo");
+ fEvaluateNestedLoops->Fill(0.5,(Int_t)fEvaluateIntFlowNestedLoops);
+ fEvaluateNestedLoops->Fill(1.5,(Int_t)fEvaluateDiffFlowNestedLoops);
+ fEvaluateNestedLoops->Fill(2.5,fCrossCheckInPtBinNo);
+ fEvaluateNestedLoops->Fill(3.5,fCrossCheckInEtaBinNo);
+ fNestedLoopsList->Add(fEvaluateNestedLoops);
+ // nested loops for integrated flow:
+ if(fEvaluateIntFlowNestedLoops)
+ {
+  // correlations:
+  TString intFlowDirectCorrelationsName = "fIntFlowDirectCorrelations";
+  intFlowDirectCorrelationsName += fAnalysisLabel->Data();
+  fIntFlowDirectCorrelations = new TProfile(intFlowDirectCorrelationsName.Data(),"Multiparticle correlations calculated with nested loops (for int. flow)",64,0,64,"s");
+  fNestedLoopsList->Add(fIntFlowDirectCorrelations);
+  if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+  {
+   TString intFlowExtraDirectCorrelationsName = "fIntFlowExtraDirectCorrelations";
+   intFlowExtraDirectCorrelationsName += fAnalysisLabel->Data();
+   fIntFlowExtraDirectCorrelations = new TProfile(intFlowExtraDirectCorrelationsName.Data(),"Extra multiparticle correlations calculated with nested loops (for int. flow)",100,0,100,"s");
+   fNestedLoopsList->Add(fIntFlowExtraDirectCorrelations);  
+  } // end of if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+  // correction terms for non-uniform acceptance:
+  for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+  {
+   TString intFlowDirectCorrectionTermsForNUAName = "fIntFlowDirectCorrectionTermsForNUA";
+   intFlowDirectCorrectionTermsForNUAName += fAnalysisLabel->Data();
+   fIntFlowDirectCorrectionTermsForNUA[sc] = new TProfile(Form("%s: %s terms",intFlowDirectCorrectionTermsForNUAName.Data(),sinCosFlag[sc].Data()),Form("Correction terms for non-uniform acceptance (%s terms)",sinCosFlag[sc].Data()),10,0,10,"s");
+   fNestedLoopsList->Add(fIntFlowDirectCorrectionTermsForNUA[sc]);
+  } // end of for(Int_t sc=0;sc<2;sc++) 
+ } // end of if(fEvaluateIntFlowNestedLoops)
+ // nested loops for differential flow: 
+ if(fEvaluateDiffFlowNestedLoops)
+ {
+  // reduced correlations:
+  TString diffFlowDirectCorrelationsName = "fDiffFlowDirectCorrelations";
+  diffFlowDirectCorrelationsName += fAnalysisLabel->Data();
+  for(Int_t t=0;t<2;t++) // type: RP or POI
+  { 
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+   {
+    for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+    {
+     // reduced correlations:
+     fDiffFlowDirectCorrelations[t][pe][rci] = new TProfile(Form("%s, %s, %s, %s",diffFlowDirectCorrelationsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),Form("%s, %s, %s, %s",diffFlowDirectCorrelationsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),1,lowerPtEtaEdge[pe],upperPtEtaEdge[pe],"s");
+     fDiffFlowDirectCorrelations[t][pe][rci]->SetXTitle(ptEtaFlag[pe].Data());
+     fNestedLoopsList->Add(fDiffFlowDirectCorrelations[t][pe][rci]); // to be improved (add dedicated list to hold reduced correlations)
+    } // end of for(Int_t rci=0;rci<4;rci++) // correlation index
+   } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+  } // end of for(Int_t t=0;t<2;t++) // type: RP or POI 
+  
+  
+  // correction terms for non-uniform acceptance:
+  TString diffFlowDirectCorrectionTermsForNUAName = "fDiffFlowDirectCorrectionTermsForNUA";
+  diffFlowDirectCorrectionTermsForNUAName += fAnalysisLabel->Data();
+  for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+  { 
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+   {
+    for(Int_t sc=0;sc<2;sc++) // sin or cos
+    {
+     for(Int_t cti=0;cti<9;cti++) // correction term index
+     {
+      fDiffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti] = new TProfile(Form("%s, %s, %s, %s, cti = %d",diffFlowDirectCorrectionTermsForNUAName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),Form("%s, %s, %s, %s, cti = %d",diffFlowDirectCorrectionTermsForNUAName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),1,lowerPtEtaEdge[pe],upperPtEtaEdge[pe],"s"); 
+      fNestedLoopsList->Add(fDiffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti]);
+     }
+    }
+   }
+  }
+  // other differential correlators: 
+  TString otherDirectDiffCorrelatorsName = "fOtherDirectDiffCorrelators";
+  otherDirectDiffCorrelatorsName += fAnalysisLabel->Data();
+  for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+  { 
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+   {
+    for(Int_t sc=0;sc<2;sc++) // sin or cos
+    {
+     for(Int_t ci=0;ci<1;ci++) // correlator index
+     {
+      fOtherDirectDiffCorrelators[t][pe][sc][ci] = new TProfile(Form("%s, %s, %s, %s, ci = %d",otherDirectDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1),Form("%s, %s, %s, %s, ci = %d",otherDirectDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1),1,lowerPtEtaEdge[pe],upperPtEtaEdge[pe]); 
+      fNestedLoopsList->Add(fOtherDirectDiffCorrelators[t][pe][sc][ci]);
+     }
+    }
+   }
+  }
+  // number of RPs and POIs in selected pt and eta bins for cross-checkings:
+  TString noOfParticlesInBinName = "fNoOfParticlesInBin";
+  fNoOfParticlesInBin = new TH1D(noOfParticlesInBinName.Data(),"Number of RPs and POIs in selected p_{T} and #eta bin",4,0,4);
+  fNoOfParticlesInBin->GetXaxis()->SetBinLabel(1,"# of RPs in p_{T} bin");
+  fNoOfParticlesInBin->GetXaxis()->SetBinLabel(2,"# of RPs in #eta bin");
+  fNoOfParticlesInBin->GetXaxis()->SetBinLabel(3,"# of POIs in p_{T} bin");
+  fNoOfParticlesInBin->GetXaxis()->SetBinLabel(4,"# of POIs in #eta bin");
+  fNestedLoopsList->Add(fNoOfParticlesInBin);
+ } // end of if(fEvaluateDiffFlowNestedLoops)
+
+} // end of AliFlowAnalysisWithQCumulants::BookEverythingForNestedLoops()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrelations()
+{
+ // Calculate in this method all multiparticle azimuthal correlations.
+ //
+ // Remark 1: All multiparticle correlations are stored in TProfile fIntFlowCorrelationsAllPro;
+ // Remark 2: There is a special TProfile fIntFlowCorrelationsPro holding results 
+ //           only for same harmonic's correlations <<2>>, <<4>>, <<6>> and <<8>>;  
+ // Remark 3: Binning of fIntFlowCorrelationsAllPro is organized as follows:
+ // --------------------------------------------------------------------------------------------------------------------
+ //  1st bin: <2>_{1n|1n} = two1n1n = cos(1n(phi1-phi2))>
+ //  2nd bin: <2>_{2n|2n} = two2n2n = cos(2n(phi1-phi2))>
+ //  3rd bin: <2>_{3n|3n} = two3n3n = cos(3n(phi1-phi2))> 
+ //  4th bin: <2>_{4n|4n} = two4n4n = cos(4n(phi1-phi2))>
+ //  5th bin:           ----  EMPTY ----
+ //  6th bin: <3>_{2n|1n,1n} = three2n1n1n = <cos(n(2*phi1-phi2-phi3))>
+ //  7th bin: <3>_{3n|2n,1n} = three3n2n1n = <cos(n(3*phi1-2*phi2-phi3))>
+ //  8th bin: <3>_{4n|2n,2n} = three4n2n2n = <cos(n(4*phi1-2*phi2-2*phi3))>
+ //  9th bin: <3>_{4n|3n,1n} = three4n3n1n = <cos(n(4*phi1-3*phi2-phi3))>
+ // 10th bin:           ----  EMPTY ----
+ // 11th bin: <4>_{1n,1n|1n,1n} = four1n1n1n1n = <cos(n(phi1+phi2-phi3-phi4))>
+ // 12th bin: <4>_{2n,1n|2n,1n} = four2n1n2n1n = <cos(n(2*phi1+phi2-2*phi3-phi4))>
+ // 13th bin: <4>_{2n,2n|2n,2n} = four2n2n2n2n = <cos(2n(phi1+phi2-phi3-phi4))>
+ // 14th bin: <4>_{3n|1n,1n,1n} = four3n1n1n1n = <cos(n(3*phi1-phi2-phi3-phi4))> 
+ // 15th bin: <4>_{3n,1n|3n,1n} = four3n1n3n1n = <cos(n(3*phi1+phi2-3*phi3-phi4))>
+ // 16th bin: <4>_{3n,1n|2n,2n} = four3n1n2n2n = <cos(n(3*phi1+phi2-2*phi3-2*phi4))>
+ // 17th bin: <4>_{4n|2n,1n,1n} = four4n2n1n1n = <cos(n(4*phi1-2*phi2-phi3-phi4))>
+ // 18th bin:           ----  EMPTY ----
+ // 19th bin: <5>_{2n,1n|1n,1n,1n} = five2n1n1n1n1n = <cos(n(2*phi1+phi2-phi3-phi4-phi5))>
+ // 20th bin: <5>_{2n,2n|2n,1n,1n} = five2n2n2n1n1n = <cos(n(2*phi1+2*phi2-2*phi3-phi4-phi5))>
+ // 21st bin: <5>_{3n,1n|2n,1n,1n} = five3n1n2n1n1n = <cos(n(3*phi1+phi2-2*phi3-phi4-phi5))>
+ // 22nd bin: <5>_{4n|1n,1n,1n,1n} = five4n1n1n1n1n = <cos(n(4*phi1-phi2-phi3-phi4-phi5))>
+ // 23rd bin:           ----  EMPTY ----
+ // 24th bin: <6>_{1n,1n,1n|1n,1n,1n} = six1n1n1n1n1n1n = <cos(n(phi1+phi2+phi3-phi4-phi5-phi6))>
+ // 25th bin: <6>_{2n,1n,1n|2n,1n,1n} = six2n1n1n2n1n1n = <cos(n(2*phi1+phi2+phi3-2*phi4-phi5-phi6))>
+ // 26th bin: <6>_{2n,2n|1n,1n,1n,1n} = six2n2n1n1n1n1n = <cos(n(2*phi1+2*phi2-phi3-phi4-phi5-phi6))>
+ // 27th bin: <6>_{3n,1n|1n,1n,1n,1n} = six3n1n1n1n1n1n = <cos(n(3*phi1+phi2-phi3-phi4-phi5-phi6))> 
+ // 28th bin:           ----  EMPTY ----
+ // 29th bin: <7>_{2n,1n,1n|1n,1n,1n,1n} = seven2n1n1n1n1n1n1n =  <cos(n(2*phi1+phi2+phi3-phi4-phi5-phi6-phi7))>
+ // 30th bin:           ----  EMPTY ----
+ // 31st bin: <8>_{1n,1n,1n,1n|1n,1n,1n,1n} = eight1n1n1n1n1n1n1n1n = <cos(n(phi1+phi2+phi3+phi4-phi5-phi6-phi7-phi8))>
+ // 32nd bin:           ----  EMPTY ----
+ //  Extra correlations for v3{5} study: 
+ // 33rd bin: <4>_{4n,2n|3n,3n} = four4n2n3n3n = <cos(n(4*phi1+2*phi2-3*phi3-3*phi4))>
+ // 34th bin: <5>_{3n,3n|2n,2n,2n} = five3n3n2n2n2n = <cos(n(3*phi1+3*phi2-2*phi3-2*phi4-2*phi5))> 
+ //  Extra correlations for Teaney-Yan study: 
+ // 35th bin: <2>_{5n|5n} = two5n5n = <cos(5n(phi1-phi2)> 
+ // 36th bin: <2>_{6n|6n} = two6n6n = <cos(6n(phi1-phi2)> 
+ // 37th bin: <3>_{5n|3n,2n} = three5n3n2n = <cos(n(5*phi1-3*phi2-2*phi3)> 
+ // 38th bin: <3>_{5n|4n,1n} = three5n4n1n = <cos(n(5*phi1-4*phi2-1*phi3)> 
+ // 39th bin: <3>_{6n|3n,3n} = three6n3n3n = <cos(n(6*phi1-3*phi2-3*phi3)> 
+ // 40th bin: <3>_{6n|4n,2n} = three6n4n2n = <cos(n(6*phi1-4*phi2-2*phi3)> 
+ // 41st bin: <3>_{6n|5n,1n} = three6n5n1n = <cos(n(6*phi1-5*phi2-1*phi3)>
+ // 42nd bin: <4>_{6n|3n,2n,1n} = four6n3n2n1n = <cos(n(6*phi1-3*phi2-2*phi3-1*phi4)>
+ // 43rd bin: <4>_{3n,2n|3n,2n} = four3n2n3n2n = <cos(n(3*phi1+2*phi2-3*phi3-2*phi4)>
+ // 44th bin: <4>_{4n,1n|3n,2n} = four4n1n3n2n = <cos(n(4*phi1+1*phi2-3*phi3-2*phi4)>
+ // 45th bin: <4>_{3n,3n|3n,3n} = four3n3n3n3n = <cos(3n*(phi1+phi2-phi3-phi4))> 
+ // 46th bin: <4>_{4n,2n|3n,3n} = four4n2n3n3n = <cos(n(4*phi1+2*phi2-3*phi3-3*phi4)>
+ // 47th bin: <4>_{5n,1n|3n,3n} = four5n1n3n3n = <cos(n(5*phi1+1*phi2-3*phi3-3*phi4)>
+ // 48th bin: <4>_{4n,2n|4n,2n} = four4n2n4n2n = <cos(n(4*phi1+2*phi2-4*phi3-2*phi4)> 
+ // 49th bin: <4>_{5n,1n|4n,2n} = four5n1n4n2n = <cos(n(5*phi1+1*phi2-4*phi3-2*phi4)>
+ // 50th bin: <4>_{5n|3n,1n,1n} = four5n3n1n1n = <cos(n(5*phi1-3*phi2-1*phi3-1*phi4)>
+ // 51st bin: <4>_{5n|2n,2n,1n} = four5n2n2n1n = <cos(n(5*phi1-2*phi2-2*phi3-1*phi4)>
+ // 52nd bin: <4>_{5n,1n|5n,1n} = four5n1n5n1n = <cos(n(5*phi1+1*phi2-5*phi3-1*phi4)>
+ // 53rd bin: <5>_{3n,3n|3n,2n,1n} = five3n3n3n2n1n = <cos(n(3*phi1+3*phi2-3*phi3-2*phi4-1*phi5)>
+ // 54th bin: <5>_{4n,2n|3n,2n,1n} = five4n2n3n2n1n = <cos(n(4*phi1+2*phi2-3*phi3-2*phi4-1*phi5)>
+ // 55th bin: <5>_{3n,2n|3n,1n,1n} = five3n2n3n1n1n = <cos(n(3*phi1+2*phi2-3*phi3-1*phi4-1*phi5)>
+ // 56th bin: <5>_{3n,2n|2n,2n,1n} = five3n2n2n2n1n = <cos(n(3*phi1+2*phi2-2*phi3-2*phi4-1*phi5)>
+ // 57th bin: <5>_{5n,1n|3n,2n,1n} = five5n1n3n2n1n = <cos(n(5*phi1+1*phi2-3*phi3-2*phi4-1*phi5)>
+ // 58th bin: <6>_{3n,2n,1n|3n,2n,1n} = six3n2n1n3n2n1n = <cos(n(3*phi1+2*phi2+1*phi3-3*phi4-2*phi5-1*phi6)>
+ //  Extra correlations for Teaney-Yan study (B): 
+ // 59th bin: <4>_{6n|4n,1n,1n} = four6n4n1n1n = <cos(n(6*phi1-4*phi2-1*phi3-1*phi4)>
+ // 60th bin: <4>_{6n|2n,2n,2n} = four6n2n2n2n = <cos(n(6*phi1-2*phi2-2*phi3-2*phi4)>
+ // 61st bin: <5>_{6n|2n,2n,1n,1n} = five6n2n2n1n1n = <cos(n(6*phi1-2*phi2-2*phi3-1*phi4-1*phi5)>
+ // 62nd bin: <5>_{4n,1n,1n|3n,3n} = five4n1n1n3n3n = <cos(n(4*phi1+1*phi2+1*phi3-3*phi4-3*phi5)>
+ // 63rd bin: <6>_{3n,3n|2n,2n,1n,1n} = six3n3n2n2n1n1n = <cos(n(3*phi1+3*phi2-2*phi3-2*phi4-1*phi5-1*phi6)>
+ // --------------------------------------------------------------------------------------------------------------------
+
+ // Multiplicity of an event: 
+ Double_t dMult = (*fSpk)(0,0);
+ // Real parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n, 4n, 5n and 6n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ Double_t dReQ3n = (*fReQ)(2,0);
+ Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dReQ5n = (*fReQ)(4,0); 
+ Double_t dReQ6n = (*fReQ)(5,0);
+ // Imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n, 4n, 5n and 6n:
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ Double_t dImQ3n = (*fImQ)(2,0);
+ Double_t dImQ4n = (*fImQ)(3,0);
+ Double_t dImQ5n = (*fImQ)(4,0); 
+ Double_t dImQ6n = (*fImQ)(5,0);
+  
+ // Real parts of expressions involving various combinations of Q-vectors which appears
+ // simultaneously in several equations for multiparticle correlations bellow: 
+ // Re[Q_{2n}Q_{n}^*Q_{n}^*]
+ Double_t reQ2nQ1nstarQ1nstar = pow(dReQ1n,2.)*dReQ2n+2.*dReQ1n*dImQ1n*dImQ2n-pow(dImQ1n,2.)*dReQ2n; 
+ // Re[Q_{6n}Q_{3n}^*Q_{3n}^*]
+ Double_t reQ6nQ3nstarQ3nstar = pow(dReQ3n,2.)*dReQ6n+2.*dReQ3n*dImQ3n*dImQ6n-pow(dImQ3n,2.)*dReQ6n;  
+ // Re[Q_{4n}Q_{2n}^*Q_{2n}^*]
+ Double_t reQ4nQ2nstarQ2nstar = pow(dReQ2n,2.)*dReQ4n+2.*dReQ2n*dImQ2n*dImQ4n-pow(dImQ2n,2.)*dReQ4n;
+ // Re[Q_{4n}Q_{3n}^*Q_{n}^*]
+ Double_t reQ4nQ3nstarQ1nstar = dReQ4n*(dReQ3n*dReQ1n-dImQ3n*dImQ1n)+dImQ4n*(dReQ3n*dImQ1n+dImQ3n*dReQ1n);
+ // Re[Q_{3n}Q_{2n}^*Q_{n}^*]
+ Double_t reQ3nQ2nstarQ1nstar = dReQ3n*dReQ2n*dReQ1n-dReQ3n*dImQ2n*dImQ1n+dImQ3n*dReQ2n*dImQ1n
+                              + dImQ3n*dImQ2n*dReQ1n; 
+ // Re[Q_{5n}Q_{3n}^*Q_{2n}^*]
+ Double_t reQ5nQ3nstarQ2nstar = dReQ5n*dReQ2n*dReQ3n-dReQ5n*dImQ2n*dImQ3n+dImQ5n*dReQ2n*dImQ3n
+                              + dImQ5n*dImQ2n*dReQ3n;                             
+ // Re[Q_{5n}Q_{4n}^*Q_{1n}^*]
+ Double_t reQ5nQ4nstarQ1nstar = dReQ5n*dReQ4n*dReQ1n-dReQ5n*dImQ4n*dImQ1n+dImQ5n*dReQ4n*dImQ1n
+                              + dImQ5n*dImQ4n*dReQ1n;                              
+ // Re[Q_{6n}Q_{5n}^*Q_{1n}^*]                              
+ Double_t reQ6nQ5nstarQ1nstar = dReQ6n*dReQ5n*dReQ1n-dReQ6n*dImQ5n*dImQ1n+dImQ6n*dReQ5n*dImQ1n
+                              + dImQ6n*dImQ5n*dReQ1n;
+ // Re[Q_{6n}Q_{4n}^*Q_{2n}^*]                              
+ Double_t reQ6nQ4nstarQ2nstar = dReQ6n*dReQ4n*dReQ2n-dReQ6n*dImQ4n*dImQ2n+dImQ6n*dReQ4n*dImQ2n
+                              + dImQ6n*dImQ4n*dReQ2n;
+ // Re[Q_{3n}Q_{n}Q_{2n}^*Q_{2n}^*]
+ Double_t reQ3nQ1nQ2nstarQ2nstar = (pow(dReQ2n,2.)-pow(dImQ2n,2.))*(dReQ3n*dReQ1n-dImQ3n*dImQ1n) 
+                                 + 2.*dReQ2n*dImQ2n*(dReQ3n*dImQ1n+dImQ3n*dReQ1n);                                
+ // Re[Q_{3n}Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ3nQ1nstarQ1nstarQ1nstar = dReQ3n*pow(dReQ1n,3)-3.*dReQ1n*dReQ3n*pow(dImQ1n,2)
+                                     + 3.*dImQ1n*dImQ3n*pow(dReQ1n,2)-dImQ3n*pow(dImQ1n,3);
+ // Re[Q_{6n}Q_{2n}^*Q_{2n}^*Q_{2n}^*]
+ Double_t reQ6nQ2nstarQ2nstarQ2nstar = dReQ6n*pow(dReQ2n,3)-3.*dReQ2n*dReQ6n*pow(dImQ2n,2)
+                                     + 3.*dImQ2n*dImQ6n*pow(dReQ2n,2)-dImQ6n*pow(dImQ2n,3);
+ // Re[Q_{4n}Q_{2n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ4nQ2nstarQ1nstarQ1nstar = (dReQ4n*dReQ2n+dImQ4n*dImQ2n)*(pow(dReQ1n,2)-pow(dImQ1n,2)) 
+                                     + 2.*dReQ1n*dImQ1n*(dImQ4n*dReQ2n-dReQ4n*dImQ2n);  
+ // Re[Q_{4n}Q_{2n}^*Q_{3n}^*Q_{3n}^*]
+ Double_t reQ4nQ2nQ3nstarQ3nstar = (dReQ4n*dReQ2n-dImQ4n*dImQ2n)*(dReQ3n*dReQ3n-dImQ3n*dImQ3n)
+                                 + 2.*(dReQ4n*dImQ2n+dImQ4n*dReQ2n)*dReQ3n*dImQ3n;                    
+ // Re[Q_{4n}Q_{n}Q_{3n}^*Q_{2n}^*]
+ Double_t reQ4nQ1nQ3nstarQ2nstar = dImQ1n*dImQ2n*dImQ3n*dImQ4n+dImQ3n*dImQ4n*dReQ1n*dReQ2n 
+                                 + dImQ2n*dImQ4n*dReQ1n*dReQ3n-dImQ1n*dImQ4n*dReQ2n*dReQ3n
+                                 - dImQ2n*dImQ3n*dReQ1n*dReQ4n+dImQ1n*dImQ3n*dReQ2n*dReQ4n 
+                                 + dImQ1n*dImQ2n*dReQ3n*dReQ4n+dReQ1n*dReQ2n*dReQ3n*dReQ4n;
+ // Re[Q_{5n}Q_{n}Q_{4n}^*Q_{2n}^*]
+ Double_t reQ5nQ1nQ4nstarQ2nstar = dImQ1n*dImQ2n*dImQ4n*dImQ5n+dImQ4n*dImQ5n*dReQ1n*dReQ2n 
+                                 + dImQ2n*dImQ5n*dReQ1n*dReQ4n-dImQ1n*dImQ5n*dReQ2n*dReQ4n
+                                 - dImQ2n*dImQ4n*dReQ1n*dReQ5n+dImQ1n*dImQ4n*dReQ2n*dReQ5n 
+                                 + dImQ1n*dImQ2n*dReQ4n*dReQ5n+dReQ1n*dReQ2n*dReQ4n*dReQ5n;                                  
+ // Re[Q_{5n}Q_{n}Q_{3n}^*Q_{3n}^*]                                  
+ Double_t reQ5nQ1nQ3nstarQ3nstar = dImQ1n*pow(dImQ3n,2.)*dImQ5n+2.*dImQ3n*dImQ5n*dReQ1n*dReQ3n
+                                 - dImQ1n*dImQ5n*pow(dReQ3n,2.)-pow(dImQ3n,2.)*dReQ1n*dReQ5n 
+                                 + 2.*dImQ1n*dImQ3n*dReQ3n*dReQ5n+dReQ1n*pow(dReQ3n,2.)*dReQ5n;
+ // Re[Q_{5n}Q_{3n}^*Q_{n}^*Q_{n}^*]                                  
+ Double_t reQ5nQ3nstarQ1nstarQ1nstar = -pow(dImQ1n,2.)*dImQ3n*dImQ5n+dImQ3n*dImQ5n*pow(dReQ1n,2.)
+                                     + 2.*dImQ1n*dImQ5n*dReQ1n*dReQ3n-2.*dImQ1n*dImQ3n*dReQ1n*dReQ5n 
+                                     - pow(dImQ1n,2.)*dReQ3n*dReQ5n+pow(dReQ1n,2.)*dReQ3n*dReQ5n;                     
+ // Re[Q_{5n}Q_{2n}^*Q_{2n}^*Q_{n}^*]                                  
+ Double_t reQ5nQ2nstarQ2nstarQ1nstar = -pow(dImQ2n,2.)*dImQ1n*dImQ5n+dImQ1n*dImQ5n*pow(dReQ2n,2.)
+                                     + 2.*dImQ2n*dImQ5n*dReQ2n*dReQ1n-2.*dImQ2n*dImQ1n*dReQ2n*dReQ5n 
+                                     - pow(dImQ2n,2.)*dReQ1n*dReQ5n+pow(dReQ2n,2.)*dReQ1n*dReQ5n;                                     
+ // Re[Q_{6n}Q_{4n}^*Q_{n}^*Q_{n}^*]                                  
+ Double_t reQ6nQ4nstarQ1nstarQ1nstar = -pow(dImQ1n,2.)*dImQ4n*dImQ6n+dImQ4n*dImQ6n*pow(dReQ1n,2.) 
+                                     +  2.*dImQ1n*dImQ6n*dReQ1n*dReQ4n-2.*dImQ1n*dImQ4n*dReQ1n*dReQ6n 
+                                     -  pow(dImQ1n,2.)*dReQ4n*dReQ6n+pow(dReQ1n,2.)*dReQ4n*dReQ6n;
+ // |Q_{2n}|^2 |Q_{n}|^2
+ Double_t dQ2nQ1nQ2nstarQ1nstar = (pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.));
+ // |Q_{4n}|^2 |Q_{2n}|^2
+ Double_t dQ4nQ2nQ4nstarQ2nstar = (pow(dReQ4n,2.)+pow(dImQ4n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.));
+ // |Q_{3n}|^2 |Q_{2n}|^2
+ Double_t dQ3nQ2nQ3nstarQ2nstar = (pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ3n,2.)+pow(dImQ3n,2.));
+ // |Q_{5n}|^2 |Q_{n}|^2
+ Double_t dQ5nQ1nQ5nstarQ1nstar = (pow(dReQ5n,2.)+pow(dImQ5n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.));
+ // Re[Q_{2n}Q_{n}Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ2nQ1nQ1nstarQ1nstarQ1nstar = (dReQ2n*dReQ1n-dImQ2n*dImQ1n)*(pow(dReQ1n,3)-3.*dReQ1n*pow(dImQ1n,2))
+                                        + (dReQ2n*dImQ1n+dReQ1n*dImQ2n)*(3.*dImQ1n*pow(dReQ1n,2)-pow(dImQ1n,3)); 
+ // Re[Q_{2n}Q_{2n}Q_{2n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ2nQ2nQ2nstarQ1nstarQ1nstar = (pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                                        * (dReQ2n*(pow(dReQ1n,2.)-pow(dImQ1n,2.)) + 2.*dImQ2n*dReQ1n*dImQ1n);
+ // Re[Q_{4n}Q_{n}^*Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ4nQ1nstarQ1nstarQ1nstarQ1nstar = pow(dReQ1n,4.)*dReQ4n-6.*pow(dReQ1n,2.)*dReQ4n*pow(dImQ1n,2.)
+                                            + pow(dImQ1n,4.)*dReQ4n+4.*pow(dReQ1n,3.)*dImQ1n*dImQ4n
+                                            - 4.*pow(dImQ1n,3.)*dReQ1n*dImQ4n;
+ // Re[Q_{3n}Q_{n}Q_{2n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ3nQ1nQ2nstarQ1nstarQ1nstar = (pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                                        * (dReQ1n*dReQ2n*dReQ3n-dReQ3n*dImQ1n*dImQ2n
+                                        + dReQ2n*dImQ1n*dImQ3n+dReQ1n*dImQ2n*dImQ3n);
+ // Re[Q_{6n}Q_{n}Q_{3n}^*Q_{2n}^*Q_{n}^*]
+ Double_t reQ6nQ3nstarQ2nstarQ1nstar = dReQ1n*dReQ2n*dReQ3n*dReQ6n-dReQ3n*dReQ6n*dImQ1n*dImQ2n
+                                     - dReQ2n*dReQ6n*dImQ1n*dImQ3n-dReQ1n*dReQ6n*dImQ2n*dImQ3n
+                                     + dReQ2n*dReQ3n*dImQ1n*dImQ6n+dReQ1n*dReQ3n*dImQ2n*dImQ6n 
+                                     + dReQ1n*dReQ2n*dImQ3n*dImQ6n-dImQ1n*dImQ2n*dImQ3n*dImQ6n;
+ // Re[Q_{3n}Q_{3n}Q_{3n}^*Q_{2n}^*Q_{n}^*]
+ Double_t reQ3nQ3nQ3nstarQ2nstarQ1nstar = (pow(dImQ3n,2.)+pow(dReQ3n,2.))
+                                        * (dImQ2n*dImQ3n*dReQ1n+dImQ1n*dImQ3n*dReQ2n
+                                        - dImQ1n*dImQ2n*dReQ3n+dReQ1n*dReQ2n*dReQ3n);   
+ // Re[Q_{3n}Q_{3n}Q_{2n}^*Q_{2n}^*Q_{2n}^*]
+ Double_t reQ3nQ3nQ2nstarQ2nstarQ2nstar = pow(dReQ2n,3.)*pow(dReQ3n,2.) 
+                                        - 3.*dReQ2n*pow(dReQ3n,2.)*pow(dImQ2n,2.)
+                                        + 6.*pow(dReQ2n,2.)*dReQ3n*dImQ2n*dImQ3n 
+                                        - 2.*dReQ3n*pow(dImQ2n,3.)*dImQ3n-pow(dReQ2n,3.)*pow(dImQ3n,2.) 
+                                        + 3.*dReQ2n*pow(dImQ2n,2.)*pow(dImQ3n,2.);
+ // Re[Q_{4n}Q_{2n}Q_{3n}^*Q_{2n}^*Q_{n}^*]
+ Double_t reQ4nQ2nQ3nstarQ2nstarQ1nstar = (pow(dImQ2n,2.)+pow(dReQ2n,2.))
+                                        * (dImQ3n*dImQ4n*dReQ1n+dImQ1n*dImQ4n*dReQ3n 
+                                        - dImQ1n*dImQ3n*dReQ4n+dReQ1n*dReQ3n*dReQ4n);
+ // Re[Q_{3n}Q_{2n}Q_{3n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ3nQ2nQ3nstarQ1nstarQ1nstar = -(pow(dImQ3n,2.)+pow(dReQ3n,2.))
+                                        * (-2.*dImQ1n*dImQ2n*dReQ1n+pow(dImQ1n,2.)*dReQ2n-pow(dReQ1n,2.)*dReQ2n);                              
+ // Re[Q_{3n}Q_{2n}Q_{2n}^*Q_{2n}^*Q_{n}^*]
+ Double_t reQ3nQ2nQ2nstarQ2nstarQ1nstar = (pow(dImQ2n,2.)+pow(dReQ2n,2.))
+                                        * (dImQ2n*dImQ3n*dReQ1n+dImQ1n*dImQ3n*dReQ2n 
+                                        - dImQ1n*dImQ2n*dReQ3n+dReQ1n*dReQ2n*dReQ3n);
+ // Re[Q_{5n}Q_{n}Q_{3n}^*Q_{2n}^*Q_{n}^*]
+ Double_t reQ5nQ1nQ3nstarQ2nstarQ1nstar = (pow(dImQ1n,2.)+pow(dReQ1n,2.))
+                                        * (dImQ3n*dImQ5n*dReQ2n+dImQ2n*dImQ5n*dReQ3n 
+                                        - dImQ2n*dImQ3n*dReQ5n+dReQ2n*dReQ3n*dReQ5n);   
+ // Re[Q_{2n}Q_{2n}Q_{n}^*Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ2nQ2nQ1nstarQ1nstarQ1nstarQ1nstar = (pow(dReQ1n,2.)*dReQ2n-2.*dReQ1n*dReQ2n*dImQ1n-dReQ2n*pow(dImQ1n,2.)
+                                               + dImQ2n*pow(dReQ1n,2.)+2.*dReQ1n*dImQ1n*dImQ2n-pow(dImQ1n,2.)*dImQ2n)
+                                               * (pow(dReQ1n,2.)*dReQ2n+2.*dReQ1n*dReQ2n*dImQ1n-dReQ2n*pow(dImQ1n,2.)
+                                               - dImQ2n*pow(dReQ1n,2.)+2.*dReQ1n*dImQ1n*dImQ2n+pow(dImQ1n,2.)*dImQ2n); 
+ // Re[Q_{3n}Q_{n}Q_{n}^*Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ3nQ1nQ1nstarQ1nstarQ1nstarQ1nstar = (pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                                               * (pow(dReQ1n,3.)*dReQ3n-3.*dReQ1n*dReQ3n*pow(dImQ1n,2.)
+                                               + 3.*pow(dReQ1n,2.)*dImQ1n*dImQ3n-pow(dImQ1n,3.)*dImQ3n);
+ // |Q_{2n}|^2 |Q_{n}|^4
+ Double_t dQ2nQ1nQ1nQ2nstarQ1nstarQ1nstar = (pow(dReQ2n,2.)+pow(dImQ2n,2.))*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.); 
+ // |Q_{3n}|^2 |Q_{2n}|^2 |Q_{n}|^2
+ Double_t dQ3nQ2nQ1nQ3nstarQ2nstarQ1nstar = (pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                                          * (pow(dReQ1n,2.)+pow(dImQ1n,2.));
+ // Re[Q_{2n}Q_{n}Q_{n}Q_{n}^*Q_{n}^*Q_{n}^*Q_{n}^*]
+ Double_t reQ2nQ1nQ1nQ1nstarQ1nstarQ1nstarQ1nstar = pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)
+                                                  * (pow(dReQ1n,2.)*dReQ2n-dReQ2n*pow(dImQ1n,2.)
+                                                  + 2.*dReQ1n*dImQ1n*dImQ2n);
+    
+ // Results for multiparticle azimuthal correlations:
+ // 2-particle:
+ Double_t two1n1n = 0.; // <cos(n(phi1-phi2))>
+ Double_t two2n2n = 0.; // <cos(2n(phi1-phi2))>
+ Double_t two3n3n = 0.; // <cos(3n(phi1-phi2))>
+ Double_t two4n4n = 0.; // <cos(4n(phi1-phi2))>
+ if(dMult>1)
+ {
+  two1n1n = (pow(dReQ1n,2.)+pow(dImQ1n,2.)-dMult)/(dMult*(dMult-1.)); 
+  two2n2n = (pow(dReQ2n,2.)+pow(dImQ2n,2.)-dMult)/(dMult*(dMult-1.)); 
+  two3n3n = (pow(dReQ3n,2.)+pow(dImQ3n,2.)-dMult)/(dMult*(dMult-1.)); 
+  two4n4n = (pow(dReQ4n,2.)+pow(dImQ4n,2.)-dMult)/(dMult*(dMult-1.)); 
+  // Average 2-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(1,two1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(2,two2n2n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(3,two3n3n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(4,two4n4n);         
+  // Average 2-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(0.5,two1n1n,dMult*(dMult-1.));
+  fIntFlowCorrelationsAllPro->Fill(1.5,two2n2n,dMult*(dMult-1.)); 
+  fIntFlowCorrelationsAllPro->Fill(2.5,two3n3n,dMult*(dMult-1.)); 
+  fIntFlowCorrelationsAllPro->Fill(3.5,two4n4n,dMult*(dMult-1.)); 
+  // Store separetately <2>:
+  fIntFlowCorrelationsEBE->SetBinContent(1,two1n1n); // <2>  
+  // Testing other multiplicity weights:
+  Double_t mWeight2p = 0.;
+  if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+  {
+   mWeight2p = dMult*(dMult-1.);
+  } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+    {
+     mWeight2p = 1.;    
+    } else if(!strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+      {
+       mWeight2p = dMult;           
+      }          
+  fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(1,mWeight2p); // eW_<2>
+  fIntFlowCorrelationsPro->Fill(0.5,two1n1n,mWeight2p);
+  fIntFlowSquaredCorrelationsPro->Fill(0.5,two1n1n*two1n1n,mWeight2p);
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrelationsVsMPro[0]->Fill(dMult+0.5,two1n1n,mWeight2p);
+   fIntFlowSquaredCorrelationsVsMPro[0]->Fill(dMult+0.5,two1n1n*two1n1n,mWeight2p);
+  } 
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[0]->Fill(dMult+0.5,two1n1n,mWeight2p);
+   fIntFlowCorrelationsAllVsMPro[1]->Fill(dMult+0.5,two2n2n,mWeight2p);
+   fIntFlowCorrelationsAllVsMPro[2]->Fill(dMult+0.5,two3n3n,mWeight2p);
+   fIntFlowCorrelationsAllVsMPro[3]->Fill(dMult+0.5,two4n4n,mWeight2p);
+  }  
+ } // end of if(dMult>1)
+ // 3-particle:
+ Double_t three2n1n1n = 0.; // <cos(n(2*phi1-phi2-phi3))>
+ Double_t three3n2n1n = 0.; // <cos(n(3*phi1-2*phi2-phi3))>
+ Double_t three4n2n2n = 0.; // <cos(n(4*phi1-2*phi2-2*phi3))>
+ Double_t three4n3n1n = 0.; // <cos(n(4*phi1-3*phi2-phi3))> 
+ if(dMult>2)
+ {
+  three2n1n1n = (reQ2nQ1nstarQ1nstar-2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+              - (pow(dReQ2n,2.)+pow(dImQ2n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));                     
+  three3n2n1n = (reQ3nQ2nstarQ1nstar-(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+              - (pow(dReQ2n,2.)+pow(dImQ2n,2.))
+              - (pow(dReQ1n,2.)+pow(dImQ1n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));
+  three4n2n2n = (reQ4nQ2nstarQ2nstar-2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+              - (pow(dReQ4n,2.)+pow(dImQ4n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.)); 
+  three4n3n1n = (reQ4nQ3nstarQ1nstar-(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+              - (pow(dReQ3n,2.)+pow(dImQ3n,2.))
+              - (pow(dReQ1n,2.)+pow(dImQ1n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));              
+  // Average 3-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(6,three2n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(7,three3n2n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(8,three4n2n2n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(9,three4n3n1n);
+  // Average 3-particle correlations for all events:                
+  fIntFlowCorrelationsAllPro->Fill(5.5,three2n1n1n,dMult*(dMult-1.)*(dMult-2.)); 
+  fIntFlowCorrelationsAllPro->Fill(6.5,three3n2n1n,dMult*(dMult-1.)*(dMult-2.));
+  fIntFlowCorrelationsAllPro->Fill(7.5,three4n2n2n,dMult*(dMult-1.)*(dMult-2.)); 
+  fIntFlowCorrelationsAllPro->Fill(8.5,three4n3n1n,dMult*(dMult-1.)*(dMult-2.));  
+  // Average 3-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[5]->Fill(dMult+0.5,three2n1n1n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[6]->Fill(dMult+0.5,three3n2n1n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[7]->Fill(dMult+0.5,three4n2n2n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[8]->Fill(dMult+0.5,three4n3n1n,dMult*(dMult-1.)*(dMult-2.));
+  }    
+ } // end of if(dMult>2)
+ // 4-particle:
+ Double_t four1n1n1n1n = 0.; // <cos(n(phi1+phi2-phi3-phi4))>
+ Double_t four2n2n2n2n = 0.; // <cos(2n(phi1+phi2-phi3-phi4))>
+ Double_t four2n1n2n1n = 0.; // <cos(n(2*phi1+phi2-2*phi3-phi4))> 
+ Double_t four3n1n1n1n = 0.; // <cos(n(3*phi1-phi2-phi3-phi4))> 
+ Double_t four4n2n1n1n = 0.; // <cos(n(4*phi1-2*phi2-phi3-phi4))> 
+ Double_t four3n1n2n2n = 0.; // <cos(n(3*phi1+phi2-2*phi3-2*phi4))> 
+ Double_t four3n1n3n1n = 0.; // <cos(n(3*phi1+phi2-3*phi3-phi4))>    
+ if(dMult>3)
+ {
+  four1n1n1n1n = (2.*dMult*(dMult-3.)+pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)-4.*(dMult-2.)*(pow(dReQ1n,2.)
+               + pow(dImQ1n,2.))-2.*reQ2nQ1nstarQ1nstar+(pow(dReQ2n,2.)+pow(dImQ2n,2.)))
+               / (dMult*(dMult-1)*(dMult-2.)*(dMult-3.));     
+  four2n2n2n2n = (2.*dMult*(dMult-3.)+pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)-4.*(dMult-2.)*(pow(dReQ2n,2.)
+               + pow(dImQ2n,2.))-2.*reQ4nQ2nstarQ2nstar+(pow(dReQ4n,2.)+pow(dImQ4n,2.)))
+               / (dMult*(dMult-1)*(dMult-2.)*(dMult-3.));
+  four2n1n2n1n = (dQ2nQ1nQ2nstarQ1nstar-2.*reQ3nQ2nstarQ1nstar-2.*reQ2nQ1nstarQ1nstar)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - ((dMult-5.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+               + (dMult-4.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-(pow(dReQ3n,2.)+pow(dImQ3n,2.)))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               + (dMult-6.)/((dMult-1.)*(dMult-2.)*(dMult-3.));
+  four3n1n1n1n = (reQ3nQ1nstarQ1nstarQ1nstar-3.*reQ3nQ2nstarQ1nstar-3.*reQ2nQ1nstarQ1nstar
+               + 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+3.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + 6.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  four4n2n1n1n = (reQ4nQ2nstarQ1nstarQ1nstar-2.*reQ4nQ3nstarQ1nstar-reQ4nQ2nstarQ2nstar-2.*reQ3nQ2nstarQ1nstar)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - (reQ2nQ1nstarQ1nstar-2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+               - 3.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-4.*(pow(dReQ1n,2.)+pow(dImQ1n,2.)))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - 6./((dMult-1.)*(dMult-2.)*(dMult-3.));
+  four3n1n2n2n = (reQ3nQ1nQ2nstarQ2nstar-reQ4nQ2nstarQ2nstar-reQ4nQ3nstarQ1nstar-2.*reQ3nQ2nstarQ1nstar)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - (2.*reQ2nQ1nstarQ1nstar-(pow(dReQ4n,2.)+pow(dImQ4n,2.))-2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+               - 4.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-4.*(pow(dReQ1n,2.)+pow(dImQ1n,2.)))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - 6./((dMult-1.)*(dMult-2.)*(dMult-3.)); 
+  four3n1n3n1n = ((pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+               - 2.*reQ4nQ3nstarQ1nstar-2.*reQ3nQ2nstarQ1nstar
+               + pow(dReQ4n,2.)+pow(dImQ4n,2.)-(dMult-4.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+               + pow(dReQ2n,2.)+pow(dImQ2n,2.)-(dMult-4.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+               + dMult*(dMult-6.))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));           
+  // Average 4-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(11,four1n1n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(12,four2n1n2n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(13,four2n2n2n2n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(14,four3n1n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(15,four3n1n3n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(16,four3n1n2n2n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(17,four4n2n1n1n);       
+  // Average 4-particle correlations for all events:                
+  fIntFlowCorrelationsAllPro->Fill(10.5,four1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(11.5,four2n1n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(12.5,four2n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(13.5,four3n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(14.5,four3n1n3n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(15.5,four3n1n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));  
+  fIntFlowCorrelationsAllPro->Fill(16.5,four4n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));  
+  // Average 4-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[10]->Fill(dMult+0.5,four1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[11]->Fill(dMult+0.5,four2n1n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[12]->Fill(dMult+0.5,four2n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[13]->Fill(dMult+0.5,four3n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[14]->Fill(dMult+0.5,four3n1n3n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[15]->Fill(dMult+0.5,four3n1n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[16]->Fill(dMult+0.5,four4n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  }       
+  // Store separetately <4>:
+  fIntFlowCorrelationsEBE->SetBinContent(2,four1n1n1n1n); // <4>
+  // Testing other multiplicity weights:
+  Double_t mWeight4p = 0.;
+  if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+  {
+   mWeight4p = dMult*(dMult-1.)*(dMult-2.)*(dMult-3.);
+  } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+    {
+     mWeight4p = 1.;    
+    } else if(!strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+      {
+       mWeight4p = dMult;           
+      }      
+  fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(2,mWeight4p); // eW_<4>
+  fIntFlowCorrelationsPro->Fill(1.5,four1n1n1n1n,mWeight4p);
+  fIntFlowSquaredCorrelationsPro->Fill(1.5,four1n1n1n1n*four1n1n1n1n,mWeight4p);
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrelationsVsMPro[1]->Fill(dMult+0.5,four1n1n1n1n,mWeight4p);
+   fIntFlowSquaredCorrelationsVsMPro[1]->Fill(dMult+0.5,four1n1n1n1n*four1n1n1n1n,mWeight4p);
+  }   
+ } // end of if(dMult>3)
+
+ // 5-particle:
+ Double_t five2n1n1n1n1n = 0.; // <cos(n(2*phi1+phi2-phi3-phi4-phi5))>
+ Double_t five2n2n2n1n1n = 0.; // <cos(n(2*phi1+2*phi2-2*phi3-phi4-phi5))>
+ Double_t five3n1n2n1n1n = 0.; // <cos(n(3*phi1+phi2-2*phi3-phi4-phi5))>
+ Double_t five4n1n1n1n1n = 0.; // <cos(n(4*phi1-phi2-phi3-phi4-phi5))>
+ if(dMult>4)
+ {            
+  five2n1n1n1n1n = (reQ2nQ1nQ1nstarQ1nstarQ1nstar-reQ3nQ1nstarQ1nstarQ1nstar+5.*reQ3nQ2nstarQ1nstar
+                 - 3.*(dMult-5.)*reQ2nQ1nstarQ1nstar-2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - 3.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))     
+                 + 3.*(dMult-4.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 - 3.*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)
+                 + 6.*(2.*dMult-5.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult*(dMult-4.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  five2n2n2n1n1n = (reQ2nQ2nQ2nstarQ1nstarQ1nstar-reQ4nQ2nstarQ1nstarQ1nstar-2.*reQ3nQ1nQ2nstarQ2nstar
+                 + 3.*reQ4nQ2nstarQ2nstar+8.*reQ3nQ2nstarQ1nstar+2.*reQ4nQ3nstarQ1nstar
+                 - 2.*(dMult-6.)*reQ2nQ1nstarQ1nstar
+                 - 2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-4.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)
+                 + 2.*(3.*dMult-10.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 - 4.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 4.*(dMult-5.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-4.*dMult*(dMult-6.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  five4n1n1n1n1n = (reQ4nQ1nstarQ1nstarQ1nstarQ1nstar-6.*reQ4nQ2nstarQ1nstarQ1nstar-4.*reQ3nQ1nstarQ1nstarQ1nstar
+                 + 8.*reQ4nQ3nstarQ1nstar+3.*reQ4nQ2nstarQ2nstar+12.*reQ3nQ2nstarQ1nstar+12.*reQ2nQ1nstarQ1nstar
+                 - 6.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-8.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - 12.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-24.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))+24.*dMult)
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  five3n1n2n1n1n = (reQ3nQ1nQ2nstarQ1nstarQ1nstar-reQ4nQ2nstarQ1nstarQ1nstar-reQ3nQ1nstarQ1nstarQ1nstar
+                 - reQ3nQ1nQ2nstarQ2nstar+4.*reQ4nQ3nstarQ1nstar+reQ4nQ2nstarQ2nstar
+                 - (2.*dMult-13.)*reQ3nQ2nstarQ1nstar+7.*reQ2nQ1nstarQ1nstar
+                 - 2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+                 + 2.*(dMult-5.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 + 2.*(dMult-6.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 - 2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)
+                 + 2.*(3.*dMult-11.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-4.*dMult*(dMult-6.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));                 
+  // Average 5-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(19,five2n1n1n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(20,five2n2n2n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(21,five3n1n2n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(22,five4n1n1n1n1n);        
+  // Average 5-particle correlations for all events:                         
+  fIntFlowCorrelationsAllPro->Fill(18.5,five2n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)); 
+  fIntFlowCorrelationsAllPro->Fill(19.5,five2n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(20.5,five3n1n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(21.5,five4n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)); 
+  // Average 5-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[18]->Fill(dMult+0.5,five2n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[19]->Fill(dMult+0.5,five2n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[20]->Fill(dMult+0.5,five3n1n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[21]->Fill(dMult+0.5,five4n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  }    
+ } // end of if(dMult>4)
+    
+ // 6-particle:
+ Double_t six1n1n1n1n1n1n = 0.; // <cos(n(phi1+phi2+phi3-phi4-phi5-phi6))>
+ Double_t six2n2n1n1n1n1n = 0.; // <cos(n(2*phi1+2*phi2-phi3-phi4-phi5-phi6))>
+ Double_t six3n1n1n1n1n1n = 0.; // <cos(n(3*phi1+phi2-phi3-phi4-phi5-phi6))>
+ Double_t six2n1n1n2n1n1n = 0.; // <cos(n(2*phi1+phi2+phi3-2*phi4-phi5-phi6))>
+ if(dMult>5)
+ {
+  six1n1n1n1n1n1n = (pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),3.)-6.*reQ2nQ1nQ1nstarQ1nstarQ1nstar
+                  + 4.*reQ3nQ1nstarQ1nstarQ1nstar-12.*reQ3nQ2nstarQ1nstar+18.*(dMult-4.)*reQ2nQ1nstarQ1nstar
+                  + 9.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + 4.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))-9.*(dMult-4.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  - 9.*(dMult-4.)*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.) 
+                  + 18.*(dMult*dMult-7.*dMult+10.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  - 6.*dMult*(dMult*dMult-9.*dMult+20.))
+                  / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  six2n1n1n2n1n1n = (dQ2nQ1nQ1nQ2nstarQ1nstarQ1nstar-4.*reQ3nQ1nQ2nstarQ1nstarQ1nstar
+                  - 4.*reQ2nQ1nQ1nstarQ1nstarQ1nstar-2.*reQ2nQ2nQ2nstarQ1nstarQ1nstar
+                  + 4.*reQ4nQ2nstarQ1nstarQ1nstar+4.*reQ3nQ1nQ2nstarQ2nstar+4.*reQ3nQ1nstarQ1nstarQ1nstar
+                  - 8.*reQ4nQ3nstarQ1nstar-4.*reQ4nQ2nstarQ2nstar+4.*(2.*dMult-13.)*reQ3nQ2nstarQ1nstar
+                  + 2.*(7.*dMult-34.)*reQ2nQ1nstarQ1nstar+4.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                  - 4.*(dMult-7.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + 4.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-4.*(dMult-6.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                  + pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)+(2.*dMult*dMult-27.*dMult+76.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  - (dMult-12.)*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)
+                  + 4.*(dMult*dMult-15.*dMult+34.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  - 2.*dMult*(dMult*dMult-17.*dMult+60.))
+                  / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  six2n2n1n1n1n1n = (reQ2nQ2nQ1nstarQ1nstarQ1nstarQ1nstar-6.*reQ2nQ2nQ2nstarQ1nstarQ1nstar-reQ4nQ1nstarQ1nstarQ1nstarQ1nstar
+                  - 8.*reQ2nQ1nQ1nstarQ1nstarQ1nstar+8.*reQ3nQ1nstarQ1nstarQ1nstar+6.*reQ4nQ2nstarQ1nstarQ1nstar
+                  + 8.*reQ3nQ1nQ2nstarQ2nstar-40.*reQ3nQ2nstarQ1nstar-8.*reQ4nQ3nstarQ1nstar-9.*reQ4nQ2nstarQ2nstar
+                  + 24.*(dMult-4.)*reQ2nQ1nstarQ1nstar+24.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + 6.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+16.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                  + 3.*pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)-12.*(2.*dMult-7.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + 12.*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)-48.*(dMult-3.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  + 24.*dMult*(dMult-5.))
+                  / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)); 
+  six3n1n1n1n1n1n = (reQ3nQ1nQ1nstarQ1nstarQ1nstarQ1nstar-6.*reQ3nQ1nQ2nstarQ1nstarQ1nstar+6.*reQ4nQ2nstarQ1nstarQ1nstar
+                  - reQ4nQ1nstarQ1nstarQ1nstarQ1nstar-4.*reQ2nQ1nQ1nstarQ1nstarQ1nstar+3.*reQ3nQ1nQ2nstarQ2nstar
+                  - 4.*(dMult-5.)*reQ3nQ1nstarQ1nstarQ1nstar-14.*reQ4nQ3nstarQ1nstar
+                  - 3.*reQ4nQ2nstarQ2nstar+4.*(3.*dMult-17.)*reQ3nQ2nstarQ1nstar+12.*(dMult-6.)*reQ2nQ1nstarQ1nstar
+                  + 12.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))  
+                  + 8.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ3n,2.)+pow(dImQ3n,2.))  
+                  + 6.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-8.*(dMult-5.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.)) 
+                  - 12.*(dMult-5.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-48.*(dMult-3.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  + 12.*pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)+24.*dMult*(dMult-5.))
+                  / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  // Average 6-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(24,six1n1n1n1n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(25,six2n1n1n2n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(26,six2n2n1n1n1n1n);
+  fIntFlowCorrelationsAllEBE->SetBinContent(27,six3n1n1n1n1n1n);
+  // Average 6-particle correlations for all events:         
+  fIntFlowCorrelationsAllPro->Fill(23.5,six1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)); 
+  fIntFlowCorrelationsAllPro->Fill(24.5,six2n1n1n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)); 
+  fIntFlowCorrelationsAllPro->Fill(25.5,six2n2n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  fIntFlowCorrelationsAllPro->Fill(26.5,six3n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)); 
+  // Average 6-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[23]->Fill(dMult+0.5,six1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+   fIntFlowCorrelationsAllVsMPro[24]->Fill(dMult+0.5,six2n1n1n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+   fIntFlowCorrelationsAllVsMPro[25]->Fill(dMult+0.5,six2n2n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+   fIntFlowCorrelationsAllVsMPro[26]->Fill(dMult+0.5,six3n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  }    
+  // Store separetately <6>:
+  fIntFlowCorrelationsEBE->SetBinContent(3,six1n1n1n1n1n1n); // <6>
+  // Testing other multiplicity weights:
+  Double_t mWeight6p = 0.;
+  if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+  {
+   mWeight6p = dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.);
+  } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+    {
+     mWeight6p = 1.;    
+    } else if(!strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+      {
+       mWeight6p = dMult;           
+      }
+  fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(3,mWeight6p); // eW_<6>
+  fIntFlowCorrelationsPro->Fill(2.5,six1n1n1n1n1n1n,mWeight6p);
+  fIntFlowSquaredCorrelationsPro->Fill(2.5,six1n1n1n1n1n1n*six1n1n1n1n1n1n,mWeight6p);
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrelationsVsMPro[2]->Fill(dMult+0.5,six1n1n1n1n1n1n,mWeight6p);
+   fIntFlowSquaredCorrelationsVsMPro[2]->Fill(dMult+0.5,six1n1n1n1n1n1n*six1n1n1n1n1n1n,mWeight6p);
+  }    
+ } // end of if(dMult>5)
+ // 7-particle:
+ Double_t seven2n1n1n1n1n1n1n = 0.; // <cos(n(2*phi1+phi2+phi3-phi4-phi5-phi6-phi7))>
+ if(dMult>6)
+ {
+  seven2n1n1n1n1n1n1n = (reQ2nQ1nQ1nQ1nstarQ1nstarQ1nstarQ1nstar-4.*pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),3.)
+                      - reQ2nQ2nQ1nstarQ1nstarQ1nstarQ1nstar-2.*reQ3nQ1nQ1nstarQ1nstarQ1nstarQ1nstar
+                      + 9.*reQ2nQ2nQ2nstarQ1nstarQ1nstar+20.*reQ3nQ1nQ2nstarQ1nstarQ1nstar 
+                      + 2.*reQ4nQ1nstarQ1nstarQ1nstarQ1nstar-8.*(dMult-8.)*reQ2nQ1nQ1nstarQ1nstarQ1nstar
+                      - 18.*reQ4nQ2nstarQ1nstarQ1nstar-14.*reQ3nQ1nQ2nstarQ2nstar
+                      + 8.*(dMult-7.)*reQ3nQ1nstarQ1nstarQ1nstar+28.*reQ4nQ3nstarQ1nstar
+                      + 12.*reQ4nQ2nstarQ2nstar-8.*(5.*dMult-31.)*reQ3nQ2nstarQ1nstar      
+                      + 12.*(dMult*dMult-15.*dMult+46.)*reQ2nQ1nstarQ1nstar
+                      - 16.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                      - 6.*pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),2.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                      - 3.*pow(pow(dReQ2n,2.)+pow(dImQ2n,2.),2.)
+                      + 12.*(2.*dMult-13.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                      - 12.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+16.*(dMult-6.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                      - 12.*(dMult-8.)*(dMult-4.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                      + 12.*(3.*dMult-14.)*pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),2.)
+                      - 24.*(3.*dMult-7.)*(dMult-6.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                      + 24.*dMult*(dMult-5.)*(dMult-6.))
+                      / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)*(dMult-6.));   
+  // Average 7-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(29,seven2n1n1n1n1n1n1n);       
+  // Average 7-particle correlations for all events:                      
+  fIntFlowCorrelationsAllPro->Fill(28.5,seven2n1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)
+                                                                 *(dMult-4.)*(dMult-5.)*(dMult-6.));
+  // Average 7-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[28]->Fill(dMult+0.5,seven2n1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)
+                                                                              *(dMult-4.)*(dMult-5.)*(dMult-6.));
+  }    
+ } // end of if(dMult>6)
+ // 8-particle:
+ Double_t eight1n1n1n1n1n1n1n1n = 0.; // <cos(n(phi1+phi2+phi3+phi4-phi5-phi6-phi7-phi8))>
+ if(dMult>7)
+ {  
+  eight1n1n1n1n1n1n1n1n = (pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),4.)-12.*reQ2nQ1nQ1nQ1nstarQ1nstarQ1nstarQ1nstar
+                        + 16.*reQ3nQ1nQ1nstarQ1nstarQ1nstarQ1nstar+6.*reQ2nQ2nQ1nstarQ1nstarQ1nstarQ1nstar
+                        - 12.*reQ4nQ1nstarQ1nstarQ1nstarQ1nstar-36.*reQ2nQ2nQ2nstarQ1nstarQ1nstar
+                        - 96.*reQ3nQ1nQ2nstarQ1nstarQ1nstar
+                        + 72.*reQ4nQ2nstarQ1nstarQ1nstar+48.*reQ3nQ1nQ2nstarQ2nstar
+                        - 64.*(dMult-6.)*reQ3nQ1nstarQ1nstarQ1nstar
+                        + 96.*(dMult-6.)*reQ2nQ1nQ1nstarQ1nstarQ1nstar
+                        - 96.*reQ4nQ3nstarQ1nstar-36.*reQ4nQ2nstarQ2nstar
+                        + 192.*(dMult-6.)*reQ3nQ2nstarQ1nstar
+                        - 144.*(dMult-7.)*(dMult-4.)*reQ2nQ1nstarQ1nstar
+                        + 64.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                        - 144.*(dMult-6.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                        + 72.*(dMult-7.)*(dMult-4.)*(pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),2.)+pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                        - 96.*(dMult-7.)*(dMult-6.)*(dMult-2.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                        + 36.*pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),2.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                        + 9.*pow(pow(dReQ2n,2.)+pow(dImQ2n,2.),2.)
+                        - 64.*(dMult-6.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                        + 36.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+                        - 16.*(dMult-6.)*pow(pow(dReQ1n,2.)+pow(dImQ1n,2.),3.)
+                        + 24.*dMult*(dMult-7.)*(dMult-6.)*(dMult-5.))
+                        / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)*(dMult-6.)*(dMult-7.));   
+  // Average 8-particle correlations for single event: 
+  fIntFlowCorrelationsAllEBE->SetBinContent(31,eight1n1n1n1n1n1n1n1n);      
+  // Average 8-particle correlations for all events:                       
+  fIntFlowCorrelationsAllPro->Fill(30.5,eight1n1n1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)
+                                                                   *(dMult-4.)*(dMult-5.)*(dMult-6.)*(dMult-7.));
+  // Average 8-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[30]->Fill(dMult+0.5,eight1n1n1n1n1n1n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)
+                                                                                *(dMult-4.)*(dMult-5.)*(dMult-6.)*(dMult-7.));
+  }     
+  // Store separetately <8>:
+  fIntFlowCorrelationsEBE->SetBinContent(4,eight1n1n1n1n1n1n1n1n); // <8>
+  // Testing other multiplicity weights:
+  Double_t mWeight8p = 0.;
+  if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+  {
+   mWeight8p = dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.)*(dMult-6.)*(dMult-7.);
+  } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+    {
+     mWeight8p = 1.;    
+    } else if(!strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+      {
+       mWeight8p = dMult;           
+      }        
+  fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(4,mWeight8p); // eW_<8>
+  fIntFlowCorrelationsPro->Fill(3.5,eight1n1n1n1n1n1n1n1n,mWeight8p);
+  fIntFlowSquaredCorrelationsPro->Fill(3.5,eight1n1n1n1n1n1n1n1n*eight1n1n1n1n1n1n1n1n,mWeight8p);  
+  if(fCalculateCumulantsVsM)
+  {
+   fIntFlowCorrelationsVsMPro[3]->Fill(dMult+0.5,eight1n1n1n1n1n1n1n1n,mWeight8p);
+   fIntFlowSquaredCorrelationsVsMPro[3]->Fill(dMult+0.5,eight1n1n1n1n1n1n1n1n*eight1n1n1n1n1n1n1n1n,mWeight8p);
+  }    
+ } // end of if(dMult>7) 
+ // EXTRA correlations for v3{5} study:
+ // 4-particle:
+ Double_t four4n2n3n3n = 0.; // <cos(n(4*phi1+2*phi2-3*phi3-3*phi4))>
+ if(dMult>3.)
+ {
+  four4n2n3n3n = (reQ4nQ2nQ3nstarQ3nstar-reQ6nQ4nstarQ2nstar-reQ6nQ3nstarQ3nstar
+               - 2.*reQ4nQ3nstarQ1nstar-2.*reQ3nQ2nstarQ1nstar
+               + (pow(dReQ6n,2.)+pow(dImQ6n,2.))+2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+               + 2.*(2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + (pow(dReQ1n,2.)+pow(dImQ1n,2.))-3.*dMult))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));               
+  fIntFlowCorrelationsAllPro->Fill(32.5,four4n2n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  // Average 4-particle correlations vs M for all events:                
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[32]->Fill(dMult+0.5,four4n2n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  }    
+ } // end of if(dMult>3.)
+ // 5-particle:
+ Double_t five3n3n2n2n2n = 0.; // <cos(n(3*phi1+3*phi2-2*phi3-2*phi4-2*phi5))>                                    
+ if(dMult>4.)
+ {
+  five3n3n2n2n2n = (reQ3nQ3nQ2nstarQ2nstarQ2nstar-reQ6nQ2nstarQ2nstarQ2nstar-3.*reQ4nQ2nQ3nstarQ3nstar 
+                 - 6.*reQ3nQ1nQ2nstarQ2nstar+2.*reQ6nQ3nstarQ3nstar+3.*reQ6nQ4nstarQ2nstar
+                 + 6.*reQ4nQ3nstarQ1nstar+6.*reQ4nQ2nstarQ2nstar
+                 + 12.*reQ3nQ2nstarQ1nstar+6.*reQ2nQ1nstarQ1nstar
+                 - 2.*((pow(dReQ6n,2.)+pow(dImQ6n,2.)) 
+                 + 3.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+                 + 6.*(pow(dReQ3n,2.)+pow(dImQ3n,2.)) 
+                 + 9.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 6.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-12.*dMult))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(33.5,five3n3n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[33]->Fill(dMult+0.5,five3n3n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  }     
+ } // end of if(dMult>4.)
+ // EXTRA correlations for Teaney-Yan study: 
+ // 2-particle:
+ Double_t two5n5n = 0.; // <cos(5n(phi1-phi2))>
+ Double_t two6n6n = 0.; // <cos(6n(phi1-phi2))> 
+ if(dMult>1)
+ {
+  two5n5n = (pow(dReQ5n,2.)+pow(dImQ5n,2.)-dMult)/(dMult*(dMult-1.)); 
+  two6n6n = (pow(dReQ6n,2.)+pow(dImQ6n,2.)-dMult)/(dMult*(dMult-1.));        
+  // Average 2-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(34.5,two5n5n,dMult*(dMult-1.));
+  fIntFlowCorrelationsAllPro->Fill(35.5,two6n6n,dMult*(dMult-1.)); 
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[34]->Fill(dMult+0.5,two5n5n,dMult*(dMult-1.));
+   fIntFlowCorrelationsAllVsMPro[35]->Fill(dMult+0.5,two6n6n,dMult*(dMult-1.));
+  }       
+ } // end of if(dMult>1)
+ // 3-particle:
+ Double_t three5n3n2n = 0.; // <cos(n(5*phi1-3*phi2-2*phi3)> 
+ Double_t three5n4n1n = 0.; // <cos(n(5*phi1-4*phi2-1*phi3)> 
+ Double_t three6n3n3n = 0.; // <cos(n(6*phi1-3*phi2-3*phi3)> 
+ Double_t three6n4n2n = 0.; // <cos(n(6*phi1-4*phi2-2*phi3)> 
+ Double_t three6n5n1n = 0.; // <cos(n(6*phi1-5*phi2-1*phi3)> 
+ if(dMult>2)
+ {
+  three5n3n2n = (reQ5nQ3nstarQ2nstar-(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+              - (pow(dReQ3n,2.)+pow(dImQ3n,2.))
+              - (pow(dReQ2n,2.)+pow(dImQ2n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));           
+  three5n4n1n = (reQ5nQ4nstarQ1nstar-(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+              - (pow(dReQ4n,2.)+pow(dImQ4n,2.))
+              - (pow(dReQ1n,2.)+pow(dImQ1n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));                          
+  three6n3n3n = (reQ6nQ3nstarQ3nstar-2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+              - (pow(dReQ6n,2.)+pow(dImQ6n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.)); 
+  three6n4n2n = (reQ6nQ4nstarQ2nstar-(pow(dReQ6n,2.)+pow(dImQ6n,2.))
+              - (pow(dReQ4n,2.)+pow(dImQ4n,2.))
+              - (pow(dReQ2n,2.)+pow(dImQ2n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));
+  three6n5n1n = (reQ6nQ5nstarQ1nstar-(pow(dReQ6n,2.)+pow(dImQ6n,2.))
+              - (pow(dReQ5n,2.)+pow(dImQ5n,2.))
+              - (pow(dReQ1n,2.)+pow(dImQ1n,2.))+2.*dMult)
+              / (dMult*(dMult-1.)*(dMult-2.));            
+  // Average 3-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(36.5,three5n3n2n,dMult*(dMult-1.)*(dMult-2.)); // <<cos(n(5*phi1-3*phi2-2*phi3)>> 
+  fIntFlowCorrelationsAllPro->Fill(37.5,three5n4n1n,dMult*(dMult-1.)*(dMult-2.)); // <<cos(n(5*phi1-4*phi2-1*phi3)>> 
+  fIntFlowCorrelationsAllPro->Fill(38.5,three6n3n3n,dMult*(dMult-1.)*(dMult-2.)); // <<cos(n(6*phi1-3*phi2-3*phi3)>> 
+  fIntFlowCorrelationsAllPro->Fill(39.5,three6n4n2n,dMult*(dMult-1.)*(dMult-2.)); // <<cos(n(6*phi1-4*phi2-2*phi3)>>
+  fIntFlowCorrelationsAllPro->Fill(40.5,three6n5n1n,dMult*(dMult-1.)*(dMult-2.)); // <<cos(n(6*phi1-5*phi2-1*phi3)>>
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[36]->Fill(dMult+0.5,three5n3n2n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[37]->Fill(dMult+0.5,three5n4n1n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[38]->Fill(dMult+0.5,three6n3n3n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[39]->Fill(dMult+0.5,three6n4n2n,dMult*(dMult-1.)*(dMult-2.));
+   fIntFlowCorrelationsAllVsMPro[40]->Fill(dMult+0.5,three6n5n1n,dMult*(dMult-1.)*(dMult-2.));
+  }       
+ } // end of if(dMult>2)
+ // 4-particle:
+ Double_t four6n3n2n1n = 0.; // <cos(n(6*phi1-3*phi2-2*phi3-1*phi4)>
+ Double_t four3n2n3n2n = 0.; // <cos(n(3*phi1+2*phi2-3*phi3-2*phi4)>
+ Double_t four4n1n3n2n = 0.; // <cos(n(4*phi1+1*phi2-3*phi3-2*phi4)> 
+ Double_t four3n3n3n3n = 0.; // <cos(3n(phi1+phi2-phi3-phi4))> 
+ //Double_t four4n2n3n3n = 0.; // <cos(n(4*phi1+2*phi2-3*phi3-3*phi4)> // I already have this one above
+ Double_t four5n1n3n3n = 0.; // <cos(n(5*phi1+1*phi2-3*phi3-3*phi4)>
+ Double_t four4n2n4n2n = 0.; // <cos(n(4*phi1+2*phi2-4*phi3-2*phi4)> 
+ Double_t four5n1n4n2n = 0.; // <cos(n(5*phi1+1*phi2-4*phi3-2*phi4)> 
+ Double_t four5n3n1n1n = 0.; // <cos(n(5*phi1-3*phi2-1*phi3-1*phi4)> 
+ Double_t four5n2n2n1n = 0.; // <cos(n(5*phi1-2*phi2-2*phi3-1*phi4)>
+ Double_t four5n1n5n1n = 0.; // <cos(n(5*phi1+1*phi2-5*phi3-1*phi4)>
+ Double_t four6n4n1n1n = 0.; // <cos(n(6*phi1-4*phi2-1*phi3-1*phi4)>
+ Double_t four6n2n2n2n = 0.; // <cos(n(6*phi1-2*phi2-2*phi3-2*phi4)>
+ if(dMult>3)
+ {
+  four6n3n2n1n = (reQ6nQ3nstarQ2nstarQ1nstar-reQ6nQ4nstarQ2nstar-reQ6nQ3nstarQ3nstar-reQ6nQ5nstarQ1nstar
+               - reQ5nQ3nstarQ2nstar-reQ4nQ3nstarQ1nstar-reQ3nQ2nstarQ1nstar
+               + 2.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))+pow(dReQ5n,2.)+pow(dImQ5n,2.)
+               + pow(dReQ4n,2.)+pow(dImQ4n,2.)+3.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+               + 2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))+2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  four3n2n3n2n = (dQ3nQ2nQ3nstarQ2nstar-2.*reQ5nQ3nstarQ2nstar-2.*reQ3nQ2nstarQ1nstar
+               + pow(dReQ5n,2.)+pow(dImQ5n,2.)+pow(dReQ1n,2.)+pow(dImQ1n,2.)               
+               -(dMult-4.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.)+pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + dMult*(dMult-6.))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));     
+  four4n1n3n2n = (reQ4nQ1nQ3nstarQ2nstar-reQ5nQ3nstarQ2nstar-reQ5nQ4nstarQ1nstar-reQ4nQ3nstarQ1nstar
+               - reQ4nQ2nstarQ2nstar-reQ3nQ2nstarQ1nstar-reQ2nQ1nstarQ1nstar
+               + pow(dReQ5n,2.)+pow(dImQ5n,2.)+2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+               + 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+3.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + 3.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult) 
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));                             
+  four3n3n3n3n = (2.*dMult*(dMult-3.)+pow((pow(dReQ3n,2.)+pow(dImQ3n,2.)),2.)-4.*(dMult-2.)*(pow(dReQ3n,2.)
+               + pow(dImQ3n,2.))-2.*reQ6nQ3nstarQ3nstar+(pow(dReQ6n,2.)+pow(dImQ6n,2.)))
+               / (dMult*(dMult-1)*(dMult-2.)*(dMult-3.));   
+  //four4n2n3n3n = ; // I already have this one above
+  four5n1n3n3n = (reQ5nQ1nQ3nstarQ3nstar-reQ6nQ5nstarQ1nstar-reQ6nQ3nstarQ3nstar-2.*reQ5nQ3nstarQ2nstar
+               - 2.*reQ3nQ2nstarQ1nstar+pow(dReQ6n,2.)+pow(dImQ6n,2.)+2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+               + 4.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + 2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult)                                  
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));   
+  four4n2n4n2n = (dQ4nQ2nQ4nstarQ2nstar-2.*reQ6nQ4nstarQ2nstar-2.*reQ4nQ2nstarQ2nstar)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               - ((dMult-5.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + (dMult-4.)*(pow(dReQ4n,2.)+pow(dImQ4n,2.))-(pow(dReQ6n,2.)+pow(dImQ6n,2.)))
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.))
+               + (dMult-6.)/((dMult-1.)*(dMult-2.)*(dMult-3.)); 
+  four5n1n4n2n = (reQ5nQ1nQ4nstarQ2nstar-reQ6nQ5nstarQ1nstar-reQ6nQ4nstarQ2nstar-reQ5nQ4nstarQ1nstar
+               - reQ5nQ3nstarQ2nstar-reQ4nQ3nstarQ1nstar-reQ2nQ1nstarQ1nstar+pow(dReQ6n,2.)+pow(dImQ6n,2.)
+               + 2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))+2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+               + pow(dReQ3n,2.)+pow(dImQ3n,2.)+2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + 3.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));     
+  four5n3n1n1n = (reQ5nQ3nstarQ1nstarQ1nstar-2.*reQ5nQ4nstarQ1nstar-reQ5nQ3nstarQ2nstar-2.*reQ4nQ3nstarQ1nstar
+               - reQ2nQ1nstarQ1nstar+2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))+2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+               + 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+pow(dReQ2n,2.)+pow(dImQ2n,2.)
+               + 4.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult) 
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));                    
+  four5n2n2n1n = (reQ5nQ2nstarQ2nstarQ1nstar-reQ5nQ4nstarQ1nstar-2.*reQ5nQ3nstarQ2nstar-reQ4nQ2nstarQ2nstar
+               - 2.*reQ3nQ2nstarQ1nstar+2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))+pow(dReQ4n,2.)+pow(dImQ4n,2.)
+               + 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+4.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+               + 2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-6.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));   
+  four5n1n5n1n = (dQ5nQ1nQ5nstarQ1nstar-2.*reQ6nQ5nstarQ1nstar-2.*reQ5nQ4nstarQ1nstar
+               + pow(dReQ6n,2.)+pow(dImQ6n,2.)-(dMult-4.)*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+               + pow(dReQ4n,2.)+pow(dImQ4n,2.)-(dMult-4.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))+dMult*(dMult-6.))  
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));                  
+  
+  four6n4n1n1n = (reQ6nQ4nstarQ1nstarQ1nstar
+               - dMult*(dMult-1.)*(dMult-2.)*(three2n1n1n+2.*three5n4n1n+2.*three6n5n1n+three6n4n2n)
+               - dMult*(dMult-1.)*(2.*two1n1n+1.*two4n4n+1.*two6n6n+1.*two2n2n+2.*two5n5n)
+               - 1.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  four6n2n2n2n = (reQ6nQ2nstarQ2nstarQ2nstar-3.*reQ6nQ4nstarQ2nstar-3.*reQ4nQ2nstarQ2nstar
+               + 2.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))+3.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+               + 6.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))-6.*dMult)
+               / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  // Average 4-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(41.5,four6n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(42.5,four3n2n3n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(43.5,four4n1n3n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(44.5,four3n3n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  //fIntFlowCorrelationsAllPro->Fill(45.5,four4n2n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)); // I already have this one above
+  fIntFlowCorrelationsAllPro->Fill(46.5,four5n1n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(47.5,four4n2n4n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(48.5,four5n1n4n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(49.5,four5n3n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(50.5,four5n2n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(51.5,four5n1n5n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(58.5,four6n4n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  fIntFlowCorrelationsAllPro->Fill(59.5,four6n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[41]->Fill(dMult+0.5,four6n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[42]->Fill(dMult+0.5,four3n2n3n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[43]->Fill(dMult+0.5,four4n1n3n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[44]->Fill(dMult+0.5,four3n3n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   //fIntFlowCorrelationsAllVsMPro[45]->Fill(dMult+0.5,four4n2n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[46]->Fill(dMult+0.5,four5n1n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[47]->Fill(dMult+0.5,four4n2n4n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[48]->Fill(dMult+0.5,four5n1n4n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[49]->Fill(dMult+0.5,four5n3n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[50]->Fill(dMult+0.5,four5n2n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[51]->Fill(dMult+0.5,four5n1n5n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[58]->Fill(dMult+0.5,four6n4n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+   fIntFlowCorrelationsAllVsMPro[59]->Fill(dMult+0.5,four6n2n2n2n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.));
+  }       
+ } // end of if(dMult>3)
+
+ // 5-particle:
+ Double_t five3n3n3n2n1n = 0.; // <cos(n(3*phi1+3*phi2-3*phi3-2*phi4-1*phi5)>
+ Double_t five4n2n3n2n1n = 0.; // <cos(n(4*phi1+2*phi2-3*phi3-2*phi4-1*phi5)>
+ Double_t five3n2n3n1n1n = 0.; // <cos(n(3*phi1+2*phi2-3*phi3-1*phi4-1*phi5)>
+ Double_t five3n2n2n2n1n = 0.; // <cos(n(3*phi1+2*phi2-2*phi3-2*phi4-1*phi5)>
+ Double_t five5n1n3n2n1n = 0.; // <cos(n(5*phi1+1*phi2-3*phi3-2*phi4-1*phi5)>
+ Double_t five6n2n2n1n1n = 0.; // <cos(n(6*phi1-2*phi2-2*phi3-1*phi4-1*phi5)>
+ Double_t five4n1n1n3n3n = 0.; // <cos(n(4*phi1+1*phi2+1*phi3-3*phi4-3*phi5)>
+ if(dMult>4)
+ { 
+  five3n3n3n2n1n = (reQ3nQ3nQ3nstarQ2nstarQ1nstar-reQ6nQ3nstarQ2nstarQ1nstar-reQ5nQ1nQ3nstarQ3nstar-reQ4nQ2nQ3nstarQ3nstar
+                 + reQ6nQ5nstarQ1nstar+reQ6nQ4nstarQ2nstar+3.*reQ6nQ3nstarQ3nstar+4.*reQ5nQ3nstarQ2nstar+4.*reQ4nQ3nstarQ1nstar
+                 - 2.*(dMult-6.)*reQ3nQ2nstarQ1nstar-2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.)) 
+                 - 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - 2.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))-2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+                 - 2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+2.*(3.*dMult-10.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - pow((pow(dReQ3n,2.)+pow(dImQ3n,2.)),2.)+2.*(dMult-5.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 2.*(dMult-5.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-4.*dMult*(dMult-6.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));                                  
+  five4n2n3n2n1n = (reQ4nQ2nQ3nstarQ2nstarQ1nstar-reQ6nQ3nstarQ2nstarQ1nstar-reQ5nQ1nQ4nstarQ2nstar
+                 - reQ4nQ2nQ3nstarQ3nstar-reQ4nQ1nQ3nstarQ2nstar-reQ4nQ2nstarQ1nstarQ1nstar
+                 - reQ3nQ1nQ2nstarQ2nstar-(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 3.*reQ6nQ4nstarQ2nstar+reQ6nQ5nstarQ1nstar+reQ6nQ3nstarQ3nstar+reQ5nQ4nstarQ1nstar
+                 + 3.*reQ5nQ3nstarQ2nstar-(dMult-7.)*reQ4nQ3nstarQ1nstar+3.*reQ4nQ2nstarQ2nstar+7.*reQ3nQ2nstarQ1nstar
+                 + 4.*reQ2nQ1nstarQ1nstar-(pow(dReQ4n,2.)+pow(dImQ4n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 - (pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - 2.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))-2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+                 + (dMult-8.)*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+(dMult-10.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 + 2.*(dMult-7.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))+(dMult-12.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - 2.*dMult*(dMult-12.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));   
+  five3n2n3n1n1n = (reQ3nQ2nQ3nstarQ1nstarQ1nstar-reQ5nQ3nstarQ1nstarQ1nstar-2.*reQ4nQ1nQ3nstarQ2nstar-reQ3nQ1nstarQ1nstarQ1nstar
+                 - 2.*reQ3nQ1nQ2nstarQ2nstar+2.*reQ5nQ4nstarQ1nstar+3.*reQ5nQ3nstarQ2nstar+6.*reQ4nQ3nstarQ1nstar
+                 + 2.*reQ4nQ2nstarQ2nstar+9.*reQ3nQ2nstarQ1nstar-(dMult-8.)*reQ2nQ1nstarQ1nstar
+                 - (pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.)) 
+                 - 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.)) 
+                 - 2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))-4.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))
+                 + 2.*(dMult-6.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))+(dMult-12.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 2.*(dMult-9.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-2.*dMult*(dMult-12.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  five3n2n2n2n1n = (reQ3nQ2nQ2nstarQ2nstarQ1nstar-reQ5nQ2nstarQ2nstarQ1nstar-reQ4nQ1nQ3nstarQ2nstar-reQ3nQ1nQ2nstarQ2nstar
+                 - 2.*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))+reQ5nQ4nstarQ1nstar
+                 + 4.*reQ5nQ3nstarQ2nstar+reQ4nQ3nstarQ1nstar+3.*reQ4nQ2nstarQ2nstar-2.*(dMult-6.)*reQ3nQ2nstarQ1nstar
+                 + 4.*reQ2nQ1nstarQ1nstar-2.*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+                 - 2.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+2.*(dMult-5.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 - 2.*(pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)+2.*(3.*dMult-10.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                 + 2.*(dMult-6.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))-4.*dMult*(dMult-6.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)); 
+  five5n1n3n2n1n = (reQ5nQ1nQ3nstarQ2nstarQ1nstar-reQ6nQ3nstarQ2nstarQ1nstar-reQ5nQ1nQ4nstarQ2nstar-reQ5nQ1nQ3nstarQ3nstar
+                 - reQ4nQ1nQ3nstarQ2nstar-reQ5nQ3nstarQ1nstarQ1nstar-reQ5nQ2nstarQ2nstarQ1nstar 
+                 + 3.*reQ6nQ5nstarQ1nstar+reQ6nQ4nstarQ2nstar+reQ6nQ3nstarQ3nstar+4.*reQ5nQ4nstarQ1nstar
+                 - (dMult-7.)*reQ5nQ3nstarQ2nstar+4.*reQ4nQ3nstarQ1nstar+reQ4nQ2nstarQ2nstar+6.*reQ3nQ2nstarQ1nstar
+                 + 3.*reQ2nQ1nstarQ1nstar-(pow(dReQ5n,2.)+pow(dImQ5n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - (pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - (pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - 2.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))+(dMult-8.)*(pow(dReQ5n,2.)+pow(dImQ5n,2.))  
+                 - 4.*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+(dMult-10.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                 + (dMult-10.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))+2.*(dMult-7.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                 - 2.*dMult*(dMult-12.))
+                 / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));      
+  
+  // five6n2n2n1n1n = ;
+  // five4n1n1n3n3n = ; 
+  
+  // Average 5-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(52.5,five3n3n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(53.5,five4n2n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(54.5,five3n2n3n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(55.5,five3n2n2n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(56.5,five5n1n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(60.5,five6n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  fIntFlowCorrelationsAllPro->Fill(61.5,five4n1n1n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[52]->Fill(dMult+0.5,five3n3n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[53]->Fill(dMult+0.5,five4n2n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[54]->Fill(dMult+0.5,five3n2n3n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[55]->Fill(dMult+0.5,five3n2n2n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[56]->Fill(dMult+0.5,five5n1n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[60]->Fill(dMult+0.5,five6n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+   fIntFlowCorrelationsAllVsMPro[61]->Fill(dMult+0.5,five4n1n1n3n3n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.));
+  }         
+ } // end of if(dMult>4)
+
+ // 6-particle:
+ Double_t six3n2n1n3n2n1n = 0.; // <cos(n(3*phi1+2*phi2+1*phi3-3*phi4-2*phi5-1*phi6)>
+ Double_t six3n3n2n2n1n1n = 0.; // <cos(n(3*phi1+3*phi2-2*phi3-2*phi4-1*phi5-1*phi6)>   
+ if(dMult>5.)
+ { 
+  six3n2n1n3n2n1n = (dQ3nQ2nQ1nQ3nstarQ2nstarQ1nstar-2.*reQ3nQ3nQ3nstarQ2nstarQ1nstar
+                  - 2.*reQ3nQ2nQ2nstarQ2nstarQ1nstar-2.*reQ3nQ1nQ2nstarQ1nstarQ1nstar
+                  - 2.*reQ3nQ2nQ3nstarQ1nstarQ1nstar-2.*reQ4nQ2nQ3nstarQ2nstarQ1nstar
+                  - 2.*reQ5nQ1nQ3nstarQ2nstarQ1nstar+4.*reQ6nQ3nstarQ2nstarQ1nstar
+                  + 2.*reQ5nQ1nQ4nstarQ2nstar+2.*reQ5nQ1nQ3nstarQ3nstar
+                  + 2.*reQ4nQ2nQ3nstarQ3nstar+6.*reQ4nQ1nQ3nstarQ2nstar
+                  + 2.*reQ5nQ3nstarQ1nstarQ1nstar+2.*reQ5nQ2nstarQ2nstarQ1nstar
+                  + 6.*reQ3nQ1nQ2nstarQ2nstar+2.*reQ4nQ2nstarQ1nstarQ1nstar
+                  - 4.*reQ6nQ5nstarQ1nstar-4.*reQ6nQ4nstarQ2nstar-6.*reQ5nQ4nstarQ1nstar
+                  - 4.*reQ6nQ3nstarQ3nstar+2.*(dMult-11.)*reQ5nQ3nstarQ2nstar
+                  + 2.*(dMult-13.)*reQ4nQ3nstarQ1nstar-8.*reQ4nQ2nstarQ2nstar
+                  + 2.*(5.*dMult-32.)*reQ3nQ2nstarQ1nstar+2.*reQ3nQ1nstarQ1nstarQ1nstar
+                  + 2.*(dMult-13.)*reQ2nQ1nstarQ1nstar
+                  - (dMult-10.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + (pow(dReQ5n,2.)+pow(dImQ5n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  + (pow(dReQ4n,2.)+pow(dImQ4n,2.))*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  - (dMult-11.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  - (dMult-10.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  + 4.*(pow(dReQ6n,2.)+pow(dImQ6n,2.))-(dMult-12.)*(pow(dReQ5n,2.)+pow(dImQ5n,2.))
+                  - (dMult-16.)*(pow(dReQ4n,2.)+pow(dImQ4n,2.))+pow((pow(dReQ3n,2.)+pow(dImQ3n,2.)),2.)
+                  + (dMult*dMult-19.*dMult+68.)*(pow(dReQ3n,2.)+pow(dImQ3n,2.))
+                  + (dMult*dMult-19.*dMult+72.)*(pow(dReQ2n,2.)+pow(dImQ2n,2.))
+                  + pow((pow(dReQ2n,2.)+pow(dImQ2n,2.)),2.)+pow((pow(dReQ1n,2.)+pow(dImQ1n,2.)),2.)
+                  + (dMult*dMult-20.*dMult+80.)*(pow(dReQ1n,2.)+pow(dImQ1n,2.))
+                  - dMult*(dMult-12.)*(dMult-10.))
+                  / (dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));   
+
+  // six3n3n2n2n1n1n = ;
+
+  // Average 6-particle correlations for all events:      
+  fIntFlowCorrelationsAllPro->Fill(57.5,six3n2n1n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  fIntFlowCorrelationsAllPro->Fill(62.5,six3n3n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  if(fCalculateAllCorrelationsVsM)
+  {
+   fIntFlowCorrelationsAllVsMPro[57]->Fill(dMult+0.5,six3n2n1n3n2n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+   fIntFlowCorrelationsAllVsMPro[62]->Fill(dMult+0.5,six3n3n2n2n1n1n,dMult*(dMult-1.)*(dMult-2.)*(dMult-3.)*(dMult-4.)*(dMult-5.));
+  }          
+ } // end of if(dMult>5.)
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrelations()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StorePhiDistributionForOneEvent(AliFlowEventSimple *anEvent)
+{
+ // Store phi distribution for one event to illustrate flow.
+ if(fPhiDistributionForOneEvent->GetEntries()>0){return;} // store only phi distribution for one event
+ Double_t vMin = fPhiDistributionForOneEventSettings[0]; 
+ Double_t vMax = fPhiDistributionForOneEventSettings[1]; 
+ Double_t refMultMin = fPhiDistributionForOneEventSettings[2]; 
+ Double_t refMultMax = fPhiDistributionForOneEventSettings[3]; 
+ Double_t vEBE = 0.;
+ Double_t cumulant4thEBE = fIntFlowCorrelationsEBE->GetBinContent(2)-2.*pow(fIntFlowCorrelationsEBE->GetBinContent(1),2.);
+ if(cumulant4thEBE<0.)
+ {
+  vEBE = pow(-1.*cumulant4thEBE,0.25);
+  if((vEBE>vMin && vEBE<vMax) && (fReferenceMultiplicityEBE>refMultMin && fReferenceMultiplicityEBE<refMultMax))
+  {
+   fPhiDistributionForOneEvent->SetTitle(Form("v_{%i} = %f",fHarmonic,vEBE));
+   for(Int_t p=0;p<anEvent->NumberOfTracks();p++)
+   {
+    if(anEvent->GetTrack(p)->InRPSelection())
+    {
+     fPhiDistributionForOneEvent->Fill(anEvent->GetTrack(p)->Phi());
+    }
+   } // end of for(Int_t p=0;p<anEvent->NumberOfTracks();p++)
+  } else
+    {
+     fPhiDistributionForOneEvent->SetTitle(Form("v_{%i} = %f, out of specified boundaries",fHarmonic,vEBE));  
+    } 
+   
+ } // end of if(cumulant4thEBE<0.)
+} // end of void AliFlowAnalysisWithQCumulants::StorePhiDistributionForOneEvent(AliFlowEventSimple *anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowProductOfCorrelations()
+{
+ // Calculate averages of products of correlations for integrated flow.
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ Int_t counter = 0;
+ for(Int_t ci1=1;ci1<4;ci1++)
+ {
+  for(Int_t ci2=ci1+1;ci2<=4;ci2++)
+  {
+   fIntFlowProductOfCorrelationsPro->Fill(0.5+counter,
+                                          fIntFlowCorrelationsEBE->GetBinContent(ci1)*
+                                          fIntFlowCorrelationsEBE->GetBinContent(ci2),
+                                          fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci1)*
+                                          fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci2));
+   // products versus multiplicity:  // [0=<<2><4>>,1=<<2><6>>,2=<<2><8>>,3=<<4><6>>,4=<<4><8>>,5=<<6><8>>]
+   if(fCalculateCumulantsVsM)
+   {
+    fIntFlowProductOfCorrelationsVsMPro[counter]->Fill(dMult+0.5, // to be improved: dMult => sum of weights ?
+                                                       fIntFlowCorrelationsEBE->GetBinContent(ci1)*
+                                                       fIntFlowCorrelationsEBE->GetBinContent(ci2),
+                                                       fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci1)*
+                                                       fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci2));
+   } // end of if(fCalculateCumulantsVsM)
+   counter++;                                                                                                                        
+  }
+ }
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowProductOfCorrelations()
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowProductOfCorrectionTermsForNUA()
+{
+ // Calculate averages of products of correction terms for NUA.
+ // a) Binning of fIntFlowProductOfCorrectionTermsForNUAPro is organized as follows:
+ //     1st bin: <<2><cos(phi)>> 
+ //     2nd bin: <<2><sin(phi)>>
+ //     3rd bin: <<cos(phi)><sin(phi)>>
+ //     4th bin: <<2><cos(phi1+phi2)>> 
+ //     5th bin: <<2><sin(phi1+phi2)>>
+ //     6th bin: <<2><cos(phi1-phi2-phi3)>> 
+ //     7th bin: <<2><sin(phi1-phi2-phi3)>>
+ //     8th bin: <<4><cos(phi1)>>
+ //     9th bin: <<4><sin(phi1)>>
+ //    10th bin: <<4><cos(phi1+phi2)>>
+ //    11th bin: <<4><sin(phi1+phi2)>>
+ //    12th bin: <<4><cos(phi1-phi2-phi3)>>
+ //    13th bin: <<4><sin(phi1-phi2-phi3)>>
+ //    14th bin: <<cos(phi1)><cos(phi1+phi2)>>
+ //    15th bin: <<cos(phi1)><sin(phi1+phi2)>> 
+ //    16th bin: <<cos(phi1)><cos(phi1-phi2-phi3)>>
+ //    17th bin: <<cos(phi1)><sin(phi1-phi2-phi3)>> 
+ //    18th bin: <<sin(phi1)><cos(phi1+phi2)>>
+ //    19th bin: <<sin(phi1)><sin(phi1+phi2)>> 
+ //    20th bin: <<sin(phi1)><cos(phi1-phi2-phi3)>>
+ //    21st bin: <<sin(phi1)><sin(phi1-phi2-phi3)>>
+ //    22nd bin: <<cos(phi1+phi2)><sin(phi1+phi2)>>
+ //    23rd bin: <<cos(phi1+phi2)><cos(phi1-phi2-phi3)>>
+ //    24th bin: <<cos(phi1+phi2)><sin(phi1-phi2-phi3)>>
+ //    25th bin: <<sin(phi1+phi2)><cos(phi1-phi2-phi3)>>
+ //    26th bin: <<sin(phi1+phi2)><sin(phi1-phi2-phi3)>>
+ //    27th bin: <<cos(phi1-phi2-phi3)><sin(phi1-phi2-phi3)>>
+ // <<2><cos(phi)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(0.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1));
+ // <<2><sin(phi)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(1.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // <<cos(phi)><sin(phi)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(2.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // <<2><cos(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(3.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)); 
+ // <<2><sin(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(4.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)); 
+ // <<2><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(5.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // <<2><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(6.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3)); 
+ // <<4><cos(phi1)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(7.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1));
+ // <<4><sin(phi1)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(8.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // <<4><cos(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(9.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)); 
+ // <<4><sin(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(10.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2));
+ // <<4><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(11.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // <<4><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(12.5,
+                                                 fIntFlowCorrelationsEBE->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));   
+ // <<cos(phi1)><cos(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(13.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)); 
+ // <<cos(phi1)><sin(phi1+phi2)>>: 
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(14.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)); 
+ // <<cos(phi1)><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(15.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // <<cos(phi1)><sin(phi1-phi2-phi3)>>: 
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(16.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));  
+ // <<sin(phi1)><cos(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(17.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2));  
+ // <<sin(phi1)><sin(phi1+phi2)>>: 
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(18.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2));  
+ // <<sin(phi1)><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(19.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // <<sin(phi1)><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(20.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(1)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3)); 
+ // <<cos(phi1+phi2)><sin(phi1+phi2)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(21.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)); 
+ // <<cos(phi1+phi2)><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(22.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));   
+ // <<cos(phi1+phi2)><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(23.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));    
+ // <<sin(phi1+phi2)><cos(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(24.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));    
+ // <<sin(phi1+phi2)><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(25.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(2)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));    
+ // <<cos(phi1-phi2-phi3)><sin(phi1-phi2-phi3)>>:
+ fIntFlowProductOfCorrectionTermsForNUAPro->Fill(26.5,
+                                                 fIntFlowCorrectionTermsForNUAEBE[1]->GetBinContent(3)*fIntFlowCorrectionTermsForNUAEBE[0]->GetBinContent(3),
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)
+                                                 *fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));    
+
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowProductOfCorrectionTermsForNUA()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateCovariancesIntFlow()
+{
+ // a) Calculate unbiased estimators Cov(<2>,<4>), Cov(<2>,<6>), Cov(<2>,<8>), Cov(<4>,<6>), Cov(<4>,<8>) and Cov(<6>,<8>)
+ //    for covariances V_(<2>,<4>), V_(<2>,<6>), V_(<2>,<8>), V_(<4>,<6>), V_(<4>,<8>) and V_(<6>,<8>).
+ // b) Store in histogram fIntFlowCovariances for instance the following: 
+ //
+ //             Cov(<2>,<4>) * (sum_{i=1}^{N} w_{<2>}_i w_{<4>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<4>}_j)]
+ // 
+ //    where N is the number of events, w_{<2>} is event weight for <2> and w_{<4>} is event weight for <4>.
+ // c) Binning of fIntFlowCovariances is organized as follows:
+ // 
+ //     1st bin: Cov(<2>,<4>) * (sum_{i=1}^{N} w_{<2>}_i w_{<4>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<4>}_j)] 
+ //     2nd bin: Cov(<2>,<6>) * (sum_{i=1}^{N} w_{<2>}_i w_{<6>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<6>}_j)]
+ //     3rd bin: Cov(<2>,<8>) * (sum_{i=1}^{N} w_{<2>}_i w_{<8>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<8>}_j)]
+ //     4th bin: Cov(<4>,<6>) * (sum_{i=1}^{N} w_{<4>}_i w_{<6>}_i )/[(sum_{i=1}^{N} w_{<4>}_i) * (sum_{j=1}^{N} w_{<6>}_j)]
+ //     5th bin: Cov(<4>,<8>) * (sum_{i=1}^{N} w_{<4>}_i w_{<8>}_i )/[(sum_{i=1}^{N} w_{<4>}_i) * (sum_{j=1}^{N} w_{<8>}_j)]
+ //     6th bin: Cov(<6>,<8>) * (sum_{i=1}^{N} w_{<6>}_i w_{<8>}_i )/[(sum_{i=1}^{N} w_{<6>}_i) * (sum_{j=1}^{N} w_{<8>}_j)]
+ //
+    
+ // Average 2-, 4-, 6- and 8-particle correlations for all events:
+ Double_t correlation[4] = {0.};
+ for(Int_t ci=0;ci<4;ci++)
+ {
+  correlation[ci] = fIntFlowCorrelationsPro->GetBinContent(ci+1);
+ } 
+ // Average products of 2-, 4-, 6- and 8-particle correlations: 
+ Double_t productOfCorrelations[4][4] = {{0.}};
+ Int_t productOfCorrelationsLabel = 1;
+ // Denominators in the expressions for the unbiased estimator for covariance:
+ Double_t denominator[4][4] = {{0.}};
+ Int_t sumOfProductOfEventWeightsLabel1 = 1;
+ // Weight dependent prefactor which multiply unbiased estimators for covariances:
+ Double_t wPrefactor[4][4] = {{0.}}; 
+ Int_t sumOfProductOfEventWeightsLabel2 = 1;
+ for(Int_t c1=0;c1<4;c1++)
+ {
+  for(Int_t c2=c1+1;c2<4;c2++)
+  {
+   productOfCorrelations[c1][c2] = fIntFlowProductOfCorrelationsPro->GetBinContent(productOfCorrelationsLabel);
+   if(TMath::Abs(fIntFlowSumOfEventWeights[0]->GetBinContent(c1+1)) > 1.e-44 && TMath::Abs(fIntFlowSumOfEventWeights[0]->GetBinContent(c2+1)) > 1.e-44)
+   {
+    denominator[c1][c2] = 1.-(fIntFlowSumOfProductOfEventWeights->GetBinContent(sumOfProductOfEventWeightsLabel1))
+                        / (fIntFlowSumOfEventWeights[0]->GetBinContent(c1+1) 
+                        * fIntFlowSumOfEventWeights[0]->GetBinContent(c2+1));                              
+    wPrefactor[c1][c2] = fIntFlowSumOfProductOfEventWeights->GetBinContent(sumOfProductOfEventWeightsLabel2)
+                       / (fIntFlowSumOfEventWeights[0]->GetBinContent(c1+1)
+                       * fIntFlowSumOfEventWeights[0]->GetBinContent(c2+1));                                                       
+   }
+   productOfCorrelationsLabel++; // to be improved - do I need here all 3 counters?
+   sumOfProductOfEventWeightsLabel1++;
+   sumOfProductOfEventWeightsLabel2++;  
+  } // end of for(Int_t c2=c1+1;c2<4;c2++)
+ } // end of for(Int_t c1=0;c1<4;c1++)
+ Int_t covarianceLabel = 1;
+ for(Int_t c1=0;c1<4;c1++)
+ {
+  for(Int_t c2=c1+1;c2<4;c2++)
+  {
+   if(TMath::Abs(denominator[c1][c2]) > 1.e-44)
+   {
+    // Covariances:
+    Double_t cov = (productOfCorrelations[c1][c2]-correlation[c1]*correlation[c2])/denominator[c1][c2]; 
+    // Covariances multiplied with weight dependent prefactor:
+    Double_t wCov = cov * wPrefactor[c1][c2];
+    fIntFlowCovariances->SetBinContent(covarianceLabel,wCov);
+   }
+   covarianceLabel++;
+  } // end of for(Int_t c2=c1+1;c2<4;c2++) 
+ } // end of for(Int_t c1=0;c1<4;c1++)
+ // Versus multiplicity: 
+ if(!fCalculateCumulantsVsM){return;}
+ Int_t nBins = fIntFlowCorrelationsVsMPro[0]->GetNbinsX(); // to be improved (hardwired 0) 
+ for(Int_t b=1;b<=nBins;b++)
+ {
+  // Average 2-, 4-, 6- and 8-particle correlations for all events:
+  Double_t correlationVsM[4] = {0.};
+  for(Int_t ci=0;ci<4;ci++)
+  {
+   correlationVsM[ci] = fIntFlowCorrelationsVsMPro[ci]->GetBinContent(b);
+  } // end of for(Int_t ci=0;ci<4;ci++)
+  // Average products of 2-, 4-, 6- and 8-particle correlations: 
+  Double_t productOfCorrelationsVsM[4][4] = {{0.}};
+  Int_t productOfCorrelationsLabelVsM = 1;
+  // Denominators in the expressions for the unbiased estimator for covariance:
+  Double_t denominatorVsM[4][4] = {{0.}};
+  Int_t sumOfProductOfEventWeightsLabel1VsM = 1;
+  // Weight dependent prefactor which multiply unbiased estimators for covariances:
+  Double_t wPrefactorVsM[4][4] = {{0.}}; 
+  Int_t sumOfProductOfEventWeightsLabel2VsM = 1;
+  for(Int_t c1=0;c1<4;c1++)
+  {
+   for(Int_t c2=c1+1;c2<4;c2++)
+   {
+    productOfCorrelationsVsM[c1][c2] = fIntFlowProductOfCorrelationsVsMPro[productOfCorrelationsLabelVsM-1]->GetBinContent(b);
+    if(TMath::Abs(fIntFlowSumOfEventWeightsVsM[c1][0]->GetBinContent(b)) > 1.e-44 && TMath::Abs(fIntFlowSumOfEventWeightsVsM[c2][0]->GetBinContent(b)) > 1.e-44)
+    {
+     denominatorVsM[c1][c2] = 1.-(fIntFlowSumOfProductOfEventWeightsVsM[sumOfProductOfEventWeightsLabel1VsM-1]->GetBinContent(b))
+                            / (fIntFlowSumOfEventWeightsVsM[c1][0]->GetBinContent(b) 
+                            * fIntFlowSumOfEventWeightsVsM[c2][0]->GetBinContent(b));                              
+     wPrefactorVsM[c1][c2] = fIntFlowSumOfProductOfEventWeightsVsM[sumOfProductOfEventWeightsLabel2VsM-1]->GetBinContent(b)
+                           / (fIntFlowSumOfEventWeightsVsM[c1][0]->GetBinContent(b)
+                           * fIntFlowSumOfEventWeightsVsM[c2][0]->GetBinContent(b));                                                       
+    }
+    productOfCorrelationsLabelVsM++;
+    sumOfProductOfEventWeightsLabel1VsM++;
+    sumOfProductOfEventWeightsLabel2VsM++;  
+   } // end of for(Int_t c1=0;c1<4;c1++) 
+  } // end of for(Int_t c2=c1+1;c2<4;c2++)
+  Int_t covarianceLabelVsM = 1;
+  for(Int_t c1=0;c1<4;c1++)
+  {
+   for(Int_t c2=c1+1;c2<4;c2++)
+   {
+    if(TMath::Abs(denominatorVsM[c1][c2]) > 1.e-44)
+    {
+     // Covariances:
+     Double_t covVsM = (productOfCorrelationsVsM[c1][c2]-correlationVsM[c1]*correlationVsM[c2])/denominatorVsM[c1][c2]; 
+     // Covariances multiplied with weight dependent prefactor:
+     Double_t wCovVsM = covVsM * wPrefactorVsM[c1][c2];
+     fIntFlowCovariancesVsM[covarianceLabelVsM-1]->SetBinContent(b,wCovVsM);
+    }
+    covarianceLabelVsM++;
+   } // end of for(Int_t c2=c1+1;c2<4;c2++)
+  } // end of for(Int_t c1=0;c1<4;c1++)
+ } // end of for(Int_t b=1;b<=nBins;b++)
+  
+} // end of AliFlowAnalysisWithQCumulants::CalculateCovariancesIntFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateCovariancesNUAIntFlow()
+{
+ // a) Calculate unbiased estimators Cov(*,*) for true covariances V_(*,*) for NUA terms.
+ // b) Store in histogram fIntFlowCovariancesNUA for instance the following: 
+ //
+ //             Cov(<2>,<cos(phi)>) * (sum_{i=1}^{N} w_{<2>}_i w_{<cos(phi)>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<cos(phi)>}_j)]
+ // 
+ //    where N is the number of events, w_{<2>} is event weight for <2> and w_{<cos(phi)>} is event weight for <cos(phi)>.
+ // c) Binning of fIntFlowCovariancesNUA is organized as follows:
+ // 
+ //     1st bin: Cov(<2>,<cos(phi)>) * (sum_{i=1}^{N} w_{<2>}_i w_{<cos(phi)>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<cos(phi)>}_j)] 
+ //     2nd bin: Cov(<2>,<sin(phi)>) * (sum_{i=1}^{N} w_{<2>}_i w_{<sin(phi)>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<sin(phi)>}_j)]
+ //     3rd bin: Cov(<cos(phi)>,<sin(phi)>) * (sum_{i=1}^{N} w_{<cos(phi)>}_i w_{<sin(phi)>}_i )/[(sum_{i=1}^{N} w_{<cos(phi)>}_i) * (sum_{j=1}^{N} w_{<sin(phi)>}_j)]
+ // ...
+      
+ // Cov(<2>,<cos(phi)>):
+ Double_t product1 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(1); // <<2><cos(phi)>> 
+ Double_t term1st1 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd1 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi)>>
+ Double_t sumOfW1st1 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd1 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi)>}
+ Double_t sumOfWW1 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(1); // W_{<2>} * W_{<cos(phi)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator1 = product1 - term1st1*term2nd1; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator1 = 0.;
+ if(TMath::Abs(sumOfW1st1*sumOfW2nd1)>0.)
+ {
+  denominator1 = 1.-sumOfWW1/(sumOfW1st1*sumOfW2nd1);
+  if(TMath::Abs(denominator1)>0.)
+  {
+   // covariance:
+   Double_t covariance1 = numerator1/denominator1;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor1 = sumOfWW1/(sumOfW1st1*sumOfW2nd1);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(1,wPrefactor1*covariance1);
+  } // end of if(TMath::Abs(denominator)>0.)
+ } // end of if(TMath::Abs(sumOfW1st1*sumOfW2nd1)>0.)
+ // Cov(<2>,<sin(phi)>):
+ Double_t product2 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(2); // <<2><sin(phi)>> 
+ Double_t term1st2 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd2 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi)>>
+ Double_t sumOfW1st2 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd2 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi)>}
+ Double_t sumOfWW2 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(2); // W_{<2>} * W_{<sin(phi)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator2 = product2 - term1st2*term2nd2;
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator2 = 0.;
+ if(TMath::Abs(sumOfW1st2*sumOfW2nd2)>0.)
+ {  
+  denominator2 = 1.-sumOfWW2/(sumOfW1st2*sumOfW2nd2);
+  if(TMath::Abs(denominator2)>0.)
+  {
+   // covariance:
+   Double_t covariance2 = numerator2/denominator2;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor2 = sumOfWW2/(sumOfW1st2*sumOfW2nd2);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(2,wPrefactor2*covariance2);
+  } // end of if(TMath::Abs(denominator2)>0.)
+ } // end of if(TMath::Abs(sumOfW1st2*sumOfW2nd2)>0.)
+ // Cov(<cos(phi)>,<sin(phi)>):
+ Double_t product3 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(3); // <<cos(phi)><sin(phi)>> 
+ Double_t term1st3 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi)>>
+ Double_t term2nd3 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi)>>
+ Double_t sumOfW1st3 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi)>}
+ Double_t sumOfW2nd3 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi)>}
+ Double_t sumOfWW3 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(3); // W_{<cos(phi)>} * W_{<sin(phi)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator3 = product3 - term1st3*term2nd3; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator3 = 0;
+ if(TMath::Abs(sumOfW1st3*sumOfW2nd3)>0.)
+ { 
+  denominator3 = 1.-sumOfWW3/(sumOfW1st3*sumOfW2nd3);
+  if(TMath::Abs(denominator3)>0.)
+  {
+   // covariance:
+   Double_t covariance3 = numerator3/denominator3;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor3 = sumOfWW3/(sumOfW1st3*sumOfW2nd3);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(3,wPrefactor3*covariance3);
+  } // end of if(TMath::Abs(denominator3)>0.)
+ } // end of if(TMath::Abs(sumOfW1st3*sumOfW2nd3)>0.)
+ // Cov(<2>,<cos(phi1+phi2)>):
+ Double_t product4 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(4); // <<2><cos(phi1+phi2)>> 
+ Double_t term1st4 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd4 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t sumOfW1st4 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd4 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfWW4 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(4); // W_{<2>} * W_{<cos(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator4 = product4 - term1st4*term2nd4; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator4 = 0.;
+ if(TMath::Abs(sumOfW1st4*sumOfW2nd4)>0.)
+ { 
+  denominator4 = 1.-sumOfWW4/(sumOfW1st4*sumOfW2nd4);
+  if(TMath::Abs(denominator4)>0.)
+  {  
+   // covariance:
+   Double_t covariance4 = numerator4/denominator4;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor4 = sumOfWW4/(sumOfW1st4*sumOfW2nd4);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(4,wPrefactor4*covariance4);
+  } // end of if(TMath::Abs(denominator4)>0.)
+ } // end of if(TMath::Abs(sumOfW1st4*sumOfW2nd4)>0.)
+ // Cov(<2>,<sin(phi1+phi2)>):
+ Double_t product5 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(5); // <<2><sin(phi1+phi2)>> 
+ Double_t term1st5 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd5 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t sumOfW1st5 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd5 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfWW5 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(5); // W_{<2>} * W_{<sin(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator5 = product5 - term1st5*term2nd5; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator5 = 0.;
+ if(TMath::Abs(sumOfW1st5*sumOfW2nd5)>0.)
+ {  
+  denominator5 = 1.-sumOfWW5/(sumOfW1st5*sumOfW2nd5);
+  if(TMath::Abs(denominator5)>0.)
+  {  
+   // covariance:
+   Double_t covariance5 = numerator5/denominator5;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor5 = sumOfWW5/(sumOfW1st5*sumOfW2nd5);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(5,wPrefactor5*covariance5);
+  } // end of if(TMath::Abs(denominator5)>0.)
+ } // end of if(TMath::Abs(sumOfW1st5*sumOfW2nd5)>0.)
+ // Cov(<2>,<cos(phi1-phi2-phi3)>):
+ Double_t product6 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(6); // <<2><cos(phi1-phi2-phi3)>> 
+ Double_t term1st6 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd6 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st6 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd6 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW6 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(6); // W_{<2>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator6 = product6 - term1st6*term2nd6; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator6 = 0.;
+ if(TMath::Abs(sumOfW1st6*sumOfW2nd6)>0.)
+ {  
+  denominator6 = 1.-sumOfWW6/(sumOfW1st6*sumOfW2nd6);
+  if(TMath::Abs(denominator6)>0.)
+  {  
+   // covariance:
+   Double_t covariance6 = numerator6/denominator6;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor6 = sumOfWW6/(sumOfW1st6*sumOfW2nd6);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(6,wPrefactor6*covariance6);
+  } // end of if(TMath::Abs(denominator6)>0.)
+ } // end of if(TMath::Abs(sumOfW1st6*sumOfW2nd6)>0.)
+ // Cov(<2>,<sin(phi1-phi2-phi3)>):
+ Double_t product7 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(7); // <<2><sin(phi1-phi2-phi3)>> 
+ Double_t term1st7 = fIntFlowCorrelationsPro->GetBinContent(1); // <<2>>
+ Double_t term2nd7 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st7 = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // W_{<2>}
+ Double_t sumOfW2nd7 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW7 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(7); // W_{<2>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator7 = product7 - term1st7*term2nd7; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator7 = 0.;
+ if(TMath::Abs(sumOfW1st7*sumOfW2nd7)>0.)
+ {  
+  denominator7 = 1.-sumOfWW7/(sumOfW1st7*sumOfW2nd7);
+  if(TMath::Abs(denominator7)>0.)
+  {   
+   // covariance:
+   Double_t covariance7 = numerator7/denominator7;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor7 = sumOfWW7/(sumOfW1st7*sumOfW2nd7);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(7,wPrefactor7*covariance7);
+  } // end of if(TMath::Abs(denominator7)>0.)
+ } // end of if(TMath::Abs(sumOfW1st7*sumOfW2nd7)>0.)
+ // Cov(<4>,<cos(phi1>):
+ Double_t product8 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(8); // <<4><cos(phi1)>> 
+ Double_t term1st8 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd8 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi1)>>
+ Double_t sumOfW1st8 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd8 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi1)>}
+ Double_t sumOfWW8 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(8); // W_{<4>} * W_{<cos(phi1)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator8 = product8 - term1st8*term2nd8; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator8 = 0.;
+ if(TMath::Abs(sumOfW1st8*sumOfW2nd8)>0.)
+ { 
+  denominator8 = 1.-sumOfWW8/(sumOfW1st8*sumOfW2nd8);
+  if(TMath::Abs(denominator8)>0.)
+  {     
+   // covariance:
+   Double_t covariance8 = numerator8/denominator8;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor8 = sumOfWW8/(sumOfW1st8*sumOfW2nd8);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(8,wPrefactor8*covariance8);
+  } // end of if(TMath::Abs(denominator8)>0.)
+ } // end of if(TMath::Abs(sumOfW1st8*sumOfW2nd8)>0.)
+ // Cov(<4>,<sin(phi1)>):
+ Double_t product9 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(9); // <<4><sin(phi1)>> 
+ Double_t term1st9 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd9 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi1)>>
+ Double_t sumOfW1st9 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd9 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi1)>}
+ Double_t sumOfWW9 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(9); // W_{<4>} * W_{<sin(phi1)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator9 = product9 - term1st9*term2nd9; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator9 = 0.;
+ if(TMath::Abs(sumOfW1st9*sumOfW2nd9)>0.) 
+ {
+  denominator9 = 1.-sumOfWW9/(sumOfW1st9*sumOfW2nd9);
+  if(TMath::Abs(denominator9)>0.)
+  {     
+   // covariance:
+   Double_t covariance9 = numerator9/denominator9;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor9 = sumOfWW9/(sumOfW1st9*sumOfW2nd9);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(9,wPrefactor9*covariance9); 
+  }
+ } // end of if(TMath::Abs(sumOfW1st9*sumOfW2nd9)>0.) 
+ // Cov(<4>,<cos(phi1+phi2)>):
+ Double_t product10 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(10); // <<4><cos(phi1+phi2)>> 
+ Double_t term1st10 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd10 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t sumOfW1st10 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd10 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfWW10 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(10); // W_{<4>} * W_{<cos(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator10 = product10 - term1st10*term2nd10; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator10 = 0.;
+ if(TMath::Abs(sumOfW1st10*sumOfW2nd10)>0.) 
+ { 
+  denominator10 = 1.-sumOfWW10/(sumOfW1st10*sumOfW2nd10);
+  if(TMath::Abs(denominator10)>0.) 
+  { 
+   // covariance:
+   Double_t covariance10 = numerator10/denominator10;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor10 = sumOfWW10/(sumOfW1st10*sumOfW2nd10);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(10,wPrefactor10*covariance10);
+  } // end of if(TMath::Abs(denominator10)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st10*sumOfW2nd10)>0.) 
+ // Cov(<4>,<sin(phi1+phi2)>):
+ Double_t product11 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(11); // <<4><sin(phi1+phi2)>> 
+ Double_t term1st11 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd11 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t sumOfW1st11 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd11 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfWW11 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(11); // W_{<4>} * W_{<sin(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator11 = product11 - term1st11*term2nd11; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator11 = 0.;
+ if(TMath::Abs(sumOfW1st11*sumOfW2nd11)>0.) 
+ {  
+  denominator11 = 1.-sumOfWW11/(sumOfW1st11*sumOfW2nd11);
+  if(TMath::Abs(denominator11)>0.) 
+  { 
+   // covariance:
+   Double_t covariance11 = numerator11/denominator11;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor11 = sumOfWW11/(sumOfW1st11*sumOfW2nd11);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(11,wPrefactor11*covariance11);
+  } // end of if(TMath::Abs(denominator11)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st11*sumOfW2nd11)>0.) 
+
+ // Cov(<4>,<cos(phi1-phi2-phi3)>):
+ Double_t product12 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(12); // <<4><cos(phi1-phi2-phi3)>> 
+ Double_t term1st12 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd12 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st12 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd12 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW12 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(12); // W_{<4>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator12 = product12 - term1st12*term2nd12; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator12 = 0.;
+ if(TMath::Abs(sumOfW1st12*sumOfW2nd12)>0.) 
+ {   
+  denominator12 = 1.-sumOfWW12/(sumOfW1st12*sumOfW2nd12);
+  if(TMath::Abs(denominator12)>0.) 
+  { 
+   // covariance:
+   Double_t covariance12 = numerator12/denominator12;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor12 = sumOfWW12/(sumOfW1st12*sumOfW2nd12);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(12,wPrefactor12*covariance12);
+  } // end of if(TMath::Abs(denominator12)>0.)
+ } // end of if(TMath::Abs(sumOfW1st12*sumOfW2nd12)>0.)  
+
+ // Cov(<4>,<sin(phi1-phi2-phi3)>):
+ Double_t product13 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(13); // <<4><sin(phi1-phi2-phi3)>> 
+ Double_t term1st13 = fIntFlowCorrelationsPro->GetBinContent(2); // <<4>>
+ Double_t term2nd13 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st13 = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // W_{<4>}
+ Double_t sumOfW2nd13 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW13 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(13); // W_{<4>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator13 = product13 - term1st13*term2nd13; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator13 = 0.;
+ if(TMath::Abs(sumOfW1st13*sumOfW2nd13)>0.) 
+ {   
+  denominator13 = 1.-sumOfWW13/(sumOfW1st13*sumOfW2nd13);
+  if(TMath::Abs(denominator13)>0.) 
+  { 
+   // covariance:
+   Double_t covariance13 = numerator13/denominator13;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor13 = sumOfWW13/(sumOfW1st13*sumOfW2nd13);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(13,wPrefactor13*covariance13);
+  } // end of if(TMath::Abs(denominator13)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st13*sumOfW2nd13)>0.) 
+
+ // Cov(<cos(phi1)>,<cos(phi1+phi2)>):
+ Double_t product14 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(14); // <<cos(phi1)><cos(phi1+phi2)>> 
+ Double_t term1st14 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi1)>>
+ Double_t term2nd14 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t sumOfW1st14 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi1)>}
+ Double_t sumOfW2nd14 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfWW14 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(14); // W_{<cos(phi1)>} * W_{<cos(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator14 = product14 - term1st14*term2nd14; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator14 = 0.;
+ if(TMath::Abs(sumOfW1st14*sumOfW2nd14)>0.) 
+ {  
+  denominator14 = 1.-sumOfWW14/(sumOfW1st14*sumOfW2nd14);
+  if(TMath::Abs(denominator14)>0.) 
+  { 
+   // covariance:
+   Double_t covariance14 = numerator14/denominator14;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor14 = sumOfWW14/(sumOfW1st14*sumOfW2nd14);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(14,wPrefactor14*covariance14);
+  } // end of if(TMath::Abs(denominator14)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st14*sumOfW2nd14)>0.) 
+
+ // Cov(<cos(phi1)>,<sin(phi1+phi2)>):
+ Double_t product15 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(15); // <<cos(phi1)><sin(phi1+phi2)>> 
+ Double_t term1st15 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi1)>>
+ Double_t term2nd15 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t sumOfW1st15 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi1)>}
+ Double_t sumOfW2nd15 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfWW15 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(15); // W_{<cos(phi1)>} * W_{<sin(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator15 = product15 - term1st15*term2nd15; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator15 = 0.;
+ if(TMath::Abs(sumOfW1st15*sumOfW2nd15)>0.) 
+ {  
+  denominator15 = 1.-sumOfWW15/(sumOfW1st15*sumOfW2nd15);
+  if(TMath::Abs(denominator15)>0.) 
+  { 
+   // covariance:
+   Double_t covariance15 = numerator15/denominator15;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor15 = sumOfWW15/(sumOfW1st15*sumOfW2nd15);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(15,wPrefactor15*covariance15);
+  } // end of if(TMath::Abs(denominator15)>0.)  
+ } // end of if(TMath::Abs(sumOfW1st15*sumOfW2nd15)>0.)  
+ // Cov(<cos(phi1)>,<cos(phi1-phi2-phi3)>):
+ Double_t product16 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(16); // <<cos(phi1)><cos(phi1-phi2-phi3)>> 
+ Double_t term1st16 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi1)>>
+ Double_t term2nd16 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st16 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi1)>}
+ Double_t sumOfW2nd16 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW16 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(16); // W_{<cos(phi1)>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator16 = product16 - term1st16*term2nd16; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator16 = 0.;
+ if(TMath::Abs(sumOfW1st16*sumOfW2nd16)>0.) 
+ {   
+  denominator16 = 1.-sumOfWW16/(sumOfW1st16*sumOfW2nd16);
+  if(TMath::Abs(denominator16)>0.) 
+  {   
+   // covariance:
+   Double_t covariance16 = numerator16/denominator16;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor16 = sumOfWW16/(sumOfW1st16*sumOfW2nd16);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(16,wPrefactor16*covariance16);
+  } // end of if(TMath::Abs(denominator16)>0.)
+ } // end ofif(TMath::Abs(sumOfW1st16*sumOfW2nd16)>0.)  
+ // Cov(<cos(phi1)>,<sin(phi1-phi2-phi3)>):
+ Double_t product17 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(17); // <<cos(phi1)><sin(phi1-phi2-phi3)>> 
+ Double_t term1st17 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(1); // <<cos(phi1)>>
+ Double_t term2nd17 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st17 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(1); // W_{<cos(phi1)>}
+ Double_t sumOfW2nd17 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW17 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(17); // W_{<cos(phi1)>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator17 = product17 - term1st17*term2nd17; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator17 = 0.;
+ if(TMath::Abs(sumOfW1st17*sumOfW2nd17)>0.) 
+ {
+  denominator17 = 1.-sumOfWW17/(sumOfW1st17*sumOfW2nd17);
+  if(TMath::Abs(denominator17)>0.) 
+  {   
+   // covariance:
+   Double_t covariance17 = numerator17/denominator17;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor17 = sumOfWW17/(sumOfW1st17*sumOfW2nd17);
+    // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(17,wPrefactor17*covariance17);
+  } // end of if(TMath::Abs(denominator17)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st17*sumOfW2nd17)>0.) 
+
+ // Cov(<sin(phi1)>,<cos(phi1+phi2)>):
+ Double_t product18 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(18); // <<sin(phi1)><cos(phi1+phi2)>> 
+ Double_t term1st18 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi1)>>
+ Double_t term2nd18 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t sumOfW1st18 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi1)>}
+ Double_t sumOfW2nd18 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfWW18 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(18); // W_{<sin(phi1)>} * W_{<cos(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator18 = product18 - term1st18*term2nd18; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator18 = 0.;
+ if(TMath::Abs(sumOfW1st18*sumOfW2nd18)>0.) 
+ { 
+  denominator18 = 1.-sumOfWW18/(sumOfW1st18*sumOfW2nd18);
+  if(TMath::Abs(denominator18)>0.) 
+  {   
+   // covariance:
+   Double_t covariance18 = numerator18/denominator18;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor18 = sumOfWW18/(sumOfW1st18*sumOfW2nd18);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(18,wPrefactor18*covariance18); 
+  } // end of if(TMath::Abs(denominator18)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st18*sumOfW2nd18)>0.) 
+
+ // Cov(<sin(phi1)>,<sin(phi1+phi2)>):
+ Double_t product19 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(19); // <<sin(phi1)><sin(phi1+phi2)>> 
+ Double_t term1st19 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi1)>>
+ Double_t term2nd19 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t sumOfW1st19 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi1)>}
+ Double_t sumOfW2nd19 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfWW19 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(19); // W_{<sin(phi1)>} * W_{<sin(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator19 = product19 - term1st19*term2nd19; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator19 = 0.;
+ if(TMath::Abs(sumOfW1st19*sumOfW2nd19)>0.) 
+ { 
+  denominator19 = 1.-sumOfWW19/(sumOfW1st19*sumOfW2nd19);
+  if(TMath::Abs(denominator19)>0.) 
+  {   
+   // covariance:
+   Double_t covariance19 = numerator19/denominator19;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor19 = sumOfWW19/(sumOfW1st19*sumOfW2nd19);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(19,wPrefactor19*covariance19);
+  } // end of if(TMath::Abs(denominator19)>0.)
+ } // end of if(TMath::Abs(sumOfW1st19*sumOfW2nd19)>0.)
+ // Cov(<sin(phi1)>,<cos(phi1-phi2-phi3)>):
+ Double_t product20 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(20); // <<sin(phi1)><cos(phi1-phi2-phi3)>> 
+ Double_t term1st20 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi1)>>
+ Double_t term2nd20 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st20 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi1)>}
+ Double_t sumOfW2nd20 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW20 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(20); // W_{<sin(phi1)>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator20 = product20 - term1st20*term2nd20; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator20 = 0.;
+ if(TMath::Abs(sumOfW1st20*sumOfW2nd20)>0.)
+ { 
+  denominator20 = 1.-sumOfWW20/(sumOfW1st20*sumOfW2nd20);
+  if(TMath::Abs(denominator20)>0.) 
+  { 
+   // covariance:
+   Double_t covariance20 = numerator20/denominator20;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor20 = sumOfWW20/(sumOfW1st20*sumOfW2nd20);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(20,wPrefactor20*covariance20);
+  } // end of if(TMath::Abs(denominator20)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st20*sumOfW2nd20)>0.)
+
+ // Cov(<sin(phi1)>,<sin(phi1-phi2-phi3)>):
+ Double_t product21 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(21); // <<sin(phi1)><sin(phi1-phi2-phi3)>> 
+ Double_t term1st21 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(1); // <<sin(phi1)>>
+ Double_t term2nd21 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st21 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(1); // W_{<sin(phi1)>}
+ Double_t sumOfW2nd21 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW21 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(21); // W_{<sin(phi1)>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator21 = product21 - term1st21*term2nd21; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator21 = 0.;
+ if(TMath::Abs(sumOfW1st21*sumOfW2nd21)>0.)
+ { 
+  denominator21 = 1.-sumOfWW21/(sumOfW1st21*sumOfW2nd21);
+  if(TMath::Abs(denominator21)>0.) 
+  {   
+   // covariance:
+   Double_t covariance21 = numerator21/denominator21;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor21 = sumOfWW21/(sumOfW1st21*sumOfW2nd21);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(21,wPrefactor21*covariance21);
+  } // end of if(TMath::Abs(denominator21)>0.)
+ } // end of if(TMath::Abs(sumOfW1st21*sumOfW2nd21)>0.)
+
+ // Cov(<cos(phi1+phi2)>,<sin(phi1+phi2)>):
+ Double_t product22 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(22); // <<cos(phi1+phi2)><sin(phi1+phi2)>> 
+ Double_t term1st22 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t term2nd22 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t sumOfW1st22 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfW2nd22 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfWW22 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(22); // W_{<cos(phi1+phi2)>} * W_{<sin(phi1+phi2)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator22 = product22 - term1st22*term2nd22; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator22 = 0.;
+ if(TMath::Abs(sumOfW1st22*sumOfW2nd22)>0.)
+ { 
+  denominator22 = 1.-sumOfWW22/(sumOfW1st22*sumOfW2nd22);
+  if(TMath::Abs(denominator22)>0.) 
+  {   
+   // covariance:
+   Double_t covariance22 = numerator22/denominator22;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor22 = sumOfWW22/(sumOfW1st22*sumOfW2nd22);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(22,wPrefactor22*covariance22);
+  } // end of if(TMath::Abs(denominator22)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st22*sumOfW2nd22)>0.) 
+
+ // Cov(<cos(phi1+phi2)>,<cos(phi1-phi2-phi3)>):
+ Double_t product23 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(23); // <<cos(phi1+phi2)><cos(phi1-phi2-phi3)>> 
+ Double_t term1st23 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t term2nd23 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st23 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfW2nd23 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW23 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(23); // W_{<cos(phi1+phi2)>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator23 = product23 - term1st23*term2nd23; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator23 = 0.;
+ if(TMath::Abs(sumOfW1st23*sumOfW2nd23)>0.)
+ {  
+  denominator23 = 1.-sumOfWW23/(sumOfW1st23*sumOfW2nd23);
+  if(TMath::Abs(denominator23)>0.) 
+  {   
+   // covariance:
+   Double_t covariance23 = numerator23/denominator23;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor23 = sumOfWW23/(sumOfW1st23*sumOfW2nd23);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(23,wPrefactor23*covariance23);
+  } // end of if(TMath::Abs(denominator23)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st23*sumOfW2nd23)>0.)
+ // Cov(<cos(phi1+phi2)>,<sin(phi1-phi2-phi3)>):
+ Double_t product24 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(24); // <<cos(phi1+phi2)><sin(phi1-phi2-phi3)>> 
+ Double_t term1st24 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(2); // <<cos(phi1+phi2)>>
+ Double_t term2nd24 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st24 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(2); // W_{<cos(phi1+phi2)>}
+ Double_t sumOfW2nd24 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW24 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(24); // W_{<cos(phi1+phi2)>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator24 = product24 - term1st24*term2nd24; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator24 = 0.;
+ if(TMath::Abs(sumOfW1st24*sumOfW2nd24)>0.)
+ {   
+  denominator24 = 1.-sumOfWW24/(sumOfW1st24*sumOfW2nd24);
+  if(TMath::Abs(denominator24)>0.) 
+  {   
+   // covariance:
+   Double_t covariance24 = numerator24/denominator24;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor24 = sumOfWW24/(sumOfW1st24*sumOfW2nd24);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(24,wPrefactor24*covariance24);
+  } // end of if(TMath::Abs(denominator24)>0.)  
+ } // end of if(TMath::Abs(sumOfW1st24*sumOfW2nd24)>0.)
+
+ // Cov(<sin(phi1+phi2)>,<cos(phi1-phi2-phi3)>):
+ Double_t product25 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(25); // <<sin(phi1+phi2)><cos(phi1-phi2-phi3)>> 
+ Double_t term1st25 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t term2nd25 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t sumOfW1st25 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfW2nd25 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfWW25 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(25); // W_{<sin(phi1+phi2)>} * W_{<cos(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator25 = product25 - term1st25*term2nd25; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator25 = 0.;
+ if(TMath::Abs(sumOfW1st25*sumOfW2nd25)>0.)
+ { 
+  denominator25 = 1.-sumOfWW25/(sumOfW1st25*sumOfW2nd25);
+  if(TMath::Abs(denominator25)>0.) 
+  { 
+   // covariance:
+   Double_t covariance25 = numerator25/denominator25;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor25 = sumOfWW25/(sumOfW1st25*sumOfW2nd25);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(25,wPrefactor25*covariance25);
+  } // end of if(TMath::Abs(denominator25)>0.)
+ } // end of if(TMath::Abs(sumOfW1st25*sumOfW2nd25)>0.)
+ // Cov(<sin(phi1+phi2)>,<sin(phi1-phi2-phi3)>):
+ Double_t product26 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(26); // <<sin(phi1+phi2)><sin(phi1-phi2-phi3)>> 
+ Double_t term1st26 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(2); // <<sin(phi1+phi2)>>
+ Double_t term2nd26 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st26 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(2); // W_{<sin(phi1+phi2)>}
+ Double_t sumOfW2nd26 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW26 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(26); // W_{<sin(phi1+phi2)>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator26 = product26 - term1st26*term2nd26; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator26 = 0.;
+ if(TMath::Abs(sumOfW1st26*sumOfW2nd26)>0.)
+ { 
+  denominator26 = 1.-sumOfWW26/(sumOfW1st26*sumOfW2nd26);
+  if(TMath::Abs(denominator26)>0.) 
+  { 
+   // covariance:
+   Double_t covariance26 = numerator26/denominator26;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor26 = sumOfWW26/(sumOfW1st26*sumOfW2nd26);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(26,wPrefactor26*covariance26);
+  } // end of if(TMath::Abs(denominator26)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st26*sumOfW2nd26)>0.)
+ // Cov(<cos(phi1-phi2-phi3)>,<sin(phi1-phi2-phi3)>):
+ Double_t product27 = fIntFlowProductOfCorrectionTermsForNUAPro->GetBinContent(27); // <<cos(phi1-phi2-phi3)><sin(phi1-phi2-phi3)>> 
+ Double_t term1st27 = fIntFlowCorrectionTermsForNUAPro[1]->GetBinContent(3); // <<cos(phi1-phi2-phi3)>>
+ Double_t term2nd27 = fIntFlowCorrectionTermsForNUAPro[0]->GetBinContent(3); // <<sin(phi1-phi2-phi3)>>
+ Double_t sumOfW1st27 = fIntFlowSumOfEventWeightsNUA[1][0]->GetBinContent(3); // W_{<cos(phi1-phi2-phi3)>}
+ Double_t sumOfW2nd27 = fIntFlowSumOfEventWeightsNUA[0][0]->GetBinContent(3); // W_{<sin(phi1-phi2-phi3)>}
+ Double_t sumOfWW27 = fIntFlowSumOfProductOfEventWeightsNUA->GetBinContent(27); // W_{<cos(phi1-phi2-phi3)>} * W_{<sin(phi1-phi2-phi3)>}
+ // numerator in the expression for the the unbiased estimator for covariance:
+ Double_t numerator27 = product27 - term1st27*term2nd27; 
+ // denominator in the expression for the the unbiased estimator for covariance:
+ Double_t denominator27 = 0.;
+ if(TMath::Abs(sumOfW1st27*sumOfW2nd27)>0.)
+ { 
+  denominator27 = 1.-sumOfWW27/(sumOfW1st27*sumOfW2nd27);
+  if(TMath::Abs(denominator27)>0.) 
+  { 
+   // covariance:
+   Double_t covariance27 = numerator27/denominator27;
+   // weight dependent prefactor for covariance:
+   Double_t wPrefactor27 = sumOfWW27/(sumOfW1st27*sumOfW2nd27);
+   // finally, store "weighted" covariance:
+   fIntFlowCovariancesNUA->SetBinContent(27,wPrefactor27*covariance27);
+  } // end of if(TMath::Abs(denominator27)>0.) 
+ } // end of if(TMath::Abs(sumOfW1st27*sumOfW2nd27)>0.)
+} // end of AliFlowAnalysisWithQCumulants::CalculateCovariancesNUAIntFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FinalizeCorrelationsIntFlow() 
+{
+ // From profile fIntFlowCorrelationsPro access measured correlations and spread, 
+ // correctly calculate the statistical errors and store the final results and 
+ // statistical errors for correlations in histogram fIntFlowCorrelationsHist.
+ //
+ // Remark: Statistical error of correlation is calculated as:
+ //
+ //          statistical error = termA * spread * termB:
+ //          termA = sqrt{sum_{i=1}^{N} w^2}/(sum_{i=1}^{N} w)
+ //          termB = 1/sqrt(1-termA^2)   
+ //
+   
+ for(Int_t ci=1;ci<=4;ci++) // correlation index
+ {
+  if(fIntFlowCorrelationsPro->GetBinEffectiveEntries(ci) < 2 || fIntFlowSquaredCorrelationsPro->GetBinEffectiveEntries(ci) < 2)
+  {
+   fIntFlowCorrelationsPro->SetBinError(ci,0.);
+   fIntFlowSquaredCorrelationsPro->SetBinError(ci,0.);
+   continue;
+  } 
+  Double_t correlation = fIntFlowCorrelationsPro->GetBinContent(ci);
+  Double_t squaredCorrelation = fIntFlowSquaredCorrelationsPro->GetBinContent(ci);
+  Double_t spread = 0.;
+  if(squaredCorrelation-correlation*correlation >= 0.)
+  {
+   spread = pow(squaredCorrelation-correlation*correlation,0.5);
+  } else
+    {
+     cout<<endl;
+     cout<<Form(" WARNING: Imaginary 'spread' for %d-particle correlation!!!! ",2*ci)<<endl;
+     cout<<endl;
+    }
+  Double_t sumOfLinearEventWeights = fIntFlowSumOfEventWeights[0]->GetBinContent(ci);
+  Double_t sumOfQuadraticEventWeights = fIntFlowSumOfEventWeights[1]->GetBinContent(ci);
+  Double_t termA = 0.;
+  Double_t termB = 0.;
+  if(TMath::Abs(sumOfLinearEventWeights) > 0.) // to be improved - shall I omitt here Abs() ?
+  {
+   termA = pow(sumOfQuadraticEventWeights,0.5)/sumOfLinearEventWeights;
+  } else
+    {
+     cout<<endl;
+     cout<<" WARNING (QC): sumOfLinearEventWeights == 0 in method FinalizeCorrelationsIntFlow() !!!!"<<endl;
+     cout<<"               (for "<<2*ci<<"-particle correlation)"<<endl;
+     cout<<endl;
+    }
+  if(1.-pow(termA,2.) > 0.)
+  {
+   termB = 1./pow(1-pow(termA,2.),0.5);
+  } else
+    {
+     cout<<endl;
+     cout<<" WARNING (QC): 1.-pow(termA,2.) <= 0 in method FinalizeCorrelationsIntFlow() !!!!"<<endl;   
+     cout<<"               (for "<<2*ci<<"-particle correlation)"<<endl;
+     cout<<endl;
+    }     
+  Double_t statisticalError = termA * spread * termB;
+  fIntFlowCorrelationsHist->SetBinContent(ci,correlation);
+  fIntFlowCorrelationsHist->SetBinError(ci,statisticalError);
+ } // end of for(Int_t ci=1;ci<=4;ci++) // correlation index     
+ // Versus multiplicity: 
+ if(!fCalculateCumulantsVsM){return;}
+ for(Int_t ci=0;ci<=3;ci++) // correlation index
+ {
+  Int_t nBins = fIntFlowCorrelationsVsMPro[ci]->GetNbinsX(); 
+  for(Int_t b=1;b<=nBins;b++) // looping over multiplicity bins
+  {
+   if(fIntFlowCorrelationsVsMPro[ci]->GetBinEffectiveEntries(b) < 2 || fIntFlowSquaredCorrelationsVsMPro[ci]->GetBinEffectiveEntries(b) < 2)
+   {
+    fIntFlowCorrelationsVsMPro[ci]->SetBinError(b,0.);
+    fIntFlowSquaredCorrelationsVsMPro[ci]->SetBinError(b,0.);
+    continue;
+   } 
+   Double_t correlationVsM = fIntFlowCorrelationsVsMPro[ci]->GetBinContent(b);
+   Double_t squaredCorrelationVsM = fIntFlowSquaredCorrelationsVsMPro[ci]->GetBinContent(b);
+   Double_t spreadVsM = 0.;
+   if(squaredCorrelationVsM-correlationVsM*correlationVsM >= 0.)
+   {
+    spreadVsM = pow(squaredCorrelationVsM-correlationVsM*correlationVsM,0.5);
+   } else
+     {
+      cout<<endl;
+      cout<<Form(" WARNING (QC): Imaginary 'spreadVsM' for ci = %d, bin = %d, entries = %f !!!!",
+                 ci,b,fIntFlowCorrelationsVsMPro[ci]->GetBinEffectiveEntries(b))<<endl; 
+      cout<<endl;
+     }     
+   Double_t sumOfLinearEventWeightsVsM = fIntFlowSumOfEventWeightsVsM[ci][0]->GetBinContent(b);
+   Double_t sumOfQuadraticEventWeightsVsM = fIntFlowSumOfEventWeightsVsM[ci][1]->GetBinContent(b);
+   Double_t termAVsM = 0.;
+   Double_t termBVsM = 0.;
+   if(sumOfLinearEventWeightsVsM > 0.) 
+   {
+    termAVsM = pow(sumOfQuadraticEventWeightsVsM,0.5)/sumOfLinearEventWeightsVsM;
+   }
+   if(1.-pow(termAVsM,2.) > 0.)
+   {
+    termBVsM = 1./pow(1-pow(termAVsM,2.),0.5);
+   }     
+   Double_t statisticalErrorVsM = termAVsM * spreadVsM * termBVsM;
+   fIntFlowCorrelationsVsMHist[ci]->SetBinContent(b,correlationVsM);
+   fIntFlowCorrelationsVsMHist[ci]->SetBinError(b,statisticalErrorVsM);  
+  } // end of for(Int_t b=1;b<=nBins;b++)
+ } // end of for(Int_t ci=1;ci<=4;ci++) // correlation index                                                        
+                                                                                                                           
+} // end of AliFlowAnalysisWithQCumulants::FinalizeCorrelationsIntFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FillAverageMultiplicities(Int_t nRP)
+{
+ // Fill profile fAverageMultiplicity to hold average multiplicities and 
+ // number of events for events with nRP>=0, nRP>=1, ... , and nRP>=8
+ // Binning of fAverageMultiplicity is organized as follows:
+ //  1st bin: all events (including the empty ones)
+ //  2nd bin: event with # of RPs greater or equal to 1
+ //  3rd bin: event with # of RPs greater or equal to 2
+ //  4th bin: event with # of RPs greater or equal to 3
+ //  5th bin: event with # of RPs greater or equal to 4
+ //  6th bin: event with # of RPs greater or equal to 5
+ //  7th bin: event with # of RPs greater or equal to 6
+ //  8th bin: event with # of RPs greater or equal to 7
+ //  9th bin: event with # of RPs greater or equal to 8
+ if(nRP<0)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): nRP<0 in in AFAWQC::FAM() !!!!"<<endl;
+  cout<<endl;
+  exit(0);
+ }
+ for(Int_t i=0;i<9;i++)
+ {
+  if(nRP>=i){fAvMultiplicity->Fill(i+0.5,nRP,1);}
+ }
+} // end of AliFlowAnalysisWithQCumulants::FillAverageMultiplicities(nRP)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateCumulantsIntFlow()
+{ 
+ // a) Calculate Q-cumulants from the measured multiparticle correlations;
+ // b) Propagate the statistical errors from measured multiparticle correlations to statistical errors of Q-cumulants;  
+ // c) Remark: Q-cumulants calculated in this method are biased by non-uniform acceptance of detector !!!! 
+ //            Method CalculateQcumulantsCorrectedForNUAIntFlow() is called afterwards to correct for this bias;
+ // d) Store the results and statistical error of Q-cumulants in histogram fIntFlowQcumulants.
+ //    Binning of fIntFlowQcumulants is organized as follows:
+ //
+ //            1st bin: QC{2}
+ //            2nd bin: QC{4}
+ //            3rd bin: QC{6}
+ //            4th bin: QC{8}
+ //
+ // Correlations:
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1); // <<2>> 
+ Double_t four = fIntFlowCorrelationsHist->GetBinContent(2); // <<4>>  
+ Double_t six = fIntFlowCorrelationsHist->GetBinContent(3); // <<6>> 
+ Double_t eight = fIntFlowCorrelationsHist->GetBinContent(4); // <<8>>  
+ // Statistical errors of average 2-, 4-, 6- and 8-particle azimuthal correlations:
+ Double_t twoError = fIntFlowCorrelationsHist->GetBinError(1); // statistical error of <2>  
+ Double_t fourError = fIntFlowCorrelationsHist->GetBinError(2); // statistical error of <4>   
+ Double_t sixError = fIntFlowCorrelationsHist->GetBinError(3); // statistical error of <6> 
+ Double_t eightError = fIntFlowCorrelationsHist->GetBinError(4); // statistical error of <8> 
+ // Covariances (multiplied by prefactor depending on weights - see comments in CalculateCovariancesIntFlow()):
+ Double_t wCov24 = 0.; // Cov(<2>,<4>) * prefactor(w_<2>,w_<4>)
+ Double_t wCov26 = 0.; // Cov(<2>,<6>) * prefactor(w_<2>,w_<6>)
+ Double_t wCov28 = 0.; // Cov(<2>,<8>) * prefactor(w_<2>,w_<8>)
+ Double_t wCov46 = 0.; // Cov(<4>,<6>) * prefactor(w_<4>,w_<6>)
+ Double_t wCov48 = 0.; // Cov(<4>,<8>) * prefactor(w_<4>,w_<8>)
+ Double_t wCov68 = 0.; // Cov(<6>,<8>) * prefactor(w_<6>,w_<8>)  
+ if(!fForgetAboutCovariances)
+ {
+  wCov24 = fIntFlowCovariances->GetBinContent(1); // Cov(<2>,<4>) * prefactor(w_<2>,w_<4>)
+  wCov26 = fIntFlowCovariances->GetBinContent(2); // Cov(<2>,<6>) * prefactor(w_<2>,w_<6>)
+  wCov28 = fIntFlowCovariances->GetBinContent(3); // Cov(<2>,<8>) * prefactor(w_<2>,w_<8>)
+  wCov46 = fIntFlowCovariances->GetBinContent(4); // Cov(<4>,<6>) * prefactor(w_<4>,w_<6>)
+  wCov48 = fIntFlowCovariances->GetBinContent(5); // Cov(<4>,<8>) * prefactor(w_<4>,w_<8>)
+  wCov68 = fIntFlowCovariances->GetBinContent(6); // Cov(<6>,<8>) * prefactor(w_<6>,w_<8>) 
+ }
+ // Q-cumulants: 
+ Double_t qc2 = 0.; // QC{2}
+ Double_t qc4 = 0.; // QC{4}
+ Double_t qc6 = 0.; // QC{6}
+ Double_t qc8 = 0.; // QC{8}
+ if(TMath::Abs(two) > 0.){qc2 = two;} 
+ if(TMath::Abs(four) > 0.){qc4 = four-2.*pow(two,2.);} 
+ if(TMath::Abs(six) > 0.){qc6 = six-9.*two*four+12.*pow(two,3.);} 
+ if(TMath::Abs(eight) > 0.){qc8 = eight-16.*two*six-18.*pow(four,2.)+144.*pow(two,2.)*four-144.*pow(two,4.);} 
+ // Statistical errors of Q-cumulants:       
+ Double_t qc2Error = 0.;
+ Double_t qc4Error = 0.;
+ Double_t qc6Error = 0.;
+ Double_t qc8Error = 0.; 
+ // Squared statistical errors of Q-cumulants:       
+ //Double_t qc2ErrorSquared = 0.;
+ Double_t qc4ErrorSquared = 0.;
+ Double_t qc6ErrorSquared = 0.;
+ Double_t qc8ErrorSquared = 0.;        
+ // Statistical error of QC{2}:              
+ qc2Error = twoError;                                                 
+ // Statistical error of QC{4}:              
+ qc4ErrorSquared = 16.*pow(two,2.)*pow(twoError,2)+pow(fourError,2.)
+                 - 8.*two*wCov24;                     
+ if(qc4ErrorSquared>0.)
+ {
+  qc4Error = pow(qc4ErrorSquared,0.5);
+ } else 
+   {
+    cout<<" WARNING (QC): Statistical error of QC{4} is imaginary !!!!"<<endl;
+   }                                           
+ // Statistical error of QC{6}:              
+ qc6ErrorSquared = 81.*pow(4.*pow(two,2.)-four,2.)*pow(twoError,2.)
+                 + 81.*pow(two,2.)*pow(fourError,2.)
+                 + pow(sixError,2.)
+                 - 162.*two*(4.*pow(two,2.)-four)*wCov24
+                 + 18.*(4.*pow(two,2.)-four)*wCov26
+                 - 18.*two*wCov46;                     
+ if(qc6ErrorSquared>0.)
+ {
+  qc6Error = pow(qc6ErrorSquared,0.5);
+ } else 
+   {
+    cout<<" WARNING (QC): Statistical error of QC{6} is imaginary !!!!"<<endl;
+   }                       
+ // Statistical error of QC{8}:              
+ qc8ErrorSquared = 256.*pow(36.*pow(two,3.)-18.*four*two+six,2.)*pow(twoError,2.)
+                 + 1296.*pow(4.*pow(two,2.)-four,2.)*pow(fourError,2.)
+                 + 256.*pow(two,2.)*pow(sixError,2.)
+                 + pow(eightError,2.)
+                 - 1152.*(36.*pow(two,3.)-18.*four*two+six)*(4.*pow(two,2.)-four)*wCov24
+                 + 512.*two*(36.*pow(two,3.)-18.*four*two+six)*wCov26
+                 - 32.*(36.*pow(two,3.)-18.*four*two+six)*wCov28
+                 - 1152.*two*(4.*pow(two,2.)-four)*wCov46
+                 + 72.*(4.*pow(two,2.)-four)*wCov48
+                 - 32.*two*wCov68;      
+ if(qc8ErrorSquared>0.)
+ {
+  qc8Error = pow(qc8ErrorSquared,0.5);
+ } else 
+   {
+    cout<<"WARNING (QC): Statistical error of QC{8} is imaginary !!!!"<<endl;
+   }
+ // Store the results and statistical errors for Q-cumulants:
+ if(TMath::Abs(qc2)>0.)
+ {
+  fIntFlowQcumulants->SetBinContent(1,qc2);
+  fIntFlowQcumulants->SetBinError(1,qc2Error);
+ }
+ if(TMath::Abs(qc4)>0.)
+ {
+  fIntFlowQcumulants->SetBinContent(2,qc4);
+  fIntFlowQcumulants->SetBinError(2,qc4Error);
+ }
+ if(TMath::Abs(qc6)>0.)
+ {
+  fIntFlowQcumulants->SetBinContent(3,qc6);
+  fIntFlowQcumulants->SetBinError(3,qc6Error);
+ }
+ if(TMath::Abs(qc8)>0.)
+ {
+  fIntFlowQcumulants->SetBinContent(4,qc8); 
+  fIntFlowQcumulants->SetBinError(4,qc8Error);
+ } 
+ // Versus multiplicity: 
+ if(!fCalculateCumulantsVsM){return;}
+ Int_t nBins = fIntFlowCorrelationsVsMPro[0]->GetNbinsX(); // to be improved (hardwired 0) 
+ Double_t value[4] = {0.}; // QCs vs M
+ Double_t error[4] = {0.}; // error of QCs vs M
+ Double_t dSum1[4] = {0.}; // sum value_i/(error_i)^2
+ Double_t dSum2[4] = {0.}; // sum 1/(error_i)^2
+ for(Int_t b=1;b<=nBins;b++)
+ {
+  // Correlations:
+  two = fIntFlowCorrelationsVsMHist[0]->GetBinContent(b); // <<2>> 
+  four = fIntFlowCorrelationsVsMHist[1]->GetBinContent(b); // <<4>>  
+  six = fIntFlowCorrelationsVsMHist[2]->GetBinContent(b); // <<6>> 
+  eight = fIntFlowCorrelationsVsMHist[3]->GetBinContent(b); // <<8>>  
+  // Statistical errors of average 2-, 4-, 6- and 8-particle azimuthal correlations:
+  twoError = fIntFlowCorrelationsVsMHist[0]->GetBinError(b); // statistical error of <2>  
+  fourError = fIntFlowCorrelationsVsMHist[1]->GetBinError(b); // statistical error of <4>   
+  sixError = fIntFlowCorrelationsVsMHist[2]->GetBinError(b); // statistical error of <6> 
+  eightError = fIntFlowCorrelationsVsMHist[3]->GetBinError(b); // statistical error of <8> 
+  // Covariances (multiplied by prefactor depending on weights - see comments in CalculateCovariancesIntFlow()):
+  if(!fForgetAboutCovariances)
+  {
+   wCov24 = fIntFlowCovariancesVsM[0]->GetBinContent(b); // Cov(<2>,<4>) * prefactor(w_<2>,w_<4>)
+   wCov26 = fIntFlowCovariancesVsM[1]->GetBinContent(b); // Cov(<2>,<6>) * prefactor(w_<2>,w_<6>)
+   wCov28 = fIntFlowCovariancesVsM[2]->GetBinContent(b); // Cov(<2>,<8>) * prefactor(w_<2>,w_<8>)
+   wCov46 = fIntFlowCovariancesVsM[3]->GetBinContent(b); // Cov(<4>,<6>) * prefactor(w_<4>,w_<6>)
+   wCov48 = fIntFlowCovariancesVsM[4]->GetBinContent(b); // Cov(<4>,<8>) * prefactor(w_<4>,w_<8>)
+   wCov68 = fIntFlowCovariancesVsM[5]->GetBinContent(b); // Cov(<6>,<8>) * prefactor(w_<6>,w_<8>) 
+  }
+  // Q-cumulants: 
+  qc2 = 0.; // QC{2}
+  qc4 = 0.; // QC{4}
+  qc6 = 0.; // QC{6}
+  qc8 = 0.; // QC{8}
+  if(TMath::Abs(two) > 0.){qc2 = two;} 
+  if(TMath::Abs(four) > 0.){qc4 = four-2.*pow(two,2.);} 
+  if(TMath::Abs(six) > 0.){qc6 = six-9.*two*four+12.*pow(two,3.);} 
+  if(TMath::Abs(eight) > 0.){qc8 = eight-16.*two*six-18.*pow(four,2.)+144.*pow(two,2.)*four-144.*pow(two,4.);}  
+  // Statistical errors of Q-cumulants:       
+  qc2Error = 0.;
+  qc4Error = 0.;
+  qc6Error = 0.;
+  qc8Error = 0.; 
+  // Squared statistical errors of Q-cumulants:       
+  //Double_t qc2ErrorSquared = 0.;
+  qc4ErrorSquared = 0.;
+  qc6ErrorSquared = 0.;
+  qc8ErrorSquared = 0.;    
+  // Statistical error of QC{2}:              
+  qc2Error = twoError;                                             
+  // Statistical error of QC{4}:              
+  qc4ErrorSquared = 16.*pow(two,2.)*pow(twoError,2)+pow(fourError,2.)
+                  - 8.*two*wCov24;                     
+  if(qc4ErrorSquared>0.)
+  {
+   qc4Error = pow(qc4ErrorSquared,0.5);
+  } else 
+    {
+     // cout<<"WARNING: Statistical error of QC{4} is imaginary in multiplicity bin "<<b<<" !!!!"<<endl;
+    }                                       
+  // Statistical error of QC{6}:              
+  qc6ErrorSquared = 81.*pow(4.*pow(two,2.)-four,2.)*pow(twoError,2.)
+                  + 81.*pow(two,2.)*pow(fourError,2.)
+                  + pow(sixError,2.)
+                  - 162.*two*(4.*pow(two,2.)-four)*wCov24
+                  + 18.*(4.*pow(two,2.)-four)*wCov26
+                  - 18.*two*wCov46;                     
+  if(qc6ErrorSquared>0.)
+  {
+   qc6Error = pow(qc6ErrorSquared,0.5);
+  } else 
+    {
+     // cout<<"WARNING: Statistical error of QC{6} is imaginary in multiplicity bin "<<b<<" !!!!"<<endl;
+    }                            
+  // Statistical error of QC{8}:              
+  qc8ErrorSquared = 256.*pow(36.*pow(two,3.)-18.*four*two+six,2.)*pow(twoError,2.)
+                  + 1296.*pow(4.*pow(two,2.)-four,2.)*pow(fourError,2.)
+                  + 256.*pow(two,2.)*pow(sixError,2.)
+                  + pow(eightError,2.)
+                  - 1152.*(36.*pow(two,3.)-18.*four*two+six)*(4.*pow(two,2.)-four)*wCov24
+                  + 512.*two*(36.*pow(two,3.)-18.*four*two+six)*wCov26
+                  - 32.*(36.*pow(two,3.)-18.*four*two+six)*wCov28
+                  - 1152.*two*(4.*pow(two,2.)-four)*wCov46
+                  + 72.*(4.*pow(two,2.)-four)*wCov48
+                  - 32.*two*wCov68;      
+  if(qc8ErrorSquared>0.)
+  {
+   qc8Error = pow(qc8ErrorSquared,0.5);
+  } else 
+    {
+     // cout<<"WARNING: Statistical error of QC{8} is imaginary in multiplicity bin "<<b<<" !!!!"<<endl;
+    }
+  // Store the results and statistical errors for Q-cumulants:
+  if(TMath::Abs(qc2)>0.)
+  {
+   fIntFlowQcumulantsVsM[0]->SetBinContent(b,qc2);
+   fIntFlowQcumulantsVsM[0]->SetBinError(b,qc2Error);  
+  }
+  if(TMath::Abs(qc4)>0.)
+  {
+   fIntFlowQcumulantsVsM[1]->SetBinContent(b,qc4);  
+   fIntFlowQcumulantsVsM[1]->SetBinError(b,qc4Error);
+  }
+  if(TMath::Abs(qc6)>0.)
+  {
+   fIntFlowQcumulantsVsM[2]->SetBinContent(b,qc6); 
+   fIntFlowQcumulantsVsM[2]->SetBinError(b,qc6Error);
+  }
+  if(TMath::Abs(qc8)>0.)
+  {  
+   fIntFlowQcumulantsVsM[3]->SetBinContent(b,qc8);
+   fIntFlowQcumulantsVsM[3]->SetBinError(b,qc8Error);
+  } 
+  // Rebin in M:
+  for(Int_t co=0;co<4;co++)
+  {
+   if(fIntFlowCorrelationsVsMPro[co]->GetBinEffectiveEntries(b)<2){continue;}
+   value[co] = fIntFlowQcumulantsVsM[co]->GetBinContent(b);
+   error[co] = fIntFlowQcumulantsVsM[co]->GetBinError(b);
+   if(error[co]>0.)
+   {
+    dSum1[co]+=value[co]/(error[co]*error[co]);
+    dSum2[co]+=1./(error[co]*error[co]);
+   }
+  } // end of for(Int_t co=0;co<4;co++) 
+ } // end of for(Int_t b=1;b<=nBins;b++)
+ // Store rebinned Q-cumulants:
+ for(Int_t co=0;co<4;co++)
+ {
+  if(dSum2[co]>0.)
+  {
+   fIntFlowQcumulantsRebinnedInM->SetBinContent(co+1,dSum1[co]/dSum2[co]);
+   fIntFlowQcumulantsRebinnedInM->SetBinError(co+1,pow(1./dSum2[co],0.5));
+  }
+ } // end of for(Int_t co=0;co<4;co++)
+} // end of AliFlowAnalysisWithQCumulants::CalculateCumulantsIntFlow()
+
+//================================================================================================================================ 
+
+void AliFlowAnalysisWithQCumulants::CalculateReferenceFlow()
+{
+ // a) Calculate the final results for reference flow estimates from Q-cumulants;
+ // b) Propagate the statistical errors to reference flow estimates from statistical error of Q-cumulants; 
+ // c) Store the results and statistical errors of reference flow estimates in histogram fIntFlow.
+ //    Binning of fIntFlow is organized as follows:
+ //
+ //            1st bin: v{2,QC}
+ //            2nd bin: v{4,QC}
+ //            3rd bin: v{6,QC}
+ //            4th bin: v{8,QC}
+ //
+ // Reference flow estimates:
+ Double_t v2 = 0.; // v{2,QC}  
+ Double_t v4 = 0.; // v{4,QC}  
+ Double_t v6 = 0.; // v{6,QC}  
+ Double_t v8 = 0.; // v{8,QC}
+ // Reference flow's statistical errors:
+ Double_t v2Error = 0.; // v{2,QC} stat. error 
+ Double_t v4Error = 0.; // v{4,QC} stat. error
+ Double_t v6Error = 0.; // v{6,QC} stat. error
+ Double_t v8Error = 0.; // v{8,QC} stat. error
+  
+ // Q-cumulants:
+ Double_t qc2 = fIntFlowQcumulants->GetBinContent(1); // QC{2}  
+ Double_t qc4 = fIntFlowQcumulants->GetBinContent(2); // QC{4}  
+ Double_t qc6 = fIntFlowQcumulants->GetBinContent(3); // QC{6}  
+ Double_t qc8 = fIntFlowQcumulants->GetBinContent(4); // QC{8}
+ // Q-cumulants's statistical errors: 
+ Double_t qc2Error = fIntFlowQcumulants->GetBinError(1); // QC{2} stat. error  
+ Double_t qc4Error = fIntFlowQcumulants->GetBinError(2); // QC{4} stat. error  
+ Double_t qc6Error = fIntFlowQcumulants->GetBinError(3); // QC{6} stat. error  
+ Double_t qc8Error = fIntFlowQcumulants->GetBinError(4); // QC{8} stat. error
+ // Calculate reference flow estimates from Q-cumulants: 
+ if(qc2>=0.){v2 = pow(qc2,0.5);} 
+ if(qc4<=0.){v4 = pow(-1.*qc4,1./4.);} 
+ if(qc6>=0.){v6 = pow((1./4.)*qc6,1./6.);}
+ if(qc8<=0.){v8 = pow((-1./33.)*qc8,1./8.);}  
+ // Calculate stat. error for reference flow estimates from stat. error of Q-cumulants:  
+ if(qc2>0.){v2Error = (1./2.)*pow(qc2,-0.5)*qc2Error;} 
+ if(qc4<0.){v4Error = (1./4.)*pow(-qc4,-3./4.)*qc4Error;} 
+ if(qc6>0.){v6Error = (1./6.)*pow(2.,-1./3.)*pow(qc6,-5./6.)*qc6Error;}   
+ if(qc8<0.){v8Error = (1./8.)*pow(33.,-1./8.)*pow(-qc8,-7./8.)*qc8Error;}   
+ // Print warnings for the 'wrong sign' cumulants: 
+ if(TMath::Abs(v2) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{2}, couldn't calculate v{2,QC} !!!!"<<endl;
+ }
+ if(TMath::Abs(v4) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{4}, couldn't calculate v{4,QC} !!!!"<<endl;
+ } 
+ if(TMath::Abs(v6) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{6}, couldn't calculate v{6,QC} !!!!"<<endl; 
+ }
+ if(TMath::Abs(v8) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{8}, couldn't calculate v{8,QC} !!!!"<<endl;
+ }                       
+ // Store the results and statistical errors of integrated flow estimates:
+ fIntFlow->SetBinContent(1,v2);
+ fIntFlow->SetBinError(1,v2Error);
+ fIntFlow->SetBinContent(2,v4);
+ fIntFlow->SetBinError(2,v4Error);
+ fIntFlow->SetBinContent(3,v6);
+ fIntFlow->SetBinError(3,v6Error);
+ fIntFlow->SetBinContent(4,v8);
+ fIntFlow->SetBinError(4,v8Error);  
+  
+ // Versus multiplicity: 
+ if(!fCalculateCumulantsVsM){return;} 
+ Int_t nBins = fIntFlowCorrelationsVsMPro[0]->GetNbinsX(); // to be improved (hardwired 0) 
+ for(Int_t b=1;b<=nBins;b++)
+ {
+  // Q-cumulants:
+  Double_t qc2VsM = fIntFlowQcumulantsVsM[0]->GetBinContent(b); // QC{2}  
+  Double_t qc4VsM = fIntFlowQcumulantsVsM[1]->GetBinContent(b); // QC{4}  
+  Double_t qc6VsM = fIntFlowQcumulantsVsM[2]->GetBinContent(b); // QC{6}  
+  Double_t qc8VsM = fIntFlowQcumulantsVsM[3]->GetBinContent(b); // QC{8}
+  // Q-cumulants's statistical errors: 
+  Double_t qc2ErrorVsM = fIntFlowQcumulantsVsM[0]->GetBinError(b); // QC{2} stat. error  
+  Double_t qc4ErrorVsM = fIntFlowQcumulantsVsM[1]->GetBinError(b); // QC{4} stat. error  
+  Double_t qc6ErrorVsM = fIntFlowQcumulantsVsM[2]->GetBinError(b); // QC{6} stat. error  
+  Double_t qc8ErrorVsM = fIntFlowQcumulantsVsM[3]->GetBinError(b); // QC{8} stat. error
+  // Reference flow estimates:
+  Double_t v2VsM = 0.; // v{2,QC}  
+  Double_t v4VsM = 0.; // v{4,QC}  
+  Double_t v6VsM = 0.; // v{6,QC}  
+  Double_t v8VsM = 0.; // v{8,QC}
+  // Reference flow estimates errors:
+  Double_t v2ErrorVsM = 0.; // v{2,QC} stat. error  
+  Double_t v4ErrorVsM = 0.; // v{4,QC} stat. error
+  Double_t v6ErrorVsM = 0.; // v{6,QC} stat. error  
+  Double_t v8ErrorVsM = 0.; // v{8,QC} stat. error
+  // Calculate reference flow estimates from Q-cumulants: 
+  if(qc2VsM>=0.){v2VsM = pow(qc2VsM,0.5);} 
+  if(qc4VsM<=0.){v4VsM = pow(-1.*qc4VsM,1./4.);} 
+  if(qc6VsM>=0.){v6VsM = pow((1./4.)*qc6VsM,1./6.);}
+  if(qc8VsM<=0.){v8VsM = pow((-1./33.)*qc8VsM,1./8.);}  
+  // Calculate stat. error for reference flow estimates from stat. error of Q-cumulants: 
+  if(qc2VsM>0.){v2ErrorVsM = (1./2.)*pow(qc2VsM,-0.5)*qc2ErrorVsM;} 
+  if(qc4VsM<0.){v4ErrorVsM = (1./4.)*pow(-qc4VsM,-3./4.)*qc4ErrorVsM;} 
+  if(qc6VsM>0.){v6ErrorVsM = (1./6.)*pow(2.,-1./3.)*pow(qc6VsM,-5./6.)*qc6ErrorVsM;}   
+  if(qc8VsM<0.){v8ErrorVsM = (1./8.)*pow(33.,-1./8.)*pow(-qc8VsM,-7./8.)*qc8ErrorVsM;}                       
+  // Store the results and statistical errors of integrated flow estimates:
+  fIntFlowVsM[0]->SetBinContent(b,v2VsM);
+  fIntFlowVsM[0]->SetBinError(b,v2ErrorVsM);
+  fIntFlowVsM[1]->SetBinContent(b,v4VsM);
+  fIntFlowVsM[1]->SetBinError(b,v4ErrorVsM);
+  fIntFlowVsM[2]->SetBinContent(b,v6VsM);
+  fIntFlowVsM[2]->SetBinError(b,v6ErrorVsM);
+  fIntFlowVsM[3]->SetBinContent(b,v8VsM);
+  fIntFlowVsM[3]->SetBinError(b,v8ErrorVsM);
+ } // end of for(Int_t b=1;b<=nBins;b++)
+ // 'Rebinned in M' calculation: // to be improved - this can be implemented better:   
+ // Reference flow estimates:
+ Double_t v2RebinnedInM = 0.; // v{2,QC}  
+ Double_t v4RebinnedInM = 0.; // v{4,QC}  
+ Double_t v6RebinnedInM = 0.; // v{6,QC}  
+ Double_t v8RebinnedInM = 0.; // v{8,QC}
+ // Reference flow's statistical errors:
+ Double_t v2ErrorRebinnedInM = 0.; // v{2,QC} stat. error 
+ Double_t v4ErrorRebinnedInM = 0.; // v{4,QC} stat. error
+ Double_t v6ErrorRebinnedInM = 0.; // v{6,QC} stat. error
+ Double_t v8ErrorRebinnedInM = 0.; // v{8,QC} stat. error
+ // Q-cumulants:
+ Double_t qc2RebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinContent(1); // QC{2}  
+ Double_t qc4RebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinContent(2); // QC{4}  
+ Double_t qc6RebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinContent(3); // QC{6}  
+ Double_t qc8RebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinContent(4); // QC{8}
+ // Q-cumulants's statistical errors: 
+ Double_t qc2ErrorRebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinError(1); // QC{2} stat. error  
+ Double_t qc4ErrorRebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinError(2); // QC{4} stat. error  
+ Double_t qc6ErrorRebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinError(3); // QC{6} stat. error  
+ Double_t qc8ErrorRebinnedInM = fIntFlowQcumulantsRebinnedInM->GetBinError(4); // QC{8} stat. error
+ // Calculate reference flow estimates from Q-cumulants: 
+ if(qc2RebinnedInM>=0.){v2RebinnedInM = pow(qc2RebinnedInM,0.5);} 
+ if(qc4RebinnedInM<=0.){v4RebinnedInM = pow(-1.*qc4RebinnedInM,1./4.);} 
+ if(qc6RebinnedInM>=0.){v6RebinnedInM = pow((1./4.)*qc6RebinnedInM,1./6.);}
+ if(qc8RebinnedInM<=0.){v8RebinnedInM = pow((-1./33.)*qc8RebinnedInM,1./8.);}  
+ // Calculate stat. error for reference flow estimates from stat. error of Q-cumulants: 
+ if(qc2RebinnedInM>0.){v2ErrorRebinnedInM = (1./2.)*pow(qc2RebinnedInM,-0.5)*qc2ErrorRebinnedInM;} 
+ if(qc4RebinnedInM<0.){v4ErrorRebinnedInM = (1./4.)*pow(-qc4RebinnedInM,-3./4.)*qc4ErrorRebinnedInM;} 
+ if(qc6RebinnedInM>0.){v6ErrorRebinnedInM = (1./6.)*pow(2.,-1./3.)*pow(qc6RebinnedInM,-5./6.)*qc6ErrorRebinnedInM;}   
+ if(qc8RebinnedInM<0.){v8ErrorRebinnedInM = (1./8.)*pow(33.,-1./8.)*pow(-qc8RebinnedInM,-7./8.)*qc8ErrorRebinnedInM;}   
+ // Print warnings for the 'wrong sign' cumulants: 
+ if(TMath::Abs(v2RebinnedInM) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{2} rebinned in M, couldn't calculate v{2,QC} !!!!"<<endl;
+ }
+ if(TMath::Abs(v4RebinnedInM) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{4} rebinned in M, couldn't calculate v{4,QC} !!!!"<<endl;
+ }
+ if(TMath::Abs(v6RebinnedInM) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{6} rebinned in M, couldn't calculate v{6,QC} !!!!"<<endl;
+ }
+ if(TMath::Abs(v8RebinnedInM) < 1.e-44)
+ {
+  cout<<" WARNING: Wrong sign QC{8} rebinned in M, couldn't calculate v{8,QC} !!!!"<<endl;
+ }                       
+ // Store the results and statistical errors of integrated flow estimates:
+ fIntFlowRebinnedInM->SetBinContent(1,v2RebinnedInM);
+ fIntFlowRebinnedInM->SetBinError(1,v2ErrorRebinnedInM);
+ fIntFlowRebinnedInM->SetBinContent(2,v4RebinnedInM);
+ fIntFlowRebinnedInM->SetBinError(2,v4ErrorRebinnedInM);
+ fIntFlowRebinnedInM->SetBinContent(3,v6RebinnedInM);
+ fIntFlowRebinnedInM->SetBinError(3,v6ErrorRebinnedInM);
+ fIntFlowRebinnedInM->SetBinContent(4,v8RebinnedInM);
+ fIntFlowRebinnedInM->SetBinError(4,v8ErrorRebinnedInM);    
+  
+} // end of AliFlowAnalysisWithQCumulants::CalculateReferenceFlow()
+
+//================================================================================================================================ 
+
+void AliFlowAnalysisWithQCumulants::FillCommonHistResultsIntFlow()
+{
+ // Fill in AliFlowCommonHistResults histograms relevant for reference flow.
+ // There are two possibilities here:
+ // a) Store minimum bias reference flow - use SetMinimumBiasReferenceFlow(kTRUE). This result is 
+ //    biased by the interplay between nonflow correlations and multiplicity fluctuations and is 
+ //    also stored in local histogram fIntFlow; 
+ // b) Store reference flow obtained from flow analysis performed at fixed multiplicity and 
+ //    rebinned only at the end of the day - use SetMinimumBiasReferenceFlow(kFALSE). This result
+ //    is also stored in local histogram fIntFlowRebinnedInM.
+ // Reference flow estimates:
+ Double_t v[4] = {0.};
+ // Statistical errors of reference flow estimates:
+ Double_t vError[4] = {0.};
+  
+ for(Int_t b=0;b<4;b++)
+ {
+  if(fMinimumBiasReferenceFlow)
+  { 
+   v[b] = fIntFlow->GetBinContent(b+1);
+   vError[b] = fIntFlow->GetBinError(b+1);
+  } else
+    {
+     v[b] = fIntFlowRebinnedInM->GetBinContent(b+1);
+     vError[b] = fIntFlowRebinnedInM->GetBinError(b+1);
+    }
+ } // end of for(Int_t b=0;b<4;b++)
+  
+ // Fill AliFlowCommonHistResults histogram:
+ fCommonHistsResults2nd->FillIntegratedFlow(v[0],vError[0]); // to be improved (hardwired 2nd in the name)  
+ fCommonHistsResults4th->FillIntegratedFlow(v[1],vError[1]); // to be improved (hardwired 4th in the name)
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)) // to be improved (calculate also 6th and 8th order)
+ {
+  fCommonHistsResults6th->FillIntegratedFlow(v[2],vError[2]); // to be improved (hardwired 6th in the name)
+  fCommonHistsResults8th->FillIntegratedFlow(v[3],vError[3]); // to be improved (hardwired 8th in the name) 
+ }
+} // end of AliFlowAnalysisWithQCumulants::FillCommonHistResultsIntFlow()
+
+//================================================================================================================================ 
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrelationsUsingParticleWeights()
+{
+ // Calculate all correlations needed for integrated flow using particle weights.
+  
+ // Remark 1: When particle weights are used the binning of fIntFlowCorrelationAllPro is organized as follows:
+ //
+ //  1st bin: <2>_{1n|1n} = two1n1nW1W1 = <w1 w2 cos(n*(phi1-phi2))>
+ //  2nd bin: <2>_{2n|2n} = two2n2nW2W2 = <w1^2 w2^2 cos(2n*(phi1-phi2))>
+ //  3rd bin: <2>_{3n|3n} = two3n3nW3W3 = <w1^3 w2^3 cos(3n*(phi1-phi2))> 
+ //  4th bin: <2>_{4n|4n} = two4n4nW4W4 = <w1^4 w2^4 cos(4n*(phi1-phi2))>
+ //  5th bin:           ----  EMPTY ----
+ //  6th bin: <3>_{2n|1n,1n} = three2n1n1nW2W1W1 = <w1^2 w2 w3 cos(n*(2phi1-phi2-phi3))>
+ //  7th bin: <3>_{3n|2n,1n} = ...
+ //  8th bin: <3>_{4n|2n,2n} = ...
+ //  9th bin: <3>_{4n|3n,1n} = ...
+ // 10th bin:           ----  EMPTY ----
+ // 11th bin: <4>_{1n,1n|1n,1n} = four1n1n1n1nW1W1W1W1 = <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))>
+ // 12th bin: <4>_{2n,1n|2n,1n} = ...
+ // 13th bin: <4>_{2n,2n|2n,2n} = ...
+ // 14th bin: <4>_{3n|1n,1n,1n} = ... 
+ // 15th bin: <4>_{3n,1n|3n,1n} = ...
+ // 16th bin: <4>_{3n,1n|2n,2n} = ...
+ // 17th bin: <4>_{4n|2n,1n,1n} = ... 
+ // 18th bin:           ----  EMPTY ----
+ // 19th bin: <5>_{2n|1n,1n,1n,1n} = ...
+ // 20th bin: <5>_{2n,2n|2n,1n,1n} = ...
+ // 21st bin: <5>_{3n,1n|2n,1n,1n} = ...
+ // 22nd bin: <5>_{4n|1n,1n,1n,1n} = ...
+ // 23rd bin:           ----  EMPTY ----
+ // 24th bin: <6>_{1n,1n,1n|1n,1n,1n} = ...
+ // 25th bin: <6>_{2n,1n,1n|2n,1n,1n} = ...
+ // 26th bin: <6>_{2n,2n|1n,1n,1n,1n} = ...
+ // 27th bin: <6>_{3n,1n|1n,1n,1n,1n} = ...
+ // 28th bin:           ----  EMPTY ----
+ // 29th bin: <7>_{2n,1n,1n|1n,1n,1n,1n} = ...
+ // 30th bin:           ----  EMPTY ----
+ // 31st bin: <8>_{1n,1n,1n,1n|1n,1n,1n,1n} = ...
+ // Remark 2: When particle weights are used there are some extra correlations. They are stored in 
+ // fIntFlowExtraCorrelationsPro binning of which is organized as follows:
+ // 1st bin: two1n1nW3W1 = <w1^3 w2 cos(n*(phi1-phi2))>
+ // 2nd bin: two1n1nW1W1W2 = <w1 w2 w3^2 cos(n*(phi1-phi2))>  
+ // multiplicity (number of particles used to determine the reaction plane)
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ Double_t dReQ3n3k = (*fReQ)(2,3);
+ Double_t dReQ4n4k = (*fReQ)(3,4);
+ Double_t dReQ1n3k = (*fReQ)(0,3);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ Double_t dImQ3n3k = (*fImQ)(2,3);
+ Double_t dImQ4n4k = (*fImQ)(3,4);
+ Double_t dImQ1n3k = (*fImQ)(0,3);
+
+ // dMs are variables introduced in order to simplify some Eqs. bellow:
+ //..............................................................................................
+ Double_t dM11 = (*fSpk)(1,1)-(*fSpk)(0,2); // dM11 = sum_{i,j=1,i!=j}^M w_i w_j
+ Double_t dM22 = (*fSpk)(1,2)-(*fSpk)(0,4); // dM22 = sum_{i,j=1,i!=j}^M w_i^2 w_j^2
+ Double_t dM33 = (*fSpk)(1,3)-(*fSpk)(0,6); // dM33 = sum_{i,j=1,i!=j}^M w_i^3 w_j^3
+ Double_t dM44 = (*fSpk)(1,4)-(*fSpk)(0,8); // dM44 = sum_{i,j=1,i!=j}^M w_i^4 w_j^4
+ Double_t dM31 = (*fSpk)(0,3)*(*fSpk)(0,1)-(*fSpk)(0,4); // dM31 = sum_{i,j=1,i!=j}^M w_i^3 w_j
+ Double_t dM211 = (*fSpk)(0,2)*(*fSpk)(1,1)-2.*(*fSpk)(0,3)*(*fSpk)(0,1)
+                - (*fSpk)(1,2)+2.*(*fSpk)(0,4); // dM211 = sum_{i,j,k=1,i!=j!=k}^M w_i^2 w_j w_k
+ Double_t dM1111 = (*fSpk)(3,1)-6.*(*fSpk)(0,2)*(*fSpk)(1,1)  
+                 + 8.*(*fSpk)(0,3)*(*fSpk)(0,1)
+                 + 3.*(*fSpk)(1,2)-6.*(*fSpk)(0,4); // dM1111 = sum_{i,j,k,l=1,i!=j!=k!=l}^M w_i w_j w_k w_l
+ //..............................................................................................
+
+ // 2-particle correlations:
+ Double_t two1n1nW1W1 = 0.; // <w1 w2 cos(n*(phi1-phi2))>
+ Double_t two2n2nW2W2 = 0.; // <w1^2 w2^2 cos(2n*(phi1-phi2))>
+ Double_t two3n3nW3W3 = 0.; // <w1^3 w2^3 cos(3n*(phi1-phi2))>
+ Double_t two4n4nW4W4 = 0.; // <w1^4 w2^4 cos(4n*(phi1-phi2))>
+ if(dMult>1) 
+ { 
+  if(dM11)
+  {
+   two1n1nW1W1 = (pow(dReQ1n1k,2)+pow(dImQ1n1k,2)-(*fSpk)(0,2))/dM11;    
+   // average correlation <w1 w2 cos(n*(phi1-phi2))> for single event: 
+   fIntFlowCorrelationsEBE->SetBinContent(1,two1n1nW1W1);
+   fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(1,dM11);
+   // average correlation <w1 w2 cos(n*(phi1-phi2))> for all events:
+   fIntFlowCorrelationsPro->Fill(0.5,two1n1nW1W1,dM11);  
+   // average squared correlation <w1 w2 cos(n*(phi1-phi2))> for all events:
+   fIntFlowSquaredCorrelationsPro->Fill(0.5,two1n1nW1W1*two1n1nW1W1,dM11); 
+   fIntFlowCorrelationsAllPro->Fill(0.5,two1n1nW1W1,dM11);   
+  }
+  if(dM22)
+  {
+   two2n2nW2W2 = (pow(dReQ2n2k,2)+pow(dImQ2n2k,2)-(*fSpk)(0,4))/dM22; 
+   // ...
+   // average correlation <w1^2 w2^2 cos(2n*(phi1-phi2))> for all events:
+   fIntFlowCorrelationsAllPro->Fill(1.5,two2n2nW2W2,dM22);   
+  }
+  if(dM33)
+  {
+   two3n3nW3W3 = (pow(dReQ3n3k,2)+pow(dImQ3n3k,2)-(*fSpk)(0,6))/dM33;
+   // ...
+   // average correlation <w1^3 w2^3 cos(3n*(phi1-phi2))> for all events:
+   fIntFlowCorrelationsAllPro->Fill(2.5,two3n3nW3W3,dM33);   
+  }
+  if(dM44)
+  {
+   two4n4nW4W4 = (pow(dReQ4n4k,2)+pow(dImQ4n4k,2)-(*fSpk)(0,8))/dM44; 
+   // ...
+   // average correlation <w1^4 w2^4 cos(4n*(phi1-phi2))> for all events:
+   fIntFlowCorrelationsAllPro->Fill(3.5,two4n4nW4W4,dM44);      
+  }
+ } // end of if(dMult>1) 
+
+ // extra 2-particle correlations:
+ Double_t two1n1nW3W1 = 0.; // <w1^3 w2 cos(n*(phi1-phi2))>
+ Double_t two1n1nW1W1W2 = 0.; // <w1 w2 w3^2 cos(n*(phi1-phi2))> 
+ if(dMult>1) 
+ {    
+  if(dM31)
+  {
+   two1n1nW3W1 = (dReQ1n3k*dReQ1n1k+dImQ1n3k*dImQ1n1k-(*fSpk)(0,4))/dM31; 
+   fIntFlowExtraCorrelationsPro->Fill(0.5,two1n1nW3W1,dM31);  
+  } 
+  if(dM211)
+  {
+   two1n1nW1W1W2 = ((*fSpk)(0,2)*(pow(dReQ1n1k,2)+pow(dImQ1n1k,2)-(*fSpk)(0,2))
+                 - 2.*(dReQ1n3k*dReQ1n1k+dImQ1n3k*dImQ1n1k
+                 - (*fSpk)(0,4)))/dM211;
+   fIntFlowExtraCorrelationsPro->Fill(1.5,two1n1nW1W1W2,dM211);  
+  }  
+ } // end of if(dMult>1)
+ //..............................................................................................
+ //..............................................................................................
+ // 3-particle correlations:
+ Double_t three2n1n1nW2W1W1 = 0.; // <w1^2 w2 w3 cos(n*(2phi1-phi2-phi3))>
+ if(dMult>2) 
+ { 
+  if(dM211)
+  {                                                       
+   three2n1n1nW2W1W1 = (pow(dReQ1n1k,2.)*dReQ2n2k+2.*dReQ1n1k*dImQ1n1k*dImQ2n2k-pow(dImQ1n1k,2.)*dReQ2n2k
+                     - 2.*(dReQ1n3k*dReQ1n1k+dImQ1n3k*dImQ1n1k)
+                     - pow(dReQ2n2k,2)-pow(dImQ2n2k,2)
+                     + 2.*(*fSpk)(0,4))/dM211;                                                                               
+   fIntFlowCorrelationsAllPro->Fill(5.5,three2n1n1nW2W1W1,dM211);
+  } 
+ } // end of if(dMult>2) 
+ //..............................................................................................
+ //..............................................................................................
+ // 4-particle correlations:
+ Double_t four1n1n1n1nW1W1W1W1 = 0.; // <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))>
+ if(dMult>3) 
+ { 
+  if(dM1111)
+  {      
+   four1n1n1n1nW1W1W1W1 = (pow(pow(dReQ1n1k,2.)+pow(dImQ1n1k,2.),2)
+                        - 2.*(pow(dReQ1n1k,2.)*dReQ2n2k+2.*dReQ1n1k*dImQ1n1k*dImQ2n2k-pow(dImQ1n1k,2.)*dReQ2n2k)
+                        + 8.*(dReQ1n3k*dReQ1n1k+dImQ1n3k*dImQ1n1k)
+                        + (pow(dReQ2n2k,2)+pow(dImQ2n2k,2))
+                        - 4.*(*fSpk)(0,2)*(pow(dReQ1n1k,2)+pow(dImQ1n1k,2))
+                        - 6.*(*fSpk)(0,4)+2.*(*fSpk)(1,2))/dM1111;  
+                          
+   // average correlation <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))> for single event: 
+   fIntFlowCorrelationsEBE->SetBinContent(2,four1n1n1n1nW1W1W1W1);
+   fIntFlowEventWeightsForCorrelationsEBE->SetBinContent(2,dM1111);
+   // average correlation <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))> for all events:
+   fIntFlowCorrelationsPro->Fill(1.5,four1n1n1n1nW1W1W1W1,dM1111);   
+   // average squared correlation <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))> for all events:
+   fIntFlowSquaredCorrelationsPro->Fill(1.5,four1n1n1n1nW1W1W1W1*four1n1n1n1nW1W1W1W1,dM1111);      
+   fIntFlowCorrelationsAllPro->Fill(10.5,four1n1n1n1nW1W1W1W1,dM1111);   
+  } 
+ } // end of if(dMult>3) 
+ //..............................................................................................
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrelationsUsingParticleWeights()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::InitializeArraysForIntFlow()
+{
+ // Initialize all arrays used to calculate integrated flow.
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  fIntFlowCorrectionTermsForNUAEBE[sc] = NULL;
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[sc] = NULL;
+  fIntFlowCorrectionTermsForNUAPro[sc] = NULL;
+  fIntFlowCorrectionTermsForNUAHist[sc] = NULL;
+  for(Int_t ci=0;ci<4;ci++) // correction term index (to be improved - hardwired 4)
+  {
+   fIntFlowCorrectionTermsForNUAVsMPro[sc][ci] = NULL;
+  }
+  for(Int_t power=0;power<2;power++) // linear or quadratic 
+  {
+   fIntFlowSumOfEventWeightsNUA[sc][power] = NULL;
+  }
+ }
+ for(Int_t power=0;power<2;power++) // linear or quadratic 
+ {
+  fIntFlowSumOfEventWeights[power] = NULL;    
+ }
+ for(Int_t i=0;i<4;i++) // print on the screen the final results (0=RF, 1=RP, 2=POI, 3=RF (rebbined in M))
+ {
+  fPrintFinalResults[i] = kTRUE;
+ }
+ for(Int_t ci=0;ci<4;ci++) // correlation index or cumulant order
+ {
+  fIntFlowCorrelationsVsMPro[ci] = NULL;
+  fIntFlowSquaredCorrelationsVsMPro[ci] = NULL;
+  fIntFlowCorrelationsVsMHist[ci] = NULL;
+  fIntFlowQcumulantsVsM[ci] = NULL;
+  fIntFlowVsM[ci] = NULL;
+  fIntFlowDetectorBiasVsM[ci] = NULL;
+  for(Int_t lc=0;lc<2;lc++)
+  {
+   fIntFlowSumOfEventWeightsVsM[ci][lc] = NULL;
+  }
+ } 
+ for(Int_t pi=0;pi<6;pi++) // product or covariance index
+ {
+  fIntFlowProductOfCorrelationsVsMPro[pi] = NULL;
+  fIntFlowCovariancesVsM[pi] = NULL;
+  fIntFlowSumOfProductOfEventWeightsVsM[pi] = NULL;
+ } 
+ for(Int_t ci=0;ci<64;ci++) // correlation index for all correlations vs M profiles (to be improved - hardwired 64)
+ {
+  fIntFlowCorrelationsAllVsMPro[ci] = NULL;
+ } 
+
+} // end of void AliFlowAnalysisWithQCumulants::InitializeArraysForIntFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::InitializeArraysForDiffFlow()
+{
+ // Initialize all arrays needed to calculate differential flow.
+ //  a) Initialize lists holding profiles;
+ //  b) Initialize lists holding histograms;
+ //  c) Initialize event-by-event quantities;
+ //  d) Initialize profiles;
+ //  e) Initialize histograms holding final results.
+ // a) Initialize lists holding profiles;
+ for(Int_t t=0;t<2;t++) // type (RP, POI)
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   fDiffFlowCorrelationsProList[t][pe] = NULL;
+   fDiffFlowProductOfCorrelationsProList[t][pe] = NULL;
+   fDiffFlowCorrectionsProList[t][pe] = NULL;
+  }
+  // 2D:
+  f2DDiffFlowCorrelationsProList[t] = NULL;
+ }  
+ // b) Initialize lists holding histograms;
+ for(Int_t t=0;t<2;t++) // type (RP, POI)
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   fDiffFlowCorrelationsHistList[t][pe] = NULL;
+   for(Int_t power=0;power<2;power++)
+   {
+    fDiffFlowSumOfEventWeightsHistList[t][pe][power] = NULL;
+   } // end of for(Int_t power=0;power<2;power++)  
+   fDiffFlowSumOfProductOfEventWeightsHistList[t][pe] = NULL;
+   fDiffFlowCorrectionsHistList[t][pe] = NULL;
+   fDiffFlowCovariancesHistList[t][pe] = NULL;
+   fDiffFlowCumulantsHistList[t][pe] = NULL;
+   fDiffFlowDetectorBiasHistList[t][pe] = NULL;
+   fDiffFlowHistList[t][pe] = NULL;
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // enf of for(Int_t t=0;t<2;t++) // type (RP, POI) 
+ // c) Initialize event-by-event quantities:
+ // 1D:
+ for(Int_t t=0;t<3;t++) // type (RP, POI, POI&&RP)
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  { 
+   for(Int_t m=0;m<4;m++) // multiple of harmonic
+   {
+    for(Int_t k=0;k<9;k++) // power of weight
+    {
+     fReRPQ1dEBE[t][pe][m][k] = NULL;
+     fImRPQ1dEBE[t][pe][m][k] = NULL;
+     fs1dEBE[t][pe][k] = NULL; // to be improved (this doesn't need to be within loop over m)
+    }   
+   }
+  }
+ }
+ // 1D:
+ for(Int_t t=0;t<2;t++) // type (RP or POI)
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  { 
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAEBE[t][pe][sc][cti] = NULL;
+    }   
+   }
+  }
+ }
+ // 2D:  
+ for(Int_t t=0;t<3;t++) // type (RP, POI, POI&&RP)
+ {
+  for(Int_t m=0;m<4;m++) // multiple of harmonic
+  {
+   for(Int_t k=0;k<9;k++) // power of weight
+   {
+    fReRPQ2dEBE[t][m][k] = NULL;
+    fImRPQ2dEBE[t][m][k] = NULL;
+    fs2dEBE[t][k] = NULL; // to be improved (this doesn't need to be within loop over m)
+   }   
+  }
+ }
+ // d) Initialize profiles:
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t ci=0;ci<4;ci++) // correlation index
+   {
+    fDiffFlowCorrelationsPro[t][pe][ci] = NULL;
+    fDiffFlowSquaredCorrelationsPro[t][pe][ci] = NULL;
+   } // end of for(Int_t ci=0;ci<4;ci++)   
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=0;mci2<8;mci2++) // mixed correlation index
+    {
+     fDiffFlowProductOfCorrelationsPro[t][pe][mci1][mci2] = NULL;
+    } // end of for(Int_t mci2=0;mci2<8;mci2++) // mixed correlation index
+   } // end of for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index  
+   // correction terms for nua:
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAPro[t][pe][sc][cti] = NULL;
+    }   
+   }
+   // other differential correlators:
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t ci=0;ci<1;ci++) // correction term index
+    {
+     fOtherDiffCorrelators[t][pe][sc][ci] = NULL;
+    }   
+   }
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  {
+   f2DDiffFlowCorrelationsPro[t][ci] = NULL;
+  }
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+  
+ // e) Initialize histograms holding final results.
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t ci=0;ci<4;ci++) // correlation index
+   {
+    fDiffFlowCorrelationsHist[t][pe][ci] = NULL;
+    fDiffFlowCumulants[t][pe][ci] = NULL;
+    fDiffFlowDetectorBias[t][pe][ci] = NULL;
+    fDiffFlow[t][pe][ci] = NULL;
+   } // end of for(Int_t ci=0;ci<4;ci++)    
+   for(Int_t covarianceIndex=0;covarianceIndex<5;covarianceIndex++) 
+   {
+    fDiffFlowCovariances[t][pe][covarianceIndex] = NULL;     
+   } // end of for(Int_t covarianceIndex=0;covarianceIndex<5;covarianceIndex++) 
+   // correction terms for nua:
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAHist[t][pe][sc][cti] = NULL;
+    }   
+   }
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  {
+   f2DDiffFlowCumulants[t][ci] = NULL;
+   f2DDiffFlow[t][ci] = NULL;
+  }
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // sum of event weights for reduced correlations:
+ for(Int_t t=0;t<2;t++) // type = RP or POI
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t p=0;p<2;p++) // power of weight is 1 or 2
+   {
+    for(Int_t ew=0;ew<4;ew++) // event weight index for reduced correlations
+    {
+     fDiffFlowSumOfEventWeights[t][pe][p][ew] = NULL;
+    } 
+   }   
+  }
+ }
+ // product of event weights for both types of correlations:
+ for(Int_t t=0;t<2;t++) // type = RP or POI
+ {
+  for(Int_t pe=0;pe<2;pe++) // pt or eta
+  {
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=0;mci2<8;mci2++) // mixed correlation index
+    {
+     fDiffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2] = NULL;
+    } 
+   }   
+  }
+ }
+    
+} // end of AliFlowAnalysisWithQCumulants::InitializeArraysForDiffFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCumulants(TString type, TString ptOrEta)
+{
+ // Calculate differential flow cumulants from measured multiparticle correlations.
+ // REMARK: Cumulants calculated in this method are NOT corrected for non-uniform acceptance. 
+ // This correction, if enabled via setter SetApplyCorrectionForNUA(Bool_t), is applied 
+ // in the method CalculateDiffFlowCumulantsCorrectedForNUA(TString type, TString ptOrEta)
+ Int_t t = 0;
+ Int_t pe = 0;
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   } 
+     
+ // Common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ // Correlation <<2>>: 
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1);
+ Double_t twoError = fIntFlowCorrelationsHist->GetBinError(1);
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // Reduced correlations:   
+  Double_t twoPrime = fDiffFlowCorrelationsHist[t][pe][0]->GetBinContent(b); // <<2'>>
+  Double_t twoPrimeError = fDiffFlowCorrelationsHist[t][pe][0]->GetBinError(b); // stat. error of <<2'>>
+  Double_t fourPrime = fDiffFlowCorrelationsHist[t][pe][1]->GetBinContent(b); // <<4'>>
+  Double_t fourPrimeError = fDiffFlowCorrelationsHist[t][pe][1]->GetBinError(b); // stat. error of <<4'>>
+  // Covariances:
+  Double_t wCovTwoTwoReduced = fDiffFlowCovariances[t][pe][0]->GetBinContent(b); // Cov(<2>,<2'>) * prefactor(<2>,<2'>)
+  Double_t wCovTwoFourReduced = fDiffFlowCovariances[t][pe][1]->GetBinContent(b); // Cov(<2>,<4'>) * prefactor(<2>,<4'>)
+  Double_t wCovTwoReducedFourReduced = fDiffFlowCovariances[t][pe][4]->GetBinContent(b); // Cov(<2'>,<4'>) * prefactor(<2'>,<4'>)
+  // QC{2'}:
+  Double_t qc2Prime = twoPrime; // QC{2'}
+  Double_t qc2PrimeError = twoPrimeError; // stat. error of QC{2'}
+  fDiffFlowCumulants[t][pe][0]->SetBinContent(b,qc2Prime); 
+  fDiffFlowCumulants[t][pe][0]->SetBinError(b,qc2PrimeError); 
+  // QC{4'}:
+  Double_t qc4Prime = fourPrime - 2.*twoPrime*two; // QC{4'} = <<4'>> - 2*<<2'>><<2>>
+  Double_t qc4PrimeError = 0.; // stat. error of QC{4'}
+  Double_t qc4PrimeErrorSquared = 4.*pow(twoPrime,2.)*pow(twoError,2.)
+                                + 4.*pow(two,2.)*pow(twoPrimeError,2.)
+                                + pow(fourPrimeError,2.)
+                                + 8.*two*twoPrime*wCovTwoTwoReduced
+                                - 4.*twoPrime*wCovTwoFourReduced
+                                - 4.*two*wCovTwoReducedFourReduced;
+  if(qc4PrimeErrorSquared>0.)
+  {
+   qc4PrimeError = pow(qc4PrimeErrorSquared,0.5);
+  } 
+  fDiffFlowCumulants[t][pe][1]->SetBinContent(b,qc4Prime); 
+  fDiffFlowCumulants[t][pe][1]->SetBinError(b,qc4PrimeError); 
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)
+    
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCumulants(TString type, Bool_t useParticleWeights, TString eventWeights); 
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Calculate2DDiffFlowCumulants(TString type)
+{
+ // Calculate 2D differential cumulants.
+ // Remark: correction for detector effects and error propagation not implemented yet for 2D differential cumulants.
+ Int_t t = 0;
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+       
+ // Reference correlation <<2>>: 
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1);
+ // Looping over all (pt,eta) bins and calculating differential flow cumulants: 
+ for(Int_t p=1;p<=fnBinsPt;p++)
+ {
+  for(Int_t e=1;e<=fnBinsEta;e++)
+  {
+   // Reduced correlations:   
+   Double_t twoPrime = f2DDiffFlowCorrelationsPro[t][0]->GetBinContent(f2DDiffFlowCorrelationsPro[t][0]->GetBin(p,e)); // <<2'>>(pt,eta)
+   Double_t fourPrime = f2DDiffFlowCorrelationsPro[t][1]->GetBinContent(f2DDiffFlowCorrelationsPro[t][1]->GetBin(p,e)); // <<4'>>(pt,eta)
+   // Cumulants:
+   Double_t qc2Prime = twoPrime; // QC{2'} = <<2'>>   
+   f2DDiffFlowCumulants[t][0]->SetBinContent(f2DDiffFlowCumulants[t][0]->GetBin(p,e),qc2Prime); 
+   Double_t qc4Prime = fourPrime - 2.*twoPrime*two; // QC{4'} = <<4'>> - 2*<<2'>><<2>>
+   f2DDiffFlowCumulants[t][1]->SetBinContent(f2DDiffFlowCumulants[t][1]->GetBin(p,e),qc4Prime); 
+  } // end of for(Int_t e=1;e<=fnBinsEta;e++)
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)
+} // end of void AliFlowAnalysisWithQCumulants::Calculate2DDiffFlowCumulants(TString type)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateFinalResultsForRPandPOIIntegratedFlow(TString type)
+{
+ // Calculate final results for integrated flow of RPs and POIs. 
+  
+ // to be improved - check if the integrated flow calculation here is actually correct 
+  
+ Int_t t = 0; // RP = 0, POI = 1
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+     
+ // pt yield:    
+ TH1F *yield2ndPt = NULL;
+ TH1F *yield4thPt = NULL;
+ TH1F *yield6thPt = NULL;
+ TH1F *yield8thPt = NULL;
+ if(type == "POI")
+ {
+  if(fFillMultipleControlHistograms)
+  {
+   yield2ndPt = (TH1F*)(fCommonHists2nd->GetHistPtPOI())->Clone();
+   yield4thPt = (TH1F*)(fCommonHists4th->GetHistPtPOI())->Clone();
+   yield6thPt = (TH1F*)(fCommonHists6th->GetHistPtPOI())->Clone();
+   yield8thPt = (TH1F*)(fCommonHists8th->GetHistPtPOI())->Clone();  
+  } else
+    {
+     yield2ndPt = (TH1F*)(fCommonHists->GetHistPtPOI())->Clone();
+     yield4thPt = (TH1F*)(fCommonHists->GetHistPtPOI())->Clone();
+     yield6thPt = (TH1F*)(fCommonHists->GetHistPtPOI())->Clone();
+     yield8thPt = (TH1F*)(fCommonHists->GetHistPtPOI())->Clone();     
+    }
+ } 
+ else if(type == "RP")
+ {
+  if(fFillMultipleControlHistograms)
+  {
+   yield2ndPt = (TH1F*)(fCommonHists2nd->GetHistPtRP())->Clone();
+   yield4thPt = (TH1F*)(fCommonHists4th->GetHistPtRP())->Clone();
+   yield6thPt = (TH1F*)(fCommonHists6th->GetHistPtRP())->Clone();
+   yield8thPt = (TH1F*)(fCommonHists8th->GetHistPtRP())->Clone();  
+  } else
+    {
+     yield2ndPt = (TH1F*)(fCommonHists->GetHistPtRP())->Clone();
+     yield4thPt = (TH1F*)(fCommonHists->GetHistPtRP())->Clone();
+     yield6thPt = (TH1F*)(fCommonHists->GetHistPtRP())->Clone();
+     yield8thPt = (TH1F*)(fCommonHists->GetHistPtRP())->Clone();    
+    } 
+ } 
+ if(!yield2ndPt){return;}
+ if(!yield4thPt){return;}
+ if(!yield6thPt){return;}
+ if(!yield8thPt){return;} 
+
+ Int_t nBinsPt = yield2ndPt->GetNbinsX();
+ TH1D *flow2ndPt = NULL;
+ TH1D *flow4thPt = NULL;
+ TH1D *flow6thPt = NULL;
+ TH1D *flow8thPt = NULL;
+ // to be improved (hardwired pt index)
+ flow2ndPt = (TH1D*)fDiffFlow[t][0][0]->Clone();
+ flow4thPt = (TH1D*)fDiffFlow[t][0][1]->Clone();
+ flow6thPt = (TH1D*)fDiffFlow[t][0][2]->Clone();
+ flow8thPt = (TH1D*)fDiffFlow[t][0][3]->Clone(); 
+
+ if(!flow2ndPt){return;}
+ if(!flow4thPt){return;}
+ if(!flow6thPt){return;}
+ if(!flow8thPt){return;} 
+   
+ Double_t dvn2nd = 0., dvn4th = 0., dvn6th = 0., dvn8th = 0.; // differential flow
+ Double_t dErrvn2nd = 0., dErrvn4th = 0., dErrvn6th = 0., dErrvn8th = 0.; // error on differential flow
+ Double_t dVn2nd = 0., dVn4th = 0., dVn6th = 0., dVn8th = 0.; // integrated flow 
+ Double_t dErrVn2nd = 0., dErrVn4th = 0., dErrVn6th = 0., dErrVn8th = 0.; // error on integrated flow
+
+ Double_t dYield2nd = 0., dYield4th = 0., dYield6th = 0., dYield8th = 0.; // pt yield 
+ Double_t dSum2nd = 0., dSum4th = 0., dSum6th = 0., dSum8th = 0.; // needed for normalizing integrated flow
+ // looping over pt bins:
+ for(Int_t p=1;p<nBinsPt+1;p++)
+ {
+  dvn2nd = flow2ndPt->GetBinContent(p);
+  dvn4th = flow4thPt->GetBinContent(p);
+  dvn6th = flow6thPt->GetBinContent(p);
+  dvn8th = flow8thPt->GetBinContent(p);
+  
+  dErrvn2nd = flow2ndPt->GetBinError(p);
+  dErrvn4th = flow4thPt->GetBinError(p);
+  dErrvn6th = flow6thPt->GetBinError(p);
+  dErrvn8th = flow8thPt->GetBinError(p);
+
+  dYield2nd = yield2ndPt->GetBinContent(p);  
+  dYield4th = yield4thPt->GetBinContent(p);
+  dYield6th = yield6thPt->GetBinContent(p);
+  dYield8th = yield8thPt->GetBinContent(p);
+  
+  dVn2nd += dvn2nd*dYield2nd;
+  dVn4th += dvn4th*dYield4th;
+  dVn6th += dvn6th*dYield6th;
+  dVn8th += dvn8th*dYield8th;
+  
+  dSum2nd += dYield2nd;
+  dSum4th += dYield4th;
+  dSum6th += dYield6th;
+  dSum8th += dYield8th;
+  
+  dErrVn2nd += dYield2nd*dYield2nd*dErrvn2nd*dErrvn2nd; // ro be improved (check this relation)
+  dErrVn4th += dYield4th*dYield4th*dErrvn4th*dErrvn4th;
+  dErrVn6th += dYield6th*dYield6th*dErrvn6th*dErrvn6th;
+  dErrVn8th += dYield8th*dYield8th*dErrvn8th*dErrvn8th;
+    
+ } // end of for(Int_t p=1;p<nBinsPt+1;p++)
+
+ // normalizing the results for integrated flow:
+ if(dSum2nd) 
+ {
+  dVn2nd /= dSum2nd;
+  dErrVn2nd /= (dSum2nd*dSum2nd);
+  dErrVn2nd = TMath::Sqrt(dErrVn2nd);
+ } 
+ if(dSum4th) 
+ {
+  dVn4th /= dSum4th;
+  dErrVn4th /= (dSum4th*dSum4th);
+  dErrVn4th = TMath::Sqrt(dErrVn4th);
+ } 
+ //if(dSum6th) dVn6th/=dSum6th;
+ //if(dSum8th) dVn8th/=dSum8th;
+  
+ // storing the results for integrated flow in common histos: (to be improved: new method for this?)
+ if(type == "POI")
+ {
+  fCommonHistsResults2nd->FillIntegratedFlowPOI(dVn2nd,dErrVn2nd); 
+  fCommonHistsResults4th->FillIntegratedFlowPOI(dVn4th,dErrVn4th); 
+  fCommonHistsResults6th->FillIntegratedFlowPOI(dVn6th,0.); // to be improved (errors)
+  fCommonHistsResults8th->FillIntegratedFlowPOI(dVn8th,0.); // to be improved (errors)
+ }
+ else if (type == "RP")
+ {
+  fCommonHistsResults2nd->FillIntegratedFlowRP(dVn2nd,dErrVn2nd); 
+  fCommonHistsResults4th->FillIntegratedFlowRP(dVn4th,dErrVn4th);
+  fCommonHistsResults6th->FillIntegratedFlowRP(dVn6th,0.); // to be improved (errors)
+  fCommonHistsResults8th->FillIntegratedFlowRP(dVn8th,0.); // to be improved (errors)
+ }
+ delete flow2ndPt;
+ delete flow4thPt;
+ //delete flow6thPt;
+ //delete flow8thPt;
+ delete yield2ndPt;
+ delete yield4thPt;
+ delete yield6thPt;
+ delete yield8thPt;
+           
+} // end of AliFlowAnalysisWithQCumulants::CalculateFinalResultsForRPandPOIIntegratedFlow(TString type)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::InitializeArraysForDistributions()
+{
+ // Initialize all arrays used for distributions.
+ // a) Initialize arrays of histograms used to hold distributions of correlations; 
+ // b) Initialize array to hold min and max values of correlations.
+ // a) Initialize arrays of histograms used to hold distributions of correlations:
+ for(Int_t di=0;di<4;di++) // distribution index
+ {
+  fDistributions[di] = NULL;
+ }
+ // b) Initialize default min and max values of correlations:
+ //    (Remark: The default values bellow were chosen for v2=5% and M=500)
+ fMinValueOfCorrelation[0] = -0.01; // <2>_min 
+ fMaxValueOfCorrelation[0] = 0.04; // <2>_max 
+ fMinValueOfCorrelation[1] = -0.00002; // <4>_min 
+ fMaxValueOfCorrelation[1] = 0.00015; // <4>_max  
+ fMinValueOfCorrelation[2] = -0.0000003; // <6>_min 
+ fMaxValueOfCorrelation[2] = 0.0000006; // <6>_max  
+ fMinValueOfCorrelation[3] = -0.000000006; // <8>_min 
+ fMaxValueOfCorrelation[3] = 0.000000003; // <8>_max 
+} // end of void AliFlowAnalysisWithQCumulants::InitializeArraysForDistributions()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::InitializeArraysForVarious()
+{
+ // Initialize all arrays used for various unclassified objects.
+ for(Int_t p=0;p<4;p++) // [v_min,v_max,refMult_min,refMult_max]
+ {
+  fPhiDistributionForOneEventSettings[p] = 0.;
+ } 
+   
+} //  end of void AliFlowAnalysisWithQCumulants::InitializeArraysForVarious()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingForDistributions()
+{
+ // a) Book profile to hold all flags for distributions of correlations;
+ // b) Book all histograms to hold distributions of correlations.
+ TString correlationIndex[4] = {"<2>","<4>","<6>","<8>"}; // to be improved (should I promote this to data members?)
+  
+ // a) Book profile to hold all flags for distributions of correlations:
+ TString distributionsFlagsName = "fDistributionsFlags";
+ distributionsFlagsName += fAnalysisLabel->Data();
+ fDistributionsFlags = new TProfile(distributionsFlagsName.Data(),"Flags for Distributions of Correlations",9,0,9);
+ fDistributionsFlags->SetTickLength(-0.01,"Y");
+ fDistributionsFlags->SetMarkerStyle(25);
+ fDistributionsFlags->SetLabelSize(0.05);
+ fDistributionsFlags->SetLabelOffset(0.02,"Y");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(1,"Store or not?");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(2,"<2>_{min}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(3,"<2>_{max}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(4,"<4>_{min}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(5,"<4>_{max}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(6,"<6>_{min}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(7,"<6>_{max}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(8,"<8>_{min}");
+ fDistributionsFlags->GetXaxis()->SetBinLabel(9,"<8>_{max}");
+ fDistributionsList->Add(fDistributionsFlags);
+ // b) Book all histograms to hold distributions of correlations.
+ if(fStoreDistributions)
+ { 
+  TString distributionsName = "fDistributions";
+  distributionsName += fAnalysisLabel->Data();
+  for(Int_t di=0;di<4;di++) // distribution index
+  {
+   fDistributions[di] = new TH1D(Form("Distribution of %s",correlationIndex[di].Data()),Form("Distribution of %s",correlationIndex[di].Data()),10000,fMinValueOfCorrelation[di],fMaxValueOfCorrelation[di]); 
+   fDistributions[di]->SetXTitle(correlationIndex[di].Data());
+   fDistributionsList->Add(fDistributions[di]);
+  } // end of for(Int_t di=0;di<4;di++) // distribution index
+ } // end of if(fStoreDistributions)
+} // end of void AliFlowAnalysisWithQCumulants::BookEverythingForDistributions()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingForVarious()
+{
+ // Book all objects for various unclassified quantities.
+ if(!fStorePhiDistributionForOneEvent){return;}
+ // a) Book histogram holding phi distribution for single event to illustrate flow.
+ // a) Book histogram holding phi distribution for single event to illustrate flow:
+ fPhiDistributionForOneEvent = new TH1D("fPhiDistributionForOneEvent","",360,0.,TMath::TwoPi());
+ fPhiDistributionForOneEvent->GetXaxis()->SetTitle("#phi");
+ fVariousList->Add(fPhiDistributionForOneEvent);
+} // end of void AliFlowAnalysisWithQCumulants::BookEverythingForVarious()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StoreFlagsForDistributions()
+{
+ // Store all flags for distributiuons of correlations in profile fDistributionsFlags.
+ if(!fDistributionsFlags)
+ {
+  cout<<"WARNING: fDistributionsFlags is NULL in AFAWQC::SDF() !!!!"<<endl;
+  exit(0);
+ } 
+
+ fDistributionsFlags->Fill(0.5,(Int_t)fStoreDistributions); // histos with distributions of correlations stored or not in the output file
+ // store min and max values of correlations:
+ for(Int_t di=0;di<4;di++) // distribution index
+ {
+  fDistributionsFlags->Fill(1.5+2.*(Double_t)di,fMinValueOfCorrelation[di]);
+  fDistributionsFlags->Fill(2.5+2.*(Double_t)di,fMaxValueOfCorrelation[di]);
+ }
+     
+} // end of void AliFlowAnalysisWithQCumulants::StoreFlagsForDistributions()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StoreDistributionsOfCorrelations()
+{
+ // Store distributions of correlations.
+ if(!(fIntFlowCorrelationsEBE && fIntFlowEventWeightsForCorrelationsEBE))
+ {
+  cout<<"WARNING: fIntFlowCorrelationsEBE && fIntFlowEventWeightsForCorrelationsEBE"<<endl; 
+  cout<<"         is NULL in AFAWQC::SDOC() !!!!"<<endl;
+  exit(0);
+ }
+
+ for(Int_t di=0;di<4;di++) // distribution index
+ {
+  if(!fDistributions[di])
+  { 
+   cout<<"WARNING: fDistributions[di] is NULL in AFAWQC::SDOC() !!!!"<<endl;
+   cout<<"di = "<<di<<endl;
+   exit(0);
+  } else 
+    {
+     fDistributions[di]->Fill(fIntFlowCorrelationsEBE->GetBinContent(di+1),fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(di+1)); 
+    } 
+ } // end of for(Int_t di=0;di<4;di++) // distribution index
+
+} // end of void AliFlowAnalysisWithQCumulants::StoreDistributionsOfCorrelations()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookAndNestAllLists()
+{
+ // Book and nest all lists nested in the base list fHistList.
+ //  a) Book and nest lists for integrated flow;
+ //  b) Book and nest lists for differential flow;
+ //  c) Book and nest list for particle weights;
+ //  d) Book and nest list for distributions;
+ //  e) Book and nest list for various unclassified objects; 
+ //  f) Book and nest list for nested loops.
+ // a) Book and nest all lists for integrated flow:
+ //  Base list for integrated flow:
+ fIntFlowList = new TList();
+ fIntFlowList->SetName("Integrated Flow");
+ fIntFlowList->SetOwner(kTRUE);
+ fHistList->Add(fIntFlowList);
+ //  List holding profiles: 
+ fIntFlowProfiles = new TList();
+ fIntFlowProfiles->SetName("Profiles");
+ fIntFlowProfiles->SetOwner(kTRUE);
+ fIntFlowList->Add(fIntFlowProfiles);
+ //  List holding all profiles with results for correlations vs M:
+ if(fCalculateAllCorrelationsVsM)
+ {
+  fIntFlowAllCorrelationsVsM = new TList();
+  fIntFlowAllCorrelationsVsM->SetName("Correlations vs M");
+  fIntFlowAllCorrelationsVsM->SetOwner(kTRUE); 
+  fIntFlowProfiles->Add(fIntFlowAllCorrelationsVsM);
+ } // end of if(fCalculateAllCorrelationsVsM)
+ //  List holding histograms with results:
+ fIntFlowResults = new TList();
+ fIntFlowResults->SetName("Results");
+ fIntFlowResults->SetOwner(kTRUE);
+ fIntFlowList->Add(fIntFlowResults);
+ // b) Book and nest lists for differential flow:
+ this->BookAndNestListsForDifferentialFlow();
+ // c) Book and nest list for particle weights:
+ fWeightsList->SetName("Weights");
+ fWeightsList->SetOwner(kTRUE);   
+ fHistList->Add(fWeightsList); 
+
+ // d) Book and nest list for distributions:
+ fDistributionsList = new TList();
+ fDistributionsList->SetName("Distributions");
+ fDistributionsList->SetOwner(kTRUE);
+ fHistList->Add(fDistributionsList);
+ // e) Book and nest list for various unclassified objects:
+ if(fStorePhiDistributionForOneEvent)
+ {
+  fVariousList = new TList();
+  fVariousList->SetName("Various");
+  fVariousList->SetOwner(kTRUE);
+  fHistList->Add(fVariousList);
+ }
+  
+ // f) Book and nest list for other differential correlators:
+ fOtherDiffCorrelatorsList = new TList();
+ fOtherDiffCorrelatorsList->SetName("Other differential correlators");
+ fOtherDiffCorrelatorsList->SetOwner(kTRUE);
+ if(fCalculateDiffFlow){fHistList->Add(fOtherDiffCorrelatorsList);} // TBI: Use another flag here instead of fCalculateDiffFlow 
+  
+ // g) Book and nest list for nested loops:
+ fNestedLoopsList = new TList();
+ fNestedLoopsList->SetName("Nested Loops");
+ fNestedLoopsList->SetOwner(kTRUE);
+ fHistList->Add(fNestedLoopsList);
+} // end of void AliFlowAnalysisWithQCumulants::BookAndNestAllLists()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookAndNestListsForDifferentialFlow()
+{
+ // Book and nest lists for differential flow.
+
+ // Base list for differential flow objects:
+ fDiffFlowList = new TList();
+ fDiffFlowList->SetName("Differential Flow");
+ fDiffFlowList->SetOwner(kTRUE); 
+ fHistList->Add(fDiffFlowList);
+ // Local flags: 
+ TString typeFlag[2] = {"RP","POI"};  
+ TString ptEtaFlag[2] = {"p_{T}","#eta"}; 
+ TString powerFlag[2] = {"linear","quadratic"};   
+
+ // 2D:
+ if(fCalculate2DDiffFlow)
+ {
+  fDiffFlow2D = new TList(); 
+  fDiffFlow2D->SetName("2D");
+  fDiffFlow2D->SetOwner(kTRUE);
+  fDiffFlowList->Add(fDiffFlow2D); 
+  for(Int_t t=0;t<2;t++)
+  {
+   f2DDiffFlowCorrelationsProList[t] = new TList();
+   f2DDiffFlowCorrelationsProList[t]->SetOwner(kTRUE);
+   f2DDiffFlowCorrelationsProList[t]->SetName(Form("Profiles with 2D correlations (%s)",typeFlag[t].Data()));
+   fDiffFlow2D->Add(f2DDiffFlowCorrelationsProList[t]);
+  } // end of for(Int_t t=0;t<2;t++)
+ } // end of if(fCalculate2DDiffFlow)
+
+ // What follows bellow in this method is relevant only for 1D differential flow:
+ if(!fCalculateDiffFlow){return;}
+ // List holding profiles: 
+ fDiffFlowProfiles = new TList(); 
+ fDiffFlowProfiles->SetName("Profiles");
+ fDiffFlowProfiles->SetOwner(kTRUE);
+ fDiffFlowList->Add(fDiffFlowProfiles);
+ // List holding histograms with results: 
+ fDiffFlowResults = new TList();
+ fDiffFlowResults->SetName("Results");
+ fDiffFlowResults->SetOwner(kTRUE);
+ fDiffFlowList->Add(fDiffFlowResults);
+ // Flags used for naming nested lists in list fDiffFlowProfiles and fDiffFlowResults:  
+ TList list;
+ list.SetOwner(kTRUE);
+ // Nested lists in fDiffFlowProfiles (~/Differential Flow/Profiles):
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ {
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   // list holding profiles with correlations:
+   fDiffFlowCorrelationsProList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCorrelationsProList[t][pe]->SetName(Form("Profiles with correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowProfiles->Add(fDiffFlowCorrelationsProList[t][pe]);
+   // list holding profiles with products of correlations:
+   fDiffFlowProductOfCorrelationsProList[t][pe] = (TList*)list.Clone();
+   fDiffFlowProductOfCorrelationsProList[t][pe]->SetName(Form("Profiles with products of correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowProfiles->Add(fDiffFlowProductOfCorrelationsProList[t][pe]);
+   // list holding profiles with corrections:
+   fDiffFlowCorrectionsProList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCorrectionsProList[t][pe]->SetName(Form("Profiles with correction terms for NUA (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowProfiles->Add(fDiffFlowCorrectionsProList[t][pe]);   
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI   
+ // nested lists in fDiffFlowResults (~/Differential Flow/Results):
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ {
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   // list holding histograms with correlations:
+   fDiffFlowCorrelationsHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCorrelationsHistList[t][pe]->SetName(Form("Correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowCorrelationsHistList[t][pe]);
+   // list holding histograms with corrections:
+   fDiffFlowCorrectionsHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCorrectionsHistList[t][pe]->SetName(Form("Histograms with correction terms for NUA (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowCorrectionsHistList[t][pe]);   
+   for(Int_t power=0;power<2;power++)
+   {
+    // list holding histograms with sums of event weights:
+    fDiffFlowSumOfEventWeightsHistList[t][pe][power] = (TList*)list.Clone();
+    fDiffFlowSumOfEventWeightsHistList[t][pe][power]->SetName(Form("Sum of %s event weights (%s, %s)",powerFlag[power].Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+    fDiffFlowResults->Add(fDiffFlowSumOfEventWeightsHistList[t][pe][power]);    
+   } // end of for(Int_t power=0;power<2;power++)
+   // list holding histograms with sums of products of event weights:
+   fDiffFlowSumOfProductOfEventWeightsHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowSumOfProductOfEventWeightsHistList[t][pe]->SetName(Form("Sum of products of event weights (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowSumOfProductOfEventWeightsHistList[t][pe]);
+   // list holding histograms with covariances of correlations:
+   fDiffFlowCovariancesHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCovariancesHistList[t][pe]->SetName(Form("Covariances of correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowCovariancesHistList[t][pe]);
+   // list holding histograms with differential Q-cumulants:
+   fDiffFlowCumulantsHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowCumulantsHistList[t][pe]->SetName(Form("Differential Q-cumulants (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowCumulantsHistList[t][pe]);   
+   // list holding histograms which quantify detector bias to differential Q-cumulants:
+   fDiffFlowDetectorBiasHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowDetectorBiasHistList[t][pe]->SetName(Form("Detector bias (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowDetectorBiasHistList[t][pe]);   
+   // list holding histograms with differential flow estimates from Q-cumulants:
+   fDiffFlowHistList[t][pe] = (TList*)list.Clone();
+   fDiffFlowHistList[t][pe]->SetName(Form("Differential flow (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()));
+   fDiffFlowResults->Add(fDiffFlowHistList[t][pe]);      
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+  
+} // end of void AliFlowAnalysisWithQCumulants::BookAndNestListsForDifferentialFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FillCommonHistResultsDiffFlow(TString type)
+{
+ // Fill common result histograms for differential flow.
+ Int_t t = 0; 
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+  
+ // to be improved - check all pointers used in this method
+     
+ if(!(fCommonHistsResults2nd && fCommonHistsResults4th && fCommonHistsResults6th && fCommonHistsResults8th))
+ {
+  cout<<"WARNING: fCommonHistsResults2nd && fCommonHistsResults4th && fCommonHistsResults6th && fCommonHistsResults8th"<<endl; 
+  cout<<"         is NULL in AFAWQC::FCHRIF() !!!!"<<endl;
+  exit(0);
+ }
+ // pt:
+ for(Int_t p=1;p<=fnBinsPt;p++)
+ {
+  Double_t v2 = fDiffFlow[t][0][0]->GetBinContent(p);
+  Double_t v4 = fDiffFlow[t][0][1]->GetBinContent(p);
+  Double_t v6 = fDiffFlow[t][0][2]->GetBinContent(p);
+  Double_t v8 = fDiffFlow[t][0][3]->GetBinContent(p);
+  
+  Double_t v2Error = fDiffFlow[t][0][0]->GetBinError(p);
+  Double_t v4Error = fDiffFlow[t][0][1]->GetBinError(p);
+  //Double_t v6Error = fFinalFlow1D[t][pW][nua][0][2]->GetBinError(p);
+  //Double_t v8Error = fFinalFlow1D[t][pW][nua][0][3]->GetBinError(p);
+  if(type == "RP")
+  {
+   fCommonHistsResults2nd->FillDifferentialFlowPtRP(p,v2,v2Error);
+   fCommonHistsResults4th->FillDifferentialFlowPtRP(p,v4,v4Error);
+   fCommonHistsResults6th->FillDifferentialFlowPtRP(p,v6,0.);
+   fCommonHistsResults8th->FillDifferentialFlowPtRP(p,v8,0.);
+  } else if(type == "POI")
+    {
+     fCommonHistsResults2nd->FillDifferentialFlowPtPOI(p,v2,v2Error);
+     fCommonHistsResults4th->FillDifferentialFlowPtPOI(p,v4,v4Error);
+     fCommonHistsResults6th->FillDifferentialFlowPtPOI(p,v6,0.);
+     fCommonHistsResults8th->FillDifferentialFlowPtPOI(p,v8,0.);
+    }
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)   
+ // eta:
+ if(!fCalculateDiffFlowVsEta){return;}
+ for(Int_t e=1;e<=fnBinsEta;e++)
+ {
+  Double_t v2 = fDiffFlow[t][1][0]->GetBinContent(e);
+  Double_t v4 = fDiffFlow[t][1][1]->GetBinContent(e);
+  Double_t v6 = fDiffFlow[t][1][2]->GetBinContent(e);
+  Double_t v8 = fDiffFlow[t][1][3]->GetBinContent(e);
+  
+  Double_t v2Error = fDiffFlow[t][1][0]->GetBinError(e);
+  Double_t v4Error = fDiffFlow[t][1][1]->GetBinError(e);
+  //Double_t v6Error = fDiffFlow[t][1][2]->GetBinError(e);
+  //Double_t v8Error = fDiffFlow[t][1][3]->GetBinError(e);
+  if(type == "RP")
+  {
+   fCommonHistsResults2nd->FillDifferentialFlowEtaRP(e,v2,v2Error);
+   fCommonHistsResults4th->FillDifferentialFlowEtaRP(e,v4,v4Error);
+   fCommonHistsResults6th->FillDifferentialFlowEtaRP(e,v6,0.);
+   fCommonHistsResults8th->FillDifferentialFlowEtaRP(e,v8,0.);
+  } else if(type == "POI")
+    {
+     fCommonHistsResults2nd->FillDifferentialFlowEtaPOI(e,v2,v2Error);
+     fCommonHistsResults4th->FillDifferentialFlowEtaPOI(e,v4,v4Error);
+     fCommonHistsResults6th->FillDifferentialFlowEtaPOI(e,v6,0.);
+     fCommonHistsResults8th->FillDifferentialFlowEtaPOI(e,v8,0.);
+    }
+ } // end of for(Int_t e=1;e<=fnBinsEta;e++)    
+} // end of void AliFlowAnalysisWithQCumulants::FillCommonHistResultsDiffFlow(TString type, Bool_t useParticleWeights, TString eventWeights, Bool_t correctedForNUA)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CommonConstants(TString method)
+{
+ // Access and store common constants.
+ // a) If this method was called in Init() access common constants from AliFlowCommonConstants;
+ // b) If this method was called in Init() book and fill TProfile to hold constants accessed in a);
+ // c) If this method was called in Finish() access common constants from TProfile booked and filled in b).
+
+ if(method == "Init")
+ {
+  // a) If this method was called in Init() access common constants from AliFlowCommonConstants:
+  fnBinsPhi = AliFlowCommonConstants::GetMaster()->GetNbinsPhi();
+  fPhiMin = AliFlowCommonConstants::GetMaster()->GetPhiMin();       
+  fPhiMax = AliFlowCommonConstants::GetMaster()->GetPhiMax();
+  if(fnBinsPhi){fPhiBinWidth = (fPhiMax-fPhiMin)/fnBinsPhi;}  
+  fnBinsPt = AliFlowCommonConstants::GetMaster()->GetNbinsPt();
+  fPtMin = AliFlowCommonConstants::GetMaster()->GetPtMin();         
+  fPtMax = AliFlowCommonConstants::GetMaster()->GetPtMax();
+  if(fnBinsPt){fPtBinWidth = (fPtMax-fPtMin)/fnBinsPt;}  
+  fnBinsEta = AliFlowCommonConstants::GetMaster()->GetNbinsEta();
+  fEtaMin = AliFlowCommonConstants::GetMaster()->GetEtaMin();       
+  fEtaMax = AliFlowCommonConstants::GetMaster()->GetEtaMax();
+  if(fnBinsEta){fEtaBinWidth = (fEtaMax-fEtaMin)/fnBinsEta;}  
+  
+  // b) If this method was called in Init() book and fill TProfile to hold constants accessed in a):
+  TString fCommonConstantsName = "fCommonConstants";
+  fCommonConstantsName += fAnalysisLabel->Data();
+  fCommonConstants = new TProfile(fCommonConstantsName.Data(),"Common constants",9,0.,9.);
+  fCommonConstants->SetLabelSize(0.05);
+  fCommonConstants->GetXaxis()->SetBinLabel(1,"nBins (#phi)");
+  fCommonConstants->Fill(0.5,fnBinsPhi);
+  fCommonConstants->GetXaxis()->SetBinLabel(2,"#phi_{min}");
+  fCommonConstants->Fill(1.5,fPhiMin);
+  fCommonConstants->GetXaxis()->SetBinLabel(3,"#phi_{max}");
+  fCommonConstants->Fill(2.5,fPhiMax);
+  fCommonConstants->GetXaxis()->SetBinLabel(4,"nBins (p_{t})");
+  fCommonConstants->Fill(3.5,fnBinsPt);
+  fCommonConstants->GetXaxis()->SetBinLabel(5,"(p_{t})_{min}");
+  fCommonConstants->Fill(4.5,fPtMin);
+  fCommonConstants->GetXaxis()->SetBinLabel(6,"(p_{t})_{max}");
+  fCommonConstants->Fill(5.5,fPtMax);
+  fCommonConstants->GetXaxis()->SetBinLabel(7,"nBins (#eta)");
+  fCommonConstants->Fill(6.5,fnBinsEta);
+  fCommonConstants->GetXaxis()->SetBinLabel(8,"#eta_{min}");
+  fCommonConstants->Fill(7.5,fEtaMin);
+  fCommonConstants->GetXaxis()->SetBinLabel(9,"#eta_{max}");
+  fCommonConstants->Fill(8.5,fEtaMax);
+  fHistList->Add(fCommonConstants); 
+ } // end of if(method == "Init")
+ else if(method == "Finish")
+ {
+  // c) If this method was called in Finish() access common constants from TProfile booked and filled in b):
+  if(!fCommonConstants)
+  {
+   printf("\n WARNING (QC): fCommonConstants is NULL in AFAWQC::AC(\"%s\") !!!!\n\n",method.Data());
+   exit(0);
+  } 
+  fnBinsPhi = (Int_t)fCommonConstants->GetBinContent(1);
+  fPhiMin = fCommonConstants->GetBinContent(2);             
+  fPhiMax = fCommonConstants->GetBinContent(3);
+  if(fnBinsPhi){fPhiBinWidth = (fPhiMax-fPhiMin)/fnBinsPhi;}  
+  fnBinsPt = (Int_t)fCommonConstants->GetBinContent(4);
+  fPtMin = fCommonConstants->GetBinContent(5);      
+  fPtMax = fCommonConstants->GetBinContent(6);
+  if(fnBinsPt){fPtBinWidth = (fPtMax-fPtMin)/fnBinsPt;}  
+  fnBinsEta = (Int_t)fCommonConstants->GetBinContent(7);
+  fEtaMin = fCommonConstants->GetBinContent(8);             
+  fEtaMax = fCommonConstants->GetBinContent(9);
+  if(fnBinsEta){fEtaBinWidth = (fEtaMax-fEtaMin)/fnBinsEta;}  
+ } // end of else if(method == "Finish")
+
+} // end of void AliFlowAnalysisWithQCumulants::CommonConstants(TString method)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CrossCheckSettings()
+{
+ // a) Cross check if the choice for multiplicity weights make sense.
+ // a) Cross check if the choice for multiplicity weights make sense:
+ if(strcmp(fMultiplicityWeight->Data(),"combinations") && 
+    strcmp(fMultiplicityWeight->Data(),"unit") &&
+    strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+ {
+  cout<<"WARNING (QC): Multiplicity weight can be either \"combinations\", \"unit\""<<endl;
+  cout<<"              or \"multiplicity\". Certainly not \""<<fMultiplicityWeight->Data()<<"\"."<<endl;
+  exit(0);
+ }   
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckSettings()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfEventWeights()
+{
+ // Calculate sum of linear and quadratic event weights for correlations.
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+                        
+ for(Int_t p=0;p<2;p++) // power-1
+ {
+  for(Int_t ci=0;ci<4;ci++) // correlation index
+  { 
+   fIntFlowSumOfEventWeights[p]->Fill(ci+0.5,pow(fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci+1),p+1)); 
+   if(fCalculateCumulantsVsM)
+   {
+    fIntFlowSumOfEventWeightsVsM[ci][p]->Fill(dMult+0.5,pow(fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci+1),p+1)); // to be improved: dMult => sum of weights?
+   }
+  }
+ }
+  
+} // end of void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfEventWeights()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfEventWeightsNUA()
+{
+ // Calculate sum of linear and quadratic event weights for NUA terms.
+                       
+ for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+ {
+  for(Int_t p=0;p<2;p++) // power-1
+  {
+   for(Int_t ci=0;ci<4;ci++) // nua term index
+   { 
+    fIntFlowSumOfEventWeightsNUA[sc][p]->Fill(ci+0.5,pow(fIntFlowEventWeightForCorrectionTermsForNUAEBE[sc]->GetBinContent(ci+1),p+1)); 
+   }
+  }
+ }
+  
+} // end of void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfEventWeightsNUA()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfProductOfEventWeights()
+{
+ // Calculate sum of product of event weights for correlations.
+  
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+  
+ Int_t counter = 0;
+ for(Int_t ci1=1;ci1<4;ci1++)
+ {
+  for(Int_t ci2=ci1+1;ci2<=4;ci2++)
+  {
+   fIntFlowSumOfProductOfEventWeights->Fill(0.5+counter,
+                                            fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci1)*
+                                            fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci2));
+   if(fCalculateCumulantsVsM)
+   {                                                                                    
+    fIntFlowSumOfProductOfEventWeightsVsM[counter]->Fill(dMult+0.5, // to be improved: dMult => sum of weights?
+                                                         fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci1)*
+                                                         fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(ci2));
+   } // end of if(fCalculateCumulantsVsM)
+   counter++;                                         
+  }
+ }
+
+} // end of void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfProductOfEventWeights()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowSumOfProductOfEventWeightsNUA()
+{
+ // Calculate sum of product of event weights for NUA terms.
+  
+ // w_{<2>} * w_{<cos(#phi)>}:
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(0.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1));
+ // w_{<2>} * w_{<sin(#phi)>}:
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(1.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // w_{<cos(#phi)> * w_{<sin(#phi)>}:
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(2.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // w_{<2>} * w{<cos(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(3.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)); 
+ // w_{<2>} * w{<sin(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(4.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2));
+ // w_{<2>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(5.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));
+ // w_{<2>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(6.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));  
+ // w_{<4>} * w{<cos(phi1)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(7.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1));
+ // w_{<4>} * w{<sin(phi1)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(8.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1));
+ // w_{<4>} * w{<cos(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(9.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                 fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)); 
+ // w_{<4>} * w{<sin(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(10.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2));
+ // w_{<4>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(11.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));
+ // w_{<4>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(12.5,fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));
+ // w_{<cos(phi1)>} * w{<cos(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(13.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2));
+ // w_{<cos(phi1)>} * w{<sin(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(14.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)); 
+ // w_{<cos(phi1)>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(15.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));
+ // w_{<cos(phi1)>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(16.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));
+ // w_{<sin(phi1)>} * w{<cos(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(17.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2));
+ // w_{<sin(phi1)>} * w{<sin(phi1+phi2)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(18.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2));
+ // w_{<sin(phi1)>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(19.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3));
+ // w_{<sin(phi1)>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(20.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(1)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3)); 
+ // w_{<cos(phi1+phi2)>} * w{<sin(phi1+phi2))>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(21.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)); 
+ // w_{<cos(phi1+phi2)>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(22.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // w_{<cos(phi1+phi2)>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(23.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3)); 
+ // w_{<sin(phi1+phi2)>} * w{<cos(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(24.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)); 
+ // w_{<sin(phi1+phi2)>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(25.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(2)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3)); 
+ // w_{<cos(phi1-phi2-phi3)>} * w{<sin(phi1-phi2-phi3)>}
+ fIntFlowSumOfProductOfEventWeightsNUA->Fill(26.5,fIntFlowEventWeightForCorrectionTermsForNUAEBE[1]->GetBinContent(3)*
+                                                  fIntFlowEventWeightForCorrectionTermsForNUAEBE[0]->GetBinContent(3));
+
+} // end of void AliFlowAnalysisWithQCumulants::CalculateIntFlowIntFlowSumOfProductOfEventWeightsNUA()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrelations(TString type, TString ptOrEta)
+{
+ // Calculate reduced correlations for RPs or POIs for all pt and eta bins.
+
+ // Multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+
+ // reduced correlations are stored in fDiffFlowCorrelationsPro[0=RP,1=POI][0=pt,1=eta][correlation index]. Correlation index runs as follows:
+ // 
+ // 0: <<2'>>
+ // 1: <<4'>>
+ // 2: <<6'>>
+ // 3: <<8'>>
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // looping over all bins and calculating reduced correlations: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (non-weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n0kRe = 0.;
+  Double_t q1n0kIm = 0.;
+  Double_t q2n0kRe = 0.;
+  Double_t q2n0kIm = 0.;
+
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+   
+  if(type == "POI")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[2][pe][0][0]->GetBinContent(fReRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[2][pe][0][0]->GetBinContent(fImRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][0]->GetBinEntries(fImRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[2][pe][1][0]->GetBinContent(fReRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][0]->GetBinEntries(fReRPQ1dEBE[2][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[2][pe][1][0]->GetBinContent(fImRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][0]->GetBinEntries(fImRPQ1dEBE[2][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+  } 
+  else if(type == "RP")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[0][pe][1][0]->GetBinContent(fReRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][1][0]->GetBinEntries(fReRPQ1dEBE[0][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[0][pe][1][0]->GetBinContent(fImRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][1][0]->GetBinEntries(fImRPQ1dEBE[0][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)  
+  }
+      
+   if(type == "POI")
+   {
+    // p_{m*n,0}:
+    p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+            * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+    p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+            * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+            
+    mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+    
+    t = 1; // typeFlag = RP or POI
+   }
+   else if(type == "RP")
+   {
+    // p_{m*n,0} = q_{m*n,0}:
+    p1n0kRe = q1n0kRe; 
+    p1n0kIm = q1n0kIm; 
+            
+    mp = mq; 
+    
+    t = 0; // typeFlag = RP or POI
+   }
+      
+   // 2'-particle correlation for particular pt or eta bin:
+   Double_t two1n1nPtEta = 0.;
+   Double_t mWeight2pPrime = 0.; // multiplicity weight for <2'>
+   if(mp*dMult-mq)
+   {
+    two1n1nPtEta = (p1n0kRe*dReQ1n+p1n0kIm*dImQ1n-mq)
+                 / (mp*dMult-mq);
+    // determine multiplicity weight:
+    if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+    {
+     mWeight2pPrime = mp*dMult-mq;
+    } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+      {
+       mWeight2pPrime = 1.;    
+      } 
+    if(type == "POI") // to be improved (I do not this if)
+    { 
+     // fill profile to get <<2'>> for POIs
+     fDiffFlowCorrelationsPro[1][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nPtEta,mWeight2pPrime);
+     // fill profile to get <<2'>^2> for POIs
+     fDiffFlowSquaredCorrelationsPro[1][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nPtEta*two1n1nPtEta,mWeight2pPrime);   
+     // histogram to store <2'> for POIs e-b-e (needed in some other methods):
+     fDiffFlowCorrelationsEBE[1][pe][0]->SetBinContent(b,two1n1nPtEta);      
+     fDiffFlowEventWeightsForCorrelationsEBE[1][pe][0]->SetBinContent(b,mWeight2pPrime);      
+    }
+    else if(type == "RP") // to be improved (I do not this if)
+    {
+     // profile to get <<2'>> for RPs:
+     fDiffFlowCorrelationsPro[0][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nPtEta,mWeight2pPrime);     
+     // profile to get <<2'>^2> for RPs:
+     fDiffFlowSquaredCorrelationsPro[0][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nPtEta*two1n1nPtEta,mWeight2pPrime);          
+     // histogram to store <2'> for RPs e-b-e (needed in some other methods):
+     fDiffFlowCorrelationsEBE[0][pe][0]->SetBinContent(b,two1n1nPtEta); 
+     fDiffFlowEventWeightsForCorrelationsEBE[0][pe][0]->SetBinContent(b,mWeight2pPrime); 
+    }
+   } // end of if(mp*dMult-mq)
+  
+   // 4'-particle correlation:
+   Double_t four1n1n1n1nPtEta = 0.;
+   Double_t mWeight4pPrime = 0.; // multiplicity weight for <4'>
+   if((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+       + mq*(dMult-1.)*(dMult-2.)*(dMult-3.)) // to be improved (introduce a new variable for this expression)
+   {
+    four1n1n1n1nPtEta = ((pow(dReQ1n,2.)+pow(dImQ1n,2.))*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)
+                      - q2n0kRe*(pow(dReQ1n,2.)-pow(dImQ1n,2.))
+                      - 2.*q2n0kIm*dReQ1n*dImQ1n
+                      - p1n0kRe*(dReQ1n*dReQ2n+dImQ1n*dImQ2n)
+                      + p1n0kIm*(dImQ1n*dReQ2n-dReQ1n*dImQ2n)
+                      - 2.*dMult*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)
+                      - 2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*mq                      
+                      + 6.*(q1n0kRe*dReQ1n+q1n0kIm*dImQ1n)                                            
+                      + 1.*(q2n0kRe*dReQ2n+q2n0kIm*dImQ2n)                      
+                      + 2.*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)                       
+                      + 2.*mq*dMult                      
+                      - 6.*mq)        
+                      / ((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+                          + mq*(dMult-1.)*(dMult-2.)*(dMult-3.)); 
+    // determine multiplicity weight:
+    if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+    {
+     mWeight4pPrime = (mp-mq)*dMult*(dMult-1.)*(dMult-2.) + mq*(dMult-1.)*(dMult-2.)*(dMult-3.);
+    } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+      {
+       mWeight4pPrime = 1.;    
+      }     
+    if(type == "POI")
+    {
+     // profile to get <<4'>> for POIs:
+     fDiffFlowCorrelationsPro[1][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nPtEta,mWeight4pPrime);      
+     // profile to get <<4'>^2> for POIs:
+     fDiffFlowSquaredCorrelationsPro[1][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nPtEta*four1n1n1n1nPtEta,mWeight4pPrime); 
+     // histogram to store <4'> for POIs e-b-e (needed in some other methods):
+     fDiffFlowCorrelationsEBE[1][pe][1]->SetBinContent(b,four1n1n1n1nPtEta);                               
+     fDiffFlowEventWeightsForCorrelationsEBE[1][pe][1]->SetBinContent(b,mWeight4pPrime);                               
+    }
+    else if(type == "RP")
+    {
+     // profile to get <<4'>> for RPs:
+     fDiffFlowCorrelationsPro[0][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nPtEta,mWeight4pPrime);    
+     // profile to get <<4'>^2> for RPs:
+     fDiffFlowSquaredCorrelationsPro[0][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nPtEta*four1n1n1n1nPtEta,mWeight4pPrime);    
+     // histogram to store <4'> for RPs e-b-e (needed in some other methods):
+     fDiffFlowCorrelationsEBE[0][pe][1]->SetBinContent(b,four1n1n1n1nPtEta);                   
+     fDiffFlowEventWeightsForCorrelationsEBE[0][pe][1]->SetBinContent(b,mWeight4pPrime);                   
+    }
+   } // end of if((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+     //            +mq*(dMult-1.)*(dMult-2.)*(dMult-3.))
+   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+   
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrelations(TString type, TString ptOrEta);
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateOtherDiffCorrelators(TString type, TString ptOrEta)
+{
+ // Calculate other differential correlators for RPs or POIs for all pt and eta bins.
+ // Multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+
+ // Other correlations are stored in fOtherDiffCorrelators[2][2][2][1], [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correlator index]
+ // Correlation index runs as follows:
+ // 
+ //  0: <exp[in(psi1-3phi2+2phi3)]>
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // looping over all bins and calculating reduced correlations: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (non-weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n0kRe = 0.;
+  Double_t q1n0kIm = 0.;
+  Double_t q2n0kRe = 0.;
+  Double_t q2n0kIm = 0.;
+  Double_t q3n0kRe = 0.;
+  Double_t q3n0kIm = 0.;
+
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+   
+  if(type == "POI")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[2][pe][0][0]->GetBinContent(fReRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[2][pe][0][0]->GetBinContent(fImRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][0]->GetBinEntries(fImRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[2][pe][1][0]->GetBinContent(fReRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][0]->GetBinEntries(fReRPQ1dEBE[2][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[2][pe][1][0]->GetBinContent(fImRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][0]->GetBinEntries(fImRPQ1dEBE[2][pe][1][0]->GetBin(b));                         
+   q3n0kRe = fReRPQ1dEBE[2][pe][2][0]->GetBinContent(fReRPQ1dEBE[2][pe][2][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][2][0]->GetBinEntries(fReRPQ1dEBE[2][pe][2][0]->GetBin(b));
+   q3n0kIm = fImRPQ1dEBE[2][pe][2][0]->GetBinContent(fImRPQ1dEBE[2][pe][2][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][2][0]->GetBinEntries(fImRPQ1dEBE[2][pe][2][0]->GetBin(b));         
+
+   mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+  } 
+  else if(type == "RP")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[0][pe][1][0]->GetBinContent(fReRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][1][0]->GetBinEntries(fReRPQ1dEBE[0][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[0][pe][1][0]->GetBinContent(fImRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][1][0]->GetBinEntries(fImRPQ1dEBE[0][pe][1][0]->GetBin(b));         
+   q3n0kRe = fReRPQ1dEBE[0][pe][2][0]->GetBinContent(fReRPQ1dEBE[0][pe][2][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][2][0]->GetBinEntries(fReRPQ1dEBE[0][pe][2][0]->GetBin(b));
+   q3n0kIm = fImRPQ1dEBE[0][pe][2][0]->GetBinContent(fImRPQ1dEBE[0][pe][2][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][2][0]->GetBinEntries(fImRPQ1dEBE[0][pe][2][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)  
+  }
+      
+   if(type == "POI")
+   {
+    // p_{m*n,0}:
+    p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+            * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+    p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+            * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+            
+    mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+    
+    t = 1; // typeFlag = RP or POI
+   }
+   else if(type == "RP")
+   {
+    // p_{m*n,0} = q_{m*n,0}:
+    p1n0kRe = q1n0kRe; 
+    p1n0kIm = q1n0kIm; 
+            
+    mp = mq; 
+    
+    t = 0; // typeFlag = RP or POI
+   }
+      
+   // 3'-particle correlators:
+   //  Taeney-Yan correlator:
+   Double_t dTaeneyYan = 0.;
+   Double_t mWeightTaeneyYan = 0.; // multiplicity weight for Taeney-Yan correlator
+   if((mp*dMult-2.*mq)*(dMult-1.) > 0.) // to be improved - is this condition fully justified?
+   {
+    dTaeneyYan = (dReQ3n*(p1n0kRe*dReQ2n-p1n0kIm*dImQ2n)+dImQ3n*(p1n0kIm*dReQ2n+p1n0kRe*dImQ2n)
+               - p1n0kRe*dReQ1n - p1n0kIm*dImQ1n
+               - q2n0kRe*dReQ2n - q2n0kIm*dImQ2n              
+               - q3n0kRe*dReQ3n - q3n0kIm*dImQ3n
+               + 2.*mq)
+               / ((mp*dMult-2.*mq)*(dMult-1.));
+    // determine multiplicity weight:
+    if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+    {
+     mWeightTaeneyYan = (mp*dMult-2.*mq)*(dMult-1.);
+    } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+      {
+       mWeightTaeneyYan = 1.;    
+      } 
+    // Fill profiles:
+    fOtherDiffCorrelators[t][pe][1][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dTaeneyYan,mWeightTaeneyYan);
+   } // end of if((mp*dMult-2.*mq)*(dMult-1.) > 0.)  
+   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+} // end of void AliFlowAnalysisWithQCumulants::CalculateOtherDiffCorrelators(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Calculate2DDiffFlowCorrelations(TString type)
+{
+ // Calculate all reduced correlations needed for 2D differential flow for each (pt,eta) bin. 
+ // Multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // Real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+
+ // 2D reduced correlations are stored in TProfile2D f2DDiffFlowCorrelationsPro[0=RP,1=POI][correlation index]. 
+ // Correlation index runs as follows:
+ //  0: <<2'>> 
+ //  1: <<4'>>
+ //  2: <<6'>>
+ //  3: <<8'>>
+ Int_t t = 0; // type flag  
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ // Looping over all (pt,eta) bins and calculating correlations needed for differential flow: 
+ for(Int_t p=1;p<=fnBinsPt;p++)
+ {
+  for(Int_t e=1;e<=fnBinsEta;e++)
+  {
+   // Real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular (pt,eta) bin): 
+   Double_t p1n0kRe = 0.;
+   Double_t p1n0kIm = 0.;
+   // Number of POIs in particular pt or eta bin:
+   Double_t mp = 0.;
+   // Real and imaginary parts of q_{m*n,0} (non-weighted Q-vector evaluated for 'RP && POI particles' in particular pt or eta bin):
+   Double_t q1n0kRe = 0.;
+   Double_t q1n0kIm = 0.;
+   Double_t q2n0kRe = 0.;
+   Double_t q2n0kIm = 0.; 
+   // Number of 'RP && POI particles' in particular pt or eta bin:
+   Double_t mq = 0.;
+   if(type == "POI")
+   {
+    // q_{m*n,0}:
+    q1n0kRe = fReRPQ2dEBE[2][0][0]->GetBinContent(fReRPQ2dEBE[2][0][0]->GetBin(p,e))
+            * fReRPQ2dEBE[2][0][0]->GetBinEntries(fReRPQ2dEBE[2][0][0]->GetBin(p,e));
+    q1n0kIm = fImRPQ2dEBE[2][0][0]->GetBinContent(fImRPQ2dEBE[2][0][0]->GetBin(p,e))
+            * fImRPQ2dEBE[2][0][0]->GetBinEntries(fImRPQ2dEBE[2][0][0]->GetBin(p,e));
+    q2n0kRe = fReRPQ2dEBE[2][1][0]->GetBinContent(fReRPQ2dEBE[2][1][0]->GetBin(p,e))
+            * fReRPQ2dEBE[2][1][0]->GetBinEntries(fReRPQ2dEBE[2][1][0]->GetBin(p,e));
+    q2n0kIm = fImRPQ2dEBE[2][1][0]->GetBinContent(fImRPQ2dEBE[2][1][0]->GetBin(p,e))
+            * fImRPQ2dEBE[2][1][0]->GetBinEntries(fImRPQ2dEBE[2][1][0]->GetBin(p,e));         
+    // m_{q}:             
+    mq = fReRPQ2dEBE[2][0][0]->GetBinEntries(fReRPQ2dEBE[2][0][0]->GetBin(p,e)); // to be improved (cross-checked by accessing other profiles here)
+   } // end of if(type == "POI")
+   else if(type == "RP")
+   {
+    // q_{m*n,0}:
+    q1n0kRe = fReRPQ2dEBE[0][0][0]->GetBinContent(fReRPQ2dEBE[0][0][0]->GetBin(p,e))
+            * fReRPQ2dEBE[0][0][0]->GetBinEntries(fReRPQ2dEBE[0][0][0]->GetBin(p,e));
+    q1n0kIm = fImRPQ2dEBE[0][0][0]->GetBinContent(fImRPQ2dEBE[0][0][0]->GetBin(p,e))
+            * fImRPQ2dEBE[0][0][0]->GetBinEntries(fImRPQ2dEBE[0][0][0]->GetBin(p,e));
+    q2n0kRe = fReRPQ2dEBE[0][1][0]->GetBinContent(fReRPQ2dEBE[0][1][0]->GetBin(p,e))
+            * fReRPQ2dEBE[0][1][0]->GetBinEntries(fReRPQ2dEBE[0][1][0]->GetBin(p,e));
+    q2n0kIm = fImRPQ2dEBE[0][1][0]->GetBinContent(fImRPQ2dEBE[0][1][0]->GetBin(p,e))
+            * fImRPQ2dEBE[0][1][0]->GetBinEntries(fImRPQ2dEBE[0][1][0]->GetBin(p,e));         
+    // m_{q}:             
+    mq = fReRPQ2dEBE[0][0][0]->GetBinEntries(fReRPQ2dEBE[0][0][0]->GetBin(p,e)); // to be improved (cross-checked by accessing other profiles here)  
+   } // end of else if(type == "RP")
+   if(type == "POI")
+   {
+    // p_{m*n,0}:
+    p1n0kRe = fReRPQ2dEBE[1][0][0]->GetBinContent(fReRPQ2dEBE[1][0][0]->GetBin(p,e))
+            * fReRPQ2dEBE[1][0][0]->GetBinEntries(fReRPQ2dEBE[1][0][0]->GetBin(p,e));
+    p1n0kIm = fImRPQ2dEBE[1][0][0]->GetBinContent(fImRPQ2dEBE[1][0][0]->GetBin(p,e))  
+            * fImRPQ2dEBE[1][0][0]->GetBinEntries(fImRPQ2dEBE[1][0][0]->GetBin(p,e));
+    // m_{p}        
+    mp = fReRPQ2dEBE[1][0][0]->GetBinEntries(fReRPQ2dEBE[1][0][0]->GetBin(p,e)); // to be improved (cross-checked by accessing other profiles here)
+    
+    t = 1; // typeFlag = RP or POI
+   } // end of if(type == "POI")
+   else if(type == "RP")
+   {
+    // p_{m*n,0} = q_{m*n,0}:
+    p1n0kRe = q1n0kRe; 
+    p1n0kIm = q1n0kIm; 
+    // m_{p} = m_{q}:        
+    mp = mq; 
+
+    t = 0; // typeFlag = RP or POI
+   } // end of if(type == "RP")
+
+   // 2'-particle correlation for particular (pt,eta) bin:
+   Double_t two1n1nPtEta = 0.;
+   Double_t mWeight2pPrime = 0.; // multiplicity weight for <2'>
+   if(mp*dMult-mq)
+   {
+    two1n1nPtEta = (p1n0kRe*dReQ1n+p1n0kIm*dImQ1n-mq)
+                 / (mp*dMult-mq);
+    // Determine multiplicity weight:
+    if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+    {
+     mWeight2pPrime = mp*dMult-mq;
+    } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+      {
+       mWeight2pPrime = 1.;    
+      } 
+    // Fill 2D profile holding <<2'>>:     
+    f2DDiffFlowCorrelationsPro[t][0]->Fill(fPtMin+(p-1)*fPtBinWidth,fEtaMin+(e-1)*fEtaBinWidth,two1n1nPtEta,mWeight2pPrime);
+   } // end of if(mp*dMult-mq)
+   
+   // 4'-particle correlation:
+   Double_t four1n1n1n1nPtEta = 0.;
+   Double_t mWeight4pPrime = 0.; // multiplicity weight for <4'>
+   if((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+       + mq*(dMult-1.)*(dMult-2.)*(dMult-3.)) // to be improved (introduce a new variable for this expression)
+   {
+    four1n1n1n1nPtEta = ((pow(dReQ1n,2.)+pow(dImQ1n,2.))*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)
+                      - q2n0kRe*(pow(dReQ1n,2.)-pow(dImQ1n,2.))
+                      - 2.*q2n0kIm*dReQ1n*dImQ1n
+                      - p1n0kRe*(dReQ1n*dReQ2n+dImQ1n*dImQ2n)
+                      + p1n0kIm*(dImQ1n*dReQ2n-dReQ1n*dImQ2n)
+                      - 2.*dMult*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)
+                      - 2.*(pow(dReQ1n,2.)+pow(dImQ1n,2.))*mq                      
+                      + 6.*(q1n0kRe*dReQ1n+q1n0kIm*dImQ1n)                                            
+                      + 1.*(q2n0kRe*dReQ2n+q2n0kIm*dImQ2n)                      
+                      + 2.*(p1n0kRe*dReQ1n+p1n0kIm*dImQ1n)                       
+                      + 2.*mq*dMult                      
+                      - 6.*mq)        
+                      / ((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+                          + mq*(dMult-1.)*(dMult-2.)*(dMult-3.)); 
+    // Determine multiplicity weight:
+    if(!strcmp(fMultiplicityWeight->Data(),"combinations"))
+    {
+     mWeight4pPrime = (mp-mq)*dMult*(dMult-1.)*(dMult-2.) + mq*(dMult-1.)*(dMult-2.)*(dMult-3.);
+    } else if(!strcmp(fMultiplicityWeight->Data(),"unit"))
+      {
+       mWeight4pPrime = 1.;    
+      }     
+    // Fill 2D profile holding <<4'>>:
+    f2DDiffFlowCorrelationsPro[t][1]->Fill(fPtMin+(p-1)*fPtBinWidth,fEtaMin+(e-1)*fEtaBinWidth,four1n1n1n1nPtEta,mWeight4pPrime);      
+   } // end of if((mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+     //            +mq*(dMult-1.)*(dMult-2.)*(dMult-3.))
+  } // end of for(Int_t e=1;e<=fnBinsEta;e++)
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)   
+      
+} // end of AliFlowAnalysisWithQCumulants::Calculate2DDiffFlowCorrelations(TString type)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowSumOfEventWeights(TString type, TString ptOrEta)
+{
+ // Calculate sums of various event weights for reduced correlations. 
+ // (These quantitites are needed in expressions for unbiased estimators relevant for the statistical errors.)
+
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+   
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+ // binning:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ for(Int_t rpq=0;rpq<3;rpq++)
+ {
+  for(Int_t m=0;m<4;m++)
+  {
+   for(Int_t k=0;k<9;k++)
+   {
+    if(!fReRPQ1dEBE[rpq][pe][m][k])
+    {
+     cout<<"WARNING: fReRPQ1dEBE[rpq][pe][m][k] is NULL in AFAWQC::CSAPOEWFDF() !!!!"<<endl;
+     cout<<"pe  = "<<pe<<endl;
+     cout<<"rpq = "<<rpq<<endl;
+     cout<<"m   = "<<m<<endl;
+     cout<<"k   = "<<k<<endl;
+     exit(0); 
+    }
+   }
+  }
+ }  
+
+ // multiplicities:
+ Double_t dMult = (*fSpk)(0,0); // total event multiplicity
+ //Double_t mr = 0.; // number of RPs in particular pt or eta bin
+ Double_t mp = 0.; // number of POIs in particular pt or eta bin 
+ Double_t mq = 0.; // number of particles which are both RPs and POIs in particular pt or eta bin
+ // event weights for reduced correlations:
+ Double_t dw2 = 0.; // event weight for <2'>
+ Double_t dw4 = 0.; // event weight for <4'>
+ //Double_t dw6 = 0.; // event weight for <6'>
+ //Double_t dw8 = 0.; // event weight for <8'>
+
+ // looping over bins:
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  if(type == "RP")
+  {
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(b);
+   mp = mq; // trick to use the very same Eqs. bellow both for RP's and POI's diff. flow
+  } else if(type == "POI")
+    {
+     mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(b);
+     mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(b);    
+    }
+  
+  // event weight for <2'>:
+  dw2 = mp*dMult-mq;  
+  fDiffFlowSumOfEventWeights[t][pe][0][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2);
+  fDiffFlowSumOfEventWeights[t][pe][1][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],pow(dw2,2.));
+  
+  // event weight for <4'>:
+  dw4 = (mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+     + mq*(dMult-1.)*(dMult-2.)*(dMult-3.);  
+  fDiffFlowSumOfEventWeights[t][pe][0][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw4);
+  fDiffFlowSumOfEventWeights[t][pe][1][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],pow(dw4,2.));
+  
+  // event weight for <6'>:
+  //dw6 = ...;  
+  //fDiffFlowSumOfEventWeights[t][pe][0][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw6);
+  //fDiffFlowSumOfEventWeights[t][pe][t][1][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],pow(dw6,2.));
+  
+  // event weight for <8'>:
+  //dw8 = ...;  
+  //fDiffFlowSumOfEventWeights[t][pe][0][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw8);
+  //fDiffFlowSumOfEventWeights[t][pe][1][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],pow(dw8,2.));   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++) 
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowSumOfEventWeights()
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowSumOfProductOfEventWeights(TString type, TString ptOrEta)
+{
+ // Calculate sum of products of various event weights for both types of correlations (the ones for int. and diff. flow). 
+ // (These quantitites are needed in expressions for unbiased estimators relevant for the statistical errors.)
+ //
+ // Important: To fill fDiffFlowSumOfProductOfEventWeights[][][][] use bellow table (i,j) with following constraints: 
+ // 1.) i<j  
+ // 2.) do not store terms which DO NOT include reduced correlations;
+ // Table:
+ // [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] x [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>]
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+     
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+  
+ // binning:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ // protection:
+ for(Int_t rpq=0;rpq<3;rpq++)
+ {
+  for(Int_t m=0;m<4;m++)
+  {
+   for(Int_t k=0;k<9;k++)
+   {
+    if(!fReRPQ1dEBE[rpq][pe][m][k])
+    {
+     cout<<"WARNING: fReRPQ1dEBE[rpq][pe][m][k] is NULL in AFAWQC::CSAPOEWFDF() !!!!"<<endl;
+     cout<<"pe  = "<<pe<<endl;
+     cout<<"rpq = "<<rpq<<endl;
+     cout<<"m   = "<<m<<endl;
+     cout<<"k   = "<<k<<endl;
+     exit(0); 
+    }
+   }
+  }
+ }  
+ // multiplicities:
+ Double_t dMult = (*fSpk)(0,0); // total event multiplicity
+ //Double_t mr = 0.; // number of RPs in particular pt or eta bin
+ Double_t mp = 0.; // number of POIs in particular pt or eta bin 
+ Double_t mq = 0.; // number of particles which are both RPs and POIs in particular pt or eta bin
+ // event weights for correlations:
+ Double_t dW2 = dMult*(dMult-1); // event weight for <2> 
+ Double_t dW4 = dMult*(dMult-1)*(dMult-2)*(dMult-3); // event weight for <4> 
+ Double_t dW6 = dMult*(dMult-1)*(dMult-2)*(dMult-3)*(dMult-4)*(dMult-5); // event weight for <6> 
+ Double_t dW8 = dMult*(dMult-1)*(dMult-2)*(dMult-3)*(dMult-4)*(dMult-5)*(dMult-6)*(dMult-7); // event weight for <8> 
+
+ // event weights for reduced correlations:
+ Double_t dw2 = 0.; // event weight for <2'>
+ Double_t dw4 = 0.; // event weight for <4'>
+ //Double_t dw6 = 0.; // event weight for <6'>
+ //Double_t dw8 = 0.; // event weight for <8'>
+ // looping over bins:
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  if(type == "RP")
+  {
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(b);
+   mp = mq; // trick to use the very same Eqs. bellow both for RP's and POI's diff. flow
+  } else if(type == "POI")
+    {
+     mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(b);
+     mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(b);    
+    }
+  
+  // event weight for <2'>:
+  dw2 = mp*dMult-mq;  
+  fDiffFlowSumOfProductOfEventWeights[t][pe][0][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW2*dw2); // storing product of even weights for <2> and <2'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][1][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dW4); // storing product of even weights for <4> and <2'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][1][4]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dW6); // storing product of even weights for <6> and <2'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][1][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dW8); // storing product of even weights for <8> and <2'>
+  
+  // event weight for <4'>:
+  dw4 = (mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+     + mq*(dMult-1.)*(dMult-2.)*(dMult-3.);  
+  fDiffFlowSumOfProductOfEventWeights[t][pe][0][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW2*dw4); // storing product of even weights for <2> and <4'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][1][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dw4); // storing product of even weights for <2'> and <4'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][2][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW4*dw4); // storing product of even weights for <4> and <4'>
+  fDiffFlowSumOfProductOfEventWeights[t][pe][3][4]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw4*dW6); // storing product of even weights for <6> and <4'> 
+  fDiffFlowSumOfProductOfEventWeights[t][pe][3][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw4*dW8); // storing product of even weights for <8> and <4'>
+
+  // event weight for <6'>:
+  //dw6 = ...;  
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][0][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW2*dw6); // storing product of even weights for <2> and <6'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][1][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dw6); // storing product of even weights for <2'> and <6'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][2][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW4*dw6); // storing product of even weights for <4> and <6'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][3][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw4*dw6); // storing product of even weights for <4'> and <6'> 
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][4][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW6*dw6); // storing product of even weights for <6> and <6'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][5][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw6*dW8); // storing product of even weights for <6'> and <8>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][5][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw6*dw8); // storing product of even weights for <6'> and <8'>
+
+  // event weight for <8'>:
+  //dw8 = ...;  
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][0][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW2*dw8); // storing product of even weights for <2> and <8'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][1][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw2*dw8); // storing product of even weights for <2'> and <8'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][2][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW4*dw8); // storing product of even weights for <4> and <8'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][3][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw4*dw8); // storing product of even weights for <4'> and <8'> 
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][4][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW6*dw8); // storing product of even weights for <6> and <8'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][5][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dw6*dw8); // storing product of even weights for <6'> and <8'>
+  //fDiffFlowSumOfProductOfEventWeights[t][pe][6][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],dW8*dw8); // storing product of even weights for <8> and <8'>
+  
+  // Table:
+  // [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] x [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>]
+   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+
+
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowSumOfProductOfEventWeights(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FinalizeReducedCorrelations(TString type, TString ptOrEta)
+{
+ // Transfer profiles into histograms and calculate statistical errors correctly.
+
+ Int_t t = 0; // RP or POI
+ Int_t pe = 0; // pt or eta
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   } 
+               
+ for(Int_t rci=0;rci<4;rci++) // to be improved - moved into the method CheckPointersUsedInFinish()
+ {
+  if(!fDiffFlowCorrelationsPro[t][pe][rci])
+  {
+   cout<<"WARNING: fDiffFlowCorrelationsPro[t][pe][rci] is NULL in AFAWQC::FRC() !!!!"<<endl;
+   cout<<"t   = "<<t<<endl; 
+   cout<<"pe  = "<<pe<<endl; 
+   cout<<"rci = "<<rci<<endl;
+   exit(0); 
+  }
+  if(!fDiffFlowSquaredCorrelationsPro[t][pe][rci])
+  {
+   cout<<"WARNING: fDiffFlowSquaredCorrelationsPro[t][pe][rci] is NULL in AFAWQC::FRC() !!!!"<<endl;
+   cout<<"t   = "<<t<<endl; 
+   cout<<"pe  = "<<pe<<endl; 
+   cout<<"rci = "<<rci<<endl;
+   exit(0); 
+  }
+  for(Int_t power=0;power<2;power++)
+  {
+   if(!fDiffFlowSumOfEventWeights[t][pe][power][rci])
+   {
+    cout<<"WARNING: fDiffFlowSumOfEventWeights[t][pe][power][rci] is NULL in AFAWQC::FRC() !!!!"<<endl;
+    cout<<"t     = "<<t<<endl; 
+    cout<<"pe    = "<<pe<<endl;
+    cout<<"power = "<<power<<endl; 
+    cout<<"rci   = "<<rci<<endl;
+    exit(0); 
+   }   
+  } // end of for(Int_t power=0;power<2;power++)
+ } // end of for(Int_t rci=0;rci<4;rci++)
+    
+ // common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta}; 
+ // transfer 1D profile into 1D histogram:
+ Double_t correlation = 0.;
+ Double_t squaredCorrelation = 0.;
+ Double_t spread = 0.;
+ Double_t sumOfWeights = 0.; // sum of weights for particular reduced correlations for particular pt or eta bin
+ Double_t sumOfSquaredWeights = 0.; // sum of squared weights for particular reduced correlations for particular pt or eta bin
+ Double_t error = 0.; // error = termA * spread * termB
+                      // termA = (sqrt(sumOfSquaredWeights)/sumOfWeights) 
+                      // termB = 1/pow(1-termA^2,0.5)
+ Double_t termA = 0.;                      
+ Double_t termB = 0.;                      
+ for(Int_t rci=0;rci<4;rci++) // index of reduced correlation
+ {
+  for(Int_t b=1;b<=nBinsPtEta[pe];b++) // number of pt or eta bins
+  {
+   if(fDiffFlowCorrelationsPro[t][pe][rci]->GetBinEffectiveEntries(b) < 2 || 
+      fDiffFlowSquaredCorrelationsPro[t][pe][rci]->GetBinEffectiveEntries(b) < 2)
+   {
+    fDiffFlowCorrelationsPro[t][pe][rci]->SetBinError(b,0.);
+    fDiffFlowSquaredCorrelationsPro[t][pe][rci]->SetBinError(b,0.);
+    continue; // to be improved - should I ignore results in pt bins with one entry for reduced correlations or not?
+   }  
+   correlation = fDiffFlowCorrelationsPro[t][pe][rci]->GetBinContent(b); 
+   squaredCorrelation = fDiffFlowSquaredCorrelationsPro[t][pe][rci]->GetBinContent(b); 
+   if(squaredCorrelation-correlation*correlation >= 0.)
+   {
+    spread = pow(squaredCorrelation-correlation*correlation,0.5);
+   } else
+     {
+      cout<<endl;
+      cout<<Form(" WARNING: Imaginary 'spread' for rci = %d, pe = %d, bin = %d !!!!",rci,pe,b)<<endl;
+      cout<<endl;
+     }
+   sumOfWeights = fDiffFlowSumOfEventWeights[t][pe][0][rci]->GetBinContent(b);
+   sumOfSquaredWeights = fDiffFlowSumOfEventWeights[t][pe][1][rci]->GetBinContent(b);
+   if(TMath::Abs(sumOfWeights)>0.){termA = (pow(sumOfSquaredWeights,0.5)/sumOfWeights);}
+   if(1.-pow(termA,2.)>0.){termB = 1./pow(1.-pow(termA,2.),0.5);} 
+   error = termA*spread*termB; // final error (unbiased estimator for standard deviation)
+   fDiffFlowCorrelationsHist[t][pe][rci]->SetBinContent(b,correlation); 
+   fDiffFlowCorrelationsHist[t][pe][rci]->SetBinError(b,error); 
+  } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ } // end of for(Int_t rci=0;rci<4;rci++)
+} // end of void AliFlowAnalysisWithQCumulants::FinalizeReducedCorrelations(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowProductOfCorrelations(TString type, TString ptOrEta)
+{
+ // store products: <2><2'>, <2><4'>, <2><6'>, <2><8'>, <2'><4>, 
+ //                 <2'><4'>, <2'><6>, <2'><6'>, <2'><8>, <2'><8'>,
+ //                 <4><4'>, <4><6'>, <4><8'>, <4'><6>, <4'><6'>, 
+ //                 <4'><8>, <4'><8'>, <6><6'>, <6><8'>, <6'><8>, 
+ //                 <6'><8'>, <8><8'>.
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+  
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+     
+ // common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+   
+ // protections // to be improved (add protection for all pointers in this method)
+ if(!fIntFlowCorrelationsEBE)
+ {
+  cout<<"WARNING: fIntFlowCorrelationsEBE is NULL in AFAWQC::CDFPOC() !!!!"<<endl;
+  exit(0);
+ } 
+ /*    
+ Double_t dMult = (*fSpk)(0,0); // multiplicity (number of particles used to determine the reaction plane)
+ //Double_t mr = 0.; // number of RPs in particular pt or eta bin
+ Double_t mp = 0.; // number of POIs in particular pt or eta bin 
+ Double_t mq = 0.; // number of particles which are both RPs and POIs in particular pt or eta bin
+ */
+
+ // e-b-e correlations:
+ Double_t twoEBE = fIntFlowCorrelationsEBE->GetBinContent(1); // <2>
+ Double_t fourEBE = fIntFlowCorrelationsEBE->GetBinContent(2); // <4>
+ Double_t sixEBE = fIntFlowCorrelationsEBE->GetBinContent(3); // <6>
+ Double_t eightEBE = fIntFlowCorrelationsEBE->GetBinContent(4); // <8>
+ // event weights for correlations:
+ Double_t dW2 = fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(1); // event weight for <2> 
+ Double_t dW4 = fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(2); // event weight for <4> 
+ Double_t dW6 = fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(3); // event weight for <6> 
+ Double_t dW8 = fIntFlowEventWeightsForCorrelationsEBE->GetBinContent(4); // event weight for <8> 
+  
+ // e-b-e reduced correlations:
+ Double_t twoReducedEBE = 0.; // <2'>
+ Double_t fourReducedEBE = 0.; // <4'>
+ Double_t sixReducedEBE = 0.; // <6'>
+ Double_t eightReducedEBE = 0.; // <8'> 
+ // event weights for reduced correlations:
+ Double_t dw2 = 0.; // event weight for <2'>
+ Double_t dw4 = 0.; // event weight for <4'>
+ //Double_t dw6 = 0.; // event weight for <6'>
+ //Double_t dw8 = 0.; // event weight for <8'>
+
+ // looping over bins:
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // e-b-e reduced correlations:
+  twoReducedEBE = fDiffFlowCorrelationsEBE[t][pe][0]->GetBinContent(b);
+  fourReducedEBE = fDiffFlowCorrelationsEBE[t][pe][1]->GetBinContent(b);
+  sixReducedEBE = fDiffFlowCorrelationsEBE[t][pe][2]->GetBinContent(b);
+  eightReducedEBE = fDiffFlowCorrelationsEBE[t][pe][3]->GetBinContent(b);
+  
+  /*
+  // to be improved (I should not do this here again)
+  if(type == "RP")
+  {
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(b);
+   mp = mq; // trick to use the very same Eqs. bellow both for RP's and POI's diff. flow
+  } else if(type == "POI")
+    {
+     mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(b);
+     mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(b);    
+    }
+  
+  // event weights for reduced correlations:
+  dw2 = mp*dMult-mq; // weight for <2'> 
+  dw4 = (mp-mq)*dMult*(dMult-1.)*(dMult-2.)
+     + mq*(dMult-1.)*(dMult-2.)*(dMult-3.); // weight for <4'>
+  //dw6 = ...     
+  //dw8 = ...     
+  
+  */
+  
+  dw2 = fDiffFlowEventWeightsForCorrelationsEBE[t][pe][0]->GetBinContent(b);
+  dw4 = fDiffFlowEventWeightsForCorrelationsEBE[t][pe][1]->GetBinContent(b);
+  // storing all products:
+  fDiffFlowProductOfCorrelationsPro[t][pe][0][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoEBE*twoReducedEBE,dW2*dw2); // storing <2><2'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][1][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourEBE*twoReducedEBE,dW4*dw2); // storing <4><2'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][1][4]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixEBE*twoReducedEBE,dW6*dw2); // storing <6><2'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][1][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],eightEBE*twoReducedEBE,dW8*dw2); // storing <8><2'>
+  
+  // event weight for <4'>:
+  fDiffFlowProductOfCorrelationsPro[t][pe][0][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoEBE*fourReducedEBE,dW2*dw4); // storing <2><4'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][1][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoReducedEBE*fourReducedEBE,dw2*dw4); // storing <2'><4'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][2][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourEBE*fourReducedEBE,dW4*dw4); // storing <4><4'>
+  fDiffFlowProductOfCorrelationsPro[t][pe][3][4]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixEBE*fourReducedEBE,dW6*dw4); // storing <6><4'> 
+  fDiffFlowProductOfCorrelationsPro[t][pe][3][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],eightEBE*fourReducedEBE,dW8*dw4); // storing <8><4'>
+
+  // event weight for <6'>:
+  //dw6 = ...;  
+  //fDiffFlowProductOfCorrelationsPro[t][pe][0][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoEBE*sixReducedEBE,dW2*dw6); // storing <2><6'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][1][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoReducedEBE*sixReducedEBE,dw2*dw6); // storing <2'><6'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][2][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourEBE*sixReducedEBE,dW4*dw6); // storing <4><6'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][3][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourReducedEBE*sixReducedEBE,dw4*dw6); // storing <4'><6'> 
+  //fDiffFlowProductOfCorrelationsPro[t][pe][4][5]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixEBE*sixReducedEBE,dW6*dw6); // storing <6><6'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][5][6]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixReducedEBE*eightEBE,dw6*dW8); // storing <6'><8>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][5][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixReducedEBE*eightReducedEBE,dw6*dw8); // storing <6'><8'>
+
+  // event weight for <8'>:
+  //dw8 = ...;  
+  //fDiffFlowProductOfCorrelationsPro[t][pe][0][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoEBE*eightReducedEBE,dW2*dw8); // storing <2><8'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][1][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],twoReducedEBE*eightReducedEBE,dw2*dw8); // storing <2'><8'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][2][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourEBE*eightReducedEBE,dW4*dw8); // storing <4><8'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][3][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],fourReducedEBE*eightReducedEBE,dw4*dw8); // storing <4'><8'> 
+  //fDiffFlowProductOfCorrelationsPro[t][pe][4][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixEBE*eightReducedEBE,dW6*dw8); // storing <6><8'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][5][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sixReducedEBE*eightReducedEBE,dw6*dw8); // storing <6'><8'>
+  //fDiffFlowProductOfCorrelationsPro[t][pe][6][7]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],eightEBE*eightReducedEBE,dW8*dw8); // storing <8><8'> 
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++       
+     
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowProductOfCorrelations(TString type, TString ptOrEta)
+
+//================================================================================================================================
+    
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCovariances(TString type, TString ptOrEta) // to be improved (reimplemented)
+{
+ // a) Calculate unbiased estimators Cov(<2>,<2'>), Cov(<2>,<4'>), Cov(<4>,<2'>), Cov(<4>,<4'>) and Cov(<2'>,<4'>)
+ //    for covariances V(<2>,<2'>), V(<2>,<4'>), V(<4>,<2'>), V(<4>,<4'>) and V(<2'>,<4'>).  
+ // b) Store in histogram fDiffFlowCovariances[t][pe][index] for instance the following: 
+ //
+ //             Cov(<2>,<2'>) * (sum_{i=1}^{N} w_{<2>}_i w_{<2'>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<2'>}_j)]
+ // 
+ //     where N is the number of events, w_{<2>} is event weight for <2> and w_{<2'>} is event weight for <2'>.
+ // c) Binning of fDiffFlowCovariances[t][pe][index] is organized as follows:
+ // 
+ //     1st bin: Cov(<2>,<2'>) * (sum_{i=1}^{N} w_{<2>}_i w_{<2'>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<2'>}_j)] 
+ //     2nd bin: Cov(<2>,<4'>) * (sum_{i=1}^{N} w_{<2>}_i w_{<4'>}_i )/[(sum_{i=1}^{N} w_{<2>}_i) * (sum_{j=1}^{N} w_{<4'>}_j)] 
+ //     3rd bin: Cov(<4>,<2'>) * (sum_{i=1}^{N} w_{<4>}_i w_{<2'>}_i )/[(sum_{i=1}^{N} w_{<4>}_i) * (sum_{j=1}^{N} w_{<2'>}_j)] 
+ //     4th bin: Cov(<4>,<4'>) * (sum_{i=1}^{N} w_{<4>}_i w_{<4'>}_i )/[(sum_{i=1}^{N} w_{<4>}_i) * (sum_{j=1}^{N} w_{<4'>}_j)] 
+ //     5th bin: Cov(<2'>,<4'>) * (sum_{i=1}^{N} w_{<2'>}_i w_{<4'>}_i )/[(sum_{i=1}^{N} w_{<2'>}_i) * (sum_{j=1}^{N} w_{<4'>}_j)] 
+ //     ...
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+  
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+     
+ // common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ //Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ //Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ // average correlations:
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1); // <<2>>
+ Double_t four = fIntFlowCorrelationsHist->GetBinContent(2); // <<4>>
+ //Double_t six = fIntFlowCorrelationsHist->GetBinContent(3); // <<6>>
+ //Double_t eight = fIntFlowCorrelationsHist->GetBinContent(4); // <<8>>
+ // sum of weights for correlation:
+ Double_t sumOfWeightsForTwo = fIntFlowSumOfEventWeights[0]->GetBinContent(1); // sum_{i=1}^{N} w_{<2>}
+ Double_t sumOfWeightsForFour = fIntFlowSumOfEventWeights[0]->GetBinContent(2); // sum_{i=1}^{N} w_{<4>}
+ //Double_t sumOfWeightsForSix = fIntFlowSumOfEventWeights[0]->GetBinContent(3); // sum_{i=1}^{N} w_{<6>}
+ //Double_t sumOfWeightsForEight = fIntFlowSumOfEventWeights[0]->GetBinContent(4); // sum_{i=1}^{N} w_{<8>}
+ // average reduced correlations:
+ Double_t twoReduced = 0.; // <<2'>> 
+ Double_t fourReduced = 0.; // <<4'>>
+ //Double_t sixReduced = 0.; // <<6'>>
+ //Double_t eightReduced = 0.; // <<8'>>
+
+ // sum of weights for reduced correlation:
+ Double_t sumOfWeightsForTwoReduced = 0.; // sum_{i=1}^{N} w_{<2'>}
+ Double_t sumOfWeightsForFourReduced = 0.; // sum_{i=1}^{N} w_{<4'>}
+ //Double_t sumOfWeightsForSixReduced = 0.; // sum_{i=1}^{N} w_{<6'>}
+ //Double_t sumOfWeightsForEightReduced = 0.; // sum_{i=1}^{N} w_{<8'>}
+  
+ // product of weights for reduced correlation:
+ Double_t productOfWeightsForTwoTwoReduced = 0.; // sum_{i=1}^{N} w_{<2>}w_{<2'>}
+ Double_t productOfWeightsForTwoFourReduced = 0.; // sum_{i=1}^{N} w_{<2>}w_{<4'>}
+ Double_t productOfWeightsForFourTwoReduced = 0.; // sum_{i=1}^{N} w_{<4>}w_{<2'>}
+ Double_t productOfWeightsForFourFourReduced = 0.; // sum_{i=1}^{N} w_{<4>}w_{<4'>}
+ Double_t productOfWeightsForTwoReducedFourReduced = 0.; // sum_{i=1}^{N} w_{<2'>}w_{<4'>}
+ // ...
+ // products for differential flow:
+ Double_t twoTwoReduced = 0; // <<2><2'>> 
+ Double_t twoFourReduced = 0; // <<2><4'>> 
+ Double_t fourTwoReduced = 0; // <<4><2'>> 
+ Double_t fourFourReduced = 0; // <<4><4'>> 
+ Double_t twoReducedFourReduced = 0; // <<2'><4'>> 
+
+ // denominators in the expressions for the unbiased estimators for covariances:
+ // denominator = 1 - term1/(term2*term3)
+ // prefactor = term1/(term2*term3)
+ Double_t denominator = 0.; 
+ Double_t prefactor = 0.;
+ Double_t term1 = 0.; 
+ Double_t term2 = 0.; 
+ Double_t term3 = 0.; 
+ // unbiased estimators for covariances for differential flow:
+ Double_t covTwoTwoReduced = 0.; // Cov(<2>,<2'>)
+ Double_t wCovTwoTwoReduced = 0.; // Cov(<2>,<2'>) * prefactor(w_{<2>},w_{<2'>})
+ Double_t covTwoFourReduced = 0.; // Cov(<2>,<4'>)
+ Double_t wCovTwoFourReduced = 0.; // Cov(<2>,<4'>) * prefactor(w_{<2>},w_{<4'>})
+ Double_t covFourTwoReduced = 0.; // Cov(<4>,<2'>)
+ Double_t wCovFourTwoReduced = 0.; // Cov(<4>,<2'>) * prefactor(w_{<4>},w_{<2'>})
+ Double_t covFourFourReduced = 0.; // Cov(<4>,<4'>)
+ Double_t wCovFourFourReduced = 0.; // Cov(<4>,<4'>) * prefactor(w_{<4>},w_{<4'>})
+ Double_t covTwoReducedFourReduced = 0.; // Cov(<2'>,<4'>)
+ Double_t wCovTwoReducedFourReduced = 0.; // Cov(<2'>,<4'>) * prefactor(w_{<2'>},w_{<4'>})
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // average reduced corelations:
+  twoReduced = fDiffFlowCorrelationsHist[t][pe][0]->GetBinContent(b);
+  fourReduced = fDiffFlowCorrelationsHist[t][pe][1]->GetBinContent(b);
+  // average products:
+  twoTwoReduced = fDiffFlowProductOfCorrelationsPro[t][pe][0][1]->GetBinContent(b);
+  twoFourReduced = fDiffFlowProductOfCorrelationsPro[t][pe][0][3]->GetBinContent(b);
+  fourTwoReduced = fDiffFlowProductOfCorrelationsPro[t][pe][1][2]->GetBinContent(b);
+  fourFourReduced = fDiffFlowProductOfCorrelationsPro[t][pe][2][3]->GetBinContent(b);
+  twoReducedFourReduced = fDiffFlowProductOfCorrelationsPro[t][pe][1][3]->GetBinContent(b);  
+  // sum of weights for reduced correlations:
+  sumOfWeightsForTwoReduced = fDiffFlowSumOfEventWeights[t][pe][0][0]->GetBinContent(b);
+  sumOfWeightsForFourReduced = fDiffFlowSumOfEventWeights[t][pe][0][1]->GetBinContent(b);
+  // products of weights for correlations:
+  productOfWeightsForTwoTwoReduced = fDiffFlowSumOfProductOfEventWeights[t][pe][0][1]->GetBinContent(b); 
+  productOfWeightsForTwoFourReduced = fDiffFlowSumOfProductOfEventWeights[t][pe][0][3]->GetBinContent(b);
+  productOfWeightsForFourTwoReduced = fDiffFlowSumOfProductOfEventWeights[t][pe][1][2]->GetBinContent(b);
+  productOfWeightsForFourFourReduced = fDiffFlowSumOfProductOfEventWeights[t][pe][2][3]->GetBinContent(b);
+  productOfWeightsForTwoReducedFourReduced = fDiffFlowSumOfProductOfEventWeights[t][pe][1][3]->GetBinContent(b);
+  // denominator for the unbiased estimator for covariances: 1 - term1/(term2*term3) 
+  // prefactor (multiplies Cov's) = term1/(term2*term3)       
+  // <2>,<2'>:
+  term1 = productOfWeightsForTwoTwoReduced;      
+  term2 = sumOfWeightsForTwo;
+  term3 = sumOfWeightsForTwoReduced;        
+  if(term2*term3>0.)
+  {
+   denominator = 1.-term1/(term2*term3);
+   prefactor = term1/(term2*term3);
+   if(TMath::Abs(denominator)>1.e-6)
+   {
+    covTwoTwoReduced = (twoTwoReduced-two*twoReduced)/denominator;            
+    wCovTwoTwoReduced = covTwoTwoReduced*prefactor; 
+    fDiffFlowCovariances[t][pe][0]->SetBinContent(b,wCovTwoTwoReduced);
+   }
+  }
+  // <2>,<4'>:
+  term1 = productOfWeightsForTwoFourReduced;      
+  term2 = sumOfWeightsForTwo;
+  term3 = sumOfWeightsForFourReduced;        
+  if(term2*term3>0.)
+  {
+   denominator = 1.-term1/(term2*term3);
+   prefactor = term1/(term2*term3);
+   if(TMath::Abs(denominator)>1.e-6)
+   {
+    covTwoFourReduced = (twoFourReduced-two*fourReduced)/denominator;            
+    wCovTwoFourReduced = covTwoFourReduced*prefactor; 
+    fDiffFlowCovariances[t][pe][1]->SetBinContent(b,wCovTwoFourReduced);
+   }
+  }
+  // <4>,<2'>:
+  term1 = productOfWeightsForFourTwoReduced;      
+  term2 = sumOfWeightsForFour;
+  term3 = sumOfWeightsForTwoReduced;        
+  if(term2*term3>0.)
+  {
+   denominator = 1.-term1/(term2*term3);
+   prefactor = term1/(term2*term3);
+   if(TMath::Abs(denominator)>1.e-6)
+   {
+    covFourTwoReduced = (fourTwoReduced-four*twoReduced)/denominator;            
+    wCovFourTwoReduced = covFourTwoReduced*prefactor; 
+    fDiffFlowCovariances[t][pe][2]->SetBinContent(b,wCovFourTwoReduced);
+   }
+  }
+  // <4>,<4'>:
+  term1 = productOfWeightsForFourFourReduced;      
+  term2 = sumOfWeightsForFour;
+  term3 = sumOfWeightsForFourReduced;        
+  if(term2*term3>0.)
+  {
+   denominator = 1.-term1/(term2*term3);
+   prefactor = term1/(term2*term3);
+   if(TMath::Abs(denominator)>1.e-6)
+   {
+    covFourFourReduced = (fourFourReduced-four*fourReduced)/denominator;            
+    wCovFourFourReduced = covFourFourReduced*prefactor; 
+    fDiffFlowCovariances[t][pe][3]->SetBinContent(b,wCovFourFourReduced);
+   }
+  }
+  // <2'>,<4'>:
+  term1 = productOfWeightsForTwoReducedFourReduced;      
+  term2 = sumOfWeightsForTwoReduced;
+  term3 = sumOfWeightsForFourReduced;        
+  if(term2*term3>0.)
+  {
+   denominator = 1.-term1/(term2*term3);
+   prefactor = term1/(term2*term3);
+   if(TMath::Abs(denominator)>1.e-6)
+   {
+    covTwoReducedFourReduced = (twoReducedFourReduced-twoReduced*fourReduced)/denominator;            
+    wCovTwoReducedFourReduced = covTwoReducedFourReduced*prefactor; 
+    fDiffFlowCovariances[t][pe][4]->SetBinContent(b,wCovTwoReducedFourReduced);
+   }
+  }   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+  
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCovariances(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlow(TString type, TString ptOrEta)
+{
+ // Calculate final results for differential flow.
+ // REMARK: Differential flow calculated in this method is NOT corrected for non-uniform acceptance. 
+ // This correction, if enabled via setter SetApplyCorrectionForNUA(Bool_t), is applied in the method 
+ // CalculateDiffFlowCorrectedForNUA(TString type, TString ptOrEta)
+  
+ Int_t t = 0; // RP or POI
+ Int_t pe = 0; // pt or eta
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   } 
+       
+ // Common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ // Correlations:
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1); // <<2>>
+ Double_t four = fIntFlowCorrelationsHist->GetBinContent(2); // <<4>> 
+ // Statistical errors of correlations:
+ Double_t twoError = fIntFlowCorrelationsHist->GetBinError(1);
+ Double_t fourError = fIntFlowCorrelationsHist->GetBinError(2);   
+ // Reduced correlations:
+ Double_t twoReduced = 0.; // <<2'>>
+ Double_t fourReduced = 0.; // <<4'>>
+ // Statistical errors of reduced correlations:
+ Double_t twoReducedError = 0.; 
+ Double_t fourReducedError = 0.; 
+ // Covariances:
+ Double_t wCovTwoFour = 0.; // Cov(<2>,<4>) * prefactor(<2>,<4>)
+ if(!fForgetAboutCovariances)
+ {
+  wCovTwoFour = fIntFlowCovariances->GetBinContent(1); // Cov(<2>,<4>) * prefactor(<2>,<4>)
+ }
+ Double_t wCovTwoTwoReduced = 0.; // Cov(<2>,<2'>) * prefactor(<2>,<2'>)
+ Double_t wCovTwoFourReduced = 0.; // Cov(<2>,<4'>) * prefactor(<2>,<4'>)
+ Double_t wCovFourTwoReduced = 0.; // Cov(<4>,<2'>) * prefactor(<4>,<2'>)
+ Double_t wCovFourFourReduced = 0.; // Cov(<4>,<4'>) * prefactor(<4>,<4'>)
+ Double_t wCovTwoReducedFourReduced = 0.; // Cov(<2'>,<4'>) * prefactor(<2'>,<4'>)
+ // Differential flow:
+ Double_t v2Prime = 0.; // v'{2}                   
+ Double_t v4Prime = 0.; // v'{4}
+ // Statistical error of differential flow:
+ Double_t v2PrimeError = 0.;                    
+ Double_t v4PrimeError = 0.; 
+ // Squared statistical error of differential flow:
+ Double_t v2PrimeErrorSquared = 0.;                    
+ Double_t v4PrimeErrorSquared = 0.; 
+ // Loop over pt or eta bins:
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // Reduced correlations and statistical errors:
+  twoReduced = fDiffFlowCorrelationsHist[t][pe][0]->GetBinContent(b);
+  twoReducedError = fDiffFlowCorrelationsHist[t][pe][0]->GetBinError(b);
+  fourReduced = fDiffFlowCorrelationsHist[t][pe][1]->GetBinContent(b);
+  fourReducedError = fDiffFlowCorrelationsHist[t][pe][1]->GetBinError(b);
+  // Covariances:
+  if(!fForgetAboutCovariances)
+  {
+   wCovTwoTwoReduced = fDiffFlowCovariances[t][pe][0]->GetBinContent(b);
+   wCovTwoFourReduced = fDiffFlowCovariances[t][pe][1]->GetBinContent(b);
+   wCovFourTwoReduced = fDiffFlowCovariances[t][pe][2]->GetBinContent(b);
+   wCovFourFourReduced = fDiffFlowCovariances[t][pe][3]->GetBinContent(b);
+   wCovTwoReducedFourReduced = fDiffFlowCovariances[t][pe][4]->GetBinContent(b);
+  }
+  // Differential flow:
+  // v'{2}:
+  if(two>0.) 
+  {
+   v2Prime = twoReduced/pow(two,0.5);
+   v2PrimeErrorSquared = (1./4.)*pow(two,-3.)*(pow(twoReduced,2.)*pow(twoError,2.)
+                       + 4.*pow(two,2.)*pow(twoReducedError,2.)
+                       - 4.*two*twoReduced*wCovTwoTwoReduced);
+   if(v2PrimeErrorSquared>0.){v2PrimeError = pow(v2PrimeErrorSquared,0.5);}
+   if(TMath::Abs(v2Prime)>0.)
+   {
+    fDiffFlow[t][pe][0]->SetBinContent(b,v2Prime); 
+    fDiffFlow[t][pe][0]->SetBinError(b,v2PrimeError);    
+   }  
+  } // end of if(two>0.) 
+  // differential flow:
+  // v'{4}
+  if(2.*pow(two,2.)-four > 0.) 
+  {
+   v4Prime = (2.*two*twoReduced-fourReduced)/pow(2.*pow(two,2.)-four,3./4.);
+   v4PrimeErrorSquared = pow(2.*pow(two,2.)-four,-7./2.)
+                       * (pow(2.*pow(two,2.)*twoReduced-3.*two*fourReduced+2.*four*twoReduced,2.)*pow(twoError,2.)
+                       + (9./16.)*pow(2.*two*twoReduced-fourReduced,2.)*pow(fourError,2.)
+                       + 4.*pow(two,2.)*pow(2.*pow(two,2.)-four,2.)*pow(twoReducedError,2.)
+                       + pow(2.*pow(two,2.)-four,2.)*pow(fourReducedError,2.)                          
+                       - (3./2.)*(2.*two*twoReduced-fourReduced)
+                       * (2.*pow(two,2.)*twoReduced-3.*two*fourReduced+2.*four*twoReduced)*wCovTwoFour
+                       - 4.*two*(2.*pow(two,2.)-four)
+                       * (2.*pow(two,2.)*twoReduced-3.*two*fourReduced+2.*four*twoReduced)*wCovTwoTwoReduced
+                       + 2.*(2.*pow(two,2.)-four)
+                       * (2.*pow(two,2.)*twoReduced-3.*two*fourReduced+2.*four*twoReduced)*wCovTwoFourReduced
+                       + 3.*two*(2.*pow(two,2.)-four)*(2.*two*twoReduced-fourReduced)*wCovFourTwoReduced
+                       - (3./2.)*(2.*pow(two,2.)-four)*(2.*two*twoReduced-fourReduced)*wCovFourFourReduced 
+                       - 4.*two*pow(2.*pow(two,2.)-four,2.)*wCovTwoReducedFourReduced);  
+   if(v4PrimeErrorSquared>0.){v4PrimeError = pow(v4PrimeErrorSquared,0.5);}        
+   if(TMath::Abs(v4Prime)>0.)
+   {
+    fDiffFlow[t][pe][1]->SetBinContent(b,v4Prime);
+    fDiffFlow[t][pe][1]->SetBinError(b,v4PrimeError);     
+   }
+  } // end of if(2.*pow(two,2.)-four > 0.)  
+ } // end of for(Int_t b=1;b<=fnBinsPtEta[pe];b++)
+
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlow(TString type, Bool_t useParticleWeights)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::Calculate2DDiffFlow(TString type)
+{
+ // Calculate final results for 2D diferential flow.
+
+ // to be improved - check pointers used in this method
+
+ Int_t t = 0; // RP or POI
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+ // Differential flow:
+ Double_t v2Prime = 0.; // v'{2}                   
+ Double_t v4Prime = 0.; // v'{4}
+ // Differential cumulants:
+ Double_t qc2Prime = 0.; // QC{2'}                   
+ Double_t qc4Prime = 0.; // QC{4'}
+ // Looping over all (pt,eta) bins and calculating differential flow: 
+ for(Int_t p=1;p<=fnBinsPt;p++)
+ {
+  for(Int_t e=1;e<=fnBinsEta;e++)
+  {
+   // QC{2'}:
+   qc2Prime = f2DDiffFlowCumulants[t][0]->GetBinContent(f2DDiffFlowCumulants[t][0]->GetBin(p,e));
+   if(qc2Prime>=0.)
+   {
+    v2Prime = pow(qc2Prime,0.5);
+    f2DDiffFlow[t][0]->SetBinContent(f2DDiffFlow[t][0]->GetBin(p,e),v2Prime); 
+   } 
+   // QC{4'}:
+   qc4Prime = f2DDiffFlowCumulants[t][1]->GetBinContent(f2DDiffFlowCumulants[t][1]->GetBin(p,e));
+   if(qc4Prime<=0.)
+   {
+    v4Prime = pow(-1.*qc4Prime,1./4.);
+    f2DDiffFlow[t][1]->SetBinContent(f2DDiffFlow[t][1]->GetBin(p,e),v4Prime); 
+   }   
+  } // end of for(Int_t e=1;e<=fnBinsEta;e++)
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)
+} // end of void AliFlowAnalysisWithQCumulants::Calculate2DDiffFlow(TString type)  
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StoreIntFlowFlags()
+{
+ // a) Store all flags for integrated flow in profile fIntFlowFlags.
+ if(!fIntFlowFlags)
+ {
+  cout<<"WARNING: fIntFlowFlags is NULL in AFAWQC::SFFIF() !!!!"<<endl;
+  exit(0);
+ } 
+
+ // particle weights used or not:
+ fIntFlowFlags->Fill(0.5,(Int_t)fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights);
+ // which event weights were used:
+ if(strcmp(fMultiplicityWeight->Data(),"combinations"))
+ {
+  fIntFlowFlags->Fill(1.5,0); // 0 = "combinations" (default)
+ } else if(strcmp(fMultiplicityWeight->Data(),"unit"))
+   {
+    fIntFlowFlags->Fill(1.5,1); // 1 = "unit"   
+   } else if(strcmp(fMultiplicityWeight->Data(),"multiplicity"))
+     {
+      fIntFlowFlags->Fill(1.5,2); // 2 = "multiplicity"        
+     } 
+ fIntFlowFlags->Fill(2.5,(Int_t)fApplyCorrectionForNUA);
+ fIntFlowFlags->Fill(3.5,(Int_t)fPrintFinalResults[0]);
+ fIntFlowFlags->Fill(4.5,(Int_t)fPrintFinalResults[1]);
+ fIntFlowFlags->Fill(5.5,(Int_t)fPrintFinalResults[2]);
+ fIntFlowFlags->Fill(6.5,(Int_t)fPrintFinalResults[3]);
+ fIntFlowFlags->Fill(7.5,(Int_t)fApplyCorrectionForNUAVsM);
+ fIntFlowFlags->Fill(8.5,(Int_t)fPropagateErrorAlsoFromNIT);
+ fIntFlowFlags->Fill(9.5,(Int_t)fCalculateCumulantsVsM);
+ fIntFlowFlags->Fill(10.5,(Int_t)fMinimumBiasReferenceFlow);
+ fIntFlowFlags->Fill(11.5,(Int_t)fForgetAboutCovariances);
+ fIntFlowFlags->Fill(12.5,(Int_t)fStorePhiDistributionForOneEvent); 
+ fIntFlowFlags->Fill(13.5,(Int_t)fFillMultipleControlHistograms);  
+ fIntFlowFlags->Fill(14.5,(Int_t)fCalculateAllCorrelationsVsM);  
+} // end of void AliFlowAnalysisWithQCumulants::StoreIntFlowFlags()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StoreDiffFlowFlags()
+{
+ // Store all flags for differential flow in the profile fDiffFlowFlags.
+  
+ if(!fDiffFlowFlags)
+ {
+  printf("\n WARNING (QC): fDiffFlowFlags is NULL in AFAWQC::SDFF() !!!!\n\n");
+  exit(0);
+ } 
+ fDiffFlowFlags->Fill(0.5,fCalculateDiffFlow); // calculate differential flow
+ fDiffFlowFlags->Fill(1.5,fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights); // particle weights used or not?
+ //fDiffFlowFlags->Fill(2.5,""); // which event weight was used? ("combinations", "unit" or "multiplicity") to be improved - finalized
+ fDiffFlowFlags->Fill(3.5,fApplyCorrectionForNUA); // corrected for non-uniform acceptance or not
+ fDiffFlowFlags->Fill(4.5,fCalculate2DDiffFlow); // calculate also 2D differential flow vs (pt,eta) 
+ fDiffFlowFlags->Fill(5.5,fCalculateDiffFlowVsEta); // if you set kFALSE only differential flow vs pt is calculated
+     
+} // end of void AliFlowAnalysisWithQCumulants::StoreDiffFlowFlags()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForCommonHistograms() 
+{
+ // Access all pointers to common control and common result histograms and profiles.
+ TString sCommonConstantsName = "fCommonConstants";
+ sCommonConstantsName += fAnalysisLabel->Data();
+ fCommonConstants = dynamic_cast<TProfile*>(fHistList->FindObject(sCommonConstantsName.Data()));
+ if(!fCommonConstants)
+ {
+  printf("\n WARNING (QC): fCommonConstants is NULL in AFAWQC::GPFCH() !!!!\n\n");
+  exit(0);
+ }
+ // to be improved - lines bellow can be implemented better.
+ TString commonHistsName = "AliFlowCommonHistQC";
+ commonHistsName += fAnalysisLabel->Data();
+ AliFlowCommonHist *commonHist = dynamic_cast<AliFlowCommonHist*>(fHistList->FindObject(commonHistsName.Data()));
+ if(commonHist) 
+ {
+  this->SetCommonHists(commonHist); 
+  if(fCommonHists->GetHarmonic())
+  {
+   fHarmonic = (Int_t)(fCommonHists->GetHarmonic())->GetBinContent(1);
+  } 
+ } // end of if(commonHist) 
+ TString commonHists2ndOrderName = "AliFlowCommonHist2ndOrderQC";
+ commonHists2ndOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHist *commonHist2nd = dynamic_cast<AliFlowCommonHist*>(fHistList->FindObject(commonHists2ndOrderName.Data()));
+ if(commonHist2nd) this->SetCommonHists2nd(commonHist2nd);   
+ TString commonHists4thOrderName = "AliFlowCommonHist4thOrderQC";
+ commonHists4thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHist *commonHist4th = dynamic_cast<AliFlowCommonHist*>(fHistList->FindObject(commonHists4thOrderName.Data()));
+ if(commonHist4th) this->SetCommonHists4th(commonHist4th);  
+ TString commonHists6thOrderName = "AliFlowCommonHist6thOrderQC";
+ commonHists6thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHist *commonHist6th = dynamic_cast<AliFlowCommonHist*>(fHistList->FindObject(commonHists6thOrderName.Data()));
+ if(commonHist6th) this->SetCommonHists6th(commonHist6th);  
+ TString commonHists8thOrderName = "AliFlowCommonHist8thOrderQC";
+ commonHists8thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHist *commonHist8th = dynamic_cast<AliFlowCommonHist*>(fHistList->FindObject(commonHists8thOrderName.Data()));
+ if(commonHist8th) this->SetCommonHists8th(commonHist8th); 
+  
+ TString commonHistResults2ndOrderName = "AliFlowCommonHistResults2ndOrderQC"; 
+ commonHistResults2ndOrderName += fAnalysisLabel->Data(); 
+ AliFlowCommonHistResults *commonHistRes2nd = dynamic_cast<AliFlowCommonHistResults*>
+                                              (fHistList->FindObject(commonHistResults2ndOrderName.Data()));
+ if(commonHistRes2nd) this->SetCommonHistsResults2nd(commonHistRes2nd);   
+ TString commonHistResults4thOrderName = "AliFlowCommonHistResults4thOrderQC";
+ commonHistResults4thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHistResults *commonHistRes4th = dynamic_cast<AliFlowCommonHistResults*>
+                                              (fHistList->FindObject(commonHistResults4thOrderName.Data()));
+ if(commonHistRes4th) this->SetCommonHistsResults4th(commonHistRes4th);  
+ TString commonHistResults6thOrderName = "AliFlowCommonHistResults6thOrderQC";
+ commonHistResults6thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHistResults *commonHistRes6th = dynamic_cast<AliFlowCommonHistResults*>
+                                              (fHistList->FindObject(commonHistResults6thOrderName.Data()));
+ if(commonHistRes6th) this->SetCommonHistsResults6th(commonHistRes6th);  
+ TString commonHistResults8thOrderName = "AliFlowCommonHistResults8thOrderQC";
+ commonHistResults8thOrderName += fAnalysisLabel->Data();
+ AliFlowCommonHistResults *commonHistRes8th = dynamic_cast<AliFlowCommonHistResults*>
+                                              (fHistList->FindObject(commonHistResults8thOrderName.Data()));  
+ if(commonHistRes8th) this->SetCommonHistsResults8th(commonHistRes8th);
+       
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersForCommonHistograms() 
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForParticleWeightsHistograms() 
+{
+ // Get pointers for histograms with particle weights.
+
+ TList *weightsList = dynamic_cast<TList*>(fHistList->FindObject("Weights"));
+ if(!weightsList){printf("\n WARNING (QC): weightsList is NULL in AFAWQC::GPFPWH() !!!!\n");exit(0);}
+ this->SetWeightsList(weightsList);
+ TString fUseParticleWeightsName = "fUseParticleWeightsQC"; // to be improved (hirdwired label QC)
+ fUseParticleWeightsName += fAnalysisLabel->Data();
+ TProfile *useParticleWeights = dynamic_cast<TProfile*>(weightsList->FindObject(fUseParticleWeightsName.Data()));
+ if(useParticleWeights)
+ {
+  this->SetUseParticleWeights(useParticleWeights);  
+  fUsePhiWeights = (Int_t)fUseParticleWeights->GetBinContent(1); 
+  fUsePtWeights = (Int_t)fUseParticleWeights->GetBinContent(2); 
+  fUseEtaWeights = (Int_t)fUseParticleWeights->GetBinContent(3);  
+  fUseTrackWeights = (Int_t)fUseParticleWeights->GetBinContent(4);  
+ }
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersForParticleWeightsHistograms(); 
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForIntFlowHistograms() 
+{
+ // Get pointers for histograms and profiles relevant for integrated flow:
+ //  a) Get pointer to base list for integrated flow holding profile fIntFlowFlags and lists fIntFlowProfiles and fIntFlowResults.
+ //  b) Get pointer to profile fIntFlowFlags holding all flags for integrated flow.
+ //  c) Get pointer to list fIntFlowProfiles and pointers to all objects that she holds. 
+ //  d) Get pointer to list fIntFlowResults and pointers to all objects that she holds. 
+  
+ TString sinCosFlag[2] = {"sin","cos"}; // to be improved (should I promote this to data member?)
+ TString powerFlag[2] = {"linear","quadratic"}; // to be improved (should I promote this to data member?)
+ TString correlationFlag[4] = {"#LT#LT2#GT#GT","#LT#LT4#GT#GT","#LT#LT6#GT#GT","#LT#LT8#GT#GT"}; // to be improved (should I promote this to data member?)
+ TString squaredCorrelationFlag[4] = {"#LT#LT2#GT^{2}#GT","#LT#LT4#GT^{2}#GT","#LT#LT6#GT^{2}#GT","#LT#LT8#GT^{2}#GT"}; // to be improved (should I promote this to data member?)
+ // a) Get pointer to base list for integrated flow holding profile fIntFlowFlags and lists fIntFlowProfiles and fIntFlowResults:
+ TList *intFlowList = NULL;
+ intFlowList = dynamic_cast<TList*>(fHistList->FindObject("Integrated Flow"));
+ if(!intFlowList) 
+ {
+  cout<<"WARNING: intFlowList is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+  exit(0); 
+ }  
+  
+ // b) Get pointer to profile fIntFlowFlags holding all flags for integrated flow:
+ TString intFlowFlagsName = "fIntFlowFlags";
+ intFlowFlagsName += fAnalysisLabel->Data();
+ TProfile *intFlowFlags = dynamic_cast<TProfile*>(intFlowList->FindObject(intFlowFlagsName.Data()));
+ if(intFlowFlags)
+ {
+  this->SetIntFlowFlags(intFlowFlags);  
+  fApplyCorrectionForNUA = (Bool_t)intFlowFlags->GetBinContent(3); 
+  fApplyCorrectionForNUAVsM = (Bool_t)intFlowFlags->GetBinContent(8); 
+  fCalculateCumulantsVsM = (Bool_t)intFlowFlags->GetBinContent(10);  
+ } else 
+   {
+    cout<<"WARNING: intFlowFlags is NULL in FAWQC::GPFIFH() !!!!"<<endl;
+   }
+  
+  // c) Get pointer to list fIntFlowProfiles and pointers to all objects that she holds:
+  TList *intFlowProfiles = NULL;
+  intFlowProfiles = dynamic_cast<TList*>(intFlowList->FindObject("Profiles"));
+  if(intFlowProfiles)  
+  {
+   // average multiplicities:
+   TString avMultiplicityName = "fAvMultiplicity";
+   avMultiplicityName += fAnalysisLabel->Data();
+   TProfile *avMultiplicity = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(avMultiplicityName.Data()));
+   if(avMultiplicity) 
+   {
+    this->SetAvMultiplicity(avMultiplicity);
+   } else 
+     {
+      cout<<"WARNING: avMultiplicity is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }
+   // average correlations <<2>>, <<4>>, <<6>> and <<8>> (with wrong errors!):
+   TString intFlowCorrelationsProName = "fIntFlowCorrelationsPro";
+   intFlowCorrelationsProName += fAnalysisLabel->Data();
+   TProfile *intFlowCorrelationsPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowCorrelationsProName.Data()));
+   if(intFlowCorrelationsPro) 
+   {
+    this->SetIntFlowCorrelationsPro(intFlowCorrelationsPro);
+   } else 
+     {
+      cout<<"WARNING: intFlowCorrelationsPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }      
+   // average squared correlations <<2>^2>, <<4>^2>, <<6>^2> and <<8^2>>:
+   TString intFlowSquaredCorrelationsProName = "fIntFlowSquaredCorrelationsPro";
+   intFlowSquaredCorrelationsProName += fAnalysisLabel->Data();
+   TProfile *intFlowSquaredCorrelationsPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowSquaredCorrelationsProName.Data()));
+   if(intFlowSquaredCorrelationsPro) 
+   {
+    this->SetIntFlowSquaredCorrelationsPro(intFlowSquaredCorrelationsPro);
+   } else 
+     {
+      cout<<"WARNING: intFlowSquaredCorrelationsPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }             
+   if(fCalculateCumulantsVsM)
+   {
+    // Average correlations <<2>>, <<4>>, <<6>> and <<8>> versus multiplicity for all events (error is wrong here):   
+    TString intFlowCorrelationsVsMProName = "fIntFlowCorrelationsVsMPro";
+    intFlowCorrelationsVsMProName += fAnalysisLabel->Data();
+    for(Int_t ci=0;ci<4;ci++) // correlation index
+    {
+     TProfile *intFlowCorrelationsVsMPro = dynamic_cast<TProfile*>
+                                        (intFlowProfiles->FindObject(Form("%s, %s",intFlowCorrelationsVsMProName.Data(),correlationFlag[ci].Data())));
+     if(intFlowCorrelationsVsMPro)
+     {
+      this->SetIntFlowCorrelationsVsMPro(intFlowCorrelationsVsMPro,ci);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowCorrelationsVsMPro[%d]",ci)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }   
+    } // end of for(Int_t ci=0;ci<4;ci++) // correlation index 
+    // Average squared correlations <<2>^2>, <<4>^2>, <<6>^2> and <<8>^2> versus multiplicity for all events:   
+    TString intFlowSquaredCorrelationsVsMProName = "fIntFlowSquaredCorrelationsVsMPro";
+    intFlowSquaredCorrelationsVsMProName += fAnalysisLabel->Data();
+    for(Int_t ci=0;ci<4;ci++) // correlation index
+    {
+     TProfile *intFlowSquaredCorrelationsVsMPro = dynamic_cast<TProfile*>
+                      (intFlowProfiles->FindObject(Form("%s, %s",intFlowSquaredCorrelationsVsMProName.Data(),squaredCorrelationFlag[ci].Data())));
+     if(intFlowSquaredCorrelationsVsMPro)
+     {
+      this->SetIntFlowSquaredCorrelationsVsMPro(intFlowSquaredCorrelationsVsMPro,ci);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowSquaredCorrelationsVsMPro[%d]",ci)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }   
+    } // end of for(Int_t ci=0;ci<4;ci++) // correlation index 
+   } // end of if(fCalculateCumulantsVsM)
+   // average all correlations for integrated flow (with wrong errors!):
+   TString intFlowCorrelationsAllProName = "fIntFlowCorrelationsAllPro";
+   intFlowCorrelationsAllProName += fAnalysisLabel->Data();
+   TProfile *intFlowCorrelationsAllPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowCorrelationsAllProName.Data()));
+   if(intFlowCorrelationsAllPro) 
+   {
+    this->SetIntFlowCorrelationsAllPro(intFlowCorrelationsAllPro);
+   } else 
+     {
+      cout<<"WARNING: intFlowCorrelationsAllPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }     
+   // average extra correlations for integrated flow (which appear only when particle weights are used):
+   // (to be improved: Weak point in implementation, I am assuming here that method GetPointersForParticleWeightsHistograms() was called)
+   if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+   {
+    TString intFlowExtraCorrelationsProName = "fIntFlowExtraCorrelationsPro";
+    intFlowExtraCorrelationsProName += fAnalysisLabel->Data();
+    TProfile *intFlowExtraCorrelationsPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowExtraCorrelationsProName.Data()));
+    if(intFlowExtraCorrelationsPro) 
+    {
+     this->SetIntFlowExtraCorrelationsPro(intFlowExtraCorrelationsPro);
+    } else 
+      {
+       cout<<"WARNING: intFlowExtraCorrelationsPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+      }
+   } // end of if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)        
+   // average products of correlations <2>, <4>, <6> and <8>:  
+   TString intFlowProductOfCorrelationsProName = "fIntFlowProductOfCorrelationsPro";
+   intFlowProductOfCorrelationsProName += fAnalysisLabel->Data();
+   TProfile *intFlowProductOfCorrelationsPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowProductOfCorrelationsProName.Data()));
+   if(intFlowProductOfCorrelationsPro) 
+   {
+    this->SetIntFlowProductOfCorrelationsPro(intFlowProductOfCorrelationsPro);
+   } else 
+     {
+      cout<<"WARNING: intFlowProductOfCorrelationsPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }               
+   // average product of correlations <2>, <4>, <6> and <8> versus multiplicity  
+   // [0=<<2><4>>,1=<<2><6>>,2=<<2><8>>,3=<<4><6>>,4=<<4><8>>,5=<<6><8>>]  
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowProductOfCorrelationsVsMProName = "fIntFlowProductOfCorrelationsVsMPro";
+    intFlowProductOfCorrelationsVsMProName += fAnalysisLabel->Data();
+    TString productFlag[6] = {"#LT#LT2#GT#LT4#GT#GT","#LT#LT2#GT#LT6#GT#GT","#LT#LT2#GT#LT8#GT#GT",
+                              "#LT#LT4#GT#LT6#GT#GT","#LT#LT4#GT#LT8#GT#GT","#LT#LT6#GT#LT8#GT#GT"};
+    for(Int_t pi=0;pi<6;pi++)
+    { 
+     TProfile *intFlowProductOfCorrelationsVsMPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(Form("%s, %s",intFlowProductOfCorrelationsVsMProName.Data(),productFlag[pi].Data())));
+     if(intFlowProductOfCorrelationsVsMPro)
+     {
+      this->SetIntFlowProductOfCorrelationsVsMPro(intFlowProductOfCorrelationsVsMPro,pi);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowProductOfCorrelationsVsMPro[%d]",pi)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }
+    } // end of for(Int_t pi=0;pi<6;pi++)
+   } // end of if(fCalculateCumulantsVsM)
+   // average correction terms for non-uniform acceptance (with wrong errors!):
+   for(Int_t sc=0;sc<2;sc++)
+   {
+    TString intFlowCorrectionTermsForNUAProName = "fIntFlowCorrectionTermsForNUAPro";
+    intFlowCorrectionTermsForNUAProName += fAnalysisLabel->Data();
+    TProfile *intFlowCorrectionTermsForNUAPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject((Form("%s: %s terms",intFlowCorrectionTermsForNUAProName.Data(),sinCosFlag[sc].Data()))));
+    if(intFlowCorrectionTermsForNUAPro) 
+    {
+     this->SetIntFlowCorrectionTermsForNUAPro(intFlowCorrectionTermsForNUAPro,sc);
+    } else 
+      {
+       cout<<"WARNING: intFlowCorrectionTermsForNUAPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       cout<<"sc = "<<sc<<endl;
+      } 
+    // versus multiplicity:
+    if(fCalculateCumulantsVsM)
+    {
+     TString correctionTermFlag[4] = {"(n(phi1))","(n(phi1+phi2))","(n(phi1-phi2-phi3))","(n(2phi1-phi2))"}; // to be improved - hardwired 4
+     TString intFlowCorrectionTermsForNUAVsMProName = "fIntFlowCorrectionTermsForNUAVsMPro";
+     intFlowCorrectionTermsForNUAVsMProName += fAnalysisLabel->Data();
+     for(Int_t ci=0;ci<4;ci++) // correction term index (to be improved - hardwired 4)
+     {
+      TProfile *intFlowCorrectionTermsForNUAVsMPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(Form("%s: #LT#LT%s%s#GT#GT",intFlowCorrectionTermsForNUAVsMProName.Data(),sinCosFlag[sc].Data(),correctionTermFlag[ci].Data())));
+      if(intFlowCorrectionTermsForNUAVsMPro) 
+      {
+       this->SetIntFlowCorrectionTermsForNUAVsMPro(intFlowCorrectionTermsForNUAVsMPro,sc,ci);
+      } else 
+        {
+         cout<<"WARNING: intFlowCorrectionTermsForNUAVsMPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+         cout<<"sc = "<<sc<<endl;
+         cout<<"ci = "<<ci<<endl;
+        }       
+     } // end of for(Int_t ci=0;ci<4;ci++) // correction term index (to be improved - hardwired 4)
+    } // end of if(fCalculateCumulantsVsM)
+   } // end of for(Int_t sc=0;sc<2;sc++)           
+   // average products of correction terms for NUA:  
+   TString intFlowProductOfCorrectionTermsForNUAProName = "fIntFlowProductOfCorrectionTermsForNUAPro";
+   intFlowProductOfCorrectionTermsForNUAProName += fAnalysisLabel->Data();
+   TProfile *intFlowProductOfCorrectionTermsForNUAPro = dynamic_cast<TProfile*>(intFlowProfiles->FindObject(intFlowProductOfCorrectionTermsForNUAProName.Data()));
+   if(intFlowProductOfCorrectionTermsForNUAPro) 
+   {
+    this->SetIntFlowProductOfCorrectionTermsForNUAPro(intFlowProductOfCorrectionTermsForNUAPro);
+   } else 
+     {
+      cout<<"WARNING: intFlowProductOfCorrectionTermsForNUAPro is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }     
+  } else // to if(intFlowProfiles)  
+    {
+     cout<<"WARNING: intFlowProfiles is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+    }
+   
+  //  d) Get pointer to list fIntFlowResults and pointers to all objects that she holds. 
+  TList *intFlowResults = NULL;
+  intFlowResults = dynamic_cast<TList*>(intFlowList->FindObject("Results"));
+  if(intFlowResults)
+  {
+   // average correlations <<2>>, <<4>>, <<6>> and <<8>> (with correct errors!):
+   TString intFlowCorrelationsHistName = "fIntFlowCorrelationsHist";
+   intFlowCorrelationsHistName += fAnalysisLabel->Data();
+   TH1D *intFlowCorrelationsHist = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowCorrelationsHistName.Data()));
+   if(intFlowCorrelationsHist) 
+   {
+    this->SetIntFlowCorrelationsHist(intFlowCorrelationsHist);
+   } else 
+     {
+      cout<<"WARNING: intFlowCorrelationsHist is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     } 
+   // average correlations <<2>>, <<4>>, <<6>> and <<8>> (with correct errors!) vs M:    
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowCorrelationsVsMHistName = "fIntFlowCorrelationsVsMHist";
+    intFlowCorrelationsVsMHistName += fAnalysisLabel->Data();
+    for(Int_t ci=0;ci<4;ci++) // correlation index
+    {
+     TH1D *intFlowCorrelationsVsMHist = dynamic_cast<TH1D*>
+                                        (intFlowResults->FindObject(Form("%s, %s",intFlowCorrelationsVsMHistName.Data(),correlationFlag[ci].Data())));
+     if(intFlowCorrelationsVsMHist)
+     {
+      this->SetIntFlowCorrelationsVsMHist(intFlowCorrelationsVsMHist,ci);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowCorrelationsVsMHist[%d]",ci)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }   
+    } // end of for(Int_t ci=0;ci<4;ci++) // correlation index   
+   } // end of if(fCalculateCumulantsVsM)
+   // average all correlations for integrated flow (with correct errors!):
+   TString intFlowCorrelationsAllHistName = "fIntFlowCorrelationsAllHist";
+   intFlowCorrelationsAllHistName += fAnalysisLabel->Data();
+   TH1D *intFlowCorrelationsAllHist = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowCorrelationsAllHistName.Data()));
+   if(intFlowCorrelationsAllHist) 
+   {
+    this->SetIntFlowCorrelationsAllHist(intFlowCorrelationsAllHist);
+   } else 
+     {
+      cout<<"WARNING: intFlowCorrelationsAllHist is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }  
+   // average correction terms for non-uniform acceptance (with correct errors!):
+   TString intFlowCorrectionTermsForNUAHistName = "fIntFlowCorrectionTermsForNUAHist";
+   intFlowCorrectionTermsForNUAHistName += fAnalysisLabel->Data();
+   for(Int_t sc=0;sc<2;sc++)
+   {
+    TH1D *intFlowCorrectionTermsForNUAHist = dynamic_cast<TH1D*>(intFlowResults->FindObject((Form("%s: %s terms",intFlowCorrectionTermsForNUAHistName.Data(),sinCosFlag[sc].Data()))));
+    if(intFlowCorrectionTermsForNUAHist) 
+    {
+     this->SetIntFlowCorrectionTermsForNUAHist(intFlowCorrectionTermsForNUAHist,sc);
+    } else 
+      {
+       cout<<"WARNING: intFlowCorrectionTermsForNUAHist is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       cout<<"sc = "<<sc<<endl;
+      } 
+   } // end of for(Int_t sc=0;sc<2;sc++)           
+   // covariances (multiplied with weight dependent prefactor):
+   TString intFlowCovariancesName = "fIntFlowCovariances";
+   intFlowCovariancesName += fAnalysisLabel->Data();
+   TH1D *intFlowCovariances = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowCovariancesName.Data()));
+   if(intFlowCovariances) 
+   {
+    this->SetIntFlowCovariances(intFlowCovariances); 
+   } else 
+     {
+      cout<<"WARNING: intFlowCovariances is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     } 
+   // sum of linear and quadratic event weights for <2>, <4>, <6> and <8>:
+   TString intFlowSumOfEventWeightsName = "fIntFlowSumOfEventWeights";
+   intFlowSumOfEventWeightsName += fAnalysisLabel->Data();
+   for(Int_t power=0;power<2;power++)
+   {
+    TH1D *intFlowSumOfEventWeights = dynamic_cast<TH1D*>(intFlowResults->FindObject(Form("%s: %s",intFlowSumOfEventWeightsName.Data(),powerFlag[power].Data())));
+    if(intFlowSumOfEventWeights) 
+    {
+     this->SetIntFlowSumOfEventWeights(intFlowSumOfEventWeights,power);
+    } else 
+      {
+       cout<<"WARNING: intFlowSumOfEventWeights is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       cout<<"power = "<<power<<endl;
+      }                                   
+   } // end of for(Int_t power=0;power<2;power++)                                                                  
+   // sum of products of event weights for correlations <2>, <4>, <6> and <8>:  
+   TString intFlowSumOfProductOfEventWeightsName = "fIntFlowSumOfProductOfEventWeights";
+   intFlowSumOfProductOfEventWeightsName += fAnalysisLabel->Data();
+   TH1D *intFlowSumOfProductOfEventWeights = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowSumOfProductOfEventWeightsName.Data()));
+   if(intFlowSumOfProductOfEventWeights) 
+   {
+    this->SetIntFlowSumOfProductOfEventWeights(intFlowSumOfProductOfEventWeights);
+   } else 
+     {
+      cout<<"WARNING: intFlowSumOfProductOfEventWeights is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     } 
+   // final result for covariances of correlations (multiplied with weight dependent prefactor) versus M
+   // [0=Cov(2,4),1=Cov(2,6),2=Cov(2,8),3=Cov(4,6),4=Cov(4,8),5=Cov(6,8)]:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowCovariancesVsMName = "fIntFlowCovariancesVsM";
+    intFlowCovariancesVsMName += fAnalysisLabel->Data();
+    TString covarianceFlag[6] = {"Cov(<2>,<4>)","Cov(<2>,<6>)","Cov(<2>,<8>)","Cov(<4>,<6>)","Cov(<4>,<8>)","Cov(<6>,<8>)"};
+    for(Int_t ci=0;ci<6;ci++)
+    { 
+     TH1D *intFlowCovariancesVsM = dynamic_cast<TH1D*>(intFlowResults->FindObject(Form("%s, %s",intFlowCovariancesVsMName.Data(),covarianceFlag[ci].Data())));
+     if(intFlowCovariancesVsM)
+     {
+      this->SetIntFlowCovariancesVsM(intFlowCovariancesVsM,ci);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowCovariancesVsM[%d]",ci)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }    
+    } // end of for(Int_t ci=0;ci<6;ci++)
+   } // end of if(fCalculateCumulantsVsM)
+   // sum of linear and quadratic event weights for <2>, <4>, <6> and <8> versus multiplicity
+   // [0=sum{w_{<2>}},1=sum{w_{<4>}},2=sum{w_{<6>}},3=sum{w_{<8>}}][0=linear 1,1=quadratic]:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowSumOfEventWeightsVsMName = "fIntFlowSumOfEventWeightsVsM";
+    intFlowSumOfEventWeightsVsMName += fAnalysisLabel->Data();
+    TString sumFlag[2][4] = {{"#sum_{i=1}^{N} w_{<2>}","#sum_{i=1}^{N} w_{<4>}","#sum_{i=1}^{N} w_{<6>}","#sum_{i=1}^{N} w_{<8>}"},
+                             {"#sum_{i=1}^{N} w_{<2>}^{2}","#sum_{i=1}^{N} w_{<4>}^{2}","#sum_{i=1}^{N} w_{<6>}^{2}","#sum_{i=1}^{N} w_{<8>}^{2}"}};
+    for(Int_t si=0;si<4;si++)
+    {
+     for(Int_t power=0;power<2;power++)
+     {
+      TH1D *intFlowSumOfEventWeightsVsM = dynamic_cast<TH1D*>(intFlowResults->FindObject(Form("%s, %s",intFlowSumOfEventWeightsVsMName.Data(),sumFlag[power][si].Data())));
+      if(intFlowSumOfEventWeightsVsM)
+      {
+       this->SetIntFlowSumOfEventWeightsVsM(intFlowSumOfEventWeightsVsM,si,power);
+      } else
+        {
+         cout<<"WARNING: "<<Form("intFlowSumOfEventWeightsVsM[%d][%d]",si,power)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+        }    
+     } // end of for(Int_t power=0;power<2;power++)
+    } // end of for(Int_t si=0;si<4;si++)   
+   } // end of if(fCalculateCumulantsVsM)
+   // sum of products of event weights for correlations <2>, <4>, <6> and <8> vs M
+   // [0=sum{w_{<2>}w_{<4>}},1=sum{w_{<2>}w_{<6>}},2=sum{w_{<2>}w_{<8>}},
+   //  3=sum{w_{<4>}w_{<6>}},4=sum{w_{<4>}w_{<8>}},5=sum{w_{<6>}w_{<8>}}]:  
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowSumOfProductOfEventWeightsVsMName = "fIntFlowSumOfProductOfEventWeightsVsM";
+    intFlowSumOfProductOfEventWeightsVsMName += fAnalysisLabel->Data();
+    TString sopowFlag[6] = {"#sum_{i=1}^{N} w_{<2>} w_{<4>}","#sum_{i=1}^{N} w_{<2>} w_{<6>}","#sum_{i=1}^{N} w_{<2>} w_{<8>}",
+                            "#sum_{i=1}^{N} w_{<4>} w_{<6>}","#sum_{i=1}^{N} w_{<4>} w_{<8>}","#sum_{i=1}^{N} w_{<6>} w_{<8>}"}; 
+    for(Int_t pi=0;pi<6;pi++)
+    {
+     TH1D *intFlowSumOfProductOfEventWeightsVsM = dynamic_cast<TH1D*>(intFlowResults->FindObject(Form("%s, %s",intFlowSumOfProductOfEventWeightsVsMName.Data(),sopowFlag[pi].Data())));
+     if(intFlowSumOfProductOfEventWeightsVsM)
+     {
+      this->SetIntFlowSumOfProductOfEventWeightsVsM(intFlowSumOfProductOfEventWeightsVsM,pi);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowSumOfProductOfEventWeightsVsM[%d]",pi)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }
+    } // end of for(Int_t pi=0;pi<6;pi++)        
+   } // end of if(fCalculateCumulantsVsM)
+   // covariances for NUA (multiplied with weight dependent prefactor):
+   TString intFlowCovariancesNUAName = "fIntFlowCovariancesNUA";
+   intFlowCovariancesNUAName += fAnalysisLabel->Data();
+   TH1D *intFlowCovariancesNUA = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowCovariancesNUAName.Data()));
+   if(intFlowCovariancesNUA) 
+   {
+    this->SetIntFlowCovariancesNUA(intFlowCovariancesNUA); 
+   } else 
+     {
+      cout<<"WARNING: intFlowCovariancesNUA is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     } 
+   // sum of linear and quadratic event weights NUA terms:
+   TString intFlowSumOfEventWeightsNUAName = "fIntFlowSumOfEventWeightsNUA";
+   intFlowSumOfEventWeightsNUAName += fAnalysisLabel->Data();
+   for(Int_t sc=0;sc<2;sc++)
+   {
+    for(Int_t power=0;power<2;power++)
+    {
+     TH1D *intFlowSumOfEventWeightsNUA = dynamic_cast<TH1D*>(intFlowResults->FindObject(Form("%s: %s, %s",intFlowSumOfEventWeightsNUAName.Data(),powerFlag[power].Data(),sinCosFlag[sc].Data())));
+     if(intFlowSumOfEventWeightsNUA) 
+     {
+      this->SetIntFlowSumOfEventWeightsNUA(intFlowSumOfEventWeightsNUA,sc,power);
+     } else 
+       {
+        cout<<"WARNING: intFlowSumOfEventWeightsNUA is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+        cout<<"sc    = "<<sc<<endl;
+        cout<<"power = "<<power<<endl;
+       }                                   
+    } // end of for(Int_t power=0;power<2;power++)                                                                  
+   } // end of for(Int_t sc=0;sc<2;sc++)     
+   // sum of products of event weights for NUA terms:  
+   TString intFlowSumOfProductOfEventWeightsNUAName = "fIntFlowSumOfProductOfEventWeightsNUA";
+   intFlowSumOfProductOfEventWeightsNUAName += fAnalysisLabel->Data();
+   TH1D *intFlowSumOfProductOfEventWeightsNUA = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowSumOfProductOfEventWeightsNUAName.Data()));
+   if(intFlowSumOfProductOfEventWeightsNUA) 
+   {
+    this->SetIntFlowSumOfProductOfEventWeightsNUA(intFlowSumOfProductOfEventWeightsNUA);
+   } else 
+     {
+      cout<<"WARNING: intFlowSumOfProductOfEventWeightsNUA is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     } 
+   // Final results for reference Q-cumulants:
+   TString intFlowQcumulantsName = "fIntFlowQcumulants";
+   intFlowQcumulantsName += fAnalysisLabel->Data();
+   TH1D *intFlowQcumulants = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowQcumulantsName.Data()));
+   if(intFlowQcumulants) 
+   {
+    this->SetIntFlowQcumulants(intFlowQcumulants);
+   } else 
+     {
+      cout<<"WARNING: intFlowQcumulants is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }  
+   // Final results for reference Q-cumulants rebinned in M:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowQcumulantsRebinnedInMName = "fIntFlowQcumulantsRebinnedInM";
+    intFlowQcumulantsRebinnedInMName += fAnalysisLabel->Data();
+    TH1D *intFlowQcumulantsRebinnedInM = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowQcumulantsRebinnedInMName.Data()));
+    if(intFlowQcumulantsRebinnedInM) 
+    {
+     this->SetIntFlowQcumulantsRebinnedInM(intFlowQcumulantsRebinnedInM);
+    } else 
+      {
+       cout<<"WARNING: intFlowQcumulantsRebinnedInM is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+      }  
+   } // end of if(fCalculateCumulantsVsM)
+   // Ratio between error squared: with/without non-isotropic terms:
+   TString intFlowQcumulantsErrorSquaredRatioName = "fIntFlowQcumulantsErrorSquaredRatio";
+   intFlowQcumulantsErrorSquaredRatioName += fAnalysisLabel->Data();
+   TH1D *intFlowQcumulantsErrorSquaredRatio = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowQcumulantsErrorSquaredRatioName.Data()));
+   if(intFlowQcumulantsErrorSquaredRatio) 
+   {
+    this->SetIntFlowQcumulantsErrorSquaredRatio(intFlowQcumulantsErrorSquaredRatio);
+   } else 
+     {
+      cout<<" WARNING: intntFlowQcumulantsErrorSquaredRatio is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+     }  
+   // final results for integrated Q-cumulants versus multiplicity:
+   TString cumulantFlag[4] = {"QC{2}","QC{4}","QC{6}","QC{8}"};
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowQcumulantsVsMName = "fIntFlowQcumulantsVsM";
+    intFlowQcumulantsVsMName += fAnalysisLabel->Data();
+    for(Int_t co=0;co<4;co++) // cumulant order
+    {
+     TH1D *intFlowQcumulantsVsM = dynamic_cast<TH1D*>
+                                  (intFlowResults->FindObject(Form("%s, %s",intFlowQcumulantsVsMName.Data(),cumulantFlag[co].Data())));
+     if(intFlowQcumulantsVsM)
+     {
+      this->SetIntFlowQcumulantsVsM(intFlowQcumulantsVsM,co);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowQcumulantsVsM[%d]",co)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+       }
+    } // end of for(Int_t co=0;co<4;co++) // cumulant order
+   } // end of if(fCalculateCumulantsVsM)
+   // Final reference flow estimates from Q-cumulants:
+   TString intFlowName = "fIntFlow";
+   intFlowName += fAnalysisLabel->Data();
+   TH1D *intFlow = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowName.Data()));
+   if(intFlow) 
+   {
+    this->SetIntFlow(intFlow);
+   } else 
+     {
+      cout<<"WARNING: intFlow is NULL in AFAWQC::GPFIFH() !!!!"<<endl; 
+     } 
+   // Final reference flow estimates from Q-cumulants vs M rebinned in M:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowRebinnedInMName = "fIntFlowRebinnedInM";
+    intFlowRebinnedInMName += fAnalysisLabel->Data();
+    TH1D *intFlowRebinnedInM = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowRebinnedInMName.Data()));
+    if(intFlowRebinnedInM) 
+    {
+     this->SetIntFlowRebinnedInM(intFlowRebinnedInM);
+    } else 
+      {
+       cout<<"WARNING: intFlowRebinnedInM is NULL in AFAWQC::GPFIFH() !!!!"<<endl; 
+      } 
+   } // end of if(fCalculateCumulantsVsM)
+   // integrated flow from Q-cumulants versus multiplicity:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowVsMName = "fIntFlowVsM";
+    intFlowVsMName += fAnalysisLabel->Data();
+    TString flowFlag[4] = {Form("v_{%d}{2,QC}",fHarmonic),Form("v_{%d}{4,QC}",fHarmonic),Form("v_{%d}{6,QC}",fHarmonic),Form("v_{%d}{8,QC}",fHarmonic)};
+    for(Int_t co=0;co<4;co++) // cumulant order
+    {
+     TH1D *intFlowVsM = dynamic_cast<TH1D*>
+                        (intFlowResults->FindObject(Form("%s, %s",intFlowVsMName.Data(),flowFlag[co].Data())));            
+     if(intFlowVsM)
+     {
+      this->SetIntFlowVsM(intFlowVsM,co);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowVsM[%d]",co)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;      
+       }
+    } // end of for(Int_t co=0;co<4;co++) // cumulant order
+   } // end of if(fCalculateCumulantsVsM)
+   // quantifying detector effects effects to correlations:
+   TString intFlowDetectorBiasName = "fIntFlowDetectorBias";
+   intFlowDetectorBiasName += fAnalysisLabel->Data();
+   TH1D *intFlowDetectorBias = dynamic_cast<TH1D*>(intFlowResults->FindObject(intFlowDetectorBiasName.Data()));
+   if(intFlowDetectorBias) 
+   {
+    this->SetIntFlowDetectorBias(intFlowDetectorBias);
+   } else 
+     {
+      cout<<"WARNING: intFlowDetectorBias is NULL in AFAWQC::GPFIFH() !!!!"<<endl; 
+     } 
+   // quantifying detector effects effects to correlations vs multiplicity:
+   if(fCalculateCumulantsVsM)
+   {
+    TString intFlowDetectorBiasVsMName = "fIntFlowDetectorBiasVsM";
+    intFlowDetectorBiasVsMName += fAnalysisLabel->Data();
+    for(Int_t ci=0;ci<4;ci++) // correlation index
+    {
+     TH1D *intFlowDetectorBiasVsM = dynamic_cast<TH1D*>
+                                    (intFlowResults->FindObject(Form("%s for %s",intFlowDetectorBiasVsMName.Data(),cumulantFlag[ci].Data())));
+     if(intFlowDetectorBiasVsM)
+     {
+      this->SetIntFlowDetectorBiasVsM(intFlowDetectorBiasVsM,ci);
+     } else
+       {
+        cout<<"WARNING: "<<Form("intFlowDetectorBiasVsM[%d]",ci)<<" is NULL in AFAWQC::GPFIFH() !!!!"<<endl;      
+       }
+    } // end of for(Int_t ci=0;ci<4;ci++) // correlation index   
+   } // end of if(fCalculateCumulantsVsM)
+  } else // to if(intFlowResults)
+    {
+     cout<<"WARNING: intFlowResults is NULL in AFAWQC::GPFIFH() !!!!"<<endl;
+    }
+    
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersForIntFlowHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersFor2DDiffFlowHistograms()
+{
+ // Get pointers for 2D differential flow histograms.
+ //  a) Check pointers used in this method;
+ //  b) Get pointers to 2D differential flow lists;
+ //  c) Get pointers to 2D differential flow profiles;
+ //  d) Get pointers to 2D differential flow histograms. 
+
+ // a) Check pointers used in this method:
+ if(!fDiffFlowList)
+ { 
+  printf("\n WARNING (QC): fDiffFlowList is NULL in AFAWQC::GPF2DDFH() !!!!\n");
+  printf("               Call method GetPointersForDiffFlowHistograms() first.\n\n");
+  exit(0);
+ }
+ if(!fDiffFlowFlags)
+ { 
+  printf("\n WARNING (QC): fDiffFlowFlags is NULL in AFAWQC::GPF2DDFH() !!!!\n\n");
+  printf("               Call method GetPointersForDiffFlowHistograms() first.\n\n");
+  exit(0);
+ }
+ // b) Get pointers to 2D differential flow lists:
+ this->SetCalculate2DDiffFlow((Bool_t)fDiffFlowFlags->GetBinContent(5)); // to be improved - hardwired 5
+ if(!fCalculate2DDiffFlow){return;}
+ TString typeFlag[2] = {"RP","POI"}; 
+ TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"};
+ TString differentialCumulantIndex[4] = {"QC{2'}","QC{4'}","QC{6'}","QC{8'}"};  
+ TString differentialFlowIndex[4] = {"v'{2}","v'{4}","v'{6}","v'{8}"};  
+ // Base list: 
+ TString diffFlow2DListName = "2D"; 
+ diffFlow2DListName += fAnalysisLabel->Data();
+ fDiffFlow2D = dynamic_cast<TList*>(fDiffFlowList->FindObject(diffFlow2DListName.Data()));
+ if(!fDiffFlow2D)
+ { 
+  printf("\n WARNING (QC): fDiffFlow2D is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+  exit(0);
+ }
+ // Lists holding profiles with 2D correlations: 
+ TString s2DDiffFlowCorrelationsProListName = "Profiles with 2D correlations"; 
+ s2DDiffFlowCorrelationsProListName += fAnalysisLabel->Data(); // to be improved
+ for(Int_t t=0;t<2;t++)
+ {
+  f2DDiffFlowCorrelationsProList[t] = dynamic_cast<TList*>(fDiffFlow2D->FindObject(Form("Profiles with 2D correlations (%s)",typeFlag[t].Data())));
+  if(!f2DDiffFlowCorrelationsProList[t])
+  { 
+   printf("\n WARNING (QC): f2DDiffFlowCorrelationsProList[%i] is NULL in AFAWQC::GPF2DFH() !!!!\n\n",t);
+   exit(0);
+  }
+ } // end of for(Int_t t=0;t<2;t++) 
+ // c) Get pointers to 2D differential flow profiles:
+ TString s2DDiffFlowCorrelationsProName = "f2DDiffFlowCorrelationsPro";
+ s2DDiffFlowCorrelationsProName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+  {
+   f2DDiffFlowCorrelationsPro[t][rci] = dynamic_cast<TProfile2D*>(f2DDiffFlowCorrelationsProList[t]->FindObject(Form("%s, %s, %s",s2DDiffFlowCorrelationsProName.Data(),typeFlag[t].Data(),reducedCorrelationIndex[rci].Data())));
+   if(!f2DDiffFlowCorrelationsPro[t][rci])
+   {
+    printf("\n WARNING (QC): f2DDiffFlowCorrelationsPro[%i][%i] is NULL in AFAWQC::GPF2DFH() !!!!\n\n",t,rci);
+    exit(0);   
+   } else
+     {
+      this->Set2DDiffFlowCorrelationsPro(f2DDiffFlowCorrelationsPro[t][rci],t,rci);
+     } 
+  } // end of for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI 
+
+ // d) Get pointers to 2D differential flow histograms: 
+ TString s2DDiffFlowCumulantsName = "f2DDiffFlowCumulants";
+ s2DDiffFlowCumulantsName += fAnalysisLabel->Data();
+ TString s2DDiffFlowName = "f2DDiffFlow";
+ s2DDiffFlowName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+  {
+   // 2D differential cumulants:
+   f2DDiffFlowCumulants[t][rci] = dynamic_cast<TH2D*>(f2DDiffFlowCorrelationsProList[t]->FindObject(Form("%s, %s, %s",s2DDiffFlowCumulantsName.Data(),typeFlag[t].Data(),differentialCumulantIndex[rci].Data())));
+   if(!f2DDiffFlowCumulants[t][rci])
+   {
+    printf("\n WARNING (QC): f2DDiffFlowCumulants[%i][%i] is NULL in AFAWQC::GPF2DFH() !!!!\n\n",t,rci);
+    exit(0);   
+   } else
+     {
+      this->Set2DDiffFlowCumulants(f2DDiffFlowCumulants[t][rci],t,rci);
+     } 
+   // 2D differential flow:
+   f2DDiffFlow[t][rci] = dynamic_cast<TH2D*>(f2DDiffFlowCorrelationsProList[t]->FindObject(Form("%s, %s, %s",s2DDiffFlowName.Data(),typeFlag[t].Data(),differentialFlowIndex[rci].Data())));
+   if(!f2DDiffFlow[t][rci])
+   {
+    printf("\n WARNING (QC): f2DDiffFlow[%i][%i] is NULL in AFAWQC::GPF2DFH() !!!!\n\n",t,rci);
+    exit(0);   
+   } else
+     {
+      this->Set2DDiffFlow(f2DDiffFlow[t][rci],t,rci);
+     } 
+  } // end of for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI 
+  
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersFor2DDiffFlowHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForOtherDiffCorrelators()
+{
+ // Get pointers for other differential correlators.
+ //  a) Get pointer to list with other differential correlators;
+ //  b) Declare local flags;
+ //  c) Get pointers to other differential profiles.
+
+ if(!fCalculateDiffFlow){return;} // TBI: This must eventually be moved somewhere else 
+
+ // a) Get pointer to list with other differential correlators:
+ fOtherDiffCorrelatorsList = dynamic_cast<TList*>(fHistList->FindObject("Other differential correlators"));  
+ if(!fOtherDiffCorrelatorsList)
+ { 
+  printf("\n WARNING (QC): fOtherDiffCorrelatorsList is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+  exit(0);
+ }
+ // b) Declare local flags: // (to be improved - promoted to data members)
+ TString typeFlag[2] = {"RP","POI"}; 
+ TString ptEtaFlag[2] = {"p_{T}","#eta"};
+ TString sinCosFlag[2] = {"sin","cos"}; 
+  
+ // c) Get pointers to other differential profiles:
+ TString otherDiffCorrelatorsName = "fOtherDiffCorrelators";
+ otherDiffCorrelatorsName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t ci=0;ci<1;ci++) // correlator index
+    {
+     fOtherDiffCorrelators[t][pe][sc][ci] = dynamic_cast<TProfile*>(fOtherDiffCorrelatorsList->FindObject(Form("%s, %s, %s, %s, ci = %d",otherDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1))); 
+     if(!fOtherDiffCorrelators[t][pe][sc][ci])
+     {
+      printf("\n WARNING (QC): fOtherDiffCorrelators[%i][%i][%i][%i] is NULL in AFAWQC::GPFODC() !!!!\n\n",t,pe,sc,ci);
+      exit(0);       
+     } else
+       {
+        this->SetOtherDiffCorrelators(fOtherDiffCorrelators[t][pe][sc][ci],t,pe,sc,ci);     
+       } 
+    } // end of for(Int_t ci=0;ci<1;ci++) // correlator index
+   } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+  
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersForOtherDiffCorrelators()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForDiffFlowHistograms()
+{
+ // Get pointer to all objects relevant for differential flow.
+ //  a) Get pointer to base list for differential flow fDiffFlowList;
+ //  b) Get pointer to profile fDiffFlowFlags holding all flags for differential flow. Access and set some flags;
+ //  c) Get pointers to nested lists fDiffFlowListProfiles and fDiffFlowListResults;
+ //  d) Define flags locally (to be improved: should I promote these flags to data members?);
+ //  e) Get pointers to all nested lists in fDiffFlowListProfiles and to profiles which they hold;
+ //  f) Get pointers to all nested lists in fDiffFlowListResults and to histograms which they hold.
+ // a) Get pointer to base list for differential flow fDiffFlowList:
+ fDiffFlowList = dynamic_cast<TList*>(fHistList->FindObject("Differential Flow"));  
+ if(!fDiffFlowList)
+ { 
+  printf("\n WARNING (QC): fDiffFlowList is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+  exit(0);
+ }
+ // b) Get pointer to profile fDiffFlowFlags holding all flags for differential flow. Access and set some flags:
+ TString diffFlowFlagsName = "fDiffFlowFlags";
+ diffFlowFlagsName += fAnalysisLabel->Data();
+ fDiffFlowFlags = dynamic_cast<TProfile*>(fDiffFlowList->FindObject(diffFlowFlagsName.Data()));
+ if(fDiffFlowFlags)
+ {
+  this->SetCalculateDiffFlow((Bool_t)fDiffFlowFlags->GetBinContent(1)); // to be improved - hardwired 1
+  this->SetCalculateDiffFlowVsEta((Bool_t)fDiffFlowFlags->GetBinContent(6)); // to be improved - hardwired 6
+ } else
+   {
+    printf("\n WARNING (QC): fDiffFlowFlags is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+    printf("\n             Flags in method Finish() are wrong.\n\n");
+    exit(0);
+   } 
+   
+ if(!fCalculateDiffFlow){return;} // IMPORTANT: do not move this anywhere above in this method (to be improved)   
+  
+ // c) Get pointers to nested lists fDiffFlowListProfiles and fDiffFlowListResults:
+ //  List holding nested lists holding profiles:
+ TList *diffFlowListProfiles = NULL;
+ diffFlowListProfiles = dynamic_cast<TList*>(fDiffFlowList->FindObject("Profiles"));
+ if(!diffFlowListProfiles)
+ { 
+  printf("\n WARNING (QC): diffFlowListProfiles is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+  exit(0);
+ }
+ //  List holding nested lists holding histograms with final results:
+ TList *diffFlowListResults = NULL;
+ diffFlowListResults = dynamic_cast<TList*>(fDiffFlowList->FindObject("Results"));
+ if(!diffFlowListResults)
+ { 
+  printf("\n WARNING (QC): diffFlowListResults is NULL in AFAWQC::GPFDFH() !!!!\n\n");
+  exit(0);
+ }
+ // d) Define flags locally (to be improved: should I promote these flags to data members?):
+ TString typeFlag[2] = {"RP","POI"}; 
+ TString ptEtaFlag[2] = {"p_{T}","#eta"};
+ TString powerFlag[2] = {"linear","quadratic"};
+ TString sinCosFlag[2] = {"sin","cos"};
+ TString differentialCumulantIndex[4] = {"QC{2'}","QC{4'}","QC{6'}","QC{8'}"};  
+ TString differentialFlowIndex[4] = {"v'{2}","v'{4}","v'{6}","v'{8}"};  
+ TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"};
+ TString reducedSquaredCorrelationIndex[4] = {"<2'>^{2}","<4'>^{2}","<6'>^{2}","<8'>^{2}"}; 
+ TString mixedCorrelationIndex[8] = {"<2>","<2'>","<4>","<4'>","<6>","<6'>","<8>","<8'>"};
+ TString covarianceName[5] = {"Cov(<2>,<2'>)","Cov(<2>,<4'>)","Cov(<4>,<2'>)","Cov(<4>,<4'>)","Cov(<2'>,<4'>)"}; 
+  
+ // e) Get pointers to all nested lists in fDiffFlowListProfiles and to profiles which they hold:
+ // correlations:
+ TList *diffFlowCorrelationsProList[2][2] = {{NULL}};
+ TString diffFlowCorrelationsProName = "fDiffFlowCorrelationsPro";
+ diffFlowCorrelationsProName += fAnalysisLabel->Data();
+ TProfile *diffFlowCorrelationsPro[2][2][4] = {{{NULL}}}; 
+ // squared correlations:  
+ TString diffFlowSquaredCorrelationsProName = "fDiffFlowSquaredCorrelationsPro";
+ diffFlowSquaredCorrelationsProName += fAnalysisLabel->Data(); 
+ TProfile *diffFlowSquaredCorrelationsPro[2][2][4] = {{{NULL}}};  
+ // products of correlations:
+ TList *diffFlowProductOfCorrelationsProList[2][2] = {{NULL}};
+ TString diffFlowProductOfCorrelationsProName = "fDiffFlowProductOfCorrelationsPro";
+ diffFlowProductOfCorrelationsProName += fAnalysisLabel->Data();  
+ TProfile *diffFlowProductOfCorrelationsPro[2][2][8][8] = {{{{NULL}}}};   
+ // corrections:
+ TList *diffFlowCorrectionsProList[2][2] = {{NULL}};
+ TString diffFlowCorrectionTermsForNUAProName = "fDiffFlowCorrectionTermsForNUAPro";
+ diffFlowCorrectionTermsForNUAProName += fAnalysisLabel->Data();  
+ TProfile *diffFlowCorrectionTermsForNUAPro[2][2][2][10] = {{{{NULL}}}};   
+ for(Int_t t=0;t<2;t++)
+ {
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++)
+  {
+   diffFlowCorrelationsProList[t][pe] = dynamic_cast<TList*>(diffFlowListProfiles->FindObject(Form("Profiles with correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCorrelationsProList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCorrelationsProList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t ci=0;ci<4;ci++) // correlation index
+   {
+    // reduced correlations:
+    diffFlowCorrelationsPro[t][pe][ci] = dynamic_cast<TProfile*>(diffFlowCorrelationsProList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[ci].Data())));
+    if(diffFlowCorrelationsPro[t][pe][ci])
+    {
+     this->SetDiffFlowCorrelationsPro(diffFlowCorrelationsPro[t][pe][ci],t,pe,ci);
+    } else
+      {
+       cout<<"WARNING: diffFlowCorrelationsPro[t][pe][ci] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t  = "<<t<<endl;
+       cout<<"pe = "<<pe<<endl;   
+       cout<<"ci = "<<ci<<endl;
+      }     
+    // reduced squared correlations:
+    diffFlowSquaredCorrelationsPro[t][pe][ci] = dynamic_cast<TProfile*>(diffFlowCorrelationsProList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowSquaredCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedSquaredCorrelationIndex[ci].Data())));
+    if(diffFlowSquaredCorrelationsPro[t][pe][ci])
+    {
+     this->SetDiffFlowSquaredCorrelationsPro(diffFlowSquaredCorrelationsPro[t][pe][ci],t,pe,ci);
+    } else
+      {
+       cout<<"WARNING: diffFlowSquaredCorrelationsPro[t][pe][ci] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t  = "<<t<<endl;
+       cout<<"pe = "<<pe<<endl;   
+       cout<<"ci = "<<ci<<endl;
+      }       
+   } // end of for(Int_t ci=0;ci<4;ci++) // correlation index  
+   // products of correlations:    
+   diffFlowProductOfCorrelationsProList[t][pe] = dynamic_cast<TList*>(diffFlowListProfiles->FindObject(Form("Profiles with products of correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data()))); 
+   if(!diffFlowProductOfCorrelationsProList[t][pe])
+   { 
+    cout<<"WARNING: ddiffFlowProductOfCorrelationsProList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+    {
+     diffFlowProductOfCorrelationsPro[t][pe][mci1][mci2] = dynamic_cast<TProfile*>(diffFlowProductOfCorrelationsProList[t][pe]->FindObject(Form("%s, %s, %s, %s, %s",diffFlowProductOfCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data())));
+     if(diffFlowProductOfCorrelationsPro[t][pe][mci1][mci2])
+     {
+      this->SetDiffFlowProductOfCorrelationsPro(diffFlowProductOfCorrelationsPro[t][pe][mci1][mci2],t,pe,mci1,mci2);
+     } else
+       {
+        cout<<"WARNING: diffFlowProductOfCorrelationsPro[t][pe][ci] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+        cout<<"t    = "<<t<<endl;
+        cout<<"pe   = "<<pe<<endl;   
+        cout<<"mci1 = "<<mci1<<endl;
+        cout<<"mci2 = "<<mci2<<endl;
+       }
+     if(mci1%2 == 0) mci2++; // products which DO NOT include reduced correlations are not stored here
+    } // end of for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+   } // end of for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index    
+   // corrections:
+   diffFlowCorrectionsProList[t][pe] = dynamic_cast<TList*>(diffFlowListProfiles->FindObject(Form("Profiles with correction terms for NUA (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCorrectionsProList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCorrectionsProList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   // correction terms for NUA:
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     diffFlowCorrectionTermsForNUAPro[t][pe][sc][cti] = dynamic_cast<TProfile*>(diffFlowCorrectionsProList[t][pe]->FindObject(Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1)));
+     if(diffFlowCorrectionTermsForNUAPro[t][pe][sc][cti])
+     {
+      this->SetDiffFlowCorrectionTermsForNUAPro(diffFlowCorrectionTermsForNUAPro[t][pe][sc][cti],t,pe,sc,cti);
+     } else
+       {
+        cout<<"WARNING: diffFlowCorrectionTermsForNUAPro[t][pe][sc][cti] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+        cout<<"t   = "<<t<<endl;
+        cout<<"pe  = "<<pe<<endl;   
+        cout<<"sc  = "<<sc<<endl;
+        cout<<"cti = "<<cti<<endl;
+       }    
+    } // end of for(Int_t cti=0;cti<9;cti++) // correction term index
+   } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+   // ...
+  } // end of for(Int_t pe=0;pe<2;pe++)
+ } // end of for(Int_t t=0;t<2;t++)
+  
+ // f) Get pointers to all nested lists in fDiffFlowListResults and to histograms which they hold:
+ // reduced correlations:
+ TList *diffFlowCorrelationsHistList[2][2] = {{NULL}};
+ TString diffFlowCorrelationsHistName = "fDiffFlowCorrelationsHist";
+ diffFlowCorrelationsHistName += fAnalysisLabel->Data();  
+ TH1D *diffFlowCorrelationsHist[2][2][4] = {{{NULL}}};
+ // corrections for NUA:
+ TList *diffFlowCorrectionsHistList[2][2] = {{NULL}};
+ TString diffFlowCorrectionTermsForNUAHistName = "fDiffFlowCorrectionTermsForNUAHist";
+ diffFlowCorrectionTermsForNUAHistName += fAnalysisLabel->Data();  
+ TH1D *diffFlowCorrectionTermsForNUAHist[2][2][2][10] = {{{{NULL}}}};
+ // differential Q-cumulants:
+ TList *diffFlowCumulantsHistList[2][2] = {{NULL}};
+ TString diffFlowCumulantsName = "fDiffFlowCumulants";
+ diffFlowCumulantsName += fAnalysisLabel->Data();  
+ TH1D *diffFlowCumulants[2][2][4] = {{{NULL}}};
+ // detector bias to differential Q-cumulants:
+ TList *diffFlowDetectorBiasHistList[2][2] = {{NULL}};
+ TString diffFlowDetectorBiasName = "fDiffFlowDetectorBias";
+ diffFlowDetectorBiasName += fAnalysisLabel->Data();  
+ TH1D *diffFlowDetectorBias[2][2][4] = {{{NULL}}}; 
+ // differential flow estimates from Q-cumulants:
+ TList *diffFlowHistList[2][2] = {{NULL}};
+ TString diffFlowName = "fDiffFlow";
+ diffFlowName += fAnalysisLabel->Data();  
+ TH1D *diffFlow[2][2][4] = {{{NULL}}};
+ // differential covariances:
+ TList *diffFlowCovariancesHistList[2][2] = {{NULL}};
+ TString diffFlowCovariancesName = "fDiffFlowCovariances";
+ diffFlowCovariancesName += fAnalysisLabel->Data();  
+ TH1D *diffFlowCovariances[2][2][5] = {{{NULL}}};
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   // reduced correlations:
+   diffFlowCorrelationsHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCorrelationsHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCorrelationsHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t index=0;index<4;index++) 
+   {
+    diffFlowCorrelationsHist[t][pe][index] = dynamic_cast<TH1D*>(diffFlowCorrelationsHistList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowCorrelationsHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[index].Data())));
+    if(diffFlowCorrelationsHist[t][pe][index])
+    {
+     this->SetDiffFlowCorrelationsHist(diffFlowCorrelationsHist[t][pe][index],t,pe,index);
+    } else 
+      {
+       cout<<"WARNING: diffFlowCorrelationsHist[t][pe][index] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t     = "<<t<<endl;
+       cout<<"pe    = "<<pe<<endl;
+       cout<<"index = "<<index<<endl;
+       exit(0);       
+      } 
+   } // end of for(Int_t index=0;index<4;index++)
+   // corrections:
+   diffFlowCorrectionsHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Histograms with correction terms for NUA (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCorrectionsHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCorrectionsHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   // correction terms for NUA:
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     diffFlowCorrectionTermsForNUAHist[t][pe][sc][cti] = dynamic_cast<TH1D*>(diffFlowCorrectionsHistList[t][pe]->FindObject(Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1)));
+     if(diffFlowCorrectionTermsForNUAHist[t][pe][sc][cti])
+     {
+      this->SetDiffFlowCorrectionTermsForNUAHist(diffFlowCorrectionTermsForNUAHist[t][pe][sc][cti],t,pe,sc,cti);
+     } else
+       {
+        cout<<"WARNING: diffFlowCorrectionTermsForNUAHist[t][pe][sc][cti] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+        cout<<"t   = "<<t<<endl;
+        cout<<"pe  = "<<pe<<endl;   
+        cout<<"sc  = "<<sc<<endl;
+        cout<<"cti = "<<cti<<endl;
+       }    
+    } // end of for(Int_t cti=0;cti<9;cti++) // correction term index
+   } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+   // ...
+   // differential Q-cumulants:
+   diffFlowCumulantsHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Differential Q-cumulants (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCumulantsHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCumulantsHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t  = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t index=0;index<4;index++) 
+   {
+    diffFlowCumulants[t][pe][index] = dynamic_cast<TH1D*>(diffFlowCumulantsHistList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowCumulantsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data())));
+    if(diffFlowCumulants[t][pe][index])
+    {
+     this->SetDiffFlowCumulants(diffFlowCumulants[t][pe][index],t,pe,index);
+    } else 
+      {
+       cout<<"WARNING: diffFlowCumulants[t][pe][index] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t     = "<<t<<endl;
+       cout<<"pe    = "<<pe<<endl;
+       cout<<"index = "<<index<<endl;
+       exit(0);       
+      } 
+   } // end of for(Int_t index=0;index<4;index++)
+   // Detector bias to differential Q-cumulants:
+   diffFlowDetectorBiasHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Detector bias (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowDetectorBiasHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowDetectorBiasHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t  = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t index=0;index<4;index++) 
+   {
+    diffFlowDetectorBias[t][pe][index] = dynamic_cast<TH1D*>(diffFlowDetectorBiasHistList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowDetectorBiasName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data())));
+    if(diffFlowDetectorBias[t][pe][index])
+    {
+     this->SetDiffFlowDetectorBias(diffFlowDetectorBias[t][pe][index],t,pe,index);
+    } else 
+      {
+       cout<<"WARNING: diffFlowDetectorBias[t][pe][index] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t     = "<<t<<endl;
+       cout<<"pe    = "<<pe<<endl;
+       cout<<"index = "<<index<<endl;
+       exit(0);       
+      } 
+   } // end of for(Int_t index=0;index<4;index++)
+   // differential flow estimates from Q-cumulants:
+   diffFlowHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Differential flow (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t  = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t index=0;index<4;index++) 
+   {
+    diffFlow[t][pe][index] = dynamic_cast<TH1D*>(diffFlowHistList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialFlowIndex[index].Data())));
+    if(diffFlow[t][pe][index])
+    {
+     this->SetDiffFlow(diffFlow[t][pe][index],t,pe,index);
+    } else 
+      {
+       cout<<"WARNING: diffFlow[t][pe][index] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t     = "<<t<<endl;
+       cout<<"pe    = "<<pe<<endl;
+       cout<<"index = "<<index<<endl;
+       exit(0);       
+      } 
+   } // end of for(Int_t index=0;index<4;index++)
+   // differential covariances:
+   diffFlowCovariancesHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Covariances of correlations (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowCovariancesHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowCovariancesHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t  = "<<t<<endl;
+    cout<<"pe = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t covIndex=0;covIndex<5;covIndex++) 
+   {
+    diffFlowCovariances[t][pe][covIndex] = dynamic_cast<TH1D*>(diffFlowCovariancesHistList[t][pe]->FindObject(Form("%s, %s, %s, %s",diffFlowCovariancesName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),covarianceName[covIndex].Data())));
+    if(diffFlowCovariances[t][pe][covIndex])
+    {
+     this->SetDiffFlowCovariances(diffFlowCovariances[t][pe][covIndex],t,pe,covIndex);
+    } else 
+      {
+       cout<<"WARNING: diffFlowCovariances[t][pe][covIndex] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+       cout<<"t        = "<<t<<endl;
+       cout<<"pe       = "<<pe<<endl;
+       cout<<"covIndex = "<<covIndex<<endl;
+       exit(0);       
+      } 
+   } // end of for(Int_t covIndex=0;covIndex<5;covIndex++) // covariance index    
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI 
+ // sum of event weights for reduced correlations:
+ TList *diffFlowSumOfEventWeightsHistList[2][2][2] = {{{NULL}}};
+ TString diffFlowSumOfEventWeightsName = "fDiffFlowSumOfEventWeights";
+ diffFlowSumOfEventWeightsName += fAnalysisLabel->Data();  
+ TH1D *diffFlowSumOfEventWeights[2][2][2][4] = {{{{NULL}}}};
+ for(Int_t t=0;t<2;t++) // type is RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  { 
+   for(Int_t p=0;p<2;p++) // power of event weights is either 1 or 2
+   {
+    diffFlowSumOfEventWeightsHistList[t][pe][p] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Sum of %s event weights (%s, %s)",powerFlag[p].Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+    if(!diffFlowSumOfEventWeightsHistList[t][pe][p])
+    { 
+     cout<<"WARNING: diffFlowSumOfEventWeightsHistList[t][pe][p] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+     cout<<"t     = "<<t<<endl;
+     cout<<"pe    = "<<pe<<endl;
+     cout<<"power = "<<p<<endl;
+     exit(0);
+    }
+    for(Int_t ew=0;ew<4;ew++) // index of reduced correlation
+    {
+     diffFlowSumOfEventWeights[t][pe][p][ew] = dynamic_cast<TH1D*>(diffFlowSumOfEventWeightsHistList[t][pe][p]->FindObject(Form("%s, %s, %s, %s, %s",diffFlowSumOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),powerFlag[p].Data(),reducedCorrelationIndex[ew].Data())));    
+     if(diffFlowSumOfEventWeights[t][pe][p][ew])
+     {
+      this->SetDiffFlowSumOfEventWeights(diffFlowSumOfEventWeights[t][pe][p][ew],t,pe,p,ew);
+     } else 
+       {
+        cout<<"WARNING: diffFlowSumOfEventWeights[t][pe][p][ew] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+        cout<<"t     = "<<t<<endl;
+        cout<<"pe    = "<<pe<<endl;
+        cout<<"power = "<<p<<endl;
+        cout<<"ew    = "<<ew<<endl;
+        exit(0);       
+       } 
+    }
+   } // end of for(Int_t p=0;p<2;p++) // power of event weights is either 1 or 2
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type is RP or POI
+ //  
+ TList *diffFlowSumOfProductOfEventWeightsHistList[2][2] = {{NULL}};
+ TString diffFlowSumOfProductOfEventWeightsName = "fDiffFlowSumOfProductOfEventWeights";
+ diffFlowSumOfProductOfEventWeightsName += fAnalysisLabel->Data();  
+ TH1D *diffFlowSumOfProductOfEventWeights[2][2][8][8] = {{{{NULL}}}};
+ for(Int_t t=0;t<2;t++) // type is RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  { 
+   diffFlowSumOfProductOfEventWeightsHistList[t][pe] = dynamic_cast<TList*>(diffFlowListResults->FindObject(Form("Sum of products of event weights (%s, %s)",typeFlag[t].Data(),ptEtaFlag[pe].Data())));
+   if(!diffFlowSumOfProductOfEventWeightsHistList[t][pe])
+   { 
+    cout<<"WARNING: diffFlowSumOfProductOfEventWeightsHistList[t][pe] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+    cout<<"t     = "<<t<<endl;
+    cout<<"pe    = "<<pe<<endl;
+    exit(0);
+   }
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+    {
+     diffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2] = dynamic_cast<TH1D*>(diffFlowSumOfProductOfEventWeightsHistList[t][pe]->FindObject(Form("%s, %s, %s, %s, %s",diffFlowSumOfProductOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data())));    
+      if(diffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2])
+      {
+       this->SetDiffFlowSumOfProductOfEventWeights(diffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2],t,pe,mci1,mci2);
+      } else 
+        {
+         cout<<"WARNING: diffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+         cout<<"t    = "<<t<<endl;
+         cout<<"pe   = "<<pe<<endl;
+         cout<<"mci1 = "<<mci1<<endl;
+         cout<<"mci2 = "<<mci2<<endl;
+         exit(0);       
+        } 
+     if(mci1%2 == 0) mci2++; // products which DO NOT include reduced correlations are not stored here
+    } // end of for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+   } // end of for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta
+ } // end of for(Int_t t=0;t<2;t++) // type is RP or POI
+
+} // end void AliFlowAnalysisWithQCumulants::GetPointersForDiffFlowHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingFor2DDifferentialFlow()
+{
+ // Book all objects needed for 2D differential flow.
+ //  a) Define flags locally (to be improved: should I promote flags to data members?);
+ //  b) Book e-b-e quantities;
+ //  c) Book 2D profiles;
+ //  d) Book 2D histograms.
+ if(!fCalculate2DDiffFlow){return;}
+
+ // a) Define flags locally (to be improved: should I promote flags to data members?):
+ TString typeFlag[2] = {"RP","POI"}; 
+ TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"};
+ TString differentialCumulantIndex[4] = {"QC{2'}","QC{4'}","QC{6'}","QC{8'}"};  
+ TString differentialFlowIndex[4] = {"v'{2}","v'{4}","v'{6}","v'{8}"};  
+  
+ // b) Book e-b-e quantities: 
+ TProfile2D styleRe("typeMultiplePowerRe","typeMultiplePowerRe",fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax);
+ TProfile2D styleIm("typeMultiplePowerIm","typeMultiplePowerIm",fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax);
+ for(Int_t t=0;t<3;t++) // typeFlag (0 = RP, 1 = POI, 2 = RP&&POI )
+ { 
+  for(Int_t m=0;m<4;m++)
+  {
+   for(Int_t k=0;k<9;k++)
+   {
+    fReRPQ2dEBE[t][m][k] = (TProfile2D*)styleRe.Clone(Form("typeFlag%dmultiple%dpower%dRe",t,m,k)); 
+    fImRPQ2dEBE[t][m][k] = (TProfile2D*)styleIm.Clone(Form("typeFlag%dmultiple%dpower%dIm",t,m,k));
+   }
+  } 
+ } 
+ TProfile2D styleS("typePower","typePower",fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax);
+ for(Int_t t=0;t<3;t++) // typeFlag (0 = RP, 1 = POI, 2 = RP&&POI )
+ { 
+  for(Int_t k=0;k<9;k++)
+  {
+   fs2dEBE[t][k] = (TProfile2D*)styleS.Clone(Form("typeFlag%dpower%d",t,k));
+  }
+ }
+
+ // c) Book 2D profiles:
+ TString s2DDiffFlowCorrelationsProName = "f2DDiffFlowCorrelationsPro";
+ s2DDiffFlowCorrelationsProName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+  {
+   f2DDiffFlowCorrelationsPro[t][rci] = new TProfile2D(Form("%s, %s, %s",s2DDiffFlowCorrelationsProName.Data(),typeFlag[t].Data(),reducedCorrelationIndex[rci].Data()),Form("%s, %s, %s",s2DDiffFlowCorrelationsProName.Data(),typeFlag[t].Data(),reducedCorrelationIndex[rci].Data()),fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax,"");
+   f2DDiffFlowCorrelationsPro[t][rci]->Sumw2();
+   f2DDiffFlowCorrelationsPro[t][rci]->SetXTitle("p_{t}");
+   f2DDiffFlowCorrelationsPro[t][rci]->SetYTitle("#eta");
+   f2DDiffFlowCorrelationsProList[t]->Add(f2DDiffFlowCorrelationsPro[t][rci]); 
+  } // end of for(Int_t rci=0;rci<4;rci++) // correlation index
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POIs
+
+ // d) Book 2D histograms:
+ TString s2DDiffFlowCumulantsName = "f2DDiffFlowCumulants";
+ s2DDiffFlowCumulantsName += fAnalysisLabel->Data();
+ TString s2DDiffFlowName = "f2DDiffFlow";
+ s2DDiffFlowName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+  {
+   // 2D diferential cumulants:
+   f2DDiffFlowCumulants[t][rci] = new TH2D(Form("%s, %s, %s",s2DDiffFlowCumulantsName.Data(),typeFlag[t].Data(),differentialCumulantIndex[rci].Data()),Form("%s, %s, %s",s2DDiffFlowCumulantsName.Data(),typeFlag[t].Data(),differentialCumulantIndex[rci].Data()),fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax);
+   f2DDiffFlowCumulants[t][rci]->SetXTitle("p_{t}");
+   f2DDiffFlowCumulants[t][rci]->SetYTitle("#eta");
+   f2DDiffFlowCorrelationsProList[t]->Add(f2DDiffFlowCumulants[t][rci]); //  to be improved - moved to another list 
+   // 2D differential flow:
+   f2DDiffFlow[t][rci] = new TH2D(Form("%s, %s, %s",s2DDiffFlowName.Data(),typeFlag[t].Data(),differentialFlowIndex[rci].Data()),Form("%s, %s, %s",s2DDiffFlowName.Data(),typeFlag[t].Data(),differentialFlowIndex[rci].Data()),fnBinsPt,fPtMin,fPtMax,fnBinsEta,fEtaMin,fEtaMax);
+   f2DDiffFlow[t][rci]->SetXTitle("p_{t}");
+   f2DDiffFlow[t][rci]->SetYTitle("#eta");
+   f2DDiffFlowCorrelationsProList[t]->Add(f2DDiffFlow[t][rci]); //  to be improved - moved to another list 
+  } // end of for(Int_t rci=0;rci<4;rci++) // correlation index
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POIs
+
+} // void AliFlowAnalysisWithQCumulants::BookEverythingFor2DDifferentialFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::BookEverythingForDifferentialFlow()
+{
+ // Book all histograms and profiles needed for differential flow.
+ //  a) Book profile to hold all flags for differential flow;
+ //  b) Define flags locally (to be improved: should I promote flags to data members?);
+ //  c) Book e-b-e quantities;
+ //  d) Book profiles;
+ //  e) Book histograms holding final results. 
+ // a) Book profile to hold all flags for differential flow:
+ TString diffFlowFlagsName = "fDiffFlowFlags";
+ diffFlowFlagsName += fAnalysisLabel->Data();
+ fDiffFlowFlags = new TProfile(diffFlowFlagsName.Data(),"Flags for differential flow",6,0,6);
+ fDiffFlowFlags->SetTickLength(-0.01,"Y");
+ fDiffFlowFlags->SetMarkerStyle(25);
+ fDiffFlowFlags->SetLabelSize(0.04,"X");
+ fDiffFlowFlags->SetLabelOffset(0.02,"Y");
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(1,"Calculate diff. flow"); 
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(2,"Particle weights");
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(3,"Event weights");
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(4,"Correct for NUA");
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(5,"Calculate 2D diff. flow");
+ fDiffFlowFlags->GetXaxis()->SetBinLabel(6,"Calculate diff. flow vs eta");
+ fDiffFlowList->Add(fDiffFlowFlags);
+
+ if(!fCalculateDiffFlow){return;}
+  
+ // b) Define flags locally (to be improved: should I promote flags to data members?): 
+ TString typeFlag[2] = {"RP","POI"}; 
+ TString ptEtaFlag[2] = {"p_{T}","#eta"};
+ TString powerFlag[2] = {"linear","quadratic"};
+ TString sinCosFlag[2] = {"sin","cos"};
+ TString differentialCumulantIndex[4] = {"QC{2'}","QC{4'}","QC{6'}","QC{8'}"};  
+ TString differentialFlowIndex[4] = {"v'{2}","v'{4}","v'{6}","v'{8}"};  
+ TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"};
+ TString reducedSquaredCorrelationIndex[4] = {"<2'>^{2}","<4'>^{2}","<6'>^{2}","<8'>^{2}"};
+ TString mixedCorrelationIndex[8] = {"<2>","<2'>","<4>","<4'>","<6>","<6'>","<8>","<8'>"};
+ TString covarianceName[5] = {"Cov(<2>,<2'>)","Cov(<2>,<4'>)","Cov(<4>,<2'>)","Cov(<4>,<4'>)","Cov(<2'>,<4'>)"}; 
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+   
+ // c) Book e-b-e quantities:
+ // Event-by-event r_{m*n,k}(pt,eta), p_{m*n,k}(pt,eta) and q_{m*n,k}(pt,eta)
+ // Explanantion of notation:
+ //  1.) n is harmonic, m is multiple of harmonic;
+ //  2.) k is power of particle weight;
+ //  3.) r_{m*n,k}(pt,eta) = Q-vector evaluated in harmonic m*n for RPs in particular (pt,eta) bin (i-th RP is weighted with w_i^k);   
+ //  4.) p_{m*n,k}(pt,eta) = Q-vector evaluated in harmonic m*n for POIs in particular (pt,eta) bin 
+ //                          (if i-th POI is also RP, than it is weighted with w_i^k);   
+ //  5.) q_{m*n,k}(pt,eta) = Q-vector evaluated in harmonic m*n for particles which are both RPs and POIs in particular (pt,eta) bin 
+ //                          (i-th RP&&POI is weighted with w_i^k)            
+  
+ // 1D:
+ for(Int_t t=0;t<3;t++) // typeFlag (0 = RP, 1 = POI, 2 = RP && POI )
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t m=0;m<4;m++) // multiple of harmonic
+   {
+    for(Int_t k=0;k<9;k++) // power of particle weight
+    {
+     fReRPQ1dEBE[t][pe][m][k] = new TProfile(Form("TypeFlag%dpteta%dmultiple%dpower%dRe",t,pe,m,k),
+                                             Form("TypeFlag%dpteta%dmultiple%dpower%dRe",t,pe,m,k),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fImRPQ1dEBE[t][pe][m][k] = new TProfile(Form("TypeFlag%dpteta%dmultiple%dpower%dIm",t,pe,m,k),
+                                             Form("TypeFlag%dpteta%dmultiple%dpower%dIm",t,pe,m,k),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+    }
+   }
+  }
+ } 
+ // to be improved (add explanation of fs1dEBE[t][pe][k]):   
+ for(Int_t t=0;t<3;t++) // typeFlag (0 = RP, 1 = POI, 2 = RP&&POI )
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t k=0;k<9;k++) // power of particle weight
+   {
+    fs1dEBE[t][pe][k] = new TProfile(Form("TypeFlag%dpteta%dmultiple%d",t,pe,k),
+                                     Form("TypeFlag%dpteta%dmultiple%d",t,pe,k),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+   }
+  }
+ }
+ // correction terms for nua:
+ for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAEBE[t][pe][sc][cti] = new TH1D(Form("typeFlag%d pteta%d sincos%d cti%d",t,pe,sc,cti),
+                                             Form("typeFlag%d pteta%d sincos%d cti%d",t,pe,sc,cti),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+    }
+   }
+  }
+ } 
+ // reduced correlations e-b-e:
+ TString diffFlowCorrelationsEBEName = "fDiffFlowCorrelationsEBE";
+ diffFlowCorrelationsEBEName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+   {
+    fDiffFlowCorrelationsEBE[t][pe][rci] = new TH1D(Form("%s, %s, %s, %s",diffFlowCorrelationsEBEName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),Form("%s, %s, %s, %s",diffFlowCorrelationsEBEName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+   } // end of for(Int_t ci=0;ci<4;ci++) // correlation index
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // event weights for reduced correlations e-b-e:
+ TString diffFlowEventWeightsForCorrelationsEBEName = "fDiffFlowEventWeightsForCorrelationsEBE";
+ diffFlowEventWeightsForCorrelationsEBEName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t rci=0;rci<4;rci++) // event weight for reduced correlation index
+   {
+    fDiffFlowEventWeightsForCorrelationsEBE[t][pe][rci] = new TH1D(Form("%s, %s, %s, eW for %s",diffFlowEventWeightsForCorrelationsEBEName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),Form("%s, %s, %s, eW for %s",diffFlowEventWeightsForCorrelationsEBEName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+   } // end of for(Int_t ci=0;ci<4;ci++) // correlation index
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+      
+ // d) Book profiles;
+ // reduced correlations:
+ TString diffFlowCorrelationsProName = "fDiffFlowCorrelationsPro";
+ diffFlowCorrelationsProName += fAnalysisLabel->Data();
+ // reduced squared correlations:
+ TString diffFlowSquaredCorrelationsProName = "fDiffFlowSquaredCorrelationsPro";
+ diffFlowSquaredCorrelationsProName += fAnalysisLabel->Data();
+ // corrections terms:
+ TString diffFlowCorrectionTermsForNUAProName = "fDiffFlowCorrectionTermsForNUAPro";
+ diffFlowCorrectionTermsForNUAProName += fAnalysisLabel->Data();
+ // reduced correlations:
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+   {
+    fDiffFlowCorrelationsPro[t][pe][rci] = new TProfile(Form("%s, %s, %s, %s",diffFlowCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),Form("%s, %s, %s, %s",diffFlowCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[rci].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe],"s");
+    fDiffFlowCorrelationsPro[t][pe][rci]->Sumw2();
+    fDiffFlowCorrelationsPro[t][pe][rci]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowCorrelationsProList[t][pe]->Add(fDiffFlowCorrelationsPro[t][pe][rci]); // to be improved (add dedicated list to hold reduced correlations)
+   } // end of for(Int_t rci=0;rci<4;rci++) // correlation index
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // reduced squared correlations:
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+   {
+    fDiffFlowSquaredCorrelationsPro[t][pe][rci] = new TProfile(Form("%s, %s, %s, %s",diffFlowSquaredCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedSquaredCorrelationIndex[rci].Data()),Form("%s, %s, %s, %s",diffFlowSquaredCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedSquaredCorrelationIndex[rci].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe],"s");
+    fDiffFlowSquaredCorrelationsPro[t][pe][rci]->Sumw2();
+    fDiffFlowSquaredCorrelationsPro[t][pe][rci]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowCorrelationsProList[t][pe]->Add(fDiffFlowSquaredCorrelationsPro[t][pe][rci]); // to be improved (add dedicated list to hold reduced correlations)
+   } // end of for(Int_t rci=0;rci<4;rci++) // correlation index
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // correction terms for nua:
+ for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAPro[t][pe][sc][cti] = new TProfile(Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fDiffFlowCorrectionsProList[t][pe]->Add(fDiffFlowCorrectionTermsForNUAPro[t][pe][sc][cti]);
+    }
+   }
+  }
+ } 
+ // Other differential correlators:
+ TString otherDiffCorrelatorsName = "fOtherDiffCorrelators";
+ otherDiffCorrelatorsName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t ci=0;ci<1;ci++) // correlator index
+    {
+     fOtherDiffCorrelators[t][pe][sc][ci] = new TProfile(Form("%s, %s, %s, %s, ci = %d",otherDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1),Form("%s, %s, %s, %s, ci = %d",otherDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fOtherDiffCorrelators[t][pe][sc][ci]->Sumw2();
+     fOtherDiffCorrelatorsList->Add(fOtherDiffCorrelators[t][pe][sc][ci]);
+    }
+   }
+  }
+ }  
+ // e) Book histograms holding final results. 
+ // reduced correlations:
+ TString diffFlowCorrelationsHistName = "fDiffFlowCorrelationsHist";
+ diffFlowCorrelationsHistName += fAnalysisLabel->Data();
+ // corrections terms:
+ TString diffFlowCorrectionTermsForNUAHistName = "fDiffFlowCorrectionTermsForNUAHist";
+ diffFlowCorrectionTermsForNUAHistName += fAnalysisLabel->Data();
+ // differential covariances:
+ TString diffFlowCovariancesName = "fDiffFlowCovariances";
+ diffFlowCovariancesName += fAnalysisLabel->Data();
+ // differential Q-cumulants:
+ TString diffFlowCumulantsName = "fDiffFlowCumulants";
+ diffFlowCumulantsName += fAnalysisLabel->Data();
+ // Detector bias to differential Q-cumulants:
+ TString diffFlowDetectorBiasName = "fDiffFlowDetectorBias";
+ diffFlowDetectorBiasName += fAnalysisLabel->Data();
+ // differential flow:
+ TString diffFlowName = "fDiffFlow";
+ diffFlowName += fAnalysisLabel->Data();
+ for(Int_t t=0;t<2;t++) // type: RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t index=0;index<4;index++) 
+   {
+    // reduced correlations:
+    fDiffFlowCorrelationsHist[t][pe][index] = new TH1D(Form("%s, %s, %s, %s",diffFlowCorrelationsHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[index].Data()),Form("%s, %s, %s, %s",diffFlowCorrelationsHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[index].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+    fDiffFlowCorrelationsHist[t][pe][index]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowCorrelationsHistList[t][pe]->Add(fDiffFlowCorrelationsHist[t][pe][index]); 
+    // differential Q-cumulants:
+    fDiffFlowCumulants[t][pe][index] = new TH1D(Form("%s, %s, %s, %s",diffFlowCumulantsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data()),Form("%s, %s, %s, %s",diffFlowCumulantsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+    fDiffFlowCumulants[t][pe][index]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowCumulantsHistList[t][pe]->Add(fDiffFlowCumulants[t][pe][index]); 
+    // Detector bias to differential Q-cumulants:
+    fDiffFlowDetectorBias[t][pe][index] = new TH1D(Form("%s, %s, %s, %s",diffFlowDetectorBiasName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data()),Form("%s, %s, %s, %s",diffFlowDetectorBiasName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialCumulantIndex[index].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+    fDiffFlowDetectorBias[t][pe][index]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowDetectorBias[t][pe][index]->SetTitle(Form("#frac{corrected}{measured} %s",differentialCumulantIndex[index].Data()));
+    fDiffFlowDetectorBiasHistList[t][pe]->Add(fDiffFlowDetectorBias[t][pe][index]); 
+    // differential flow estimates from Q-cumulants:
+    fDiffFlow[t][pe][index] = new TH1D(Form("%s, %s, %s, %s",diffFlowName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialFlowIndex[index].Data()),Form("%s, %s, %s, %s",diffFlowName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),differentialFlowIndex[index].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+    fDiffFlow[t][pe][index]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowHistList[t][pe]->Add(fDiffFlow[t][pe][index]); 
+   } // end of for(Int_t index=0;index<4;index++) 
+   for(Int_t covIndex=0;covIndex<5;covIndex++) // covariance index 
+   {
+    // differential covariances:
+    fDiffFlowCovariances[t][pe][covIndex] = new TH1D(Form("%s, %s, %s, %s",diffFlowCovariancesName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),covarianceName[covIndex].Data()),Form("%s, %s, %s, %s",diffFlowCovariancesName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),covarianceName[covIndex].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]);
+    fDiffFlowCovariances[t][pe][covIndex]->SetXTitle(ptEtaFlag[pe].Data());
+    fDiffFlowCovariancesHistList[t][pe]->Add(fDiffFlowCovariances[t][pe][covIndex]); 
+   } // end of for(Int_t covIndex=0;covIndex<5;covIndex++) // covariance index
+   // products of both types of correlations: 
+   TString diffFlowProductOfCorrelationsProName = "fDiffFlowProductOfCorrelationsPro";
+   diffFlowProductOfCorrelationsProName += fAnalysisLabel->Data();  
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+    {
+     fDiffFlowProductOfCorrelationsPro[t][pe][mci1][mci2] = new TProfile(Form("%s, %s, %s, %s, %s",diffFlowProductOfCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data()),Form("%s, %s, %s, %s #times %s",diffFlowProductOfCorrelationsProName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fDiffFlowProductOfCorrelationsPro[t][pe][mci1][mci2]->SetXTitle(ptEtaFlag[pe].Data());
+     fDiffFlowProductOfCorrelationsProList[t][pe]->Add(fDiffFlowProductOfCorrelationsPro[t][pe][mci1][mci2]); 
+     if(mci1%2 == 0) mci2++; // products which DO NOT include reduced correlations are not stored here
+    } // end of for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+   } // end of for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index    
+  } // end of for(Int_t pe=0;pe<2;pe++) // pt or eta 
+ } // end of for(Int_t t=0;t<2;t++) // type: RP or POI
+ // sums of event weights for reduced correlations: 
+ TString diffFlowSumOfEventWeightsName = "fDiffFlowSumOfEventWeights";
+ diffFlowSumOfEventWeightsName += fAnalysisLabel->Data();  
+ for(Int_t t=0;t<2;t++) // type is RP or POI
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  { 
+   for(Int_t p=0;p<2;p++) // power of weights is either 1 or 2
+   {
+    for(Int_t ew=0;ew<4;ew++) // index of reduced correlation
+    {
+     fDiffFlowSumOfEventWeights[t][pe][p][ew] = new TH1D(Form("%s, %s, %s, %s, %s",diffFlowSumOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),powerFlag[p].Data(),reducedCorrelationIndex[ew].Data()),Form("%s, %s, %s, power = %s, %s",diffFlowSumOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),powerFlag[p].Data(),reducedCorrelationIndex[ew].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fDiffFlowSumOfEventWeights[t][pe][p][ew]->SetXTitle(ptEtaFlag[pe].Data());
+     fDiffFlowSumOfEventWeightsHistList[t][pe][p]->Add(fDiffFlowSumOfEventWeights[t][pe][p][ew]); // to be improved (add dedicated list to hold all this)
+    }
+   }
+  }
+ } 
+ // sum of products of event weights for both types of correlations: 
+ TString diffFlowSumOfProductOfEventWeightsName = "fDiffFlowSumOfProductOfEventWeights";
+ diffFlowSumOfProductOfEventWeightsName += fAnalysisLabel->Data();  
+ for(Int_t t=0;t<2;t++) // type is RP or POI
+ {
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  { 
+   for(Int_t mci1=0;mci1<8;mci1++) // mixed correlation index
+   {
+    for(Int_t mci2=mci1+1;mci2<8;mci2++) // mixed correlation index
+    {
+     fDiffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2] = new TH1D(Form("%s, %s, %s, %s, %s",diffFlowSumOfProductOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data()),Form("%s, %s, %s, %s #times %s",diffFlowSumOfProductOfEventWeightsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),mixedCorrelationIndex[mci1].Data(),mixedCorrelationIndex[mci2].Data()),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fDiffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2]->SetXTitle(ptEtaFlag[pe].Data());
+     fDiffFlowSumOfProductOfEventWeightsHistList[t][pe]->Add(fDiffFlowSumOfProductOfEventWeights[t][pe][mci1][mci2]); 
+     if(mci1%2 == 0) mci2++; // products which DO NOT include reduced correlations are not stored here
+    }
+   }
+  }
+ } 
+ // correction terms for nua:
+ for(Int_t t=0;t<2;t++) // typeFlag (0 = RP, 1 = POI)
+ { 
+  for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+  {
+   for(Int_t sc=0;sc<2;sc++) // sin or cos
+   {
+    for(Int_t cti=0;cti<9;cti++) // correction term index
+    {
+     fDiffFlowCorrectionTermsForNUAHist[t][pe][sc][cti] = new TH1D(Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),Form("%s, %s, %s, %s, cti = %d",diffFlowCorrectionTermsForNUAHistName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1),nBinsPtEta[pe],minPtEta[pe],maxPtEta[pe]); 
+     fDiffFlowCorrectionsHistList[t][pe]->Add(fDiffFlowCorrectionTermsForNUAHist[t][pe][sc][cti]);
+    }
+   }
+  }
+ } 
+          
+} // end of AliFlowAnalysisWithQCumulants::BookEverythingForDifferentialFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateQcumulantsCorrectedForNUAIntFlow()
+{
+ // Calculate generalized Q-cumulants (cumulants corrected for non-unifom acceptance).
+ // Isotropic cumulants:
+ Double_t qc2 = fIntFlowQcumulants->GetBinContent(1);
+ Double_t qc2Error = fIntFlowQcumulants->GetBinError(1);
+ Double_t qc4 = fIntFlowQcumulants->GetBinContent(2);
+ Double_t qc4Error = fIntFlowQcumulants->GetBinError(2);
+ //Double_t qc6 = fIntFlowQcumulants->GetBinContent(3);
+ //Double_t qc6Error = fIntFlowQcumulants->GetBinError(3);
+ //Double_t qc8 = fIntFlowQcumulants->GetBinContent(4);
+ //Double_t qc8Error = fIntFlowQcumulants->GetBinError(4);
+ // Measured 2-, 4-, 6- and 8-particle correlations:
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1); // <<2>>
+ Double_t twoError = fIntFlowCorrelationsHist->GetBinError(1); // statistical error of <<2>>
+ Double_t four = fIntFlowCorrelationsHist->GetBinContent(2); // <<4>>
+ Double_t fourError = fIntFlowCorrelationsHist->GetBinError(2); // statistical error of <<4>>
+ //Double_t six = fIntFlowCorrelationsHist->GetBinContent(3); // <<6>>
+ //Double_t sixError = fIntFlowCorrelationsHist->GetBinError(3); // statistical error of <<6>>
+ //Double_t eight = fIntFlowCorrelationsHist->GetBinContent(4); // <<8>>
+ //Double_t eightError = fIntFlowCorrelationsHist->GetBinError(4); // statistical error of <<8>>
+  
+ // Non-isotropic terms:
+ Double_t c1 = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(1); // <<cos(n*phi1)>>
+ Double_t c1Error = fIntFlowCorrectionTermsForNUAHist[1]->GetBinError(1); // statistical error of <<cos(n*phi1)>>
+ Double_t c2 = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(2); // <<cos(n*(phi1+phi2))>>
+ Double_t c2Error = fIntFlowCorrectionTermsForNUAHist[1]->GetBinError(2); // statistical error of <<cos(n*(phi1+phi2))>>
+ Double_t c3 = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(3); // <<cos(n*(phi1-phi2-phi3))>>
+ Double_t c3Error = fIntFlowCorrectionTermsForNUAHist[1]->GetBinError(3); // statistical error of <<cos(n*(phi1-phi2-phi3))>>
+ Double_t s1 = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(1); // <<sin(n*phi1)>>
+ Double_t s1Error = fIntFlowCorrectionTermsForNUAHist[0]->GetBinError(1); // statistical error of <<sin(n*phi1)>>
+ Double_t s2 = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(2); // <<sin(n*(phi1+phi2))>>
+ Double_t s2Error = fIntFlowCorrectionTermsForNUAHist[0]->GetBinError(2); // statistical error of <<sin(n*(phi1+phi2))>>
+ Double_t s3 = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(3); // <<sin(n*(phi1-phi2-phi3))>>
+ Double_t s3Error = fIntFlowCorrectionTermsForNUAHist[0]->GetBinError(3); // statistical error of <<sin(n*(phi1-phi2-phi3))>>
+ // Shortcuts:
+ Double_t a1 = 2.*pow(c1,2.)+2.*pow(s1,2.)-two;
+ Double_t a2 = 6.*pow(c1,3.)-2.*c1*c2+c3+6.*c1*pow(s1,2.)-2.*s1*s2-4.*c1*two;
+ Double_t a3 = 2.*pow(s1,2.)-2.*pow(c1,2.)+c2;
+ Double_t a4 = 6.*pow(s1,3.)+6.*pow(c1,2.)*s1+2.*c2*s1-2.*c1*s2-s3-4.*s1*two;
+ Double_t a5 = 4.*c1*s1-s2;
+ // Covariances (including weight dependent prefactor):
+ Double_t wCov1 = 0.; // w*Cov(<2>,<cos(phi)) 
+ Double_t wCov2 = 0.; // w*Cov(<2>,<sin(phi))
+ Double_t wCov3 = 0.; // w*Cov(<cos(phi),<sin(phi))
+ Double_t wCov4 = 0.; // w*Cov(<2>,<4>) 
+ Double_t wCov5 = 0.; // w*Cov(<2>,<cos(#phi_{1}+#phi_{2})>)
+ Double_t wCov6 = 0.; // w*Cov(<2>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov7 = 0.; // w*Cov(<2>,<sin(#phi_{1}+#phi_{2})>)
+ Double_t wCov8 = 0.; // w*Cov(<2>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov9 = 0.; // w*Cov(<4>,<cos(#phi)>
+ Double_t wCov10 = 0.; // w*Cov(<4>,<cos(#phi_{1}+#phi_{2})>)
+ Double_t wCov11 = 0.; // w*Cov(<4>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov12 = 0.; // w*Cov(<4>,<sin(#phi)>
+ Double_t wCov13 = 0.; // w*Cov(<4>,<sin(#phi_{1}+#phi_{2})>)
+ Double_t wCov14 = 0.; // w*Cov(<4>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov15 = 0.; // w*Cov(<cos(#phi)>,<cos(#phi_{1}+#phi_{2})>)
+ Double_t wCov16 = 0.; // w*Cov(<cos(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov17 = 0.; // w*Cov(<cos(#phi)>,<sin(#phi_{1}+#phi_{2})>)
+ Double_t wCov18 = 0.; // w*Cov(<cos(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov19 = 0.; // w*Cov(<cos(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov20 = 0.; // w*Cov(<sin(#phi)>,<cos(#phi_{1}+#phi_{2})>)
+ Double_t wCov21 = 0.; // w*Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}+#phi_{2})>)
+ Double_t wCov22 = 0.; // w*Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov23 = 0.; // w*Cov(<sin(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov24 = 0.; // w*Cov(<sin(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov25 = 0.; // w*Cov(<cos(#phi_{1}-#phi_{2}-#phi_{3}>,<sin(#phi_{1}-#phi_{2}-#phi_{3}>)
+ Double_t wCov26 = 0.; // w*Cov(<sin(#phi)>,<sin(#phi_{1}+#phi_{2})>)
+ Double_t wCov27 = 0.; // w*Cov(<sin(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ Double_t wCov28 = 0.; // w*Cov(<sin(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ if(!fForgetAboutCovariances)
+ {
+  wCov1 = fIntFlowCovariancesNUA->GetBinContent(1); // w*Cov(<2>,<cos(phi)) 
+  wCov2 = fIntFlowCovariancesNUA->GetBinContent(2); // w*Cov(<2>,<sin(phi))
+  wCov3 = fIntFlowCovariancesNUA->GetBinContent(3); // w*Cov(<cos(phi),<sin(phi))
+  wCov4 = fIntFlowCovariances->GetBinContent(1); // w*Cov(<2>,<4>) 
+  wCov5 = fIntFlowCovariancesNUA->GetBinContent(4); // w*Cov(<2>,<cos(#phi_{1}+#phi_{2})>)
+  wCov6 = fIntFlowCovariancesNUA->GetBinContent(6); // w*Cov(<2>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov7 = fIntFlowCovariancesNUA->GetBinContent(5); // w*Cov(<2>,<sin(#phi_{1}+#phi_{2})>)
+  wCov8 = fIntFlowCovariancesNUA->GetBinContent(7); // w*Cov(<2>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov9 = fIntFlowCovariancesNUA->GetBinContent(8); // w*Cov(<4>,<cos(#phi)>
+  wCov10 = fIntFlowCovariancesNUA->GetBinContent(10); // w*Cov(<4>,<cos(#phi_{1}+#phi_{2})>)
+  wCov11 = fIntFlowCovariancesNUA->GetBinContent(12); // w*Cov(<4>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov12 = fIntFlowCovariancesNUA->GetBinContent(9); // w*Cov(<4>,<sin(#phi)>
+  wCov13 = fIntFlowCovariancesNUA->GetBinContent(11); // w*Cov(<4>,<sin(#phi_{1}+#phi_{2})>)
+  wCov14 = fIntFlowCovariancesNUA->GetBinContent(13); // w*Cov(<4>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov15 = fIntFlowCovariancesNUA->GetBinContent(14); // w*Cov(<cos(#phi)>,<cos(#phi_{1}+#phi_{2})>)
+  wCov16 = fIntFlowCovariancesNUA->GetBinContent(16); // w*Cov(<cos(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov17 = fIntFlowCovariancesNUA->GetBinContent(15); // w*Cov(<cos(#phi)>,<sin(#phi_{1}+#phi_{2})>)
+  wCov18 = fIntFlowCovariancesNUA->GetBinContent(17); // w*Cov(<cos(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov19 = fIntFlowCovariancesNUA->GetBinContent(23); // w*Cov(<cos(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov20 = fIntFlowCovariancesNUA->GetBinContent(18); // w*Cov(<sin(#phi)>,<cos(#phi_{1}+#phi_{2})>)
+  wCov21 = fIntFlowCovariancesNUA->GetBinContent(22); // w*Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}+#phi_{2})>)
+  wCov22 = fIntFlowCovariancesNUA->GetBinContent(24); // w*Cov(<cos(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov23 = fIntFlowCovariancesNUA->GetBinContent(20); // w*Cov(<sin(#phi)>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov24 = fIntFlowCovariancesNUA->GetBinContent(25); // w*Cov(<sin(#phi_{1}+#phi_{2})>,<cos(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov25 = fIntFlowCovariancesNUA->GetBinContent(27); // w*Cov(<cos(#phi_{1}-#phi_{2}-#phi_{3}>,<sin(#phi_{1}-#phi_{2}-#phi_{3}>)
+  wCov26 = fIntFlowCovariancesNUA->GetBinContent(19); // w*Cov(<sin(#phi)>,<sin(#phi_{1}+#phi_{2})>)
+  wCov27 = fIntFlowCovariancesNUA->GetBinContent(21); // w*Cov(<sin(#phi)>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+  wCov28 = fIntFlowCovariancesNUA->GetBinContent(26); // w*Cov(<sin(#phi_{1}+#phi_{2})>,<sin(#phi_{1}-#phi_{2}-#phi_{3})>)
+ } // end of if(!fForgetAboutCovariances)
+ // Calculating generalized QC{2}:
+ //  Generalized QC{2}:
+ Double_t gQC2 = two - pow(c1,2.) - pow(s1,2.);
+ if(fApplyCorrectionForNUA){fIntFlowQcumulants->SetBinContent(1,gQC2);} 
+ //  Statistical error of generalized QC{2}:
+ Double_t gQC2ErrorSquared = pow(twoError,2.)+4.*pow(c1,2.)*pow(c1Error,2.)
+                           + 4.*pow(s1,2.)*pow(s1Error,2.)
+                           - 4*c1*wCov1-4*s1*wCov2 
+                           + 8.*c1*s1*wCov3;
+ //  Store ratio of error squared - with/without NUA terms:
+ Double_t ratioErrorSquaredQC2 = 0.;
+ if(fIntFlowQcumulants->GetBinError(1)>0.)
+ { 
+  ratioErrorSquaredQC2 = (gQC2ErrorSquared/pow(fIntFlowQcumulants->GetBinError(1),2.));
+  fIntFlowQcumulantsErrorSquaredRatio->SetBinContent(1,ratioErrorSquaredQC2);
+ }
+ //  If enabled, store error by including non-isotropic terms:                         
+ if(fApplyCorrectionForNUA && fPropagateErrorAlsoFromNIT)
+ {
+  if(gQC2ErrorSquared>=0.)
+  {
+   fIntFlowQcumulants->SetBinError(1,pow(gQC2ErrorSquared,0.5));
+  } else
+    {
+     fIntFlowQcumulants->SetBinError(1,0.);
+     cout<<endl;
+     cout<<" WARNING (QC): Statistical error of generalized QC{2} is imaginary !!!!"<<endl;
+     cout<<endl;
+    }   
+ } // end of if(fApplyCorrectionForNUA && fPropagateErrorAlsoFromNIT)
+ // Quantify detector bias to QC{2}:
+ if(TMath::Abs(qc2)>0.)
+ {
+  fIntFlowDetectorBias->SetBinContent(1,gQC2/qc2); 
+  if(qc2Error>0.)
+  {
+   Double_t errorSquared = gQC2ErrorSquared/pow(qc2,2.)+pow(gQC2,2.)*pow(qc2Error,2.)/pow(qc2,4.);
+   if(errorSquared>0.)
+   {
+    fIntFlowDetectorBias->SetBinError(1,pow(errorSquared,0.5));  
+   }
+  }
+ } // end of if(TMath::Abs(qc2)>0.)
+
+ // Calculating generalized QC{4}:
+ //  Generalized QC{4}:
+ Double_t gQC4 = four-2.*pow(two,2.)
+               - 4.*c1*c3+4.*s1*s3-pow(c2,2.)-pow(s2,2.)
+               + 4.*c2*(pow(c1,2.)-pow(s1,2.))+8.*s2*s1*c1
+               + 8.*two*(pow(c1,2.)+pow(s1,2.))-6.*pow((pow(c1,2.)+pow(s1,2.)),2.);
+ if(fApplyCorrectionForNUA){fIntFlowQcumulants->SetBinContent(2,gQC4);}   
+ //  Statistical error of generalized QC{4}:
+ Double_t gQC4ErrorSquared = 16.*pow(a1,2.)*pow(twoError,2.)+pow(fourError,2.)+16.*pow(a2,2.)*pow(c1Error,2.)
+                           + 4.*pow(a3,2.)*pow(c2Error,2.)+16.*pow(c1,2.)*pow(c3Error,2.)
+                           + 16.*pow(a4,2.)*pow(s1Error,2.)+4.*pow(a5,2.)*pow(s2Error,2.)
+                           + 16.*pow(s1,2.)*pow(s3Error,2.)+8.*a1*wCov4-32.*a1*a2*wCov1
+                           - 16.*a3*a1*wCov5-32.*c1*a1*wCov6-32.*a1*a4*wCov2+16.*a5*a1*wCov7
+                           + 32.*s1*a1*wCov8-8.*a2*wCov9-4.*a3*wCov10-8.*c1*wCov11-8.*a4*wCov12
+                           + 4.*a5*wCov13+8.*s1*wCov14+16.*a3*a2*wCov15+32.*c1*a2*wCov16+32.*a2*a4*wCov3
+                           - 16.*a5*a2*wCov17-32.*s1*a2*wCov18+16.*c1*a3*wCov19+16.*a3*a4*wCov20
+                           - 8.*a3*a5*wCov21-16.*s1*a3*wCov22+32.*c1*a4*wCov23-16.*c1*a5*wCov24
+                           - 32.*c1*s1*wCov25-16.*a5*a4*wCov26-32.*s1*a4*wCov27+16.*s1*a5*wCov28;
+ //  Store ratio of error squared - with/without NUA terms:
+ Double_t ratioErrorSquaredQC4 = 0.;
+ if(fIntFlowQcumulants->GetBinError(2)>0.)
+ { 
+  ratioErrorSquaredQC4 = (gQC4ErrorSquared/pow(fIntFlowQcumulants->GetBinError(2),2.));
+  fIntFlowQcumulantsErrorSquaredRatio->SetBinContent(2,ratioErrorSquaredQC4);
+ }                          
+ if(fApplyCorrectionForNUA && fPropagateErrorAlsoFromNIT)
+ {
+  if(gQC4ErrorSquared>=0.)
+  {
+   fIntFlowQcumulants->SetBinError(2,pow(gQC4ErrorSquared,0.5));
+  } else
+    {
+     fIntFlowQcumulants->SetBinError(2,0.);
+     cout<<endl;
+     cout<<" WARNING (QC): Statistical error of generalized QC{4} is imaginary !!!!"<<endl;
+     cout<<endl;
+    }   
+ } // end of if(fApplyCorrectionForNUA && fPropagateErrorAlsoFromNIT)
+ // Quantify detector bias to QC{4}:
+ if(TMath::Abs(qc4)>0.)
+ {
+  fIntFlowDetectorBias->SetBinContent(2,gQC4/qc4); 
+  if(qc4Error>0.)
+  {
+   Double_t errorSquared = gQC4ErrorSquared/pow(qc4,2.)+pow(gQC4,2.)*pow(qc4Error,2.)/pow(qc4,4.);
+   if(errorSquared>0.)
+   {
+    fIntFlowDetectorBias->SetBinError(2,pow(errorSquared,0.5));  
+   }
+  }
+ } // end of if(TMath::Abs(qc4)>0.)
+
+
+ // .... to be improved (continued for 6th and 8th order) ....            
+     
+ // versus multiplicity:
+ if(fCalculateCumulantsVsM) // to be improved - propagate error for nua terms vs M
+ { 
+  Int_t nBins = fIntFlowCorrelationsVsMPro[0]->GetNbinsX(); // to be improved (hardwired 0) 
+  Double_t value[4] = {0.}; // QCs vs M
+  Double_t error[4] = {0.}; // error of QCs vs M
+  Double_t dSum1[4] = {0.}; // sum value_i/(error_i)^2
+  Double_t dSum2[4] = {0.}; // sum 1/(error_i)^2
+  for(Int_t b=1;b<=nBins;b++)
+  {
+   // Measured correlations:
+   two = fIntFlowCorrelationsVsMHist[0]->GetBinContent(b); // <<2>> vs M
+   four = fIntFlowCorrelationsVsMHist[1]->GetBinContent(b); // <<4>> vs M
+   // Isotropic cumulants:
+   qc2 = two;
+   qc4 = four-2.*pow(two,2.);
+   // Non-isotropic terms:
+   c1 = fIntFlowCorrectionTermsForNUAVsMPro[1][0]->GetBinContent(b); // <<cos(n*phi1)>>
+   c2 = fIntFlowCorrectionTermsForNUAVsMPro[1][1]->GetBinContent(b); // <<cos(n*(phi1+phi2))>>
+   c3 = fIntFlowCorrectionTermsForNUAVsMPro[1][2]->GetBinContent(b); // <<cos(n*(phi1-phi2-phi3))>>
+   s1 = fIntFlowCorrectionTermsForNUAVsMPro[0][0]->GetBinContent(b); // <<sin(n*phi1)>>
+   s2 = fIntFlowCorrectionTermsForNUAVsMPro[0][1]->GetBinContent(b); // <<sin(n*(phi1+phi2))>>
+   s3 = fIntFlowCorrectionTermsForNUAVsMPro[0][2]->GetBinContent(b); // <<sin(n*(phi1-phi2-phi3))>>
+   // Generalized QC{2} vs M:
+   gQC2 = two - pow(c1,2.) - pow(s1,2.); 
+   if(fApplyCorrectionForNUAVsM){fIntFlowQcumulantsVsM[0]->SetBinContent(b,gQC2);}   
+   // Generalized QC{4} vs M:  
+   gQC4 = four-2.*pow(two,2.)
+                 - 4.*c1*c3+4.*s1*s3-pow(c2,2.)-pow(s2,2.)
+                 + 4.*c2*(pow(c1,2.)-pow(s1,2.))+8.*s2*s1*c1
+                 + 8.*two*(pow(c1,2.)+pow(s1,2.))-6.*pow((pow(c1,2.)+pow(s1,2.)),2.);
+   if(fApplyCorrectionForNUAVsM){fIntFlowQcumulantsVsM[1]->SetBinContent(b,gQC4);}   
+   // Detector bias vs M:
+   if(TMath::Abs(qc2)>0.)
+   {
+    fIntFlowDetectorBiasVsM[0]->SetBinContent(b,gQC2/qc2); 
+   } // end of if(TMath::Abs(qc2)>0.)
+   if(TMath::Abs(qc4)>0.)
+   {
+    fIntFlowDetectorBiasVsM[1]->SetBinContent(b,gQC4/qc4); 
+   } // end of if(TMath::Abs(qc4)>0.)  
+   // Rebin in M:
+   for(Int_t co=0;co<4;co++)
+   {
+    value[co] = fIntFlowQcumulantsVsM[co]->GetBinContent(b);
+    error[co] = fIntFlowQcumulantsVsM[co]->GetBinError(b);
+    if(error[co]>0.)
+    {
+     dSum1[co]+=value[co]/(error[co]*error[co]);
+     dSum2[co]+=1./(error[co]*error[co]);
+    }
+   } // end of for(Int_t co=0;co<4;co++) 
+  } // end of for(Int_t b=1;b<=nBins;b++)
+  // Store rebinned Q-cumulants:
+  if(fApplyCorrectionForNUAVsM)
+  {
+   for(Int_t co=0;co<4;co++)
+   {
+    if(dSum2[co]>0.)
+    {
+     fIntFlowQcumulantsRebinnedInM->SetBinContent(co+1,dSum1[co]/dSum2[co]);
+     fIntFlowQcumulantsRebinnedInM->SetBinError(co+1,pow(1./dSum2[co],0.5));
+    }
+   } // end of for(Int_t co=0;co<4;co++)
+  } // end of if(fApplyCorrectionForNUAVsM)
+ } // end of if(fCalculateCumulantsVsM) 
+     
+} // end of void AliFlowAnalysisWithQCumulants::CalculateQcumulantsCorrectedForNUAIntFlow()
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FinalizeCorrectionTermsForNUAIntFlow() 
+{
+ // From profile fIntFlowCorrectionTermsForNUAPro[sc] access measured correction terms for NUA
+ // and their spread, correctly calculate the statistical errors and store the final 
+ // results and statistical errors for correction terms for NUA in histogram fIntFlowCorrectionTermsForNUAHist[sc].
+ //
+ // Remark: Statistical error of correction temrs is calculated as:
+ //
+ //          statistical error = termA * spread * termB:
+ //          termA = sqrt{sum_{i=1}^{N} w^2}/(sum_{i=1}^{N} w)
+ //          termB = 1/sqrt(1-termA^2)   
+ TString sinCosFlag[2] = {"sin","cos"}; // to be improved - promore this to data member?
+ TString nonisotropicTermFlag[4] = {"(n(phi1))","(n(phi1+phi2))","(n(phi1-phi2-phi3))","(n(2phi1-phi2))"}; // to be improved - hardwired 4
+    
+ for(Int_t sc=0;sc<2;sc++) // sin or cos correction terms 
+ {
+  for(Int_t ci=1;ci<=4;ci++) // correction term index (to be improved - hardwired 4)
+  {
+   Double_t correction = fIntFlowCorrectionTermsForNUAPro[sc]->GetBinContent(ci);
+   Double_t spread = fIntFlowCorrectionTermsForNUAPro[sc]->GetBinError(ci);
+   Double_t sumOfLinearEventWeights = fIntFlowSumOfEventWeightsNUA[sc][0]->GetBinContent(ci);
+   Double_t sumOfQuadraticEventWeights = fIntFlowSumOfEventWeightsNUA[sc][1]->GetBinContent(ci);
+   Double_t termA = 0.;
+   Double_t termB = 0.;
+   if(TMath::Abs(sumOfLinearEventWeights)>1.e-44)
+   {
+    termA = pow(sumOfQuadraticEventWeights,0.5)/sumOfLinearEventWeights;
+   } else
+     {
+      cout<<" WARNING (QC): sumOfLinearEventWeights == 0 in AFAWQC::FCTFNIF() !!!!"<<endl;
+      cout<<Form("               (for <<%s[%s]>> non-isotropic term)",sinCosFlag[sc].Data(),nonisotropicTermFlag[ci-1].Data())<<endl;
+     }
+   if(1.-pow(termA,2.) > 0.)
+   {
+    termB = 1./pow(1-pow(termA,2.),0.5);
+   } else
+     {
+      cout<<" WARNING (QC): 1.-pow(termA,2.) <= 0 in AFAWQC::FCTFNIF() !!!!"<<endl;   
+      cout<<Form("               (for <<%s[%s]>> non-isotropic term)",sinCosFlag[sc].Data(),nonisotropicTermFlag[ci-1].Data())<<endl;
+     }     
+   Double_t statisticalError = termA * spread * termB;
+   fIntFlowCorrectionTermsForNUAHist[sc]->SetBinContent(ci,correction);
+   fIntFlowCorrectionTermsForNUAHist[sc]->SetBinError(ci,statisticalError);
+  } // end of for(Int_t ci=1;ci<=4;ci++) // correction term index
+ } // end of for(Int sc=0;sc<2;sc++) // sin or cos correction terms 
+                                                                                                                                                                                               
+} // end of void AliFlowAnalysisWithQCumulants::FinalizeCorrectionTermsForNUAIntFlow()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::GetPointersForNestedLoopsHistograms()
+{
+ // Get pointers to all objects relevant for calculations with nested loops.
+   
+ TList *nestedLoopsList = dynamic_cast<TList*>(fHistList->FindObject("Nested Loops"));
+ if(nestedLoopsList) 
+ {
+  this->SetNestedLoopsList(nestedLoopsList);
+ } else
+   {
+    cout<<"WARNING: nestedLoopsList is NULL in AFAWQC::GPFNLH() !!!!"<<endl;
+    exit(0);
+   }
+    
+  TString sinCosFlag[2] = {"sin","cos"}; // to be improved (should I promote this to data members?)
+  TString typeFlag[2] = {"RP","POI"}; // to be improved (should I promote this to data members?)
+  TString ptEtaFlag[2] = {"p_{T}","#eta"}; // to be improved (should I promote this to data members?)
+  TString reducedCorrelationIndex[4] = {"<2'>","<4'>","<6'>","<8'>"}; // to be improved (should I promote this to data members?)
+   
+  TString evaluateNestedLoopsName = "fEvaluateNestedLoops";
+  evaluateNestedLoopsName += fAnalysisLabel->Data();  
+  TProfile *evaluateNestedLoops = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(evaluateNestedLoopsName.Data()));
+  Bool_t bEvaluateIntFlowNestedLoops = kFALSE;
+  Bool_t bEvaluateDiffFlowNestedLoops = kFALSE;
+  if(evaluateNestedLoops)
+  {
+   this->SetEvaluateNestedLoops(evaluateNestedLoops);
+   bEvaluateIntFlowNestedLoops = (Int_t)evaluateNestedLoops->GetBinContent(1);
+   bEvaluateDiffFlowNestedLoops = (Int_t)evaluateNestedLoops->GetBinContent(2);
+  }
+  // nested loops relevant for integrated flow:  
+  if(bEvaluateIntFlowNestedLoops)
+  {
+   // correlations:
+   TString intFlowDirectCorrelationsName = "fIntFlowDirectCorrelations";
+   intFlowDirectCorrelationsName += fAnalysisLabel->Data();
+   TProfile *intFlowDirectCorrelations = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(intFlowDirectCorrelationsName.Data()));
+   if(intFlowDirectCorrelations) 
+   { 
+    this->SetIntFlowDirectCorrelations(intFlowDirectCorrelations);
+   } else
+     {
+      cout<<"WARNING: intFlowDirectCorrelations is NULL in AFAWQC::GPFNLH() !!!!"<<endl;
+      exit(0);
+     }
+   if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)  
+   {
+    TString intFlowExtraDirectCorrelationsName = "fIntFlowExtraDirectCorrelations";
+    intFlowExtraDirectCorrelationsName += fAnalysisLabel->Data();
+    TProfile *intFlowExtraDirectCorrelations = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(intFlowExtraDirectCorrelationsName.Data()));
+    if(intFlowExtraDirectCorrelations) 
+    { 
+     this->SetIntFlowExtraDirectCorrelations(intFlowExtraDirectCorrelations);
+    } else
+      {
+       cout<<"WARNING: intFlowExtraDirectCorrelations is NULL in AFAWQC::GPFNLH() !!!!"<<endl;
+       exit(0);
+      }       
+   } // end of if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)  
+   // correction terms for non-uniform acceptance:
+   TString intFlowDirectCorrectionTermsForNUAName = "fIntFlowDirectCorrectionTermsForNUA";
+   intFlowDirectCorrectionTermsForNUAName += fAnalysisLabel->Data();
+   TProfile *intFlowDirectCorrectionTermsForNUA[2] = {NULL};
+   for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+   {
+    intFlowDirectCorrectionTermsForNUA[sc] = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(Form("%s: %s terms",intFlowDirectCorrectionTermsForNUAName.Data(),sinCosFlag[sc].Data())));
+    if(intFlowDirectCorrectionTermsForNUA[sc]) 
+    { 
+     this->SetIntFlowDirectCorrectionTermsForNUA(intFlowDirectCorrectionTermsForNUA[sc],sc);
+    } else
+      {
+       cout<<"WARNING: intFlowDirectCorrectionTermsForNUA[sc] is NULL in AFAWQC::GPFNLH() !!!!"<<endl;
+       cout<<"sc = "<<sc<<endl;
+       exit(0);
+      }
+   } // end of for(Int_t sc=0;sc<2;sc++) 
+  } // end of if(bEvaluateIntFlowNestedLoops)
+    
+  // nested loops relevant for differential flow:  
+  if(bEvaluateDiffFlowNestedLoops)
+  {
+   // correlations:
+   TString diffFlowDirectCorrelationsName = "fDiffFlowDirectCorrelations";
+   diffFlowDirectCorrelationsName += fAnalysisLabel->Data();
+   TProfile *diffFlowDirectCorrelations[2][2][4] = {{{NULL}}};
+   for(Int_t t=0;t<2;t++)
+   {
+    for(Int_t pe=0;pe<2;pe++)
+    {
+     for(Int_t ci=0;ci<4;ci++) // correlation index
+     {
+      diffFlowDirectCorrelations[t][pe][ci] = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(Form("%s, %s, %s, %s",diffFlowDirectCorrelationsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),reducedCorrelationIndex[ci].Data())));
+      if(diffFlowDirectCorrelations[t][pe][ci])
+      {
+       this->SetDiffFlowDirectCorrelations(diffFlowDirectCorrelations[t][pe][ci],t,pe,ci);
+      } else
+        {
+         cout<<"WARNING: diffFlowDirectCorrelations[t][pe][ci] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+         cout<<"t  = "<<t<<endl;
+         cout<<"pe = "<<pe<<endl;   
+         cout<<"ci = "<<ci<<endl;
+        }     
+     } // end of for(Int_t ci=0;ci<4;ci++) // correlation index  
+    } // end of for(Int_t pe=0;pe<2;pe++)
+   } // end of for(Int_t t=0;t<2;t++)   
+   // correction terms for non-uniform acceptance:
+   TString diffFlowDirectCorrectionTermsForNUAName = "fDiffFlowDirectCorrectionTermsForNUA";
+   diffFlowDirectCorrectionTermsForNUAName += fAnalysisLabel->Data();  
+   TProfile *diffFlowDirectCorrectionTermsForNUA[2][2][2][10] = {{{{NULL}}}};   
+   for(Int_t t=0;t<2;t++)
+   {
+    for(Int_t pe=0;pe<2;pe++)
+    {
+     // correction terms for NUA:
+     for(Int_t sc=0;sc<2;sc++) // sin or cos
+     {
+      for(Int_t cti=0;cti<9;cti++) // correction term index
+      {
+       diffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti] = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(Form("%s, %s, %s, %s, cti = %d",diffFlowDirectCorrectionTermsForNUAName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),cti+1)));
+       if(diffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti])
+       {
+        this->SetDiffFlowDirectCorrectionTermsForNUA(diffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti],t,pe,sc,cti);
+       } else
+         {
+          cout<<"WARNING: diffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+          cout<<"t   = "<<t<<endl;
+          cout<<"pe  = "<<pe<<endl;   
+          cout<<"sc  = "<<sc<<endl;
+          cout<<"cti = "<<cti<<endl;
+         }    
+      } // end of for(Int_t cti=0;cti<9;cti++) // correction term index
+     } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+    } // end of for(Int_t pe=0;pe<2;pe++)
+   } // end of for(Int_t t=0;t<2;t++)
+   // other differential correlators:
+   TString otherDirectDiffCorrelatorsName = "fOtherDirectDiffCorrelators";
+   otherDirectDiffCorrelatorsName += fAnalysisLabel->Data();  
+   TProfile *otherDirectDiffCorrelators[2][2][2][1] = {{{{NULL}}}};   
+   for(Int_t t=0;t<2;t++)
+   {
+    for(Int_t pe=0;pe<2;pe++)
+    {
+     // correction terms for NUA:
+     for(Int_t sc=0;sc<2;sc++) // sin or cos
+     {
+      for(Int_t ci=0;ci<1;ci++) // correlator index
+      {
+       otherDirectDiffCorrelators[t][pe][sc][ci] = dynamic_cast<TProfile*>(nestedLoopsList->FindObject(Form("%s, %s, %s, %s, ci = %d",otherDirectDiffCorrelatorsName.Data(),typeFlag[t].Data(),ptEtaFlag[pe].Data(),sinCosFlag[sc].Data(),ci+1)));
+       if(otherDirectDiffCorrelators[t][pe][sc][ci])
+       {
+        this->SetOtherDirectDiffCorrelators(otherDirectDiffCorrelators[t][pe][sc][ci],t,pe,sc,ci);
+       } else
+         {
+          cout<<"WARNING: otherDirectDiffCorrelators[t][pe][sc][ci] is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+          cout<<"t   = "<<t<<endl;
+          cout<<"pe  = "<<pe<<endl;   
+          cout<<"sc  = "<<sc<<endl;
+          cout<<"ci = "<<ci<<endl;
+         }    
+      } // end of for(Int_t ci=0;ci<9;ci++) // correction term index
+     } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+    } // end of for(Int_t pe=0;pe<2;pe++)
+   } // end of for(Int_t t=0;t<2;t++)
+   // number of RPs and POIs in selected pt and eta bins for cross-checkings:
+   TString noOfParticlesInBinName = "fNoOfParticlesInBin";
+   TH1D *noOfParticlesInBin = NULL;
+   noOfParticlesInBin = dynamic_cast<TH1D*>(nestedLoopsList->FindObject(noOfParticlesInBinName.Data()));
+   if(noOfParticlesInBin)
+   {
+    this->SetNoOfParticlesInBin(noOfParticlesInBin);
+   } else
+     {
+      cout<<endl;
+      cout<<" WARNING (QC): noOfParticlesInBin is NULL in AFAWQC::GPFDFH() !!!!"<<endl;
+      cout<<endl;
+     }
+  } // end of if(bEvaluateDiffFlowNestedLoops)
+
+} // end of void AliFlowAnalysisWithQCumulants::GetPointersForNestedLoopsHistograms()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::StoreHarmonic()
+{
+ // Store flow harmonic in common control histograms.
+
+ (fCommonHists->GetHarmonic())->Fill(0.5,fHarmonic);
+ if(fFillMultipleControlHistograms)
+ {
+  (fCommonHists2nd->GetHarmonic())->Fill(0.5,fHarmonic);
+  (fCommonHists4th->GetHarmonic())->Fill(0.5,fHarmonic);
+  (fCommonHists6th->GetHarmonic())->Fill(0.5,fHarmonic);
+  (fCommonHists8th->GetHarmonic())->Fill(0.5,fHarmonic);
+ }
+} // end of void AliFlowAnalysisWithQCumulants::StoreHarmonic()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrelationsUsingParticleWeights(TString type, TString ptOrEta) // type = RP or POI 
+{
+ // Calculate all correlations needed for differential flow using particle weights.
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ Double_t dReQ1n3k = (*fReQ)(0,3);
+ //Double_t dReQ4n4k = (*fReQ)(3,4);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ Double_t dImQ1n3k = (*fImQ)(0,3);
+ //Double_t dImQ4n4k = (*fImQ)(3,4);
+ // S^M_{p,k} (see .h file for the definition of fSpk):
+ Double_t dSM1p1k = (*fSpk)(0,1);
+ Double_t dSM1p2k = (*fSpk)(0,2);
+ Double_t dSM1p3k = (*fSpk)(0,3);
+ Double_t dSM2p1k = (*fSpk)(1,1);
+ Double_t dSM3p1k = (*fSpk)(2,1);
+ // looping over all bins and calculating reduced correlations: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular (pt,eta) bin):  
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular (pt,eta) bin):
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,k}: 
+  // (weighted Q-vector evaluated for particles which are both RPs and POIs in particular (pt,eta) bin)
+  Double_t q1n2kRe = 0.;
+  Double_t q1n2kIm = 0.;
+  Double_t q2n1kRe = 0.;
+  Double_t q2n1kIm = 0.;
+
+  // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+  Double_t s1p1k = 0.; 
+  Double_t s1p2k = 0.; 
+  Double_t s1p3k = 0.; 
+   
+  // M0111 from Eq. (118) in QC2c (to be improved (notation))
+  Double_t dM0111 = 0.;
+  if(type == "POI")
+  {
+   p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+           * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+            
+   mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+    
+   t = 1; // typeFlag = RP or POI
+    
+   // q_{m*n,k}: (Remark: m=1 is 0, k=0 iz zero (to be improved!)) 
+   q1n2kRe = fReRPQ1dEBE[2][pe][0][2]->GetBinContent(fReRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][2]->GetBinEntries(fReRPQ1dEBE[2][pe][0][2]->GetBin(b));
+   q1n2kIm = fImRPQ1dEBE[2][pe][0][2]->GetBinContent(fImRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][2]->GetBinEntries(fImRPQ1dEBE[2][pe][0][2]->GetBin(b));
+   q2n1kRe = fReRPQ1dEBE[2][pe][1][1]->GetBinContent(fReRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][1]->GetBinEntries(fReRPQ1dEBE[2][pe][1][1]->GetBin(b));
+   q2n1kIm = fImRPQ1dEBE[2][pe][1][1]->GetBinContent(fImRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][1]->GetBinEntries(fImRPQ1dEBE[2][pe][1][1]->GetBin(b));
+       
+   // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+   s1p1k = pow(fs1dEBE[2][pe][1]->GetBinContent(b)*fs1dEBE[2][pe][1]->GetBinEntries(b),1.); 
+   s1p2k = pow(fs1dEBE[2][pe][2]->GetBinContent(b)*fs1dEBE[2][pe][2]->GetBinEntries(b),1.); 
+   s1p3k = pow(fs1dEBE[2][pe][3]->GetBinContent(b)*fs1dEBE[2][pe][3]->GetBinEntries(b),1.); 
+     
+   // M0111 from Eq. (118) in QC2c (to be improved (notation)):
+   dM0111 = mp*(dSM3p1k-3.*dSM1p1k*dSM1p2k+2.*dSM1p3k)
+          - 3.*(s1p1k*(dSM2p1k-dSM1p2k)
+          + 2.*(s1p3k-s1p2k*dSM1p1k));
+  }
+   else if(type == "RP")
+   {
+    // q_{m*n,k}: (Remark: m=1 is 0, k=0 iz zero (to be improved!)) 
+    q1n2kRe = fReRPQ1dEBE[0][pe][0][2]->GetBinContent(fReRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][0][2]->GetBinEntries(fReRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q1n2kIm = fImRPQ1dEBE[0][pe][0][2]->GetBinContent(fImRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][0][2]->GetBinEntries(fImRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q2n1kRe = fReRPQ1dEBE[0][pe][1][1]->GetBinContent(fReRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][1][1]->GetBinEntries(fReRPQ1dEBE[0][pe][1][1]->GetBin(b));
+    q2n1kIm = fImRPQ1dEBE[0][pe][1][1]->GetBinContent(fImRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][1][1]->GetBinEntries(fImRPQ1dEBE[0][pe][1][1]->GetBin(b));
+
+    // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+    s1p1k = pow(fs1dEBE[0][pe][1]->GetBinContent(b)*fs1dEBE[0][pe][1]->GetBinEntries(b),1.); 
+    s1p2k = pow(fs1dEBE[0][pe][2]->GetBinContent(b)*fs1dEBE[0][pe][2]->GetBinEntries(b),1.); 
+    s1p3k = pow(fs1dEBE[0][pe][3]->GetBinContent(b)*fs1dEBE[0][pe][3]->GetBinEntries(b),1.); 
+    
+    // to be improved (cross-checked):
+    p1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+    p1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))  
+            * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+            
+    mp = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+     
+    t = 0; // typeFlag = RP or POI
+    
+    // M0111 from Eq. (118) in QC2c (to be improved (notation)):
+    dM0111 = mp*(dSM3p1k-3.*dSM1p1k*dSM1p2k+2.*dSM1p3k)
+           - 3.*(s1p1k*(dSM2p1k-dSM1p2k)
+           + 2.*(s1p3k-s1p2k*dSM1p1k));
+    //...............................................................................................   
+   }
+   
+   // 2'-particle correlation:
+   Double_t two1n1nW0W1 = 0.;
+   if(mp*dSM1p1k-s1p1k)
+   {
+    two1n1nW0W1 = (p1n0kRe*dReQ1n1k+p1n0kIm*dImQ1n1k-s1p1k)
+                / (mp*dSM1p1k-s1p1k);
+   
+    // fill profile to get <<2'>>     
+    fDiffFlowCorrelationsPro[t][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nW0W1,mp*dSM1p1k-s1p1k);    
+    // fill profile to get <<2'>^2>     
+    fDiffFlowSquaredCorrelationsPro[t][pe][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],two1n1nW0W1*two1n1nW0W1,mp*dSM1p1k-s1p1k);        
+    // histogram to store <2'> e-b-e (needed in some other methods):
+    fDiffFlowCorrelationsEBE[t][pe][0]->SetBinContent(b,two1n1nW0W1);      
+    fDiffFlowEventWeightsForCorrelationsEBE[t][pe][0]->SetBinContent(b,mp*dSM1p1k-s1p1k);      
+   } // end of if(mp*dSM1p1k-s1p1k)
+   
+   // 4'-particle correlation:
+   Double_t four1n1n1n1nW0W1W1W1 = 0.;
+   if(dM0111)
+   {
+    four1n1n1n1nW0W1W1W1 = ((pow(dReQ1n1k,2.)+pow(dImQ1n1k,2.))*(p1n0kRe*dReQ1n1k+p1n0kIm*dImQ1n1k)
+                         - q2n1kRe*(pow(dReQ1n1k,2.)-pow(dImQ1n1k,2.))
+                         - 2.*q2n1kIm*dReQ1n1k*dImQ1n1k
+                         - p1n0kRe*(dReQ1n1k*dReQ2n2k+dImQ1n1k*dImQ2n2k)
+                         + p1n0kIm*(dImQ1n1k*dReQ2n2k-dReQ1n1k*dImQ2n2k)
+                         - 2.*dSM1p2k*(p1n0kRe*dReQ1n1k+p1n0kIm*dImQ1n1k)
+                         - 2.*(pow(dReQ1n1k,2.)+pow(dImQ1n1k,2.))*s1p1k                                            
+                         + 6.*(q1n2kRe*dReQ1n1k+q1n2kIm*dImQ1n1k)                                           
+                         + 1.*(q2n1kRe*dReQ2n2k+q2n1kIm*dImQ2n2k)                         
+                         + 2.*(p1n0kRe*dReQ1n3k+p1n0kIm*dImQ1n3k)                      
+                         + 2.*s1p1k*dSM1p2k                                      
+                         - 6.*s1p3k)        
+                         / dM0111; // to be improved (notation of dM0111)
+   
+    // fill profile to get <<4'>>     
+    fDiffFlowCorrelationsPro[t][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nW0W1W1W1,dM0111);    
+    // fill profile to get <<4'>^2>     
+    fDiffFlowSquaredCorrelationsPro[t][pe][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],four1n1n1n1nW0W1W1W1*four1n1n1n1nW0W1W1W1,dM0111);        
+    // histogram to store <4'> e-b-e (needed in some other methods):
+    fDiffFlowCorrelationsEBE[t][pe][1]->SetBinContent(b,four1n1n1n1nW0W1W1W1);      
+    fDiffFlowEventWeightsForCorrelationsEBE[t][pe][1]->SetBinContent(b,dM0111);      
+   } // end of if(dM0111)
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrelationsUsingParticleWeights(TString type, TString ptOrEta); // type = RP or POI 
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FillCommonControlHistograms(AliFlowEventSimple *anEvent)
+{
+ // Fill common control histograms.
+ Int_t nRP = anEvent->GetEventNSelTracksRP(); // number of RPs (i.e. number of particles used to determine the reaction plane)
+ fCommonHists->FillControlHistograms(anEvent); 
+ if(fFillMultipleControlHistograms)
+ {
+  if(nRP>1)
+  {
+   fCommonHists2nd->FillControlHistograms(anEvent);                                        
+   if(nRP>3)
+   {
+    fCommonHists4th->FillControlHistograms(anEvent);                                        
+    if(nRP>5)
+    {
+     fCommonHists6th->FillControlHistograms(anEvent);                                        
+     if(nRP>7)
+     {
+      fCommonHists8th->FillControlHistograms(anEvent);                                        
+     } // end of if(nRP>7)  
+    } // end of if(nRP>5) 
+   } // end of if(nRP>3)                                                                                                                      
+  } // end of if(nRP>1) 
+ } // end of if(fFillMultipleControlHistograms)
+} // end of void AliFlowAnalysisWithQCumulants::FillCommonControlHistograms(AliFlowEventSimple *anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::ResetEventByEventQuantities()
+{
+ // Reset all event by event quantities.
+ // Reference flow:
+ fReQ->Zero();
+ fImQ->Zero();
+ fSpk->Zero();
+ fIntFlowCorrelationsEBE->Reset();
+ fIntFlowEventWeightsForCorrelationsEBE->Reset();
+ fIntFlowCorrelationsAllEBE->Reset();
+ for(Int_t sc=0;sc<2;sc++)
+ {
+  fIntFlowCorrectionTermsForNUAEBE[sc]->Reset();
+  fIntFlowEventWeightForCorrectionTermsForNUAEBE[sc]->Reset(); 
+ }
+    
+ // Differential flow:
+ if(fCalculateDiffFlow)
+ {
+  for(Int_t t=0;t<3;t++) // type (RP, POI, POI&&RP)
+  {
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // 1D in pt or eta
+   {
+    for(Int_t m=0;m<4;m++) // multiple of harmonic
+    {
+     for(Int_t k=0;k<9;k++) // power of weight
+     {
+      if(fReRPQ1dEBE[t][pe][m][k]) fReRPQ1dEBE[t][pe][m][k]->Reset();
+      if(fImRPQ1dEBE[t][pe][m][k]) fImRPQ1dEBE[t][pe][m][k]->Reset();
+     }   
+    } 
+   }
+  } 
+  for(Int_t t=0;t<3;t++) // type (0 = RP, 1 = POI, 2 = RP&&POI )
+  { 
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // 1D in pt or eta
+   {
+    for(Int_t k=0;k<9;k++)
+    {
+     if(fs1dEBE[t][pe][k]) fs1dEBE[t][pe][k]->Reset();
+    }
+   }
+  }
+  // e-b-e reduced correlations:
+  for(Int_t t=0;t<2;t++) // type (0 = RP, 1 = POI)
+  {  
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+   {
+    for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+    {
+     if(fDiffFlowCorrelationsEBE[t][pe][rci]) fDiffFlowCorrelationsEBE[t][pe][rci]->Reset();
+     if(fDiffFlowEventWeightsForCorrelationsEBE[t][pe][rci]) fDiffFlowEventWeightsForCorrelationsEBE[t][pe][rci]->Reset();
+    }
+   }
+  }  
+  // correction terms for NUA:
+  for(Int_t t=0;t<2;t++) // type (0 = RP, 1 = POI)
+  {  
+   for(Int_t pe=0;pe<1+(Int_t)fCalculateDiffFlowVsEta;pe++) // pt or eta
+   {
+    for(Int_t sc=0;sc<2;sc++) // sin or cos
+    {
+     for(Int_t cti=0;cti<9;cti++) // correction term index
+     {
+     fDiffFlowCorrectionTermsForNUAEBE[t][pe][sc][cti]->Reset();  
+     }
+    }
+   }      
+  }
+ } // end of if(fCalculateDiffFlow)   
+
+ // 2D (pt,eta)
+ if(fCalculate2DDiffFlow)
+ {
+  for(Int_t t=0;t<3;t++) // type (RP, POI, POI&&RP)
+  {
+   for(Int_t m=0;m<4;m++) // multiple of harmonic
+   {
+    for(Int_t k=0;k<9;k++) // power of weight
+    {
+     if(fReRPQ2dEBE[t][m][k]){fReRPQ2dEBE[t][m][k]->Reset();}
+     if(fImRPQ2dEBE[t][m][k]){fImRPQ2dEBE[t][m][k]->Reset();}
+    }   
+   }
+  }
+  for(Int_t t=0;t<3;t++) // type (0 = RP, 1 = POI, 2 = RP&&POI )
+  { 
+   for(Int_t k=0;k<9;k++)
+   {
+    if(fs2dEBE[t][k]){fs2dEBE[t][k]->Reset();}
+   }
+  }  
+ } // end of if(fCalculate2DDiffFlow) 
+
+} // end of void AliFlowAnalysisWithQCumulants::ResetEventByEventQuantities();
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUASinTerms(TString type, TString ptOrEta)
+{
+ // Calculate correction terms for non-uniform acceptance for differential flow (sin terms).
+ // Results are stored in fDiffFlowCorrectionTermsForNUAPro[t][pe][0][cti], where cti runs as follows:
+ //  0: <<sin n(psi1)>>
+ //  1: <<sin n(psi1+phi2)>>
+ //  2: <<sin n(psi1+phi2-phi3)>>
+ //  3: <<sin n(psi1-phi2-phi3)>>:
+ //  4:
+ //  5:
+ //  6:
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // looping over all bins and calculating correction terms: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (non-weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n0kRe = 0.;
+  Double_t q1n0kIm = 0.;
+  Double_t q2n0kRe = 0.;
+  Double_t q2n0kIm = 0.;
+
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+   
+  if(type == "POI")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[2][pe][0][0]->GetBinContent(fReRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[2][pe][0][0]->GetBinContent(fImRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][0]->GetBinEntries(fImRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[2][pe][1][0]->GetBinContent(fReRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][0]->GetBinEntries(fReRPQ1dEBE[2][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[2][pe][1][0]->GetBinContent(fImRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][0]->GetBinEntries(fImRPQ1dEBE[2][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+  } 
+  else if(type == "RP")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[0][pe][1][0]->GetBinContent(fReRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][1][0]->GetBinEntries(fReRPQ1dEBE[0][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[0][pe][1][0]->GetBinContent(fImRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][1][0]->GetBinEntries(fImRPQ1dEBE[0][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)  
+  }    
+  if(type == "POI")
+  {
+   // p_{m*n,0}:
+   p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+           * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+            
+   mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+    
+   t = 1; // typeFlag = RP or POI
+  }
+  else if(type == "RP")
+  {
+   // p_{m*n,0} = q_{m*n,0}:
+   p1n0kRe = q1n0kRe; 
+   p1n0kIm = q1n0kIm; 
+           
+   mp = mq; 
+   
+   t = 0; // typeFlag = RP or POI
+  }
+
+  // <<sin n(psi1)>>:
+  Double_t sinP1nPsi = 0.;
+  if(mp)
+  {
+   sinP1nPsi = p1n0kIm/mp;
+   // fill profile for <<sin n(psi1)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi,mp);
+   // histogram to store <sin n(psi1)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][0]->SetBinContent(b,sinP1nPsi);
+  } // end of if(mp)   
+  
+  // <<sin n(psi1+phi2)>>:
+  Double_t sinP1nPsiP1nPhi = 0.;
+  if(mp*dMult-mq)
+  {
+   sinP1nPsiP1nPhi = (p1n0kRe*dImQ1n+p1n0kIm*dReQ1n-q2n0kIm)/(mp*dMult-mq);
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsiP1nPhi,mp*dMult-mq);
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][1]->SetBinContent(b,sinP1nPsiP1nPhi);
+  } // end of if(mp*dMult-mq)   
+  
+  // <<sin n(psi1+phi2-phi3)>>:
+  Double_t sinP1nPsi1P1nPhi2MPhi3 = 0.;
+  if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))
+  {
+   sinP1nPsi1P1nPhi2MPhi3 = (p1n0kIm*(pow(dImQ1n,2.)+pow(dReQ1n,2.)-dMult)
+                          - 1.*(q2n0kIm*dReQ1n-q2n0kRe*dImQ1n)  
+                          - mq*dImQ1n+2.*q1n0kIm)
+                          / (mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi1P1nPhi2MPhi3,mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][2]->SetBinContent(b,sinP1nPsi1P1nPhi2MPhi3);
+  } // end of if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))   
+  
+  // <<sin n(psi1-phi2-phi3)>>:
+  Double_t sinP1nPsi1M1nPhi2MPhi3 = 0.;
+  if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))
+  {
+   sinP1nPsi1M1nPhi2MPhi3 = (p1n0kIm*(pow(dReQ1n,2.)-pow(dImQ1n,2.))-2.*p1n0kRe*dReQ1n*dImQ1n
+                          - 1.*(p1n0kIm*dReQ2n-p1n0kRe*dImQ2n)
+                          + 2.*mq*dImQ1n-2.*q1n0kIm)
+                          / (mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi1M1nPhi2MPhi3,mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][3]->SetBinContent(b,sinP1nPsi1M1nPhi2MPhi3);
+  } // end of if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUASinTerms(TString type, TString ptOrEta)
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUACosTerms(TString type, TString ptOrEta)
+{
+ // Calculate correction terms for non-uniform acceptance for differential flow (cos terms).
+ // Results are stored in fDiffFlowCorrectionTermsForNUAPro[t][pe][1][cti], where cti runs as follows:
+ //  0: <<cos n(psi)>>
+ //  1: <<cos n(psi1+phi2)>>
+ //  2: <<cos n(psi1+phi2-phi3)>>
+ //  3: <<cos n(psi1-phi2-phi3)>>
+ //  4:
+ //  5:
+ //  6:
+ // multiplicity:
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of non-weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n = (*fReQ)(0,0);
+ Double_t dReQ2n = (*fReQ)(1,0);
+ //Double_t dReQ3n = (*fReQ)(2,0);
+ //Double_t dReQ4n = (*fReQ)(3,0);
+ Double_t dImQ1n = (*fImQ)(0,0);
+ Double_t dImQ2n = (*fImQ)(1,0);
+ //Double_t dImQ3n = (*fImQ)(2,0);
+ //Double_t dImQ4n = (*fImQ)(3,0);
+
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // looping over all bins and calculating correction terms: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (non-weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n0kRe = 0.;
+  Double_t q1n0kIm = 0.;
+  Double_t q2n0kRe = 0.;
+  Double_t q2n0kIm = 0.;
+
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+   
+  if(type == "POI")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[2][pe][0][0]->GetBinContent(fReRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[2][pe][0][0]->GetBinContent(fImRPQ1dEBE[2][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][0]->GetBinEntries(fImRPQ1dEBE[2][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[2][pe][1][0]->GetBinContent(fReRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][0]->GetBinEntries(fReRPQ1dEBE[2][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[2][pe][1][0]->GetBinContent(fImRPQ1dEBE[2][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][0]->GetBinEntries(fImRPQ1dEBE[2][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+  } 
+  else if(type == "RP")
+  {
+   // q_{m*n,0}:
+   q1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+   q2n0kRe = fReRPQ1dEBE[0][pe][1][0]->GetBinContent(fReRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fReRPQ1dEBE[0][pe][1][0]->GetBinEntries(fReRPQ1dEBE[0][pe][1][0]->GetBin(b));
+   q2n0kIm = fImRPQ1dEBE[0][pe][1][0]->GetBinContent(fImRPQ1dEBE[0][pe][1][0]->GetBin(b))
+           * fImRPQ1dEBE[0][pe][1][0]->GetBinEntries(fImRPQ1dEBE[0][pe][1][0]->GetBin(b));         
+                 
+   mq = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)  
+  }    
+  if(type == "POI")
+  {
+   // p_{m*n,0}:
+   p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+           * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+            
+   mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+    
+   t = 1; // typeFlag = RP or POI
+  }
+  else if(type == "RP")
+  {
+   // p_{m*n,0} = q_{m*n,0}:
+   p1n0kRe = q1n0kRe; 
+   p1n0kIm = q1n0kIm; 
+           
+   mp = mq; 
+   
+   t = 0; // typeFlag = RP or POI
+  }
+
+  // <<cos n(psi1)>>:
+  Double_t cosP1nPsi = 0.;
+  if(mp)
+  {
+   cosP1nPsi = p1n0kRe/mp;
+   
+   // fill profile for <<cos n(psi1)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi,mp);
+   // histogram to store <cos n(psi1)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][0]->SetBinContent(b,cosP1nPsi);
+  } // end of if(mp)   
+  
+  // <<cos n(psi1+phi2)>>:
+  Double_t cosP1nPsiP1nPhi = 0.;
+  if(mp*dMult-mq)
+  {
+   cosP1nPsiP1nPhi = (p1n0kRe*dReQ1n-p1n0kIm*dImQ1n-q2n0kRe)/(mp*dMult-mq);
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsiP1nPhi,mp*dMult-mq);
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][1]->SetBinContent(b,cosP1nPsiP1nPhi);
+  } // end of if(mp*dMult-mq)   
+  
+  // <<cos n(psi1+phi2-phi3)>>:
+  Double_t cosP1nPsi1P1nPhi2MPhi3 = 0.;
+  if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))
+  {
+   cosP1nPsi1P1nPhi2MPhi3 = (p1n0kRe*(pow(dImQ1n,2.)+pow(dReQ1n,2.)-dMult)
+                          - 1.*(q2n0kRe*dReQ1n+q2n0kIm*dImQ1n)  
+                          - mq*dReQ1n+2.*q1n0kRe)
+                          / (mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi1P1nPhi2MPhi3,mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][2]->SetBinContent(b,cosP1nPsi1P1nPhi2MPhi3);
+  } // end of if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))   
+  
+  // <<cos n(psi1-phi2-phi3)>>:
+  Double_t cosP1nPsi1M1nPhi2MPhi3 = 0.;
+  if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))
+  {
+   cosP1nPsi1M1nPhi2MPhi3 = (p1n0kRe*(pow(dReQ1n,2.)-pow(dImQ1n,2.))+2.*p1n0kIm*dReQ1n*dImQ1n
+                          - 1.*(p1n0kRe*dReQ2n+p1n0kIm*dImQ2n)  
+                          - 2.*mq*dReQ1n+2.*q1n0kRe)
+                          / (mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // fill profile for <<sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi1M1nPhi2MPhi3,mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.));
+   // histogram to store <sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][3]->SetBinContent(b,cosP1nPsi1M1nPhi2MPhi3);
+  } // end of if(mq*(dMult-1.)*(dMult-2.)+(mp-mq)*dMult*(dMult-1.))   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUACosTerms(TString type, TString ptOrEta)
+
+//==================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::FinalizeCorrectionTermsForNUADiffFlow(TString type, TString ptOrEta)
+{
+ // Transfer profiles into histogams and correctly propagate the error.
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ //Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ //Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ for(Int_t sc=0;sc<2;sc++) // sin or cos
+ {
+  for(Int_t cti=0;cti<9;cti++) // correction term index
+  {
+   for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+   {
+    Double_t correctionTerm = fDiffFlowCorrectionTermsForNUAPro[t][pe][sc][cti]->GetBinContent(b);
+    fDiffFlowCorrectionTermsForNUAHist[t][pe][sc][cti]->SetBinContent(b,correctionTerm);
+    // to be improved (propagate error correctly)
+    // ...
+   } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+  } // correction term index
+ } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos
+
+}// end of void AliFlowAnalysisWithQCumulants::FinalizeCorrectionTermsForNUADiffFlow(TString type, TString ptOrEta)
+
+//==================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCumulantsCorrectedForNUA(TString type, TString ptOrEta)
+{ 
+ // Calculate generalized differential flow cumulants (corrected for non-uniform acceptance).
+ // to be improved - propagate error also from non-isotropic terms
+  
+ Int_t t = 0; // RP = 0, POI = 1
+ Int_t pe = 0; // pt = 0, eta = 1
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   } 
+     
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   } 
+       
+ // Common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ // 2-particle correlation:
+ Double_t two = fIntFlowCorrelationsHist->GetBinContent(1); // <<2>>
+ // sinus terms coming from reference flow: 
+ Double_t sinP1nPhi = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(1); // <<sin(n*phi1)>>
+ Double_t sinP1nPhi1P1nPhi2 = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(2); // <<sin(n*(phi1+phi2))>>
+ Double_t sinP1nPhi1M1nPhi2M1nPhi3 = fIntFlowCorrectionTermsForNUAHist[0]->GetBinContent(3); // <<sin(n*(phi1-phi2-phi3))>>
+ // cosinus terms coming from reference flow: 
+ Double_t cosP1nPhi = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(1); // <<cos(n*phi1)>>
+ Double_t cosP1nPhi1P1nPhi2 = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(2); // <<cos(n*(phi1+phi2))>>
+ Double_t cosP1nPhi1M1nPhi2M1nPhi3 = fIntFlowCorrectionTermsForNUAHist[1]->GetBinContent(3); // <<cos(n*(phi1-phi2-phi3))>>
+
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  Double_t twoPrime = fDiffFlowCorrelationsHist[t][pe][0]->GetBinContent(b); // <<2'>>
+  Double_t fourPrime = fDiffFlowCorrelationsHist[t][pe][1]->GetBinContent(b); // <<4'>>
+  Double_t sinP1nPsi = fDiffFlowCorrectionTermsForNUAHist[t][pe][0][0]->GetBinContent(b); // <<sin n(Psi)>> 
+  Double_t cosP1nPsi = fDiffFlowCorrectionTermsForNUAHist[t][pe][1][0]->GetBinContent(b); // <<cos n(Psi)>> 
+  Double_t sinP1nPsi1P1nPhi2 = fDiffFlowCorrectionTermsForNUAHist[t][pe][0][1]->GetBinContent(b); // <<sin n(psi1+phi2)>> 
+  Double_t cosP1nPsi1P1nPhi2 = fDiffFlowCorrectionTermsForNUAHist[t][pe][1][1]->GetBinContent(b); // <<cos n(psi1+phi2)>> 
+  Double_t sinP1nPsi1P1nPhi2M1nPhi3 = fDiffFlowCorrectionTermsForNUAHist[t][pe][0][2]->GetBinContent(b); // <<sin n(psi1+phi2-phi3)>> 
+  Double_t cosP1nPsi1P1nPhi2M1nPhi3 = fDiffFlowCorrectionTermsForNUAHist[t][pe][1][2]->GetBinContent(b); // <<cos n(psi1+phi2-phi3)>> 
+  Double_t sinP1nPsi1M1nPhi2M1nPhi3 = fDiffFlowCorrectionTermsForNUAHist[t][pe][0][3]->GetBinContent(b); // <<sin n(psi1-phi2-phi3)>> 
+  Double_t cosP1nPsi1M1nPhi2M1nPhi3 = fDiffFlowCorrectionTermsForNUAHist[t][pe][1][3]->GetBinContent(b); // <<cos n(psi1-phi2-phi3)>> 
+  // Generalized QC{2'}:
+  Double_t qc2Prime = twoPrime - sinP1nPsi*sinP1nPhi - cosP1nPsi*cosP1nPhi;
+  if(fApplyCorrectionForNUA)
+  {
+   fDiffFlowCumulants[t][pe][0]->SetBinContent(b,qc2Prime);
+  }
+  if(TMath::Abs(twoPrime)>0.)
+  {
+   fDiffFlowDetectorBias[t][pe][0]->SetBinContent(b,qc2Prime/twoPrime); // detector bias = generalized/isotropic cumulant.   
+  }
+  // Generalized QC{4'}:
+  Double_t qc4Prime = fourPrime-2.*twoPrime*two
+                    - cosP1nPsi*cosP1nPhi1M1nPhi2M1nPhi3
+                    + sinP1nPsi*sinP1nPhi1M1nPhi2M1nPhi3
+                    - cosP1nPhi*cosP1nPsi1M1nPhi2M1nPhi3
+                    + sinP1nPhi*sinP1nPsi1M1nPhi2M1nPhi3
+                    - 2.*cosP1nPhi*cosP1nPsi1P1nPhi2M1nPhi3
+                    - 2.*sinP1nPhi*sinP1nPsi1P1nPhi2M1nPhi3
+                    - cosP1nPsi1P1nPhi2*cosP1nPhi1P1nPhi2
+                    - sinP1nPsi1P1nPhi2*sinP1nPhi1P1nPhi2
+                    + 2.*cosP1nPhi1P1nPhi2*(cosP1nPsi*cosP1nPhi-sinP1nPsi*sinP1nPhi)
+                    + 2.*sinP1nPhi1P1nPhi2*(cosP1nPsi*sinP1nPhi+sinP1nPsi*cosP1nPhi)
+                    + 4.*two*(cosP1nPsi*cosP1nPhi+sinP1nPsi*sinP1nPhi)
+                    + 2.*cosP1nPsi1P1nPhi2*(pow(cosP1nPhi,2.)-pow(sinP1nPhi,2.))
+                    + 4.*sinP1nPsi1P1nPhi2*cosP1nPhi*sinP1nPhi
+                    + 4.*twoPrime*(pow(cosP1nPhi,2.)+pow(sinP1nPhi,2.))
+                    - 6.*(pow(cosP1nPhi,2.)-pow(sinP1nPhi,2.)) 
+                    * (cosP1nPsi*cosP1nPhi-sinP1nPsi*sinP1nPhi)
+                    - 12.*cosP1nPhi*sinP1nPhi
+                    * (sinP1nPsi*cosP1nPhi+cosP1nPsi*sinP1nPhi);
+  if(fApplyCorrectionForNUA)
+  {
+   fDiffFlowCumulants[t][pe][1]->SetBinContent(b,qc4Prime);   
+  }
+  if(TMath::Abs(fourPrime-2.*twoPrime*two)>0.)
+  {
+   fDiffFlowDetectorBias[t][pe][1]->SetBinContent(b,qc4Prime/(fourPrime-2.*twoPrime*two)); // detector bias = generalized/isotropic cumulant.   
+  }
+ } // end of for(Int_t p=1;p<=fnBinsPt;p++)
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlowCumulantsCorrectedForNUA(TString type, TString ptOrEta)
+
+//==================================================================================================================================    
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectedForNUA(TString type, TString ptOrEta)
+{
+ // Calculate differential flow corrected for non-uniform acceptance.
+ // to be improved: eventually I will have to access here masured correlations and NUA terms
+ //                 instead of cumulants in order to propagate statistical error correctly also 
+ //                 to NUA terms (propagating errors directly from cumulants is WRONG for 
+ //                 differential flow becuase that doesn't account at all cross-covariance terms) 
+ // REMARK: When NUA correction is apllied error for differential flow DOES NOT get corrected,
+ //         i.e. only value is being corrected, error is still the one relevant for isotropic
+ //         case. This eventually will be resolved. 
+  
+ Int_t t = 0; // RP or POI
+ Int_t pe = 0; // pt or eta
+
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }     
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   } 
+  
+ // Common:
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ // Reference Q-cumulants
+ Double_t qc2 = fIntFlowQcumulants->GetBinContent(1); // QC{2} 
+ Double_t qc4 = fIntFlowQcumulants->GetBinContent(2); // QC{4}
+ // Loop over pt or eta bins:
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // Differential Q-cumulants:
+  Double_t qc2Prime = fDiffFlowCumulants[t][pe][0]->GetBinContent(b); // QC{2'}
+  Double_t qc4Prime = fDiffFlowCumulants[t][pe][1]->GetBinContent(b); // QC{4'}
+  // v'{2}:
+  if(qc2>0.)
+  { 
+   Double_t v2Prime = qc2Prime/pow(qc2,0.5);
+   if(TMath::Abs(v2Prime)>0.){fDiffFlow[t][pe][0]->SetBinContent(b,v2Prime);} 
+  }  
+  // v'{4}:
+  if(qc4<0.)
+  { 
+   Double_t v4Prime = -qc4Prime/pow(-qc4,3./4.);
+   if(TMath::Abs(v4Prime)>0.){fDiffFlow[t][pe][1]->SetBinContent(b,v4Prime);} 
+  }  
+ } // end of for(Int_t b=1;b<=fnBinsPtEta[pe];b++)
+  
+} // end of void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectedForNUA(TString type, TString ptOrEta); 
+
+//==================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrelationsWithNestedLoops(AliFlowEventSimple * const anEvent)
+{
+ // Evaluate with nested loops multiparticle correlations for integrated flow (without using the particle weights). 
+
+ // Remark: Results are stored in profile fIntFlowDirectCorrelations whose binning is organized as follows:
+ // 
+ //  1st bin: <2>_{1n|1n} = two1n1n = cos(n*(phi1-phi2))>
+ //  2nd bin: <2>_{2n|2n} = two2n2n = cos(2n*(phi1-phi2))>
+ //  3rd bin: <2>_{3n|3n} = two3n3n = cos(3n*(phi1-phi2))> 
+ //  4th bin: <2>_{4n|4n} = two4n4n = cos(4n*(phi1-phi2))>
+ //  5th bin:           ----  EMPTY ----
+ //  6th bin: <3>_{2n|1n,1n} = three2n1n1n = <cos(n*(2.*phi1-phi2-phi3))>
+ //  7th bin: <3>_{3n|2n,1n} = three3n2n1n = <cos(n*(3.*phi1-2.*phi2-phi3))>
+ //  8th bin: <3>_{4n|2n,2n} = three4n2n2n = <cos(n*(4.*phi1-2.*phi2-2.*phi3))>
+ //  9th bin: <3>_{4n|3n,1n} = three4n3n1n = <cos(n*(4.*phi1-3.*phi2-phi3))>
+ // 10th bin:           ----  EMPTY ----
+ // 11th bin: <4>_{1n,1n|1n,1n} = four1n1n1n1n = <cos(n*(phi1+phi2-phi3-phi4))>
+ // 12th bin: <4>_{2n,1n|2n,1n} = four2n1n2n1n = <cos(2.*n*(phi1+phi2-phi3-phi4))>
+ // 13th bin: <4>_{2n,2n|2n,2n} = four2n2n2n2n = <cos(n*(2.*phi1+phi2-2.*phi3-phi4))>
+ // 14th bin: <4>_{3n|1n,1n,1n} = four3n1n1n1n = <cos(n*(3.*phi1-phi2-phi3-phi4))> 
+ // 15th bin: <4>_{3n,1n|3n,1n} = four3n1n3n1n = <cos(n*(4.*phi1-2.*phi2-phi3-phi4))>
+ // 16th bin: <4>_{3n,1n|2n,2n} = four3n1n2n2n = <cos(n*(3.*phi1+phi2-2.*phi3-2.*phi4))>
+ // 17th bin: <4>_{4n|2n,1n,1n} = four4n2n1n1n = <cos(n*(3.*phi1+phi2-3.*phi3-phi4))> 
+ // 18th bin:           ----  EMPTY ----
+ // 19th bin: <5>_{2n|1n,1n,1n,1n} = five2n1n1n1n1n = <cos(n*(2.*phi1+phi2-phi3-phi4-phi5))>
+ // 20th bin: <5>_{2n,2n|2n,1n,1n} = five2n2n2n1n1n = <cos(n*(2.*phi1+2.*phi2-2.*phi3-phi4-phi5))>
+ // 21st bin: <5>_{3n,1n|2n,1n,1n} = five3n1n2n1n1n = <cos(n*(3.*phi1+phi2-2.*phi3-phi4-phi5))>
+ // 22nd bin: <5>_{4n|1n,1n,1n,1n} = five4n1n1n1n1n = <cos(n*(4.*phi1-phi2-phi3-phi4-phi5))>
+ // 23rd bin:           ----  EMPTY ----
+ // 24th bin: <6>_{1n,1n,1n|1n,1n,1n} = six1n1n1n1n1n1n = <cos(n*(phi1+phi2+phi3-phi4-phi5-phi6))>
+ // 25th bin: <6>_{2n,1n,1n|2n,1n,1n} = six2n1n1n2n1n1n = <cos(n*(2.*phi1+2.*phi2-phi3-phi4-phi5-phi6))>
+ // 26th bin: <6>_{2n,2n|1n,1n,1n,1n} = six2n2n1n1n1n1n = <cos(n*(3.*phi1+phi2-phi3-phi4-phi5-phi6))>
+ // 27th bin: <6>_{3n,1n|1n,1n,1n,1n} = six3n1n1n1n1n1n = <cos(n*(2.*phi1+phi2+phi3-2.*phi4-phi5-phi6))>
+ // 28th bin:           ----  EMPTY ----
+ // 29th bin: <7>_{2n,1n,1n|1n,1n,1n,1n} = seven2n1n1n1n1n1n1n =  <cos(n*(2.*phi1+phi2+phi3-phi4-phi5-phi6-phi7))>
+ // 30th bin:           ----  EMPTY ----
+ // 31st bin: <8>_{1n,1n,1n,1n|1n,1n,1n,1n} = eight1n1n1n1n1n1n1n1n = <cos(n*(phi1+phi2+phi3+phi4-phi5-phi6-phi7-phi8))>
+ // 32nd bin:           ----  EMPTY ----
+  //  Extra correlations for 3p TY study: 
+ // 33rd bin: <4>_{4n,2n|3n,3n}= four4n2n3n3n = <cos(n*(4.*phi1+2.*phi2-3.*phi3-3.*phi4))>
+ // 34th bin: <5>_{3n,3n|2n,2n,2n} = five3n3n2n2n2n = <cos(n(3*phi1+3*phi2-2*phi3-2*phi4-2*phi5))> 
+  //  Extra correlations for 6p TY study: 
+ // 35th bin: <2>_{5n|5n} = two5n5n = <cos(5n*(phi1-phi2)> T
+ // 36th bin: <2>_{6n|6n} = two6n6n = <cos(6n*(phi1-phi2)> T
+ // 37th bin: <3>_{5n|3n,2n} = three5n3n2n = <cos(n*(5*phi1-3*phi2-2*phi3)> 
+ // 38th bin: <3>_{5n|4n,1n} = three5n4n1n = <cos(n*(5*phi1-4*phi2-1*phi3)> 
+ // 39th bin: <3>_{6n|3n,3n} = three6n3n3n = <cos(n*(6*phi1-3*phi2-3*phi3)> T 
+ // 40th bin: <3>_{6n|4n,2n} = three6n4n2n = <cos(n*(6*phi1-4*phi2-2*phi3)> T
+ // 41st bin: <3>_{6n|5n,1n} = three6n5n1n = <cos(n*(6*phi1-5*phi2-1*phi3)>
+ // 42nd bin: <4>_{6n|3n,2n,1n} = four6n3n2n1n = <cos(n*(6*phi1-3*phi2-2*phi3-1*phi4)>
+ // 43rd bin: <4>_{3n,2n|3n,2n} = four3n2n3n2n = <cos(n*(3*phi1+2*phi2-3*phi3-2*phi4)>
+ // 44th bin: <4>_{4n,1n|3n,2n} = four4n1n3n2n = <cos(n*(4*phi1+1*phi2-3*phi3-2*phi4)>
+ // 45th bin: <4>_{3n,3n|3n,3n} = four3n3n3n3n = <cos(3.*n*(phi1+phi2-phi3-phi4))> T
+ // 46th bin: <4>_{4n,2n|3n,3n} = four4n2n3n3n = <cos(n*(4*phi1+2*phi2-3*phi3-3*phi4)>
+ // 47th bin: <4>_{5n,1n|3n,3n} = four5n1n3n3n = <cos(n*(5*phi1+1*phi2-3*phi3-3*phi4)>
+ // 48th bin: <4>_{4n,2n|4n,2n} = four4n2n4n2n = <cos(n*(4*phi1+2*phi2-4*phi3-2*phi4)> T
+ // 49th bin: <4>_{5n,1n|4n,2n} = four5n1n4n2n = <cos(n*(5*phi1+1*phi2-4*phi3-2*phi4)>
+ // 50th bin: <4>_{5n|3n,1n,1n} = four5n3n1n1n = <cos(n*(5*phi1-3*phi2-1*phi3-1*phi4)>
+ // 51st bin: <4>_{5n|2n,2n,1n} = four5n2n2n1n = <cos(n*(5*phi1-2*phi2-2*phi3-1*phi4)>
+ // 52nd bin: <4>_{5n,1n|5n,1n} = four5n1n5n1n = <cos(n*(5*phi1+1*phi2-5*phi3-1*phi4)>
+ // 53rd bin: <5>_{3n,3n|3n,2n,1n} = four3n3n3n2n1n = <cos(n*(3*phi1+3*phi2-3*phi3-2*phi4-1*phi5)>
+ // 54th bin: <5>_{4n,2n|3n,2n,1n} = four4n2n3n2n1n = <cos(n*(4*phi1+2*phi2-3*phi3-2*phi4-1*phi5)>
+ // 55th bin: <5>_{3n,2n|3n,1n,1n} = four3n2n3n1n1n = <cos(n*(3*phi1+2*phi2-3*phi3-1*phi4-1*phi5)>
+ // 56th bin: <5>_{3n,2n|2n,2n,1n} = four3n2n2n2n1n = <cos(n*(3*phi1+2*phi2-2*phi3-2*phi4-1*phi5)>
+ // 57th bin: <5>_{5n,1n|3n,2n,1n} = four5n1n3n2n1n = <cos(n*(5*phi1+1*phi2-3*phi3-2*phi4-1*phi5)>
+ // 58th bin: <6>_{3n,2n,1n|3n,2n,1n} = six3n2n1n3n2n1n = <cos(n*(3*phi1+2*phi2+1*phi3-3*phi4-2*phi5-1*phi6)>
+  
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL; 
+ Double_t phi1=0., phi2=0., phi3=0., phi4=0., phi5=0., phi6=0., phi7=0., phi8=0.; 
+ Int_t n = fHarmonic; 
+ Int_t eventNo = (Int_t)fAvMultiplicity->GetBinEntries(1); // to be improved (is this casting safe in general?)
+ Double_t dMult = (*fSpk)(0,0);
+ cout<<endl;
+ cout<<"Multiparticle correlations: Event number: "<<eventNo<<", multiplicity is "<<dMult<<endl;
+ if(dMult<2)
+ {
+  cout<<"... skipping this event (multiplicity too low) ..."<<endl;
+ } else if (dMult>fMaxAllowedMultiplicity)
+   {
+    cout<<"... skipping this event (multiplicity too high) ..."<<endl;
+   } else 
+     { 
+      cout<<"... evaluating nested loops (without using particle weights)..."<<endl;
+     } 
+ // 2-particle correlations:       
+ if(nPrim>=2 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi(); 
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(nPrim==2) cout<<i1<<" "<<i2<<"\r"<<flush;
+    // fill the profile with 2-p correlations: 
+    fIntFlowDirectCorrelations->Fill(0.5,cos(n*(phi1-phi2)),1.);     // <cos(n*(phi1-phi2))>
+    fIntFlowDirectCorrelations->Fill(1.5,cos(2.*n*(phi1-phi2)),1.);  // <cos(2n*(phi1-phi2))>
+    fIntFlowDirectCorrelations->Fill(2.5,cos(3.*n*(phi1-phi2)),1.);  // <cos(3n*(phi1-phi2))>
+    fIntFlowDirectCorrelations->Fill(3.5,cos(4.*n*(phi1-phi2)),1.);  // <cos(4n*(phi1-phi2))>   
+    fIntFlowDirectCorrelations->Fill(34.5,cos(5.*n*(phi1-phi2)),1.); // <cos(5n*(phi1-phi2))>
+    fIntFlowDirectCorrelations->Fill(35.5,cos(6.*n*(phi1-phi2)),1.); // <cos(6n*(phi1-phi2))>   
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=2)
+ // 3-particle correlations:         
+ if(nPrim>=3 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(nPrim==3) cout<<i1<<" "<<i2<<" "<<i3<<"\r"<<flush;
+     // fill the profile with 3-p correlations:   
+     fIntFlowDirectCorrelations->Fill(5.,cos(2.*n*phi1-n*(phi2+phi3)),1.);         //<3>_{2n|nn,n}
+     fIntFlowDirectCorrelations->Fill(6.,cos(3.*n*phi1-2.*n*phi2-n*phi3),1.);      //<3>_{3n|2n,n}
+     fIntFlowDirectCorrelations->Fill(7.,cos(4.*n*phi1-2.*n*phi2-2.*n*phi3),1.);   //<3>_{4n|2n,2n}
+     fIntFlowDirectCorrelations->Fill(8.,cos(4.*n*phi1-3.*n*phi2-n*phi3),1.);      //<3>_{4n|3n,n}
+     fIntFlowDirectCorrelations->Fill(36.5,cos(5.*n*phi1-3.*n*phi2-2.*n*phi3),1.); //<3>_{5n|3n,2n}
+     fIntFlowDirectCorrelations->Fill(37.5,cos(5.*n*phi1-4.*n*phi2-1.*n*phi3),1.); //<3>_{5n|4n,1n}
+     fIntFlowDirectCorrelations->Fill(38.5,cos(6.*n*phi1-3.*n*phi2-3.*n*phi3),1.); //<3>_{6n|3n,3n}
+     fIntFlowDirectCorrelations->Fill(39.5,cos(6.*n*phi1-4.*n*phi2-2.*n*phi3),1.); //<3>_{6n|4n,2n}     
+     fIntFlowDirectCorrelations->Fill(40.5,cos(6.*n*phi1-5.*n*phi2-1.*n*phi3),1.); //<3>_{6n|5n,1n}
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=3)
+
+ // 4-particle correlations:
+ if(nPrim>=4 && nPrim<=fMaxAllowedMultiplicity)
+ {       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  { 
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      if(nPrim==4) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<"\r"<<flush;
+      // fill the profile with 4-p correlations:   
+      fIntFlowDirectCorrelations->Fill(10.,cos(n*phi1+n*phi2-n*phi3-n*phi4),1.);            // <4>_{n,n|n,n} 
+      fIntFlowDirectCorrelations->Fill(11.,cos(2.*n*phi1+n*phi2-2.*n*phi3-n*phi4),1.);      // <4>_{2n,n|2n,n}
+      fIntFlowDirectCorrelations->Fill(12.,cos(2.*n*phi1+2*n*phi2-2.*n*phi3-2.*n*phi4),1.); // <4>_{2n,2n|2n,2n}
+      fIntFlowDirectCorrelations->Fill(13.,cos(3.*n*phi1-n*phi2-n*phi3-n*phi4),1.);         // <4>_{3n|n,n,n}
+      fIntFlowDirectCorrelations->Fill(14.,cos(3.*n*phi1+n*phi2-3.*n*phi3-n*phi4),1.);      // <4>_{3n,n|3n,n}   
+      fIntFlowDirectCorrelations->Fill(15.,cos(3.*n*phi1+n*phi2-2.*n*phi3-2.*n*phi4),1.);   // <4>_{3n,n|2n,2n}
+      fIntFlowDirectCorrelations->Fill(16.,cos(4.*n*phi1-2.*n*phi2-n*phi3-n*phi4),1.);      // <4>_{4n|2n,n,n}     
+      fIntFlowDirectCorrelations->Fill(32.,cos(n*(4.*phi1+2.*phi2-3.*phi3-3.*phi4)),1.);    // <4>_{4n,2n|3n,3n}        
+      fIntFlowDirectCorrelations->Fill(41.5,cos(n*(6.*phi1-3.*phi2-2.*phi3-1.*phi4)),1.);    // <4>_{6n|3n,2n,1n}  
+      fIntFlowDirectCorrelations->Fill(42.5,cos(n*(3.*phi1+2.*phi2-3.*phi3-2.*phi4)),1.);    // <4>_{3n,2n|3n,2n}  
+      fIntFlowDirectCorrelations->Fill(43.5,cos(n*(4.*phi1+1.*phi2-3.*phi3-2.*phi4)),1.);    // <4>_{4n,1n|3n,2n}  
+      fIntFlowDirectCorrelations->Fill(44.5,cos(n*(3.*phi1+3.*phi2-3.*phi3-3.*phi4)),1.);    // <4>_{3n,3n|3n,3n}  
+      fIntFlowDirectCorrelations->Fill(45.5,cos(n*(4.*phi1+2.*phi2-3.*phi3-3.*phi4)),1.);    // <4>_{4n,2n|3n,3n}  
+      fIntFlowDirectCorrelations->Fill(46.5,cos(n*(5.*phi1+1.*phi2-3.*phi3-3.*phi4)),1.);    // <4>_{5n,1n|3n,3n}  
+      fIntFlowDirectCorrelations->Fill(47.5,cos(n*(4.*phi1+2.*phi2-4.*phi3-2.*phi4)),1.);    // <4>_{4n,2n|4n,2n}     
+      fIntFlowDirectCorrelations->Fill(48.5,cos(n*(5.*phi1+1.*phi2-4.*phi3-2.*phi4)),1.);    // <4>_{5n,1n|4n,2n}  
+      fIntFlowDirectCorrelations->Fill(49.5,cos(n*(5.*phi1-3.*phi2-1.*phi3-1.*phi4)),1.);    // <4>_{5n|3n,1n,1n}  
+      fIntFlowDirectCorrelations->Fill(50.5,cos(n*(5.*phi1-2.*phi2-2.*phi3-1.*phi4)),1.);    // <4>_{5n|2n,2n,1n}  
+      fIntFlowDirectCorrelations->Fill(51.5,cos(n*(5.*phi1+1.*phi2-5.*phi3-1.*phi4)),1.);    // <4>_{5n,1n|5n,1n}        
+      fIntFlowDirectCorrelations->Fill(58.5,cos(n*(6.*phi1-4.*phi2-1.*phi3-1.*phi4)),1.);    // <4>_{6n|4n,1n,1n}  
+      fIntFlowDirectCorrelations->Fill(59.5,cos(n*(6.*phi1-2.*phi2-2.*phi3-2.*phi4)),1.);    // <4>_{6n|2n,2n,2n}  
+     } // end of for(Int_t i4=0;i4<nPrim;i4++) 
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=)
+
+ // 5-particle correlations:      
+ if(nPrim>=5 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;  
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      for(Int_t i5=0;i5<nPrim;i5++)
+      {
+       if(i5==i1||i5==i2||i5==i3||i5==i4)continue;
+       aftsTrack=anEvent->GetTrack(i5);
+       if(!(aftsTrack->InRPSelection())) continue;
+       phi5=aftsTrack->Phi();
+       if(nPrim==5) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<" "<<i5<<"\r"<<flush;
+       // fill the profile with 5-p correlations:   
+       fIntFlowDirectCorrelations->Fill(18.,cos(2.*n*phi1+n*phi2-n*phi3-n*phi4-n*phi5),1.);              // <5>_{2n,n|n,n,n}
+       fIntFlowDirectCorrelations->Fill(19.,cos(2.*n*phi1+2.*n*phi2-2.*n*phi3-n*phi4-n*phi5),1.);        // <5>_{2n,2n|2n,n,n}
+       fIntFlowDirectCorrelations->Fill(20.,cos(3.*n*phi1+n*phi2-2.*n*phi3-n*phi4-n*phi5),1.);           // <5>_{3n,n|2n,n,n}
+       fIntFlowDirectCorrelations->Fill(21.,cos(4.*n*phi1-n*phi2-n*phi3-n*phi4-n*phi5),1.);              // <5>_{4n|n,n,n,n}
+       fIntFlowDirectCorrelations->Fill(33.,cos(3.*n*phi1+3.*n*phi2-2.*n*phi3-2.*n*phi4-2.*n*phi5),1.);  // <5>_{3n,3n|2n,2n,2n}       
+       fIntFlowDirectCorrelations->Fill(52.5,cos(3.*n*phi1+3.*n*phi2-3.*n*phi3-2.*n*phi4-1.*n*phi5),1.); // <5>_{3n,3n|3n,2n,1n}      
+       fIntFlowDirectCorrelations->Fill(53.5,cos(4.*n*phi1+2.*n*phi2-3.*n*phi3-2.*n*phi4-1.*n*phi5),1.); // <5>_{4n,2n|3n,2n,1n}       
+       fIntFlowDirectCorrelations->Fill(54.5,cos(3.*n*phi1+2.*n*phi2-3.*n*phi3-1.*n*phi4-1.*n*phi5),1.); // <5>_{3n,2n|3n,1n,1n}
+       fIntFlowDirectCorrelations->Fill(55.5,cos(3.*n*phi1+2.*n*phi2-2.*n*phi3-2.*n*phi4-1.*n*phi5),1.); // <5>_{3n,2n|2n,2n,1n}
+       fIntFlowDirectCorrelations->Fill(56.5,cos(5.*n*phi1+1.*n*phi2-3.*n*phi3-2.*n*phi4-1.*n*phi5),1.); // <5>_{5n,1n|3n,2n,1n}              
+       fIntFlowDirectCorrelations->Fill(60.5,cos(6.*n*phi1-2.*n*phi2-2.*n*phi3-1.*n*phi4-1.*n*phi5),1.); // <5>_{6n|2n,2n,1n,1n}
+       fIntFlowDirectCorrelations->Fill(61.5,cos(4.*n*phi1+1.*n*phi2+1.*n*phi3-3.*n*phi4-3.*n*phi5),1.); // <5>_{4n,1n,1n|3n,3n}              
+      } // end of for(Int_t i5=0;i5<nPrim;i5++)
+     } // end of for(Int_t i4=0;i4<nPrim;i4++)  
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=5)
+  
+ // 6-particle correlations:
+ if(nPrim>=6 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      for(Int_t i5=0;i5<nPrim;i5++)
+      {
+       if(i5==i1||i5==i2||i5==i3||i5==i4)continue;
+       aftsTrack=anEvent->GetTrack(i5);
+       if(!(aftsTrack->InRPSelection())) continue;
+       phi5=aftsTrack->Phi();
+       for(Int_t i6=0;i6<nPrim;i6++)
+       {
+        if(i6==i1||i6==i2||i6==i3||i6==i4||i6==i5)continue;
+        aftsTrack=anEvent->GetTrack(i6);
+        if(!(aftsTrack->InRPSelection())) continue;
+        phi6=aftsTrack->Phi(); 
+        if(nPrim==6) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<" "<<i5<<" "<<i6<<"\r"<<flush;
+        // fill the profile with 6-p correlations:   
+        fIntFlowDirectCorrelations->Fill(23.,cos(n*phi1+n*phi2+n*phi3-n*phi4-n*phi5-n*phi6),1.);                    // <6>_{1n,1n,1n|1n,1n,1n}
+        fIntFlowDirectCorrelations->Fill(24.,cos(2.*n*phi1+n*phi2+n*phi3-2.*n*phi4-n*phi5-n*phi6),1.);              // <6>_{2n,1n,1n|2n,1n,1n}
+        fIntFlowDirectCorrelations->Fill(25.,cos(2.*n*phi1+2.*n*phi2-n*phi3-n*phi4-n*phi5-n*phi6),1.);              // <6>_{2n,2n|1n,1n,1n,1n}
+        fIntFlowDirectCorrelations->Fill(26.,cos(3.*n*phi1+n*phi2-n*phi3-n*phi4-n*phi5-n*phi6),1.);                 // <6>_{3n,1n|1n,1n,1n,1n}  
+        fIntFlowDirectCorrelations->Fill(57.5,cos(3.*n*phi1+2.*n*phi2+1.*n*phi3-3.*n*phi4-2.*n*phi5-1.*n*phi6),1.); // <6>_{3n,2n,1n|3n,2n,1n}  
+        fIntFlowDirectCorrelations->Fill(62.5,cos(3.*n*phi1+3.*n*phi2-2.*n*phi3-2.*n*phi4-1.*n*phi5-1.*n*phi6),1.); // <6>_{3n,3n|2n,2n,1n,1n}  
+       } // end of for(Int_t i6=0;i6<nPrim;i6++)
+      } // end of for(Int_t i5=0;i5<nPrim;i5++)
+     } // end of for(Int_t i4=0;i4<nPrim;i4++)
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=6)
+  
+ // 7-particle correlations:
+ if(nPrim>=7 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  { 
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      for(Int_t i5=0;i5<nPrim;i5++)
+      {
+       if(i5==i1||i5==i2||i5==i3||i5==i4)continue;
+       aftsTrack=anEvent->GetTrack(i5);
+       if(!(aftsTrack->InRPSelection())) continue;
+       phi5=aftsTrack->Phi();
+       for(Int_t i6=0;i6<nPrim;i6++)
+       {
+        if(i6==i1||i6==i2||i6==i3||i6==i4||i6==i5)continue;
+        aftsTrack=anEvent->GetTrack(i6);
+        if(!(aftsTrack->InRPSelection())) continue;
+        phi6=aftsTrack->Phi(); 
+        for(Int_t i7=0;i7<nPrim;i7++)
+        {
+         if(i7==i1||i7==i2||i7==i3||i7==i4||i7==i5||i7==i6)continue;
+         aftsTrack=anEvent->GetTrack(i7);
+         if(!(aftsTrack->InRPSelection())) continue;
+         phi7=aftsTrack->Phi(); 
+         if(nPrim==7) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<" "<<i5<<" "<<i6<<" "<<i7<<"\r"<<flush;
+         // fill the profile with 7-p correlation:   
+         fIntFlowDirectCorrelations->Fill(28.,cos(2.*n*phi1+n*phi2+n*phi3-n*phi4-n*phi5-n*phi6-n*phi7),1.); // <7>_{2n,n,n|n,n,n,n}
+        } // end of for(Int_t i7=0;i7<nPrim;i7++)
+       } // end of for(Int_t i6=0;i6<nPrim;i6++) 
+      } // end of for(Int_t i5=0;i5<nPrim;i5++)
+     } // end of for(Int_t i4=0;i4<nPrim;i4++)  
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=7)
+ // 8-particle correlations:
+ if(nPrim>=8 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      for(Int_t i5=0;i5<nPrim;i5++)
+      {
+       if(i5==i1||i5==i2||i5==i3||i5==i4)continue;
+       aftsTrack=anEvent->GetTrack(i5);
+       if(!(aftsTrack->InRPSelection())) continue;
+       phi5=aftsTrack->Phi();
+       for(Int_t i6=0;i6<nPrim;i6++)
+       {
+        if(i6==i1||i6==i2||i6==i3||i6==i4||i6==i5)continue;
+        aftsTrack=anEvent->GetTrack(i6);
+        if(!(aftsTrack->InRPSelection())) continue;
+        phi6=aftsTrack->Phi();
+        for(Int_t i7=0;i7<nPrim;i7++)
+        {
+         if(i7==i1||i7==i2||i7==i3||i7==i4||i7==i5||i7==i6)continue;
+         aftsTrack=anEvent->GetTrack(i7);
+         if(!(aftsTrack->InRPSelection())) continue;
+         phi7=aftsTrack->Phi();
+         for(Int_t i8=0;i8<nPrim;i8++)
+         {
+          if(i8==i1||i8==i2||i8==i3||i8==i4||i8==i5||i8==i6||i8==i7)continue;
+          aftsTrack=anEvent->GetTrack(i8);
+          if(!(aftsTrack->InRPSelection())) continue;
+          phi8=aftsTrack->Phi();
+          cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<" "<<i5<<" "<<i6<<" "<<i7<<" "<<i8<<"\r"<<flush;
+          // fill the profile with 8-p correlation:   
+          fIntFlowDirectCorrelations->Fill(30.,cos(n*phi1+n*phi2+n*phi3+n*phi4-n*phi5-n*phi6-n*phi7-n*phi8),1.); // <8>_{n,n,n,n|n,n,n,n}
+         } // end of for(Int_t i8=0;i8<nPrim;i8++)
+        } // end of for(Int_t i7=0;i7<nPrim;i7++) 
+       } // end of for(Int_t i6=0;i6<nPrim;i6++) 
+      } // end of for(Int_t i5=0;i5<nPrim;i5++)
+     } // end of for(Int_t i4=0;i4<nPrim;i4++)  
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=8)
+ cout<<endl;
+
+} // end of AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrelationsWithNestedLoops(AliFlowEventSimple* anEvent)
+
+
+//==================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowCorrelations()
+{
+ // Cross-check results for multiparticle correlations needed for int. flow: results from Q-vectors vs results from nested loops.
+
+ cout<<endl;
+ cout<<endl;
+ cout<<"   *****************************************"<<endl;
+ cout<<"   **** cross-checking the correlations ****"<<endl;
+ cout<<"   ****       for integrated flow       ****"<<endl;
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+ {
+  cout<<"   ****   (particle weights not used)   ****"<<endl;
+ } else
+   {
+    cout<<"   ****     (particle weights used)     ****"<<endl;
+   } 
+ cout<<"   *****************************************"<<endl;
+ cout<<endl;
+ cout<<endl;
+
+ Int_t ciMax = 64; // to be improved (removed eventually when I calculate 6th and 8th order with particle weights)
+ if(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights)
+ {
+  ciMax = 11;
+ }
+
+ for(Int_t ci=1;ci<=ciMax;ci++)
+ {
+  if(strcmp((fIntFlowCorrelationsAllPro->GetXaxis())->GetBinLabel(ci), "") == 0) continue; // to be improved (access finalized histogram here)
+  cout<<(fIntFlowCorrelationsAllPro->GetXaxis())->GetBinLabel(ci)<<":"<<endl; // to be improved (access finalized histogram here)
+  cout<<"from Q-vectors    = "<<fIntFlowCorrelationsAllPro->GetBinContent(ci)<<endl; // to be improved (access finalized histogram here)
+  cout<<"from nested loops = "<<fIntFlowDirectCorrelations->GetBinContent(ci)<<endl;
+  cout<<endl;
+ }
+  
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowCorrelations()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowCorrectionTermsForNUA()
+{
+ // Cross-check results for corrections terms for non-uniform acceptance needed for int. flow: results from Q-vectors vs results from nested loops.
+
+ cout<<endl;
+ cout<<endl;
+ cout<<"   *********************************************"<<endl;
+ cout<<"   **** cross-checking the correction terms ****"<<endl;
+ cout<<"   **** for non-uniform acceptance relevant ****"<<endl;
+ cout<<"   ****         for integrated flow         ****"<<endl;
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+ {
+  cout<<"   ****     (particle weights not used)     ****"<<endl;
+ } else
+   {
+    cout<<"   ****       (particle weights used)       ****"<<endl;
+   } 
+ cout<<"   *********************************************"<<endl;
+ cout<<endl;
+ cout<<endl;
+
+ for(Int_t ci=1;ci<=4;ci++) // correction term index (to be improved - hardwired 4)
+ {
+  for(Int_t sc=0;sc<2;sc++) // sin or cos term
+  {
+   if(strcmp((fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->GetBinLabel(ci), "") == 0) continue; // to be improved (access finalized histogram here)
+   cout<<(fIntFlowCorrectionTermsForNUAPro[sc]->GetXaxis())->GetBinLabel(ci)<<":"<<endl; // to be improved (access finalized histogram here)
+   cout<<"from Q-vectors    = "<<fIntFlowCorrectionTermsForNUAPro[sc]->GetBinContent(ci)<<endl; // to be improved (access finalized histogram here)
+   cout<<"from nested loops = "<<fIntFlowDirectCorrectionTermsForNUA[sc]->GetBinContent(ci)<<endl;
+   cout<<endl;
+  } // end of for(Int_t sc=0;sc<2;sc++) // sin or cos term
+ } // end of for(Int_t ci=1;ci<=10;ci++) // correction term index
+  
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowCorrectionTermsForNUA() 
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple * const anEvent)
+{
+ // Evaluate with nested loops multiparticle correlations for integrated flow (using the particle weights). 
+
+ // Results are stored in profile fIntFlowDirectCorrelations. 
+ // Remark 1: When particle weights are used the binning of fIntFlowDirectCorrelations is organized as follows:
+ //
+ //  1st bin: <2>_{1n|1n} = two1n1nW1W1 = <w1 w2 cos(n*(phi1-phi2))>
+ //  2nd bin: <2>_{2n|2n} = two2n2nW2W2 = <w1^2 w2^2 cos(2n*(phi1-phi2))>
+ //  3rd bin: <2>_{3n|3n} = two3n3nW3W3 = <w1^3 w2^3 cos(3n*(phi1-phi2))> 
+ //  4th bin: <2>_{4n|4n} = two4n4nW4W4 = <w1^4 w2^4 cos(4n*(phi1-phi2))>
+ //  5th bin:           ----  EMPTY ----
+ //  6th bin: <3>_{2n|1n,1n} = three2n1n1nW2W1W1 = <w1^2 w2 w3 cos(n*(2phi1-phi2-phi3))>
+ //  7th bin: <3>_{3n|2n,1n} = ...
+ //  8th bin: <3>_{4n|2n,2n} = ...
+ //  9th bin: <3>_{4n|3n,1n} = ...
+ // 10th bin:           ----  EMPTY ----
+ // 11th bin: <4>_{1n,1n|1n,1n} = four1n1n1n1nW1W1W1W1 = <w1 w2 w3 w4 cos(n*(phi1+phi2-phi3-phi4))>
+ // 12th bin: <4>_{2n,1n|2n,1n} = ...
+ // 13th bin: <4>_{2n,2n|2n,2n} = ...
+ // 14th bin: <4>_{3n|1n,1n,1n} = ... 
+ // 15th bin: <4>_{3n,1n|3n,1n} = ...
+ // 16th bin: <4>_{3n,1n|2n,2n} = ...
+ // 17th bin: <4>_{4n|2n,1n,1n} = ... 
+ // 18th bin:           ----  EMPTY ----
+ // 19th bin: <5>_{2n|1n,1n,1n,1n} = ...
+ // 20th bin: <5>_{2n,2n|2n,1n,1n} = ...
+ // 21st bin: <5>_{3n,1n|2n,1n,1n} = ...
+ // 22nd bin: <5>_{4n|1n,1n,1n,1n} = ...
+ // 23rd bin:           ----  EMPTY ----
+ // 24th bin: <6>_{1n,1n,1n|1n,1n,1n} = ...
+ // 25th bin: <6>_{2n,1n,1n|2n,1n,1n} = ...
+ // 26th bin: <6>_{2n,2n|1n,1n,1n,1n} = ...
+ // 27th bin: <6>_{3n,1n|1n,1n,1n,1n} = ...
+ // 28th bin:           ----  EMPTY ----
+ // 29th bin: <7>_{2n,1n,1n|1n,1n,1n,1n} = ...
+ // 30th bin:           ----  EMPTY ----
+ // 31st bin: <8>_{1n,1n,1n,1n|1n,1n,1n,1n} = ...
+ // Remark 2: When particle weights are used there are some extra correlations. They are stored in 
+ // fIntFlowExtraDirectCorrelations binning of which is organized as follows:
+ // 1st bin: two1n1nW3W1 = <w1^3 w2 cos(n*(phi1-phi2))>
+ // 2nd bin: two1n1nW1W1W2 = <w1 w2 w3^2 cos(n*(phi1-phi2))>  
+ // ...
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ //Double_t phi1=0., phi2=0., phi3=0., phi4=0., phi5=0., phi6=0., phi7=0., phi8=0.;
+ //Double_t wPhi1=1., wPhi2=1., wPhi3=1., wPhi4=1., wPhi5=1., wPhi6=1., wPhi7=1., wPhi8=1.;
+ Double_t phi1=0., phi2=0., phi3=0., phi4=0.;
+ Double_t wPhi1=1., wPhi2=1., wPhi3=1., wPhi4=1.;
+ Int_t n = fHarmonic; 
+ Int_t eventNo = (Int_t)fAvMultiplicity->GetBinEntries(1); // to be improved (is this casting safe in general?)
+ Double_t dMult = (*fSpk)(0,0);
+ cout<<endl;
+ cout<<"Multiparticle correlations: Event number: "<<eventNo<<", multiplicity is "<<dMult<<endl;
+ if(dMult<2)
+ {
+  cout<<"... skipping this event (multiplicity too low) ..."<<endl;
+ } else if (dMult>fMaxAllowedMultiplicity)
+   {
+    cout<<"... skipping this event (multiplicity too high) ..."<<endl;
+   } else 
+     { 
+      cout<<"... evaluating nested loops (using particle weights) ..."<<endl;
+     } 
+      
+ // 2-particle correlations:       
+ if(nPrim>=2 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 2 nested loops multiparticle correlations using particle weights:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));   
+    if(nPrim==2) cout<<i1<<" "<<i2<<"\r"<<flush;
+    // 2-p correlations using particle weights:
+    if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(0.5,cos(n*(phi1-phi2)),wPhi1*wPhi2);                  // <w1   w2   cos( n*(phi1-phi2))>
+    if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(1.5,cos(2.*n*(phi1-phi2)),pow(wPhi1,2)*pow(wPhi2,2)); // <w1^2 w2^2 cos(2n*(phi1-phi2))>
+    if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(2.5,cos(3.*n*(phi1-phi2)),pow(wPhi1,3)*pow(wPhi2,3)); // <w1^3 w2^3 cos(3n*(phi1-phi2))>
+    if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(3.5,cos(4.*n*(phi1-phi2)),pow(wPhi1,4)*pow(wPhi2,4)); // <w1^4 w2^4 cos(4n*(phi1-phi2))> 
+    // extra correlations: 
+    // 2-p extra correlations (do not appear if particle weights are not used):
+    if(fUsePhiWeights) fIntFlowExtraDirectCorrelations->Fill(0.5,cos(n*(phi1-phi2)),pow(wPhi1,3)*wPhi2); // <w1^3 w2 cos(n*(phi1-phi2))>
+    // ...
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=2)
+
+ if(nPrim>=3 && nPrim<=fMaxAllowedMultiplicity)
+ { 
+  // 3 nested loops multiparticle correlations using particle weights:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));
+     if(nPrim==3) cout<<i1<<" "<<i2<<" "<<i3<<"\r"<<flush;
+     // 3-p correlations using particle weights:
+     if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(5.5,cos(2.*n*phi1-n*(phi2+phi3)),pow(wPhi1,2)*wPhi2*wPhi3); // <w1^2 w2 w3 cos(n*(2phi1-phi2-phi3))>
+     // ...
+     // extra correlations: 
+     // 2-p extra correlations (do not appear if particle weights are not used):
+      if(fUsePhiWeights) fIntFlowExtraDirectCorrelations->Fill(1.5,cos(n*(phi1-phi2)),wPhi1*wPhi2*pow(wPhi3,2)); // <w1 w2 w3^2 cos(n*(phi1-phi2))>
+     // ...
+     // 3-p extra correlations (do not appear if particle weights are not used):
+     // ...
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=3)
+ if(nPrim>=4 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 4 nested loops multiparticle correlations using particle weights:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      if(fUsePhiWeights && fPhiWeights) wPhi4 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi4*fnBinsPhi/TMath::TwoPi())));
+      if(nPrim>=4) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<"\r"<<flush; // to be improved (replace eventually this if statement with if(nPrim==4))
+      // 4-p correlations using particle weights:
+      if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(10.5,cos(n*phi1+n*phi2-n*phi3-n*phi4),wPhi1*wPhi2*wPhi3*wPhi4); 
+      // extra correlations: 
+      // 2-p extra correlations (do not appear if particle weights are not used):
+      // ...
+      // 3-p extra correlations (do not appear if particle weights are not used):
+      // ...
+      // 4-p extra correlations (do not appear if particle weights are not used):
+      // ...
+     } // end of for(Int_t i4=0;i4<nPrim;i4++) 
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=4)
+
+ cout<<endl; 
+
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowExtraCorrelations()
+{
+ // Cross-check results for extra multiparticle correlations needed for int. flow 
+ // which appear only when particle weights are used: results from Q-vectors vs results from nested loops.
+
+ cout<<endl;
+ cout<<endl;
+ cout<<"   ***********************************************"<<endl;
+ cout<<"   **** cross-checking the extra correlations ****"<<endl;
+ cout<<"   ****          for integrated flow          ****"<<endl;
+ cout<<"   ***********************************************"<<endl;
+ cout<<endl;
+ cout<<endl;
+ for(Int_t eci=1;eci<=2;eci++) // to be improved (increased eciMax eventually when I calculate 6th and 8th)
+ {
+  if(strcmp((fIntFlowExtraCorrelationsPro->GetXaxis())->GetBinLabel(eci), "") == 0) continue;
+  cout<<(fIntFlowExtraCorrelationsPro->GetXaxis())->GetBinLabel(eci)<<":"<<endl;
+  cout<<"from Q-vectors    = "<<fIntFlowExtraCorrelationsPro->GetBinContent(eci)<<endl;
+  cout<<"from nested loops = "<<fIntFlowExtraDirectCorrelations->GetBinContent(eci)<<endl;
+  cout<<endl;
+ }
+
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckIntFlowExtraCorrelations()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrectionsForNUAWithNestedLoops(AliFlowEventSimple * const anEvent)
+{
+ // Evaluate with nested loops correction terms for non-uniform acceptance relevant for NONAME integrated flow (to be improved (name)).
+ //
+ // Remark: Both sin and cos correction terms are calculated in this method. Sin terms are stored in fIntFlowDirectCorrectionTermsForNUA[0],
+ // and cos terms in fIntFlowDirectCorrectionTermsForNUA[1]. Binning of fIntFlowDirectCorrectionTermsForNUA[sc] is organized as follows 
+ // (sc stands for either sin or cos):
+ //  1st bin: <<sc(n*(phi1))>> 
+ //  2nd bin: <<sc(n*(phi1+phi2))>> 
+ //  3rd bin: <<sc(n*(phi1-phi2-phi3))>>
+ //  4th bin: <<sc(n*(2phi1-phi2))>>
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t phi1=0., phi2=0., phi3=0.;
+ Int_t n = fHarmonic; 
+ Int_t eventNo = (Int_t)fAvMultiplicity->GetBinEntries(1); // to be improved (is this casting safe in general?)
+ Double_t dMult = (*fSpk)(0,0);
+ cout<<endl;
+ cout<<"Correction terms for non-uniform acceptance: Event number: "<<eventNo<<", multiplicity is "<<dMult<<endl;
+ if(dMult<1)
+ {
+  cout<<"... skipping this event (multiplicity too low) ..."<<endl;
+ } else if (dMult>fMaxAllowedMultiplicity)
+   {
+    cout<<"... skipping this event (multiplicity too high) ..."<<endl;
+   } else 
+     { 
+      cout<<"... evaluating nested loops (without using particle weights)..."<<endl;
+     }
+ if(nPrim>=1 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 1-particle correction terms for non-uniform acceptance:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(nPrim==1) cout<<i1<<"\r"<<flush;
+   // sin terms:
+   fIntFlowDirectCorrectionTermsForNUA[0]->Fill(0.5,sin(n*phi1),1.); // <sin(n*phi1)>  
+   // cos terms:
+   fIntFlowDirectCorrectionTermsForNUA[1]->Fill(0.5,cos(n*phi1),1.); // <cos(n*phi1)>
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=1) 
+  
+ if(nPrim>=2 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 2-particle correction terms for non-uniform acceptance:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();  
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(nPrim==2) cout<<i1<<" "<<i2<<"\r"<<flush;
+    // sin terms:
+    fIntFlowDirectCorrectionTermsForNUA[0]->Fill(1.5,sin(n*(phi1+phi2)),1.); // <<sin(n*(phi1+phi2))>>
+    fIntFlowDirectCorrectionTermsForNUA[0]->Fill(3.5,sin(n*(2*phi1-phi2)),1.); // <<sin(n*(2*phi1-phi2))>>
+    // cos terms:
+    fIntFlowDirectCorrectionTermsForNUA[1]->Fill(1.5,cos(n*(phi1+phi2)),1.); // <<cos(n*(phi1+phi2))>>
+    fIntFlowDirectCorrectionTermsForNUA[1]->Fill(3.5,cos(n*(2*phi1-phi2)),1.); // <<cos(n*(2*phi1-phi2))>>
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=2)
+
+ if(nPrim>=3 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 3-particle correction terms for non-uniform acceptance:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(nPrim>=3) cout<<i1<<" "<<i2<<" "<<i3<<"\r"<<flush; // to be improved (eventually I will change this if statement)
+     // sin terms:
+     fIntFlowDirectCorrectionTermsForNUA[0]->Fill(2.5,sin(n*(phi1-phi2-phi3)),1.); // <<sin(n*(phi1-phi2-phi3))>>
+     // cos terms:
+     fIntFlowDirectCorrectionTermsForNUA[1]->Fill(2.5,cos(n*(phi1-phi2-phi3)),1.); // <<cos(n*(phi1-phi2-phi3))>>
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=3)
+
+ cout<<endl;
+}
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrelationsWithNestedLoops(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+{
+ // Evaluate reduced correlations with nested loops without using the particle weights.
+ // Remark 1: Reduced correlations are evaluated in pt bin number fCrossCheckInPtBinNo and eta bin number fCrossCheckInEtaBinNo both for RPs and POIs.
+ // Remark 2: Results are stored in 1 bin profiles fDiffFlowDirectCorrelations[t][pe][ci], where indices runs as follows:
+ //           [0=RP,1=POI][0=Pt,1=Eta][0=<2'>,1=<4'>,2=<6'>,3=<8'>] 
+ // Remark 3: <2'> = <cos(n*(psi1-phi2))>
+ //           <4'> = <cos(n*(psi1+phi2-phi3-phi4))>
+ // ...
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t psi1=0., phi2=0., phi3=0., phi4=0.;// phi5=0., phi6=0., phi7=0., phi8=0.;
+ Int_t n = fHarmonic; 
+  
+ // 2'-particle correlations:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+       
+  psi1=aftsTrack->Phi(); 
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1)continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection()))continue;
+   phi2=aftsTrack->Phi();   
+   // 2'-particle correlations: 
+   fDiffFlowDirectCorrelations[t][pe][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(1.*n*(psi1-phi2)),1.); // <cos(n*(psi1-phi2))  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+ /*
+ // 3'-particle correlations:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(ptOrEta == "Pt")
+  { 
+   if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+  } else if (ptOrEta == "Eta")
+    {
+     if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+    }
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1)continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   for(Int_t i3=0;i3<nPrim;i3++)
+   {
+    if(i3==i1||i3==i2)continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    // to be improved : where to store it? ->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(2.*phi1-phi2-phi3)),1.); // <w1 w2 w3 cos(n(2psi1-phi2-phi3))> 
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)  
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+ */
+ // 4'-particle correlations:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+    
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP): 
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   for(Int_t i3=0;i3<nPrim;i3++)
+   { 
+    if(i3==i1||i3==i2) continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    for(Int_t i4=0;i4<nPrim;i4++)
+    {
+     if(i4==i1||i4==i2||i4==i3) continue;
+     aftsTrack=anEvent->GetTrack(i4);
+     // RP condition (!(first) particle in the correlator must be RP):
+     if(!(aftsTrack->InRPSelection())) continue;  
+     phi4=aftsTrack->Phi();
+     // 4'-particle correlations:
+     fDiffFlowDirectCorrelations[t][pe][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2-phi3-phi4)),1.); // <cos(n(psi1+phi2-phi3-phi4))>     
+    }//end of for(Int_t i4=0;i4<nPrim;i4++)
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)
+  }//end of for(Int_t i2=0;i2<nPrim;i2++) 
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+      
+ // count # of RPs and POIs in selected pt and eta bins for cross-checkings:
+ for(Int_t i=0;i<nPrim;i++)
+ {
+  aftsTrack=anEvent->GetTrack(i); 
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  if(t==1)t++; 
+  fNoOfParticlesInBin->Fill(t+pe+0.5);  
+ }
+
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrelationsWithNestedLoops(AliFlowEventSimple* anEvent, TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateOtherDiffCorrelatorsWithNestedLoops(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+{
+ // Evaluate other differential correlators with nested loops without using the particle weights.
+
+ // Remark 1: Other differential correlators are evaluated in pt bin number fCrossCheckInPtBinNo 
+ //           and eta bin number fCrossCheckInEtaBinNo both for RPs and POIs.
+ // Remark 2: Results are stored in 1 bin profiles fOtherDirectDiffCorrelators[t][pe][sc][ci], where indices runs as follows:
+ //           [0=RP,1=POI][0=Pt,1=Eta][0=sin terms,1=cos terms][ci = correlator index] 
+ // Remark 3: Correlator index 'ci' runs as follows:
+ //            0: <exp(n*(psi1-3phi2+2phi3))> (Teaney-Yan correlator)
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t psi1=0., phi2=0., phi3=0.;
+ Int_t n = fHarmonic; 
+
+ // 3-p correlators:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP): 
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   for(Int_t i3=0;i3<nPrim;i3++)
+   { 
+    if(i3==i1||i3==i2) continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    // Fill 3-p correlators:
+    fOtherDirectDiffCorrelators[t][pe][1][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1-3.*phi2+2.*phi3)),1.); // <cos(n(psi1-3.*phi2+2.*phi3))>     
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)
+  }//end of for(Int_t i2=0;i2<nPrim;i2++) 
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)   
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateOtherDiffCorrelatorsWithNestedLoops(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CrossCheckDiffFlowCorrelations(TString type, TString ptOrEta)
+{
+ // Compare correlations needed for diff. flow calculated with nested loops and those calculated from Q-vectors
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ TString rpORpoiString[2] = {"RP ","POI"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ TString ptORetaString[2] = {"pt","eta"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ TString reducedCorrelations[4] = {"<<cos(n(psi1-phi2))>>","<<cos(n(psi1+phi2-phi3-phi4))>>","",""}; // to be improved (access this from pro or hist)
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Int_t crossCheckInPtEtaBinNo[2] = {fCrossCheckInPtBinNo,fCrossCheckInEtaBinNo};
+
+ cout<<endl;
+ cout<<"   *****************************************"<<endl;
+ cout<<"   **** cross-checking the correlations ****"<<endl;
+ cout<<"   ****   for differential flow ("<<rpORpoiString[t]<<")   ****"<<endl;
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+ {
+  cout<<"   ****   (particle weights not used)   ****"<<endl;
+ } else
+   {
+    cout<<"   ****    (particle weights used)      ****"<<endl;
+   } 
+ cout<<"   *****************************************"<<endl; 
+ cout<<endl;
+ cout<<"           "<<ptORetaString[pe]<<" bin: "<<lowerPtEtaEdge[pe]<<" <= "<<ptORetaString[pe]<<" < "<<upperPtEtaEdge[pe]<<endl;
+ cout<<endl;
+ for(Int_t rci=0;rci<2;rci++) // to be improved (calculate 6th and 8th order)
+ {
+  cout<<"      "<<reducedCorrelations[rci].Data()<<":"<<endl;
+  cout<<"      from Q-vectors    = "<<fDiffFlowCorrelationsPro[t][pe][rci]->GetBinContent(crossCheckInPtEtaBinNo[pe])<<endl;
+  cout<<"      from nested loops = "<<fDiffFlowDirectCorrelations[t][pe][rci]->GetBinContent(1)<<endl;
+  cout<<endl;  
+ } // end of for(Int_t rci=0;rci<4;rci++)
+        
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckDiffFlowCorrelations(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CrossCheckOtherDiffCorrelators(TString type, TString ptOrEta)
+{
+ // Compare correlations needed for diff. flow calculated with nested loops and those calculated from Q-vectors
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ TString rpORpoiString[2] = {"RP ","POI"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ TString ptORetaString[2] = {"pt","eta"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ TString otherCorrelators[1] = {"<<cos(n(psi1-3phi2+2phi3))>>"}; // to be improved (access this from pro or hist)
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Int_t crossCheckInPtEtaBinNo[2] = {fCrossCheckInPtBinNo,fCrossCheckInEtaBinNo};
+
+ cout<<endl;
+ cout<<"   *****************************************"<<endl;
+ cout<<"   ****   cross-checking the other      ****"<<endl;
+ cout<<"   ****   diff. correlators ("<<rpORpoiString[t]<<")       ****"<<endl;
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+ {
+  cout<<"   ****   (particle weights not used)   ****"<<endl;
+ } else
+   {
+    cout<<"   ****    (particle weights used)      ****"<<endl;
+   } 
+ cout<<"   *****************************************"<<endl; 
+ cout<<endl;
+ cout<<"           "<<ptORetaString[pe]<<" bin: "<<lowerPtEtaEdge[pe]<<" <= "<<ptORetaString[pe]<<" < "<<upperPtEtaEdge[pe]<<endl;
+ cout<<endl;
+ for(Int_t ci=0;ci<1;ci++) 
+ {
+  cout<<"      "<<otherCorrelators[ci].Data()<<":"<<endl;
+  cout<<"      from Q-vectors    = "<<fOtherDiffCorrelators[t][pe][1][ci]->GetBinContent(crossCheckInPtEtaBinNo[pe])<<endl;
+  cout<<"      from nested loops = "<<fOtherDirectDiffCorrelators[t][pe][1][ci]->GetBinContent(1)<<endl;
+  cout<<endl;  
+ } // end of for(Int_t ci=0;ci<1;ci++)
+        
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckOtherDiffCorrelators(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::PrintNumberOfParticlesInSelectedBin()
+{
+ // Print on the screen number of RPs and POIs in selected pt and eta bin for cross checkings.
+ cout<<endl;
+ cout<<"Number of RPs in selected pt bin   = "<<fNoOfParticlesInBin->GetBinContent(1)<<endl;
+ cout<<"Number of RPs in selected eta bin  = "<<fNoOfParticlesInBin->GetBinContent(2)<<endl;
+ cout<<"Number of POIs in selected pt bin  = "<<fNoOfParticlesInBin->GetBinContent(3)<<endl;
+ cout<<"Number of POIs in selected eta bin = "<<fNoOfParticlesInBin->GetBinContent(4)<<endl;
+} // end of void AliFlowAnalysisWithQCumulants::PrintNumberOfParticlesInSelectedBin()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+{
+ // Evaluate reduced correlations with nested loops without using the particle weights.
+ // Remark 1: Reduced correlations are evaluated in pt bin number fCrossCheckInPtBinNo and eta bin number fCrossCheckInEtaBinNo both for RPs and POIs.
+ // Remark 2: Results are stored in 1 bin profiles fDiffFlowDirectCorrelations[t][pe][ci], where indices runs as follows:
+ //           [0=RP,1=POI][0=Pt,1=Eta][0=<2'>,1=<4'>,2=<6'>,3=<8'>] 
+ // Remark 3: <2'> = <w2 cos(n*(psi1-phi2))>
+ //           <4'> = <w2 w3 w4 cos(n*(psi1+phi2-phi3-phi4))>
+ // ...
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t psi1=0., phi2=0., phi3=0., phi4=0.;// phi5=0., phi6=0., phi7=0., phi8=0.;
+ Double_t wPhi2=1., wPhi3=1., wPhi4=1.;// wPhi5=1., wPhi6=1., wPhi7=1., wPhi8=1.;
+ Int_t n = fHarmonic; 
+ // 2'-particle correlations:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi(); 
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();   
+   if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+   // 2'-particle correlations: 
+   fDiffFlowDirectCorrelations[t][pe][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(1.*n*(psi1-phi2)),wPhi2); // <w2 cos(n*(psi1-phi2))  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+ // 4'-particle correlations:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP): 
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i3=0;i3<nPrim;i3++)
+   { 
+    if(i3==i1||i3==i2) continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));
+    for(Int_t i4=0;i4<nPrim;i4++)
+    {
+     if(i4==i1||i4==i2||i4==i3) continue;
+     aftsTrack=anEvent->GetTrack(i4);
+     // RP condition (!(first) particle in the correlator must be RP):
+     if(!(aftsTrack->InRPSelection())) continue;  
+     phi4=aftsTrack->Phi();
+     if(fUsePhiWeights && fPhiWeights) wPhi4 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi4*fnBinsPhi/TMath::TwoPi())));
+     // 4'-particle correlations <w2 w3 w4 cos(n(psi1+phi2-phi3-phi4))>:
+     fDiffFlowDirectCorrelations[t][pe][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2-phi3-phi4)),wPhi2*wPhi3*wPhi4); 
+    }//end of for(Int_t i4=0;i4<nPrim;i4++)
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)
+  }//end of for(Int_t i2=0;i2<nPrim;i2++) 
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)      
+ // count # of RPs and POIs in selected pt and eta bins for cross-checkings: (to be improved - moved to dedicated method)
+ for(Int_t i=0;i<nPrim;i++)
+ {
+  aftsTrack=anEvent->GetTrack(i); 
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  if(t==1)t++; 
+  fNoOfParticlesInBin->Fill(t+pe+0.5);  
+ }
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* anEvent, TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+{
+ // Evaluate with nested loops correction terms for non-uniform acceptance (both sin and cos terms) relevant for differential flow.
+ // Remark 1: Reduced correction terms for non-uniform acceptance are evaluated in pt bin number fCrossCheckInPtBinNo 
+ //           and eta bin number fCrossCheckInEtaBinNo both for RPs and POIs.
+ // Remark 2: Results are stored in 1 bin profiles fDiffFlowDirectCorrections[t][pe][sc][cti], where first three indices runs as: 
+ //           [0=RP,1=POI][0=Pt,1=Eta][0=sin terms,1=cos terms], whilst the cti (correction term index) runs as follows: 
+ //  cti: 
+ //    0: <<sc n(psi1)>>
+ //    1: <<sc n(psi1+phi2)>> 
+ //    2: <<sc n(psi1+phi2-phi3)>>
+ //    3: <<sc n(psi1-phi2-phi3)>>
+ //    4:
+ //    5:
+ //    6:
+  
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t psi1=0., phi2=0., phi3=0.;// phi4=0.;// phi5=0., phi6=0., phi7=0., phi8=0.;
+ Int_t n = fHarmonic; 
+ // 1-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi(); 
+  // sin terms: 
+  fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*psi1),1.); // <<sin(n*(psi1))>>  
+  // cos terms: 
+  fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*psi1),1.); // <<cos(n*(psi1))>>  
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+   
+ // 2-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+   // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi(); 
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();   
+   // sin terms: 
+   fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1+phi2)),1.); // <<sin(n*(psi1+phi2))>>  
+   // cos terms: 
+   fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2)),1.); // <<cos(n*(psi1+phi2))>>  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)   
+ // 3-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+   // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   for(Int_t i3=0;i3<nPrim;i3++)
+   {
+    if(i3==i1||i3==i2) continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    // sin terms: 
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][2]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1+phi2-phi3)),1.); // <<sin(n*(psi1+phi2-phi3))>>  
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][3]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1-phi2-phi3)),1.); // <<sin(n*(psi1-phi2-phi3))>>  
+    // cos terms: 
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][2]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2-phi3)),1.); // <<cos(n*(psi1+phi2-phi3))>>  
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][3]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1-phi2-phi3)),1.); // <<cos(n*(psi1-phi2-phi3))>>  
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)  
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+   
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(AliFlowEventSimple* anEvent, TString type, TString ptOrEta)
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CrossCheckDiffFlowCorrectionTermsForNUA(TString type, TString ptOrEta)
+{
+ // Compare corrections temrs for non-uniform acceptance needed for diff. flow calculated with nested loops and those calculated from Q-vectors
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ TString rpORpoiString[2] = {"RP ","POI"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ TString ptORetaString[2] = {"pt","eta"}; // to be improved (name in the same way as in the other methods, eventually promote to data member) 
+ //TString sinCosFlag[2] = {"sin","cos"}; // to be improved (eventually promote to data member)
+ TString reducedCorrectionSinTerms[4] = {"<<sin(n(psi1))>>","<<sin(n(psi1+phi2))>>","<<sin(n*(psi1+phi2-phi3))>>","<<sin(n*(psi1-phi2-phi3))>>"}; // to be improved (access this from pro or hist)
+ TString reducedCorrectionCosTerms[4] = {"<<cos(n(psi1))>>","<<cos(n(psi1+phi2))>>","<<cos(n*(psi1+phi2-phi3))>>","<<cos(n*(psi1-phi2-phi3))>>"}; // to be improved (access this from pro or hist)
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Int_t crossCheckInPtEtaBinNo[2] = {fCrossCheckInPtBinNo,fCrossCheckInEtaBinNo};
+ cout<<endl;
+ cout<<"   ******************************************"<<endl;
+ cout<<"   ****  cross-checking the correction   ****"<<endl;
+ cout<<"   **** terms for non-uniform acceptance ****"<<endl; 
+ cout<<"   ****    for differential flow ("<<rpORpoiString[t]<<")   ****"<<endl;
+ if(!(fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights))
+ {
+  cout<<"   ****    (particle weights not used)   ****"<<endl;
+ } else
+   {
+    cout<<"   ****     (particle weights used)      ****"<<endl;
+   } 
+ cout<<"   ******************************************"<<endl; 
+ cout<<endl;
+ cout<<"           "<<ptORetaString[pe]<<" bin: "<<lowerPtEtaEdge[pe]<<" <= "<<ptORetaString[pe]<<" < "<<upperPtEtaEdge[pe]<<endl;
+ cout<<endl;
+ for(Int_t cti=0;cti<4;cti++) // correction term index
+ {
+  for(Int_t sc=0;sc<2;sc++) // sin or cos terms
+  {
+   if(sc==0) // to be improved (this can be implemented better)
+   { 
+    cout<<"      "<<reducedCorrectionSinTerms[cti].Data()<<":"<<endl;
+   } else
+     {
+      cout<<"      "<<reducedCorrectionCosTerms[cti].Data()<<":"<<endl;     
+     }
+   cout<<"      from Q-vectors    = "<<fDiffFlowCorrectionTermsForNUAPro[t][pe][sc][cti]->GetBinContent(crossCheckInPtEtaBinNo[pe])<<endl;
+   cout<<"      from nested loops = "<<fDiffFlowDirectCorrectionTermsForNUA[t][pe][sc][cti]->GetBinContent(1)<<endl;
+   cout<<endl;  
+  } 
+ } // end of for(Int_t rci=0;rci<4;rci++)
+
+} // end of void AliFlowAnalysisWithQCumulants::CrossCheckDiffFlowCorrectionTermsForNUA(TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUACosTermsUsingParticleWeights()
+{
+ // Calculate corrections using particle weights for non-uniform acceptance of the detector for no-name integrated flow (cos terms).
+ //                                  **********************************************************************
+ //                                  **** weighted corrections for non-uniform acceptance (cos terms): ****
+ //                                  **********************************************************************
+ // Remark 1: When particle weights are used the binning of fIntFlowCorrectionTermsForNUAPro[1] is organized as follows:
+ //
+ // 1st bin: <<w1 cos(n*(phi1))>> = cosP1nW1
+ // 2nd bin: <<w1 w2 cos(n*(phi1+phi2))>> = cosP1nP1nW1W1
+ // 3rd bin: <<w1 w2 w3 cos(n*(phi1-phi2-phi3))>> = cosP1nM1nM1nW1W1W1 
+ // ...
+
+ // multiplicity (number of particles used to determine the reaction plane)
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ //Double_t dReQ3n3k = (*fReQ)(2,3);
+ //Double_t dReQ4n4k = (*fReQ)(3,4);
+ Double_t dReQ1n3k = (*fReQ)(0,3);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ //Double_t dImQ3n3k = (*fImQ)(2,3);
+ //Double_t dImQ4n4k = (*fImQ)(3,4);
+ //Double_t dImQ1n3k = (*fImQ)(0,3);
+
+ // dMs are variables introduced in order to simplify some Eqs. bellow:
+ //..............................................................................................
+ Double_t dM11 = (*fSpk)(1,1)-(*fSpk)(0,2); // dM11 = sum_{i,j=1,i!=j}^M w_i w_j
+ Double_t dM111 = (*fSpk)(2,1)-3.*(*fSpk)(0,2)*(*fSpk)(0,1)
+                + 2.*(*fSpk)(0,3); // dM111 = sum_{i,j,k=1,i!=j!=k}^M w_i w_j w_k
+ //..............................................................................................
+         // 1-particle:
+ Double_t cosP1nW1 = 0.; // <<w1 cos(n*(phi1))>>
+   
+ if(dMult>0 && TMath::Abs((*fSpk)(0,1))>1.e-6)
+ {
+  cosP1nW1 = dReQ1n1k/(*fSpk)(0,1); 
+  
+  // average weighted 1-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(1,cosP1nW1);
+  
+  // final average weighted 1-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(0.5,cosP1nW1,(*fSpk)(0,1));  
+ } 
+ // 2-particle:
+ Double_t cosP1nP1nW1W1 = 0.; // <<w1 w2 cos(n*(phi1+phi2))>>
+ if(dMult>1 && TMath::Abs(dM11)>1.e-6)
+ {
+  cosP1nP1nW1W1 = (pow(dReQ1n1k,2)-pow(dImQ1n1k,2)-dReQ2n2k)/dM11; 
+  
+  // average weighted 2-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(2,cosP1nP1nW1W1);
+  
+  // final average weighted 2-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(1.5,cosP1nP1nW1W1,dM11);  
+ } 
+ // 3-particle:
+ Double_t cosP1nM1nM1nW1W1W1 = 0.; // <<w1 w2 w3 cos(n*(phi1-phi2-phi3))>>
+ if(dMult>2 && TMath::Abs(dM111)>1.e-6)
+ {
+  cosP1nM1nM1nW1W1W1 = (dReQ1n1k*(pow(dReQ1n1k,2)+pow(dImQ1n1k,2))
+                     - dReQ1n1k*dReQ2n2k-dImQ1n1k*dImQ2n2k
+                     - 2.*((*fSpk)(0,2))*dReQ1n1k
+                     + 2.*dReQ1n3k) 
+                     / dM111; 
+  
+  // average non-weighted 3-particle correction (cos terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[1]->SetBinContent(3,cosP1nM1nM1nW1W1W1);
+  
+  // final average non-weighted 3-particle correction (cos terms) for non-uniform acceptance for all events:
+  fIntFlowCorrectionTermsForNUAPro[1]->Fill(2.5,cosP1nM1nM1nW1W1W1,dM111);  
+ } 
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUACosTermsUsingParticleWeights()
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUASinTermsUsingParticleWeights()
+{
+ // calculate corrections using particle weights for non-uniform acceptance of the detector for no-name integrated flow (sin terms)
+ //                                  **********************************************************************
+ //                                  **** weighted corrections for non-uniform acceptance (sin terms): ****
+ //                                  **********************************************************************
+ // Remark 1: When particle weights are used the binning of fIntFlowCorrectionTermsForNUAPro[0] is organized as follows:
+ //
+ // 1st bin: <<w1 sin(n*(phi1))>> = sinP1nW1
+ // 2nd bin: <<w1 w2 sin(n*(phi1+phi2))>> = sinP1nP1nW1W1
+ // 3rd bin: <<w1 w2 w3 sin(n*(phi1-phi2-phi3))>> = sinP1nM1nM1nW1W1W1 
+ // ...
+
+ // multiplicity (number of particles used to determine the reaction plane)
+ Double_t dMult = (*fSpk)(0,0);
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ //Double_t dReQ3n3k = (*fReQ)(2,3);
+ //Double_t dReQ4n4k = (*fReQ)(3,4);
+ //Double_t dReQ1n3k = (*fReQ)(0,3);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ //Double_t dImQ3n3k = (*fImQ)(2,3);
+ //Double_t dImQ4n4k = (*fImQ)(3,4);
+ Double_t dImQ1n3k = (*fImQ)(0,3);
+
+ // dMs are variables introduced in order to simplify some Eqs. bellow:
+ //..............................................................................................
+ Double_t dM11 = (*fSpk)(1,1)-(*fSpk)(0,2); // dM11 = sum_{i,j=1,i!=j}^M w_i w_j
+ Double_t dM111 = (*fSpk)(2,1)-3.*(*fSpk)(0,2)*(*fSpk)(0,1)
+                + 2.*(*fSpk)(0,3); // dM111 = sum_{i,j,k=1,i!=j!=k}^M w_i w_j w_k
+ //..............................................................................................
+ // 1-particle:
+ Double_t sinP1nW1 = 0.; // <<w1 sin(n*(phi1))>>
+ if(dMult>0 && TMath::Abs((*fSpk)(0,1))>1.e-6)
+ {
+  sinP1nW1 = dImQ1n1k/((*fSpk)(0,1)); 
+     
+  // average weighted 1-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(1,sinP1nW1);
+  
+  // final average weighted 1-particle correction (sin terms) for non-uniform acceptance for all events:   
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(0.5,sinP1nW1,(*fSpk)(0,1));  
+ } 
+ // 2-particle:
+ Double_t sinP1nP1nW1W1 = 0.; // <<w1 w2 sin(n*(phi1+phi2))>>
+ if(dMult>1 && TMath::Abs(dM11)>1.e-6)
+ {
+  sinP1nP1nW1W1 = (2.*dReQ1n1k*dImQ1n1k-dImQ2n2k)/dM11; 
+     
+  // average weighted 2-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(2,sinP1nP1nW1W1);
+  
+  // final average weighted 1-particle correction (sin terms) for non-uniform acceptance for all events:      
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(1.5,sinP1nP1nW1W1,dM11);  
+ } 
+ // 3-particle:
+ Double_t sinP1nM1nM1nW1W1W1 = 0.; // <<w1 w2 w3 sin(n*(phi1-phi2-phi3))>>
+ if(dMult>2 && TMath::Abs(dM111)>1.e-6)
+ {
+  sinP1nM1nM1nW1W1W1 = (-dImQ1n1k*(pow(dReQ1n1k,2)+pow(dImQ1n1k,2))
+                     + dReQ1n1k*dImQ2n2k-dImQ1n1k*dReQ2n2k
+                     + 2.*((*fSpk)(0,2))*dImQ1n1k
+                     - 2.*dImQ1n3k)
+                     / dM111; 
+  
+  // average weighted 3-particle correction (sin terms) for non-uniform acceptance for single event:
+  fIntFlowCorrectionTermsForNUAEBE[0]->SetBinContent(3,sinP1nM1nM1nW1W1W1);
+  
+  // final average weighted 3-particle correction (sin terms) for non-uniform acceptance for all events:  
+  fIntFlowCorrectionTermsForNUAPro[0]->Fill(2.5,sinP1nM1nM1nW1W1W1,dM111);  
+ } 
+} // end of AliFlowAnalysisWithQCumulants::CalculateIntFlowCorrectionsForNUASinTermsUsingParticleWeights()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrectionsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple * const anEvent)
+{
+ // Evaluate with nested loops correction terms for non-uniform acceptance for integrated flow (using the particle weights). 
+
+ // Results are stored in profiles fIntFlowDirectCorrectionTermsForNUA[0] (sin terms) and
+ // fIntFlowDirectCorrectionTermsForNUA[1] (cos terms). 
+ // Remark 1: When particle weights are used the binning of fIntFlowDirectCorrectionTermsForNUA[sc] is 
+ // organized as follows (sc stands for either sin or cos):
+ //
+ // 1st bin: <<w1 sc(n*(phi1))>> = scP1nW1
+ // 2nd bin: <<w1 w2 sc(n*(phi1+phi2))>> = scP1nP1nW1W1
+ // 3rd bin: <<w1 w2 w3 sc(n*(phi1-phi2-phi3))>> = scP1nM1nM1nW1W1W1 
+ // ...
+  
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ //Double_t phi1=0., phi2=0., phi3=0., phi4=0., phi5=0., phi6=0., phi7=0., phi8=0.;
+ //Double_t wPhi1=1., wPhi2=1., wPhi3=1., wPhi4=1., wPhi5=1., wPhi6=1., wPhi7=1., wPhi8=1.;
+ Double_t phi1=0., phi2=0., phi3=0.;
+ Double_t wPhi1=1., wPhi2=1., wPhi3=1.;
+ Int_t n = fHarmonic; 
+ Int_t eventNo = (Int_t)fAvMultiplicity->GetBinEntries(1); // to be improved (is this casting safe in general?)
+ Double_t dMult = (*fSpk)(0,0);
+ cout<<endl;
+ cout<<"Correction terms for non-uniform acceptance: Event number: "<<eventNo<<", multiplicity is "<<dMult<<endl;
+ if(dMult<1)
+ {
+  cout<<"... skipping this event (multiplicity too low) ..."<<endl;
+ } else if (dMult>fMaxAllowedMultiplicity)
+   {
+    cout<<"... skipping this event (multiplicity too high) ..."<<endl;
+   } else 
+     { 
+      cout<<"... evaluating nested loops (using particle weights) ..."<<endl;
+     } 
+      
+ // 1-particle correction terms using particle weights:       
+ if(nPrim>=1 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   // 1-particle correction terms using particle weights:
+   if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[0]->Fill(0.5,sin(n*phi1),wPhi1); // <w1 sin(n*phi1)>
+   if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[1]->Fill(0.5,cos(n*phi1),wPhi1); // <w1 cos(n*phi1)>
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=1 && nPrim<=fMaxAllowedMultiplicity) 
+ // 2-particle correction terms using particle weights:       
+ if(nPrim>=2 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));   
+    if(nPrim==2) cout<<i1<<" "<<i2<<"\r"<<flush;
+    // 2-p correction terms using particle weights:    
+    if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[0]->Fill(1.5,sin(n*(phi1+phi2)),wPhi1*wPhi2); // <w1 w2 sin(n*(phi1+phi2))>
+    if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[1]->Fill(1.5,cos(n*(phi1+phi2)),wPhi1*wPhi2); // <w1 w2 cos(n*(phi1+phi2))>
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=2)
+
+ // 3-particle correction terms using particle weights:       
+ if(nPrim>=3 && nPrim<=fMaxAllowedMultiplicity)
+ { 
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));
+     if(nPrim==3) cout<<i1<<" "<<i2<<" "<<i3<<"\r"<<flush;
+     // 3-p correction terms using particle weights:    
+     if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[0]->Fill(2.5,sin(n*(phi1-phi2-phi3)),wPhi1*wPhi2*wPhi3); // <w1 w2 w3 sin(n*(phi1-phi2-phi3))>
+     if(fUsePhiWeights) fIntFlowDirectCorrectionTermsForNUA[1]->Fill(2.5,cos(n*(phi1-phi2-phi3)),wPhi1*wPhi2*wPhi3); // <w1 w2 w3 cos(n*(phi1-phi2-phi3))>
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=3)
+ /*
+ if(nPrim>=4 && nPrim<=fMaxAllowedMultiplicity)
+ {
+  // 4 nested loops multiparticle correlations using particle weights:       
+  for(Int_t i1=0;i1<nPrim;i1++)
+  {
+   aftsTrack=anEvent->GetTrack(i1);
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi1=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi1 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi1*fnBinsPhi/TMath::TwoPi())));
+   for(Int_t i2=0;i2<nPrim;i2++)
+   {
+    if(i2==i1)continue;
+    aftsTrack=anEvent->GetTrack(i2);
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi2=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));
+    for(Int_t i3=0;i3<nPrim;i3++)
+    {
+     if(i3==i1||i3==i2)continue;
+     aftsTrack=anEvent->GetTrack(i3);
+     if(!(aftsTrack->InRPSelection())) continue;
+     phi3=aftsTrack->Phi();
+     if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));
+     for(Int_t i4=0;i4<nPrim;i4++)
+     {
+      if(i4==i1||i4==i2||i4==i3)continue;
+      aftsTrack=anEvent->GetTrack(i4);
+      if(!(aftsTrack->InRPSelection())) continue;
+      phi4=aftsTrack->Phi();
+      if(fUsePhiWeights && fPhiWeights) wPhi4 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi4*fnBinsPhi/TMath::TwoPi())));
+      if(nPrim>=4) cout<<i1<<" "<<i2<<" "<<i3<<" "<<i4<<"\r"<<flush; // to be improved (replace eventually this if statement with if(nPrim==4))
+      // 4-p correlations using particle weights:
+      if(fUsePhiWeights) fIntFlowDirectCorrelations->Fill(10.5,cos(n*phi1+n*phi2-n*phi3-n*phi4),wPhi1*wPhi2*wPhi3*wPhi4); 
+      // extra correlations: 
+      // 2-p extra correlations (do not appear if particle weights are not used):
+      // ...
+      // 3-p extra correlations (do not appear if particle weights are not used):
+      // ...
+      // 4-p extra correlations (do not appear if particle weights are not used):
+      // ...
+     } // end of for(Int_t i4=0;i4<nPrim;i4++) 
+    } // end of for(Int_t i3=0;i3<nPrim;i3++)
+   } // end of for(Int_t i2=0;i2<nPrim;i2++)
+  } // end of for(Int_t i1=0;i1<nPrim;i1++)
+ } // end of if(nPrim>=4)
+
+ */
+
+ cout<<endl; 
+
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateIntFlowCorrectionsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* anEvent)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights(TString type, TString ptOrEta)
+{
+ // Calculate correction terms for non-uniform acceptance for differential flow (cos terms) using particle weights.
+ // Results are stored in fDiffFlowCorrectionTermsForNUAPro[t][pe][1][cti], where cti runs as follows:
+ //
+ //  0: <<cos n(psi)>>
+ //  1: <<w2 cos n(psi1+phi2)>>
+ //  2: <<w2 w3 cos n(psi1+phi2-phi3)>>
+ //  3: <<w2 w3 cos n(psi1-phi2-phi3)>>
+ //  4:
+ //  5:
+ //  6:
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ //Double_t dReQ1n3k = (*fReQ)(0,3);
+ //Double_t dReQ4n4k = (*fReQ)(3,4);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ //Double_t dImQ1n3k = (*fImQ)(0,3);
+ //Double_t dImQ4n4k = (*fImQ)(3,4);
+ // S^M_{p,k} (see .h file for the definition of fSpk):
+ Double_t dSM1p1k = (*fSpk)(0,1);
+ Double_t dSM1p2k = (*fSpk)(0,2);
+ Double_t dSM2p1k = (*fSpk)(1,1);
+
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ // looping over all bins and calculating correction terms: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n2kRe = 0.;
+  Double_t q1n2kIm = 0.;
+  Double_t q2n1kRe = 0.;
+  Double_t q2n1kIm = 0.;
+    
+  // s_{1,1}, s_{1,2} // to be improved (add explanation)  
+  Double_t s1p1k = 0.; 
+  Double_t s1p2k = 0.; 
+  
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+  
+  // M0111 from Eq. (118) in QC2c (to be improved (notation))
+  Double_t dM01 = 0.;
+  Double_t dM011 = 0.;
+  
+  if(type == "POI")
+  {           
+   // q_{m*n,k}:
+   q1n2kRe = fReRPQ1dEBE[2][pe][0][2]->GetBinContent(fReRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][2]->GetBinEntries(fReRPQ1dEBE[2][pe][0][2]->GetBin(b));
+   q1n2kIm = fImRPQ1dEBE[2][pe][0][2]->GetBinContent(fImRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][2]->GetBinEntries(fImRPQ1dEBE[2][pe][0][2]->GetBin(b));         
+   q2n1kRe = fReRPQ1dEBE[2][pe][1][1]->GetBinContent(fReRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][1]->GetBinEntries(fReRPQ1dEBE[2][pe][1][1]->GetBin(b));
+   q2n1kIm = fImRPQ1dEBE[2][pe][1][1]->GetBinContent(fImRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][1]->GetBinEntries(fImRPQ1dEBE[2][pe][1][1]->GetBin(b));         
+   mq = fReRPQ1dEBE[2][pe][1][1]->GetBinEntries(fReRPQ1dEBE[2][pe][1][1]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+   
+   s1p1k = pow(fs1dEBE[2][pe][1]->GetBinContent(b)*fs1dEBE[2][pe][1]->GetBinEntries(b),1.); 
+   s1p2k = pow(fs1dEBE[2][pe][2]->GetBinContent(b)*fs1dEBE[2][pe][2]->GetBinEntries(b),1.); 
+  }else if(type == "RP")
+   {
+    // q_{m*n,k}: (Remark: m=1 is 0, k=0 iz zero (to be improved!)) 
+    q1n2kRe = fReRPQ1dEBE[0][pe][0][2]->GetBinContent(fReRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][0][2]->GetBinEntries(fReRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q1n2kIm = fImRPQ1dEBE[0][pe][0][2]->GetBinContent(fImRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][0][2]->GetBinEntries(fImRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q2n1kRe = fReRPQ1dEBE[0][pe][1][1]->GetBinContent(fReRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][1][1]->GetBinEntries(fReRPQ1dEBE[0][pe][1][1]->GetBin(b));
+    q2n1kIm = fImRPQ1dEBE[0][pe][1][1]->GetBinContent(fImRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][1][1]->GetBinEntries(fImRPQ1dEBE[0][pe][1][1]->GetBin(b));
+    // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+    s1p1k = pow(fs1dEBE[0][pe][1]->GetBinContent(b)*fs1dEBE[0][pe][1]->GetBinEntries(b),1.); 
+    s1p2k = pow(fs1dEBE[0][pe][2]->GetBinContent(b)*fs1dEBE[0][pe][2]->GetBinEntries(b),1.); 
+    //s1p3k = pow(fs1dEBE[0][pe][3]->GetBinContent(b)*fs1dEBE[0][pe][3]->GetBinEntries(b),1.);  
+    
+    mq = fReRPQ1dEBE[0][pe][1][1]->GetBinEntries(fReRPQ1dEBE[0][pe][1][1]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here) 
+  }    
+  
+  if(type == "POI")
+  {
+   // p_{m*n,k}:   
+   p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+           * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here) 
+   // M01 from Eq. (118) in QC2c (to be improved (notation)):
+   dM01 = mp*dSM1p1k-s1p1k;
+   dM011 = mp*(dSM2p1k-dSM1p2k)
+         - 2.*(s1p1k*dSM1p1k-s1p2k);
+       
+   // typeFlag = RP (0) or POI (1):   
+   t = 1; 
+  } else if(type == "RP")
+    {  
+     // to be improved (cross-checked):
+     p1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+             * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+     p1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))  
+             * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+     mp = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+     // M01 from Eq. (118) in QC2c (to be improved (notation)):
+     dM01 = mp*dSM1p1k-s1p1k;
+     dM011 = mp*(dSM2p1k-dSM1p2k)
+           - 2.*(s1p1k*dSM1p1k-s1p2k); 
+     // typeFlag = RP (0) or POI (1): 
+     t = 0;
+    }
+  
+  // <<cos n(psi1)>>:
+  Double_t cosP1nPsi = 0.;
+  if(mp)
+  {
+   cosP1nPsi = p1n0kRe/mp;
+   
+   // fill profile for <<cos n(psi1)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi,mp);
+   // histogram to store <cos n(psi1)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][0]->SetBinContent(b,cosP1nPsi);
+  } // end of if(mp)   
+  
+  // <<w2 cos n(psi1+phi2)>>:
+  Double_t cosP1nPsiP1nPhiW2 = 0.;
+  if(dM01)
+  {
+   cosP1nPsiP1nPhiW2 = (p1n0kRe*dReQ1n1k-p1n0kIm*dImQ1n1k-q2n1kRe)/(dM01);
+   // fill profile for <<w2 cos n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsiP1nPhiW2,dM01);
+   // histogram to store <w2 cos n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][1]->SetBinContent(b,cosP1nPsiP1nPhiW2);
+  } // end of if(dM01)   
+  
+  // <<w2 w3 cos n(psi1+phi2-phi3)>>:
+  Double_t cosP1nPsi1P1nPhi2MPhi3W2W3 = 0.;
+  if(dM011)
+  {
+   cosP1nPsi1P1nPhi2MPhi3W2W3 = (p1n0kRe*(pow(dImQ1n1k,2.)+pow(dReQ1n1k,2.))
+                              - p1n0kRe*dSM1p2k
+                              - q2n1kRe*dReQ1n1k-q2n1kIm*dImQ1n1k
+                              - s1p1k*dReQ1n1k
+                              + 2.*q1n2kRe)
+                              / dM011;  
+   // fill profile for <<w1 w2 w3 cos n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi1P1nPhi2MPhi3W2W3,dM011);
+   // histogram to store <w1 w2 w3 cos n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][2]->SetBinContent(b,cosP1nPsi1P1nPhi2MPhi3W2W3);
+  } // end of if(dM011)   
+  
+  // <<w2 w3 cos n(psi1-phi2-phi3)>>:
+  Double_t cosP1nPsi1M1nPhi2MPhi3W2W3 = 0.;
+  if(dM011)
+  {
+   cosP1nPsi1M1nPhi2MPhi3W2W3 = (p1n0kRe*(pow(dReQ1n1k,2.)-pow(dImQ1n1k,2.))+2.*p1n0kIm*dReQ1n1k*dImQ1n1k
+                              - 1.*(p1n0kRe*dReQ2n2k+p1n0kIm*dImQ2n2k)  
+                              - 2.*s1p1k*dReQ1n1k
+                              + 2.*q1n2kRe)
+                              / dM011;
+   // fill profile for <<w1 w2 w3 cos n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][1][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],cosP1nPsi1M1nPhi2MPhi3W2W3,dM011);
+   // histogram to store <w1 w2 w3 cos n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][1][3]->SetBinContent(b,cosP1nPsi1M1nPhi2MPhi3W2W3);
+  } // end of if(dM011)   
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+   
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights(TString type, TString ptOrEta)
+
+
+//================================================================================================================================
+
+
+void AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights(TString type, TString ptOrEta)
+{
+ // Calculate correction terms for non-uniform acceptance for differential flow (sin terms).
+  
+ // Results are stored in fDiffFlowCorrectionTermsForNUAPro[t][pe][0][cti], where cti runs as follows:
+ //  0: <<sin n(psi1)>>
+ //  1: <<w2 sin n(psi1+phi2)>>
+ //  2: <<w2 w3 sin n(psi1+phi2-phi3)>>
+ //  3: <<w2 w3 sin n(psi1-phi2-phi3)>>:
+ //  4:
+ //  5:
+ //  6:
+ // real and imaginary parts of weighted Q-vectors evaluated in harmonics n, 2n, 3n and 4n: 
+ Double_t dReQ1n1k = (*fReQ)(0,1);
+ Double_t dReQ2n2k = (*fReQ)(1,2);
+ //Double_t dReQ1n3k = (*fReQ)(0,3);
+ //Double_t dReQ4n4k = (*fReQ)(3,4);
+ Double_t dImQ1n1k = (*fImQ)(0,1);
+ Double_t dImQ2n2k = (*fImQ)(1,2);
+ //Double_t dImQ1n3k = (*fImQ)(0,3);
+ //Double_t dImQ4n4k = (*fImQ)(3,4);
+ // S^M_{p,k} (see .h file for the definition of fSpk):
+ Double_t dSM1p1k = (*fSpk)(0,1);
+ Double_t dSM1p2k = (*fSpk)(0,2);
+ Double_t dSM2p1k = (*fSpk)(1,1);
+
+ Int_t t = 0; // type flag 
+ Int_t pe = 0; // ptEta flag
+ if(type == "RP")
+ {
+  t = 0;
+ } else if(type == "POI")
+   {
+    t = 1;
+   }
+
+ if(ptOrEta == "Pt")
+ {
+  pe = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    pe = 1;
+   }
+    
+ Int_t nBinsPtEta[2] = {fnBinsPt,fnBinsEta};
+ Double_t minPtEta[2] = {fPtMin,fEtaMin};
+ //Double_t maxPtEta[2] = {fPtMax,fEtaMax};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+
+ // looping over all bins and calculating correction terms: 
+ for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+ {
+  // real and imaginary parts of p_{m*n,0} (non-weighted Q-vector evaluated for POIs in particular pt or eta bin): 
+  Double_t p1n0kRe = 0.;
+  Double_t p1n0kIm = 0.;
+
+  // number of POIs in particular pt or eta bin:
+  Double_t mp = 0.;
+
+  // real and imaginary parts of q_{m*n,0} (weighted Q-vector evaluated for particles which are both RPs and POIs in particular pt or eta bin):
+  Double_t q1n2kRe = 0.;
+  Double_t q1n2kIm = 0.;
+  Double_t q2n1kRe = 0.;
+  Double_t q2n1kIm = 0.;
+    
+  // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+  Double_t s1p1k = 0.; 
+  Double_t s1p2k = 0.; 
+  
+  // number of particles which are both RPs and POIs in particular pt or eta bin:
+  Double_t mq = 0.;
+  
+  // M0111 from Eq. (118) in QC2c (to be improved (notation))
+  Double_t dM01 = 0.;
+  Double_t dM011 = 0.;
+
+  if(type == "POI")
+  {    
+   // q_{m*n,k}:
+   q1n2kRe = fReRPQ1dEBE[2][pe][0][2]->GetBinContent(fReRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][0][2]->GetBinEntries(fReRPQ1dEBE[2][pe][0][2]->GetBin(b));
+   q1n2kIm = fImRPQ1dEBE[2][pe][0][2]->GetBinContent(fImRPQ1dEBE[2][pe][0][2]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][0][2]->GetBinEntries(fImRPQ1dEBE[2][pe][0][2]->GetBin(b));         
+   q2n1kRe = fReRPQ1dEBE[2][pe][1][1]->GetBinContent(fReRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fReRPQ1dEBE[2][pe][1][1]->GetBinEntries(fReRPQ1dEBE[2][pe][1][1]->GetBin(b));
+   q2n1kIm = fImRPQ1dEBE[2][pe][1][1]->GetBinContent(fImRPQ1dEBE[2][pe][1][1]->GetBin(b))
+           * fImRPQ1dEBE[2][pe][1][1]->GetBinEntries(fImRPQ1dEBE[2][pe][1][1]->GetBin(b));         
+   mq = fReRPQ1dEBE[2][pe][0][0]->GetBinEntries(fReRPQ1dEBE[2][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)
+   
+   s1p1k = pow(fs1dEBE[2][pe][1]->GetBinContent(b)*fs1dEBE[2][pe][1]->GetBinEntries(b),1.); 
+   s1p2k = pow(fs1dEBE[2][pe][2]->GetBinContent(b)*fs1dEBE[2][pe][2]->GetBinEntries(b),1.); 
+  }else if(type == "RP")
+   {
+    // q_{m*n,k}: (Remark: m=1 is 0, k=0 iz zero (to be improved!)) 
+    q1n2kRe = fReRPQ1dEBE[0][pe][0][2]->GetBinContent(fReRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][0][2]->GetBinEntries(fReRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q1n2kIm = fImRPQ1dEBE[0][pe][0][2]->GetBinContent(fImRPQ1dEBE[0][pe][0][2]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][0][2]->GetBinEntries(fImRPQ1dEBE[0][pe][0][2]->GetBin(b));
+    q2n1kRe = fReRPQ1dEBE[0][pe][1][1]->GetBinContent(fReRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fReRPQ1dEBE[0][pe][1][1]->GetBinEntries(fReRPQ1dEBE[0][pe][1][1]->GetBin(b));
+    q2n1kIm = fImRPQ1dEBE[0][pe][1][1]->GetBinContent(fImRPQ1dEBE[0][pe][1][1]->GetBin(b))
+            * fImRPQ1dEBE[0][pe][1][1]->GetBinEntries(fImRPQ1dEBE[0][pe][1][1]->GetBin(b));
+    // s_{1,1}, s_{1,2} and s_{1,3} // to be improved (add explanation)  
+    s1p1k = pow(fs1dEBE[0][pe][1]->GetBinContent(b)*fs1dEBE[0][pe][1]->GetBinEntries(b),1.); 
+    s1p2k = pow(fs1dEBE[0][pe][2]->GetBinContent(b)*fs1dEBE[0][pe][2]->GetBinEntries(b),1.); 
+    //s1p3k = pow(fs1dEBE[0][pe][3]->GetBinContent(b)*fs1dEBE[0][pe][3]->GetBinEntries(b),1.); 
+  }    
+  
+  if(type == "POI")
+  {
+   // p_{m*n,k}:   
+   p1n0kRe = fReRPQ1dEBE[1][pe][0][0]->GetBinContent(fReRPQ1dEBE[1][pe][0][0]->GetBin(b))
+           * fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   p1n0kIm = fImRPQ1dEBE[1][pe][0][0]->GetBinContent(fImRPQ1dEBE[1][pe][0][0]->GetBin(b))  
+           * fImRPQ1dEBE[1][pe][0][0]->GetBinEntries(fImRPQ1dEBE[1][pe][0][0]->GetBin(b));
+   mp = fReRPQ1dEBE[1][pe][0][0]->GetBinEntries(fReRPQ1dEBE[1][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here) 
+   // M01 from Eq. (118) in QC2c (to be improved (notation)):
+   dM01 = mp*dSM1p1k-s1p1k;
+   dM011 = mp*(dSM2p1k-dSM1p2k)
+         - 2.*(s1p1k*dSM1p1k-s1p2k);  
+   // typeFlag = RP (0) or POI (1):   
+   t = 1;           
+  } else if(type == "RP")
+    { 
+     // to be improved (cross-checked):
+     p1n0kRe = fReRPQ1dEBE[0][pe][0][0]->GetBinContent(fReRPQ1dEBE[0][pe][0][0]->GetBin(b))
+             * fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b));
+     p1n0kIm = fImRPQ1dEBE[0][pe][0][0]->GetBinContent(fImRPQ1dEBE[0][pe][0][0]->GetBin(b))  
+             * fImRPQ1dEBE[0][pe][0][0]->GetBinEntries(fImRPQ1dEBE[0][pe][0][0]->GetBin(b));
+     mp = fReRPQ1dEBE[0][pe][0][0]->GetBinEntries(fReRPQ1dEBE[0][pe][0][0]->GetBin(b)); // to be improved (cross-checked by accessing other profiles here)    
+     // M01 from Eq. (118) in QC2c (to be improved (notation)):
+     dM01 = mp*dSM1p1k-s1p1k;
+     dM011 = mp*(dSM2p1k-dSM1p2k)
+           - 2.*(s1p1k*dSM1p1k-s1p2k); 
+     // typeFlag = RP (0) or POI (1): 
+     t = 0;
+    }
+  
+  // <<sin n(psi1)>>:
+  Double_t sinP1nPsi = 0.;
+  if(mp)
+  {
+   sinP1nPsi = p1n0kIm/mp;
+   
+   // fill profile for <<sin n(psi1)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][0]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi,mp);
+   // histogram to store <sin n(psi1)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][0]->SetBinContent(b,sinP1nPsi);
+  } // end of if(mp)   
+  
+  // <<w2 sin n(psi1+phi2)>>:
+  Double_t sinP1nPsiP1nPhiW2 = 0.;
+  if(dM01)
+  {
+   sinP1nPsiP1nPhiW2 = (p1n0kRe*dImQ1n1k+p1n0kIm*dReQ1n1k-q2n1kIm)/(dM01);
+   // fill profile for <<w2 sin n(psi1+phi2)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][1]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsiP1nPhiW2,dM01);
+   // histogram to store <w2 sin n(psi1+phi2)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][1]->SetBinContent(b,sinP1nPsiP1nPhiW2);
+  } // end of if(mp*dMult-mq)   
+  
+  // <<w2 w3 sin n(psi1+phi2-phi3)>>:
+  Double_t sinP1nPsi1P1nPhi2MPhi3W2W3 = 0.;
+  if(dM011)
+  {
+   sinP1nPsi1P1nPhi2MPhi3W2W3 = (p1n0kIm*(pow(dImQ1n1k,2.)+pow(dReQ1n1k,2.))
+                              - p1n0kIm*dSM1p2k
+                              + q2n1kRe*dImQ1n1k-q2n1kIm*dReQ1n1k
+                              - s1p1k*dImQ1n1k
+                              + 2.*q1n2kIm)
+                              / dM011;  
+   // fill profile for <<w2 w3 sin n(psi1+phi2-phi3)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][2]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi1P1nPhi2MPhi3W2W3,dM011);
+   // histogram to store <w2 w3 sin n(psi1+phi2-phi3)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][2]->SetBinContent(b,sinP1nPsi1P1nPhi2MPhi3W2W3);
+  } // end of if(dM011)   
+  
+  // <<w2 w3 sin n(psi1-phi2-phi3)>>:
+  Double_t sinP1nPsi1M1nPhi2MPhi3W2W3 = 0.;
+  if(dM011)
+  {
+   sinP1nPsi1M1nPhi2MPhi3W2W3 = (p1n0kIm*(pow(dReQ1n1k,2.)-pow(dImQ1n1k,2.))-2.*p1n0kRe*dReQ1n1k*dImQ1n1k
+                              + 1.*(p1n0kRe*dImQ2n2k-p1n0kIm*dReQ2n2k)  
+                              + 2.*s1p1k*dImQ1n1k
+                              - 2.*q1n2kIm)
+                              / dM011;
+   // fill profile for <<w2 w3 sin n(psi1-phi2-phi3)>>:
+   fDiffFlowCorrectionTermsForNUAPro[t][pe][0][3]->Fill(minPtEta[pe]+(b-1)*binWidthPtEta[pe],sinP1nPsi1M1nPhi2MPhi3W2W3,dM011);
+   // histogram to store <w2 w3 sin n(psi1-phi2-phi3)> e-b-e (needed in some other methods):
+   fDiffFlowCorrectionTermsForNUAEBE[t][pe][0][3]->SetBinContent(b,sinP1nPsi1M1nPhi2MPhi3W2W3);
+  } // end of if(dM011)   
+  
+ } // end of for(Int_t b=1;b<=nBinsPtEta[pe];b++)
+
+} // end of AliFlowAnalysisWithQCumulants::CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights(TString type, TString ptOrEta)
+
+//================================================================================================================================
+   
+void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple * const anEvent, TString type, TString ptOrEta)
+{
+ // Evaluate with nested loops correction terms for non-uniform acceptance 
+ // with using particle weights (both sin and cos terms) relevant for differential flow.
+ // Remark 1: "w1" in expressions bellow is a particle weight used only for particles which were 
+ //           flagged both as POI and RP.
+ // Remark 2: Reduced correction terms for non-uniform acceptance are evaluated in pt bin number fCrossCheckInPtBinNo 
+ //           and eta bin number fCrossCheckInEtaBinNo both for RPs and POIs.
+ // Remark 3: Results are stored in 1 bin profiles fDiffFlowDirectCorrections[t][pe][sc][cti], where first three indices runs as: 
+ //           [0=RP,1=POI][0=Pt,1=Eta][0=sin terms,1=cos terms], whilst the cti (correction term index) runs as follows: 
+ //  cti: 
+ //    0: <<sc n(psi1)>>
+ //    1: <<w2 sc n(psi1+phi2)>> 
+ //    2: <<w2 w3 sc n(psi1+phi2-phi3)>>
+ //    3: <<w2 w3 sc n(psi1-phi2-phi3)>>
+ //    4:
+ //    5:
+ //    6:
+     
+ Int_t typeFlag = 0;
+ Int_t ptEtaFlag = 0;
+ if(type == "RP")
+ {
+  typeFlag = 0;
+ } else if(type == "POI")
+   {
+    typeFlag = 1;
+   }      
+ if(ptOrEta == "Pt")
+ {
+  ptEtaFlag = 0;
+ } else if(ptOrEta == "Eta")
+   {
+    ptEtaFlag = 1;
+   } 
+ // shortcuts:
+ Int_t t = typeFlag;
+ Int_t pe = ptEtaFlag;
+      
+ Double_t lowerPtEtaEdge[2] = {fPtMin+(fCrossCheckInPtBinNo-1)*fPtBinWidth,fEtaMin+(fCrossCheckInEtaBinNo-1)*fEtaBinWidth};
+ Double_t upperPtEtaEdge[2] = {fPtMin+fCrossCheckInPtBinNo*fPtBinWidth,fEtaMin+fCrossCheckInEtaBinNo*fEtaBinWidth};
+ Double_t binWidthPtEta[2] = {fPtBinWidth,fEtaBinWidth};
+ Int_t nPrim = anEvent->NumberOfTracks(); 
+ AliFlowTrackSimple *aftsTrack = NULL;
+ Double_t psi1=0., phi2=0., phi3=0.;// phi4=0.;// phi5=0., phi6=0., phi7=0., phi8=0.;
+ Double_t wPhi2=1., wPhi3=1.;
+ Int_t n = fHarmonic; 
+ // 1'-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi(); 
+  // sin terms: 
+  fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*psi1),1.); // <<sin(n*(psi1))>>  
+  // cos terms: 
+  fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][0]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*psi1),1.); // <<cos(n*(psi1))>>  
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+   
+ // 2'-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi(); 
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));   
+   // sin terms: 
+   fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1+phi2)),wPhi2); // <<w2 sin(n*(psi1+phi2))>>  
+   // cos terms: 
+   fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][1]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2)),wPhi2); // <<w2 cos(n*(psi1+phi2))>>  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)   
+ // 3'-particle correction terms:
+ for(Int_t i1=0;i1<nPrim;i1++)
+ {
+  aftsTrack=anEvent->GetTrack(i1);
+  // POI condition (first particle in the correlator must be POI): // to be improved (this can be implemented much better)
+  if(typeFlag==1) // this is diff flow of POIs 
+  {
+   if(ptOrEta == "Pt")
+   { 
+    if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;
+   } else if (ptOrEta == "Eta")
+     {
+      if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InPOISelection())))continue;    
+     }
+  } else // this is diff flow of RPs 
+    {
+     if(ptOrEta == "Pt")
+     { 
+      if(!((aftsTrack->Pt()>=lowerPtEtaEdge[pe] && aftsTrack->Pt()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;
+     } else if (ptOrEta == "Eta")
+       {
+        if(!((aftsTrack->Eta()>=lowerPtEtaEdge[pe] && aftsTrack->Eta()<upperPtEtaEdge[pe]) && (aftsTrack->InRPSelection())))continue;    
+       }
+    }
+  psi1=aftsTrack->Phi();
+  for(Int_t i2=0;i2<nPrim;i2++)
+  {
+   if(i2==i1) continue;
+   aftsTrack=anEvent->GetTrack(i2);
+   // RP condition (!(first) particle in the correlator must be RP):
+   if(!(aftsTrack->InRPSelection())) continue;
+   phi2=aftsTrack->Phi();
+   if(fUsePhiWeights && fPhiWeights) wPhi2 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi2*fnBinsPhi/TMath::TwoPi())));   
+   for(Int_t i3=0;i3<nPrim;i3++)
+   {
+    if(i3==i1||i3==i2) continue;
+    aftsTrack=anEvent->GetTrack(i3);
+    // RP condition (!(first) particle in the correlator must be RP):
+    if(!(aftsTrack->InRPSelection())) continue;
+    phi3=aftsTrack->Phi();
+    if(fUsePhiWeights && fPhiWeights) wPhi3 = fPhiWeights->GetBinContent(1+(Int_t)(TMath::Floor(phi3*fnBinsPhi/TMath::TwoPi())));   
+    // sin terms: 
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][2]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1+phi2-phi3)),wPhi2*wPhi3); // <<wPhi2*wPhi3 sin(n*(psi1+phi2-phi3))>>  
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][0][3]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,sin(n*(psi1-phi2-phi3)),wPhi2*wPhi3); // <<wPhi2*wPhi3 sin(n*(psi1-phi2-phi3))>>  
+    // cos terms: 
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][2]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1+phi2-phi3)),wPhi2*wPhi3); // <<wPhi2*wPhi3 cos(n*(psi1+phi2-phi3))>>  
+    fDiffFlowDirectCorrectionTermsForNUA[t][pe][1][3]->Fill(lowerPtEtaEdge[pe]+binWidthPtEta[pe]/2.,cos(n*(psi1-phi2-phi3)),wPhi2*wPhi3); // <<wPhi2*wPhi3 cos(n*(psi1-phi2-phi3))>>  
+   }//end of for(Int_t i3=0;i3<nPrim;i3++)  
+  }//end of for(Int_t i2=0;i2<nPrim;i2++)  
+ }//end of for(Int_t i1=0;i1<nPrim;i1++)
+               
+} // end of void AliFlowAnalysisWithQCumulants::EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* anEvent, TString type, TString ptOrEta)
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CheckPointersUsedInFinish()
+{
+ // Check all pointers used in method Finish().
+ if(!fAvMultiplicity)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fAvMultiplicity is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0);
+ }
+ if(!fIntFlowCorrelationsPro)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowCorrelationsPro is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if(!fIntFlowSquaredCorrelationsPro)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowSquaredCorrelationsPro is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowCorrelationsHist)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowCorrelationsHist is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if((fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights) && !fIntFlowExtraCorrelationsPro) 
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowExtraCorrelationsPro is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ for(Int_t power=0;power<2;power++)
+ { 
+  if(!fIntFlowSumOfEventWeights[power]) 
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowSumOfEventWeights[%d] is NULL in CheckPointersUsedInFinish() !!!!",power)<<endl;
+   cout<<endl;
+   exit(0);
+  }
+ } // end of for(Int_t power=0;power<2;power++)
+ if(!fIntFlowProductOfCorrelationsPro)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowProductOfCorrelationsPro is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowSumOfProductOfEventWeights)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowSumOfProductOfEventWeights is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if(!fIntFlowCovariances)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowCovariances is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }  
+ if(!fIntFlowQcumulants)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowQcumulants is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }  
+ if(!fIntFlow)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlow is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if(!fCommonHists)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fCommonHists is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if(!(fCommonHistsResults2nd && fCommonHistsResults4th && fCommonHistsResults6th && fCommonHistsResults8th))
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fCommonHistsResults2nd && fCommonHistsResults4th && fCommonHistsResults6th"<<endl; 
+  cout<<"               && fCommonHistsResults8th is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0);
+ } 
+ // NUA stuff:
+ for(Int_t sc=0;sc<2;sc++) // sin/cos
+ { 
+  if(!fIntFlowCorrectionTermsForNUAPro[sc]) 
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowCorrectionTermsForNUAPro[%d] is NULL in CheckPointersUsedInFinish() !!!!",sc)<<endl;
+   cout<<endl;
+   exit(0);
+  }
+  if(!fIntFlowCorrectionTermsForNUAHist[sc]) 
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowCorrectionTermsForNUAHist[%d] is NULL in CheckPointersUsedInFinish() !!!!",sc)<<endl;
+   cout<<endl;
+   exit(0);
+  }
+  for(Int_t lq=0;lq<2;lq++) // linear/quadratic
+  {
+   if(!fIntFlowSumOfEventWeightsNUA[sc][lq]) 
+   {
+    cout<<endl;
+    cout<<Form(" WARNING (QC): fIntFlowSumOfEventWeightsNUA[%d][%d] is NULL in CheckPointersUsedInFinish() !!!!",sc,lq)<<endl;
+    cout<<endl;
+    exit(0);
+   }
+  } // end of for(Int_t lq=0;lq<2;lq++) // linear/quadratic
+ } // end of for(Int_t power=0;power<2;power++) 
+ if(!fIntFlowProductOfCorrectionTermsForNUAPro)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowProductOfCorrectionTermsForNUAPro is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowSumOfProductOfEventWeightsNUA)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowSumOfProductOfEventWeightsNUA is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowCovariancesNUA)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowCovariancesNUA is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowQcumulantsErrorSquaredRatio)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowQcumulantsErrorSquaredRatio is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ } 
+ if(!fIntFlowDetectorBias)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowDetectorBias is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ // Versus multiplicity:
+ if(!fCalculateCumulantsVsM){return;}
+ for(Int_t co=0;co<=3;co++) // cumulant order
+ {
+  if(!fIntFlowQcumulantsVsM[co])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowQcumulantsVsM[%d] is NULL in CheckPointersUsedInFinish() !!!!",co)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  if(!fIntFlowVsM[co])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowVsM[%d] is NULL in CheckPointersUsedInFinish() !!!!",co)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  if(!fIntFlowDetectorBiasVsM[co])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowDetectorBiasVsM[%d] is NULL in CheckPointersUsedInFinish() !!!!",co)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+ } // end of for(Int_t c0=0;c0<=3;c0++) // cumulant order
+ for(Int_t ci=0;ci<=3;ci++) // correlation index
+ {
+  if(!fIntFlowCorrelationsVsMPro[ci])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowCorrelationsVsMPro[%d] is NULL in CheckPointersUsedInFinish() !!!!",ci)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  if(!fIntFlowSquaredCorrelationsVsMPro[ci])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowSquaredCorrelationsVsMPro[%d] is NULL in CheckPointersUsedInFinish() !!!!",ci)<<endl;
+   cout<<endl;
+   exit(0); 
+  }  
+  if(!fIntFlowCorrelationsVsMHist[ci])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowCorrelationsVsMHist[%d] is NULL in CheckPointersUsedInFinish() !!!!",ci)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  for(Int_t power=0;power<2;power++) 
+  {
+   if(!fIntFlowSumOfEventWeightsVsM[ci][power])
+   {
+    cout<<endl;
+    cout<<Form(" WARNING (QC): fIntFlowSumOfEventWeightsVsM[%d][%d] is NULL in CheckPointersUsedInFinish() !!!!",ci,power)<<endl;
+    cout<<endl;
+    exit(0);   
+   }
+  } // end of for(Int_t power=0;power<2;power++) 
+ } // end of for(Int_t ci=0;ci<=3;ci++) // correlation index
+ for(Int_t i=0;i<6;i++)
+ {
+  if(!fIntFlowProductOfCorrelationsVsMPro[i])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowProductOfCorrelationsVsMPro[%d] is NULL in CheckPointersUsedInFinish() !!!!",i)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  if(!fIntFlowSumOfProductOfEventWeightsVsM[i])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowSumOfProductOfEventWeightsVsM[%d] is NULL in CheckPointersUsedInFinish() !!!!",i)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+  if(!fIntFlowCovariancesVsM[i])
+  {
+   cout<<endl;
+   cout<<Form(" WARNING (QC): fIntFlowCovariancesVsM[%d] is NULL in CheckPointersUsedInFinish() !!!!",i)<<endl;
+   cout<<endl;
+   exit(0); 
+  }
+ } // end of for(Int_t i=0;i<6;i++) 
+ if(!fIntFlowRebinnedInM)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowRebinnedInM is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }
+ if(!fIntFlowQcumulantsRebinnedInM)
+ {
+  cout<<endl;
+  cout<<" WARNING (QC): fIntFlowQcumulantsRebinnedInM is NULL in CheckPointersUsedInFinish() !!!!"<<endl;
+  cout<<endl;
+  exit(0); 
+ }  
+} // end of void AliFlowAnalysisWithQCumulants::CheckPointersUsedInFinish()
+
+//================================================================================================================================
+
+void AliFlowAnalysisWithQCumulants::CheckPointersUsedInMake()
+{
+ // Check all pointers used in method Make(). // to be improved - check other pointers as well
+ if(!fAvMultiplicity)
+ {
+  printf("\n WARNING (QC): fAvMultiplicity is NULL in CheckPointersUsedInMake() !!!!\n\n");
+  exit(0);
+ }
+ if((fUsePhiWeights||fUsePtWeights||fUseEtaWeights||fUseTrackWeights) && !fIntFlowExtraCorrelationsPro) 
+ {
+  printf("\n WARNING (QC): fIntFlowExtraCorrelationsPro is NULL in CheckPointersUsedInMake() !!!!\n\n");
+  exit(0); 
+ } 
+ // 2D:
+ if(fCalculate2DDiffFlow)
+ {
+  for(Int_t t=0;t<2;t++) // type = RP or POI
+  { 
+   for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+   {
+    if(!f2DDiffFlowCorrelationsPro[t][rci])
+    {
+     printf("\n WARNING (QC): f2DDiffFlowCorrelationsPro[%i][%i] is NULL in CheckPointersUsedInMake() !!!!\n\n",t,rci);
+     exit(0);     
+    } // end of if(!f2DDiffFlowCorrelationsPro[t][rci])  
+   } // end of for(Int_t rci=0;rci<4;rci++) // reduced correlation index
+  } // end of for(Int_t t=0;t<2;t++)
+ } // end of if(fCalculate2DDiffFlow)  
+
+} // end of void AliFlowAnalysisWithQCumulants::CheckPointersUsedInMake()
+