]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PWG4/PartCorrDep/AliAnaCalorimeterQA.cxx
Calculate the fraction of maximum cell energy using method in AliCalorimeterUtils...
[u/mrichter/AliRoot.git] / PWG4 / PartCorrDep / AliAnaCalorimeterQA.cxx
index bbc4e329bd4f84e224831663c36271d4750e714e..838e3ea7dc2a7bbea481a137181dd452bba7dce5 100755 (executable)
 
 
 // --- ROOT system ---
-#include "Riostream.h"
-#include "TRefArray.h"
+//#include "Riostream.h"
+#include "TObjArray.h"
 #include "TParticle.h"
+#include "TDatabasePDG.h"
 #include "TCanvas.h"
 #include "TPad.h"
 #include "TROOT.h"
-//#include "TH3F.h"
+#include "TH3F.h"
 #include "TH2F.h"
 #include "TLegend.h"
+#include "TStyle.h"
+#include <TObjString.h>
 
 //---- AliRoot system ----
 #include "AliAnaCalorimeterQA.h"
 #include "AliCaloTrackReader.h"
 #include "AliStack.h"
-#include "AliAODCaloCells.h"
-#include "AliAODCaloCluster.h"
-#include "AliFidutialCut.h"
-#include "AliESDtrack.h"
-#include "AliESDCaloCluster.h"
-#include "AliESDEvent.h"
+#include "AliVCaloCells.h"
+#include "AliFiducialCut.h"
+#include "AliAODTrack.h"
+#include "AliVCluster.h"
+#include "AliVEvent.h"
+#include "AliVEventHandler.h"
+#include "AliAnalysisManager.h"
+#include "AliAODMCParticle.h"
+#include "AliMCAnalysisUtils.h"
+#include "AliAODPid.h"
+#include "AliExternalTrackParam.h"
 
 ClassImp(AliAnaCalorimeterQA)
-  
-//____________________________________________________________________________
-  AliAnaCalorimeterQA::AliAnaCalorimeterQA() : 
-    AliAnaPartCorrBaseClass(), fCalorimeter(""), fStyleMacro(""), fhE(0),fhPt(0),fhPhi(0),fhEta(0), fhEtaPhi(0), 
-    fhECharged(0),fhPtCharged(0),fhPhiCharged(0),fhEtaCharged(0), fhEtaPhiCharged(0), 
-    fhEChargedNoOut(0),fhPtChargedNoOut(0),fhPhiChargedNoOut(0),fhEtaChargedNoOut(0), fhEtaPhiChargedNoOut(0), 
-    fhDeltaE(0), fhDeltaPt(0),fhDeltaPhi(0),fhDeltaEta(0), fhRatioE(0), fhRatioPt(0),fhRatioPhi(0),fhRatioEta(0),
-    fh2E(0),fh2Pt(0),fh2Phi(0),fh2Eta(0), fhIM(0), fhAsym(0), fhNCellsPerCluster(0), fhNClusters(0), fhNCells(0), fhAmplitude(0), 
-    fhGenGamPt(0),fhGenGamEta(0),fhGenGamPhi(0),fhGenPi0Pt(0),fhGenPi0Eta(0),fhGenPi0Phi(0),
-    fhGenEtaPt(0),fhGenEtaEta(0),fhGenEtaPhi(0),fhGenOmegaPt(0),fhGenOmegaEta(0),fhGenOmegaPhi(0),
-    fhGenElePt(0),fhGenEleEta(0),fhGenElePhi(0), fhEMVxyz(0),  fhEMR(0), fhHaVxyz(0),  fhHaR(0),
-    fhGamE(0),fhGamPt(0),fhGamPhi(0),fhGamEta(0), 
-    fhGamDeltaE(0), fhGamDeltaPt(0),fhGamDeltaPhi(0),fhGamDeltaEta(0), fhGamRatioE(0), fhGamRatioPt(0),fhGamRatioPhi(0),fhGamRatioEta(0),
-    fhGam2E(0),fhGam2Pt(0),fhGam2Phi(0),fhGam2Eta(0),
-    fhEleE(0),fhElePt(0),fhElePhi(0),fhEleEta(0),
-    fhPi0E(0),fhPi0Pt(0),fhPi0Phi(0),fhPi0Eta(0), fhNeHadE(0),fhNeHadPt(0),fhNeHadPhi(0),fhNeHadEta(0), 
-    fhChHadE(0),fhChHadPt(0),fhChHadPhi(0),fhChHadEta(0),
-    fhGenGamAccE(0),fhGenGamAccPt(0),fhGenGamAccEta(0),fhGenGamAccPhi(0),
-    fhGenPi0AccE(0),fhGenPi0AccPt(0),fhGenPi0AccEta(0),fhGenPi0AccPhi(0),
-    fh1pOverE(0),fh1dR(0),fh2EledEdx(0), fh2MatchdEdx(0)
-{
-  //Default Ctor
-
-  //Initialize parameters
-  InitParameters();
-}
 
 //____________________________________________________________________________
-AliAnaCalorimeterQA::AliAnaCalorimeterQA(const AliAnaCalorimeterQA & qa) :   
-  AliAnaPartCorrBaseClass(qa), fCalorimeter(qa.fCalorimeter), fStyleMacro(qa.fStyleMacro),
-  fhE(qa.fhE),fhPt(qa.fhPt), fhPhi(qa.fhPhi), fhEta(qa.fhEta), 
-  fhEtaPhi(qa.fhEtaPhi), fhECharged(qa.fhECharged),fhPtCharged(qa.fhPtCharged),fhPhiCharged(qa.fhPhiCharged),
-  fhEtaCharged(qa.fhEtaCharged), fhEtaPhiCharged(qa.fhEtaPhiCharged), 
-  fhEChargedNoOut(qa.fhEChargedNoOut),fhPtChargedNoOut(qa.fhPtChargedNoOut),fhPhiChargedNoOut(qa.fhPhiChargedNoOut),
-  fhEtaChargedNoOut(qa.fhEtaChargedNoOut), fhEtaPhiChargedNoOut(qa.fhEtaPhiChargedNoOut), 
-  fhDeltaE(qa.fhDeltaE), fhDeltaPt(qa.fhDeltaPt), fhDeltaPhi(qa.fhDeltaPhi), fhDeltaEta(qa.fhDeltaEta),
-  fhRatioE(qa.fhRatioE), fhRatioPt(qa.fhRatioPt), fhRatioPhi(qa.fhRatioPhi), fhRatioEta(qa.fhRatioEta),
-  fh2E(qa.fh2E), fh2Pt(qa.fh2Pt), fh2Phi(qa.fh2Phi),fh2Eta(qa.fh2Eta), 
-  fhIM(qa.fhIM), fhAsym(qa.fhAsym), fhNCellsPerCluster(qa.fhNCellsPerCluster), fhNClusters(qa.fhNClusters), 
-  fhNCells(qa.fhNCells), fhAmplitude(qa.fhAmplitude),
-  fhGenGamPt(qa.fhGenGamPt), fhGenGamEta(qa.fhGenGamEta), fhGenGamPhi(qa.fhGenGamPhi),
-  fhGenPi0Pt(qa.fhGenPi0Pt), fhGenPi0Eta(qa.fhGenPi0Eta), fhGenPi0Phi(qa.fhGenPi0Phi),
-  fhGenEtaPt(qa.fhGenEtaPt), fhGenEtaEta(qa.fhGenEtaEta), fhGenEtaPhi(qa.fhGenEtaPhi),
-  fhGenOmegaPt(qa.fhGenOmegaPt), fhGenOmegaEta(qa.fhGenOmegaEta), fhGenOmegaPhi(qa.fhGenOmegaPhi),
-  fhGenElePt(qa.fhGenElePt), fhGenEleEta(qa.fhGenEleEta), fhGenElePhi(qa.fhGenElePhi), 
-  fhEMVxyz(qa.fhEMVxyz),  fhEMR(qa.fhEMR), fhHaVxyz(qa.fhHaVxyz),  fhHaR(qa.fhHaR),
-  fhGamE(qa.fhGamE),fhGamPt(qa.fhGamPt),fhGamPhi(qa.fhGamPhi),fhGamEta(qa.fhGamEta), 
-  fhGamDeltaE(qa.fhGamDeltaE), fhGamDeltaPt(qa.fhGamDeltaPt), fhGamDeltaPhi(qa.fhGamDeltaPhi), fhGamDeltaEta(qa.fhGamDeltaEta),
-  fhGamRatioE(qa.fhGamRatioE), fhGamRatioPt(qa.fhGamRatioPt), fhGamRatioPhi(qa.fhGamRatioPhi), fhGamRatioEta(qa.fhGamRatioEta),
-  fhGam2E(qa.fhGam2E), fhGam2Pt(qa.fhGam2Pt), fhGam2Phi(qa.fhGam2Phi),fhGam2Eta(qa.fhGam2Eta), 
-  fhEleE(qa.fhEleE),fhElePt(qa.fhElePt),fhElePhi(qa.fhElePhi),fhEleEta(qa.fhEleEta),
-  fhPi0E(qa.fhPi0E),fhPi0Pt(qa.fhPi0Pt),fhPi0Phi(qa.fhPi0Phi),fhPi0Eta(qa.fhPi0Eta), 
-  fhNeHadE(qa.fhNeHadE),fhNeHadPt(qa.fhNeHadPt),fhNeHadPhi(qa.fhNeHadPhi),fhNeHadEta(qa.fhNeHadEta), 
-  fhChHadE(qa.fhChHadE),fhChHadPt(qa.fhChHadPt),fhChHadPhi(qa.fhChHadPhi),fhChHadEta(qa.fhChHadEta),
-  fhGenGamAccE(qa.fhGenGamAccE),fhGenGamAccPt(qa.fhGenGamAccPt),fhGenGamAccEta(qa.fhGenGamAccEta),fhGenGamAccPhi(qa.fhGenGamAccPhi),
-  fhGenPi0AccE(qa.fhGenPi0AccE),fhGenPi0AccPt(qa.fhGenPi0AccPt),fhGenPi0AccEta(qa.fhGenPi0AccEta),fhGenPi0AccPhi(qa.fhGenPi0AccPhi),
-  fh1pOverE(qa.fh1pOverE),fh1dR(qa.fh1dR),fh2EledEdx(qa.fh2EledEdx), fh2MatchdEdx(qa.fh2MatchdEdx)
-{
-  // cpy ctor
-  
-}
+AliAnaCalorimeterQA::AliAnaCalorimeterQA() : 
+AliAnaPartCorrBaseClass(), fCalorimeter(""),           fStyleMacro(""), 
+fFillAllPosHisto(kFALSE),  fFillAllPosHisto2(kTRUE), 
+fFillAllTH12(kFALSE),      fFillAllTH3(kTRUE), 
+fFillAllTMHisto(kTRUE),    fFillAllPi0Histo(kTRUE),
+fCorrelate(kTRUE),         fNModules(12),              fNRCU(2),
+fTimeCutMin(-1),           fTimeCutMax(9999999),
+fEMCALCellAmpMin(0),       fPHOSCellAmpMin(0), 
+fhE(0),                    fhPt(0),                    fhPhi(0),                fhEta(0),        fhEtaPhiE(0),
+fhECharged(0),             fhPtCharged(0),             fhPhiCharged(0),         fhEtaCharged(0), fhEtaPhiECharged(0), 
 
-//_________________________________________________________________________
-AliAnaCalorimeterQA & AliAnaCalorimeterQA::operator = (const AliAnaCalorimeterQA & qa)
-{
-  // assignment operator
+//Invariant mass
+fhIM(0 ),                  fhIMCellCut(0),             fhAsym(0), 
+fhNCellsPerCluster(0),     fhNCellsPerClusterNoCut(0), fhNCellsPerClusterMIP(0),   fhNCellsPerClusterMIPCharged(0), 
+fhNCellsvsClusterMaxCellDiffE0(0),    fhNCellsvsClusterMaxCellDiffE2(0),        fhNCellsvsClusterMaxCellDiffE6(0),
+fhNClusters(0),    
 
-  if(this == &qa)return *this;
-  ((AliAnaPartCorrBaseClass *)this)->operator=(qa);
+//Timing
+fhClusterTimeEnergy(0),               fhCellTimeSpreadRespectToCellMax(0),  
+fhCellIdCellLargeTimeSpread(0),       fhClusterPairDiffTimeE(0),
 
-  fCalorimeter  = qa.fCalorimeter;
-  fStyleMacro   = qa.fStyleMacro;      
-       
-  fhE      = qa.fhE;
-  fhPt     = qa.fhPt;
-  fhPhi    = qa.fhPhi;
-  fhEta    = qa.fhEta;
-  fhEtaPhi = qa.fhEtaPhi;
+fhClusterMaxCellCloseCellRatio(0),    fhClusterMaxCellDiff(0),                  fhClusterMaxCellDiffNoCut(0), 
+//fhClusterMaxCellDiffDivLambda0(0),
+fhLambda0vsClusterMaxCellDiffE0(0),   fhLambda0vsClusterMaxCellDiffE2(0),       fhLambda0vsClusterMaxCellDiffE6(0),
 
-  fhECharged      = qa.fhECharged;
-  fhPtCharged     = qa.fhPtCharged;
-  fhPhiCharged    = qa.fhPhiCharged;
-  fhEtaCharged    = qa.fhEtaCharged;
-  fhEtaPhiCharged = qa.fhEtaPhiCharged;
+//
+//bad cells
+fhBadClusterEnergy(0),                fhBadClusterTimeEnergy(0),            fhBadClusterPairDiffTimeE(0),
+fhBadClusterMaxCellCloseCellRatio(0), fhBadClusterMaxCellDiff(0),
 
-  fhEChargedNoOut      = qa.fhEChargedNoOut;
-  fhPtChargedNoOut     = qa.fhPtChargedNoOut;
-  fhPhiChargedNoOut    = qa.fhPhiChargedNoOut;
-  fhEtaChargedNoOut    = qa.fhEtaChargedNoOut;
-  fhEtaPhiChargedNoOut = qa.fhEtaPhiChargedNoOut;
-       
-  fhIM   = qa.fhIM;
-  fhAsym = qa.fhAsym;
-       
-  fhNCellsPerCluster = qa.fhNCellsPerCluster;
-  fhNClusters        = qa.fhNClusters;
-       
-  fhDeltaE   = qa.fhDeltaE;    
-  fhDeltaPt  = qa.fhDeltaPt;
-  fhDeltaPhi = qa.fhDeltaPhi;
-  fhDeltaEta = qa.fhDeltaEta;
-       
-  fhRatioE   = qa.fhRatioE;    
-  fhRatioPt  = qa.fhRatioPt;
-  fhRatioPhi = qa.fhRatioPhi;
-  fhRatioEta = qa.fhRatioEta;
-       
-       
-  fh2E   = qa.fh2E;    
-  fh2Pt  = qa.fh2Pt;
-  fh2Phi = qa.fh2Phi;
-  fh2Eta = qa.fh2Eta;
-       
-  fhNCells    = qa.fhNCells;
-  fhAmplitude = qa.fhAmplitude;
+//Position
+fhRNCells(0),              fhXNCells(0),               fhYNCells(0),            fhZNCells(0),
+fhRE(0),                   fhXE(0),                    fhYE(0),                 fhZE(0),    
+fhXYZ(0),
+fhRCellE(0),               fhXCellE(0),                fhYCellE(0),             fhZCellE(0),
+fhXYZCell(0),
+fhDeltaCellClusterRNCells(0),fhDeltaCellClusterXNCells(0),fhDeltaCellClusterYNCells(0),fhDeltaCellClusterZNCells(0),
+fhDeltaCellClusterRE(0),     fhDeltaCellClusterXE(0),     fhDeltaCellClusterYE(0),     fhDeltaCellClusterZE(0),
+// Cells
+fhNCells(0),               fhAmplitude(0),             fhAmpId(0),              fhEtaPhiAmp(0), 
+fhTime(0),                 fhTimeId(0),                fhTimeAmp(0), 
+//fhT0Time(0),               fhT0TimeId(0),              fhT0TimeAmp(0), 
+fhCaloCorrNClusters(0),    fhCaloCorrEClusters(0),     fhCaloCorrNCells(0),     fhCaloCorrECells(0),
+fhCaloV0SCorrNClusters(0), fhCaloV0SCorrEClusters(0),  fhCaloV0SCorrNCells(0),  fhCaloV0SCorrECells(0),
+fhCaloV0MCorrNClusters(0), fhCaloV0MCorrEClusters(0),  fhCaloV0MCorrNCells(0),  fhCaloV0MCorrECells(0),
+fhCaloTrackMCorrNClusters(0), fhCaloTrackMCorrEClusters(0), fhCaloTrackMCorrNCells(0), fhCaloTrackMCorrECells(0),
+//Super-Module dependent histgrams
+fhEMod(0),                 fhNClustersMod(0),          fhNCellsPerClusterMod(0),  fhNCellsPerClusterModNoCut(0), fhNCellsMod(0),  
+fhGridCellsMod(0),         fhGridCellsEMod(0),         fhGridCellsTimeMod(0), 
+fhAmplitudeMod(0),         fhAmplitudeModFraction(0),  fhTimeAmpPerRCU(0), 
+//fhT0TimeAmpPerRCU(0),      fhTimeCorrRCU(0),
+fhIMMod(0),                fhIMCellCutMod(0),
 
-  fhGenGamPt = qa.fhGenGamPt  ; fhGenGamEta = qa.fhGenGamEta  ; fhGenGamPhi = qa.fhGenGamPhi  ;
-  fhGenPi0Pt = qa.fhGenPi0Pt  ; fhGenPi0Eta = qa.fhGenPi0Eta  ; fhGenPi0Phi = qa.fhGenPi0Phi  ;
-  fhGenEtaPt = qa.fhGenEtaPt  ; fhGenEtaEta = qa.fhGenEtaEta  ; fhGenEtaPhi = qa.fhGenEtaPhi  ;
-  fhGenOmegaPt = qa.fhGenOmegaPt  ; fhGenOmegaEta = qa.fhGenOmegaEta  ; fhGenOmegaPhi = qa.fhGenOmegaPhi  ;
-  fhGenElePt = qa.fhGenElePt  ; fhGenEleEta = qa.fhGenEleEta  ; fhGenElePhi = qa.fhGenElePhi ; 
+// MC and reco
+fhDeltaE(0),               fhDeltaPt(0),               fhDeltaPhi(0),           fhDeltaEta(0),   
+fhRatioE(0),               fhRatioPt(0),               fhRatioPhi(0),           fhRatioEta(0),
+fh2E(0),                   fh2Pt(0),                   fh2Phi(0),               fh2Eta(0),
 
-  fhEMVxyz = qa.fhEMVxyz ;  fhEMR = qa.fhEMR ; fhHaVxyz = qa.fhHaVxyz ;  fhHaR = qa.fhHaR ;
-  fhGamE = qa.fhGamE ;fhGamPt = qa.fhGamPt ;fhGamPhi = qa.fhGamPhi ;fhGamEta = qa.fhGamEta ; 
-  fhGamDeltaE   = qa.fhDeltaE; fhGamDeltaPt  = qa.fhDeltaPt; fhGamDeltaPhi = qa.fhDeltaPhi; fhGamDeltaEta = qa.fhDeltaEta;
-       
-  fhGamRatioE   = qa.fhGamRatioE;  fhGamRatioPt  = qa.fhGamRatioPt;  fhGamRatioPhi = qa.fhGamRatioPhi;  fhGamRatioEta = qa.fhGamRatioEta;
-  fhGam2E   = qa.fhGam2E;       fhGam2Pt  = qa.fhGam2Pt; fhGam2Phi = qa.fhGam2Phi; fhGam2Eta = qa.fhGam2Eta;
+// MC only
+fhGenGamPt(0),             fhGenGamEta(0),             fhGenGamPhi(0),
+fhGenPi0Pt(0),             fhGenPi0Eta(0),             fhGenPi0Phi(0),
+fhGenEtaPt(0),             fhGenEtaEta(0),             fhGenEtaPhi(0),
+fhGenOmegaPt(0),           fhGenOmegaEta(0),           fhGenOmegaPhi(0),
+fhGenElePt(0),             fhGenEleEta(0),             fhGenElePhi(0), 
+fhEMVxyz(0),               fhEMR(0),                   fhHaVxyz(0),             fhHaR(0),
+fhGamE(0),                 fhGamPt(0),                 fhGamPhi(0),             fhGamEta(0), 
+fhGamDeltaE(0),            fhGamDeltaPt(0),            fhGamDeltaPhi(0),        fhGamDeltaEta(0), 
+fhGamRatioE(0),            fhGamRatioPt(0),            fhGamRatioPhi(0),        fhGamRatioEta(0),
+fhEleE(0),                 fhElePt(0),                 fhElePhi(0),             fhEleEta(0),
+fhPi0E(0),                 fhPi0Pt(0),                 fhPi0Phi(0),             fhPi0Eta(0), 
+fhNeHadE(0),               fhNeHadPt(0),               fhNeHadPhi(0),           fhNeHadEta(0), 
+fhChHadE(0),               fhChHadPt(0),               fhChHadPhi(0),           fhChHadEta(0),
+fhGamECharged(0),          fhGamPtCharged(0),          fhGamPhiCharged(0),      fhGamEtaCharged(0), 
+fhEleECharged(0),          fhElePtCharged(0),          fhElePhiCharged(0),      fhEleEtaCharged(0),
+fhPi0ECharged(0),          fhPi0PtCharged(0),          fhPi0PhiCharged(0),      fhPi0EtaCharged(0), 
+fhNeHadECharged(0),        fhNeHadPtCharged(0),        fhNeHadPhiCharged(0),    fhNeHadEtaCharged(0), 
+fhChHadECharged(0),        fhChHadPtCharged(0),        fhChHadPhiCharged(0),    fhChHadEtaCharged(0),
+fhGenGamAccE(0),           fhGenGamAccPt(0),           fhGenGamAccEta(0),       fhGenGamAccPhi(0),
+fhGenPi0AccE(0),           fhGenPi0AccPt(0),           fhGenPi0AccEta(0),       fhGenPi0AccPhi(0),
+fh1pOverE(0),              fh1dR(0),                   fh2EledEdx(0),           fh2MatchdEdx(0),
+fhMCEle1pOverE(0),         fhMCEle1dR(0),              fhMCEle2MatchdEdx(0),
+fhMCChHad1pOverE(0),       fhMCChHad1dR(0),            fhMCChHad2MatchdEdx(0),
+fhMCNeutral1pOverE(0),     fhMCNeutral1dR(0),          fhMCNeutral2MatchdEdx(0),fh1pOverER02(0),           
+fhMCEle1pOverER02(0),      fhMCChHad1pOverER02(0),     fhMCNeutral1pOverER02(0)
+{
+  //Default Ctor
+  
+  //Initialize parameters
+  InitParameters();
+}
 
-  fhEleE = qa.fhEleE ;fhElePt = qa.fhElePt ;fhElePhi = qa.fhElePhi ;fhEleEta = qa.fhEleEta ;
-  fhPi0E = qa.fhPi0E ;fhPi0Pt = qa.fhPi0Pt ;fhPi0Phi = qa.fhPi0Phi ;fhPi0Eta = qa.fhPi0Eta ; 
-  fhNeHadE = qa.fhNeHadE ;fhNeHadPt = qa.fhNeHadPt ;fhNeHadPhi = qa.fhNeHadPhi ;fhNeHadEta = qa.fhNeHadEta ; 
-  fhChHadE = qa.fhChHadE ;fhChHadPt = qa.fhChHadPt ;fhChHadPhi = qa.fhChHadPhi ;fhChHadEta = qa.fhChHadEta ;
-  fhGenGamAccE = qa.fhGenGamAccE ;  fhGenPi0AccE = qa.fhGenPi0AccE ;
-  fhGenGamAccPt = qa.fhGenGamAccPt ;fhGenGamAccEta = qa.fhGenGamAccEta ;fhGenGamAccPhi = qa.fhGenGamAccPhi ;
-  fhGenPi0AccPt = qa.fhGenPi0AccPt ;fhGenPi0AccEta = qa.fhGenPi0AccEta; fhGenPi0AccPhi = qa.fhGenPi0AccPhi ;   
-               
-  fh1pOverE = qa.fh1pOverE;
-  fh1dR = qa.fh1dR;
-  fh2MatchdEdx = qa.fh2MatchdEdx;
-  fh2EledEdx = qa.fh2EledEdx;  
+//________________________________________________________________________
+TObjString *  AliAnaCalorimeterQA::GetAnalysisCuts()
+{      
+  //Save parameters used for analysis
+  TString parList ; //this will be list of parameters used for this analysis.
+  const Int_t buffersize = 255;
+  char onePar[buffersize] ;
+  
+  snprintf(onePar,buffersize,"--- AliAnaCalorimeterQA ---\n") ;
+  parList+=onePar ;    
+  snprintf(onePar,buffersize,"Calorimeter: %s\n",fCalorimeter.Data()) ;
+  parList+=onePar ;
+  snprintf(onePar,buffersize,"Time Cut : %2.2f < T < %2.2f ns  \n",fTimeCutMin, fTimeCutMax) ;
+  parList+=onePar ;
+  snprintf(onePar,buffersize,"PHOS Cell Amplitude > %2.2f GeV, EMCAL Cell Amplitude > %2.2f GeV  \n",fPHOSCellAmpMin, fEMCALCellAmpMin) ;
+  parList+=onePar ;
+  //Get parameters set in base class.
+  //parList += GetBaseParametersList() ;
+  
+  //Get parameters set in FiducialCut class (not available yet)
+  //parlist += GetFidCut()->GetFidCutParametersList() 
        
-  return *this;
-
+  return new TObjString(parList) ;
 }
 
+
 //________________________________________________________________________
 TList *  AliAnaCalorimeterQA::GetCreateOutputObjects()
 {  
-       // Create histograms to be saved in output file and 
-       // store them in fOutputContainer
-    
-       TList * outputContainer = new TList() ; 
-       outputContainer->SetName("ExampleHistos") ; 
-       
-       Int_t nptbins  = GetHistoNPtBins();
-       Int_t nphibins = GetHistoNPhiBins();
-       Int_t netabins = GetHistoNEtaBins();
-       Float_t ptmax  = GetHistoPtMax();
-       Float_t phimax = GetHistoPhiMax();
-       Float_t etamax = GetHistoEtaMax();
-       Float_t ptmin  = GetHistoPtMin();
-       Float_t phimin = GetHistoPhiMin();
-       Float_t etamin = GetHistoEtaMin();      
-       
-       fhE  = new TH1F ("hE","E reconstructed", nptbins,ptmin,ptmax); 
-       fhE->SetXTitle("E (GeV)");
-       outputContainer->Add(fhE);
-       
-       fhPt  = new TH1F ("hPt","p_{T} reconstructed", nptbins,ptmin,ptmax); 
-       fhPt->SetXTitle("p_{T} (GeV/c)");
-       outputContainer->Add(fhPt);
-       
-       fhPhi  = new TH1F ("hPhi","#phi reconstructed",nphibins,phimin,phimax); 
-       fhPhi->SetXTitle("#phi (rad)");
-       outputContainer->Add(fhPhi);
-       
-       fhEta  = new TH1F ("hEta","#eta reconstructed",netabins,etamin,etamax); 
-       fhEta->SetXTitle("#eta ");
-       outputContainer->Add(fhEta);
-       
-       fhEtaPhi  = new TH2F ("hEtaPhi","#eta vs #phi, reconstructed",netabins,etamin,etamax,nphibins,phimin,phimax); 
-       fhEtaPhi->SetXTitle("#eta ");
-       fhEtaPhi->SetYTitle("#phi ");
-       outputContainer->Add(fhEtaPhi);
-       
-       fhECharged  = new TH1F ("hECharged","E reconstructed, matched with track", nptbins,ptmin,ptmax); 
-       fhECharged->SetXTitle("E (GeV)");
-       outputContainer->Add(fhECharged);
-       
-       fhPtCharged  = new TH1F ("hPtCharged","p_{T} reconstructed, matched with track", nptbins,ptmin,ptmax); 
-       fhPtCharged->SetXTitle("p_{T} (GeV/c)");
-       outputContainer->Add(fhPtCharged);
-       
-       fhPhiCharged  = new TH1F ("hPhiCharged","#phi reconstructed, matched with track",nphibins,phimin,phimax); 
-       fhPhiCharged->SetXTitle("#phi (rad)");
-       outputContainer->Add(fhPhiCharged);
-       
-       fhEtaCharged  = new TH1F ("hEtaCharged","#eta reconstructed, matched with track",netabins,etamin,etamax); 
-       fhEtaCharged->SetXTitle("#eta ");
-       outputContainer->Add(fhEtaCharged);
-       
-       fhEtaPhiCharged  = new TH2F ("hEtaPhiCharged","#eta vs #phi, reconstructed , matched with track",netabins,etamin,etamax,nphibins,phimin,phimax); 
-       fhEtaPhiCharged->SetXTitle("#eta ");
-       fhEtaPhiCharged->SetYTitle("#phi ");
-       outputContainer->Add(fhEtaPhiCharged);  
-       
+  // Create histograms to be saved in output file and 
+  // store them in outputContainer
+  
+  TList * outputContainer = new TList() ; 
+  outputContainer->SetName("QAHistos") ; 
+  
+  //Histograms
+  Int_t nptbins     = GetHistoPtBins();                Float_t ptmax     = GetHistoPtMax();           Float_t ptmin     = GetHistoPtMin();
+  Int_t nfineptbins = GetHistoFinePtBins();        Float_t ptfinemax = GetHistoFinePtMax();       Float_t ptfinemin = GetHistoFinePtMin();
+  Int_t nphibins    = GetHistoPhiBins();           Float_t phimax    = GetHistoPhiMax();          Float_t phimin    = GetHistoPhiMin();
+  Int_t netabins    = GetHistoEtaBins();          Float_t etamax    = GetHistoEtaMax();          Float_t etamin    = GetHistoEtaMin(); 
+  Int_t nmassbins   = GetHistoMassBins();         Float_t massmax   = GetHistoMassMax();              Float_t massmin   = GetHistoMassMin();
+  Int_t nasymbins   = GetHistoAsymmetryBins();    Float_t asymmax   = GetHistoAsymmetryMax();    Float_t asymmin   = GetHistoAsymmetryMin();
+  Int_t nPoverEbins = GetHistoPOverEBins();       Float_t pOverEmax = GetHistoPOverEMax();       Float_t pOverEmin = GetHistoPOverEMin();
+  Int_t ndedxbins   = GetHistodEdxBins();         Float_t dedxmax   = GetHistodEdxMax();         Float_t dedxmin   = GetHistodEdxMin();
+  Int_t ndRbins     = GetHistodRBins();           Float_t dRmax     = GetHistodRMax();           Float_t dRmin     = GetHistodRMin();
+  Int_t ntimebins   = GetHistoTimeBins();         Float_t timemax   = GetHistoTimeMax();         Float_t timemin   = GetHistoTimeMin();       
+  Int_t nbins       = GetHistoNClusterCellBins(); Int_t   nmax      = GetHistoNClusterCellMax(); Int_t   nmin      = GetHistoNClusterCellMin(); 
+  Int_t nratiobins  = GetHistoRatioBins();        Float_t ratiomax  = GetHistoRatioMax();        Float_t ratiomin  = GetHistoRatioMin();
+  Int_t nvdistbins  = GetHistoVertexDistBins();   Float_t vdistmax  = GetHistoVertexDistMax();   Float_t vdistmin  = GetHistoVertexDistMin();
+  Int_t rbins       = GetHistoRBins();            Float_t rmax      = GetHistoRMax();            Float_t rmin      = GetHistoRMin(); 
+  Int_t xbins       = GetHistoXBins();            Float_t xmax      = GetHistoXMax();            Float_t xmin      = GetHistoXMin(); 
+  Int_t ybins       = GetHistoYBins();            Float_t ymax      = GetHistoYMax();            Float_t ymin      = GetHistoYMin(); 
+  Int_t zbins       = GetHistoZBins();            Float_t zmax      = GetHistoZMax();            Float_t zmin      = GetHistoZMin(); 
+  Int_t ssbins      = GetHistoShowerShapeBins();  Float_t ssmax     = GetHistoShowerShapeMax();  Float_t ssmin     = GetHistoShowerShapeMin();
+  Int_t tdbins      = GetHistoDiffTimeBins() ;    Float_t tdmax     = GetHistoDiffTimeMax();     Float_t tdmin     = GetHistoDiffTimeMin();
 
-       fhEChargedNoOut  = new TH1F ("hEChargedNoOut","E reconstructed, matched with track, no output track params", nptbins,ptmin,ptmax); 
-       fhEChargedNoOut->SetXTitle("E (GeV)");
-       outputContainer->Add(fhEChargedNoOut);
-       
-       fhPtChargedNoOut  = new TH1F ("hPtChargedNoOut","p_{T} reconstructed, matched with track, no output track params", nptbins,ptmin,ptmax); 
-       fhPtChargedNoOut->SetXTitle("p_{T} (GeV/c)");
-       outputContainer->Add(fhPtChargedNoOut);
-       
-       fhPhiChargedNoOut  = new TH1F ("hPhiChargedNoOut","#phi reconstructed, matched with track, no output track params",nphibins,phimin,phimax); 
-       fhPhiChargedNoOut->SetXTitle("#phi (rad)");
-       outputContainer->Add(fhPhiChargedNoOut);
-       
-       fhEtaChargedNoOut  = new TH1F ("hEtaChargedNoOut","#eta reconstructed, matched with track, no output track params",netabins,etamin,etamax); 
-       fhEtaChargedNoOut->SetXTitle("#eta ");
-       outputContainer->Add(fhEtaChargedNoOut);
-       
-       fhEtaPhiChargedNoOut  = new TH2F ("hEtaPhiChargedNoOut","#eta vs #phi, reconstructed , matched with track, no output track params",netabins,etamin,etamax,nphibins,phimin,phimax); 
-       fhEtaPhiChargedNoOut->SetXTitle("#eta ");
-       fhEtaPhiChargedNoOut->SetYTitle("#phi ");
-       outputContainer->Add(fhEtaPhiChargedNoOut);     
+  Int_t nv0sbins    = GetHistoV0SignalBins();          Int_t nv0smax = GetHistoV0SignalMax();          Int_t nv0smin = GetHistoV0SignalMin(); 
+  Int_t nv0mbins    = GetHistoV0MultiplicityBins();    Int_t nv0mmax = GetHistoV0MultiplicityMax();    Int_t nv0mmin = GetHistoV0MultiplicityMin(); 
+  Int_t ntrmbins    = GetHistoTrackMultiplicityBins(); Int_t ntrmmax = GetHistoTrackMultiplicityMax(); Int_t ntrmmin = GetHistoTrackMultiplicityMin(); 
+  
+  
+  //EMCAL
+  Int_t colmax = 48;
+  Int_t rowmax = 24;
+  fNRCU   = 2 ;
+  //PHOS
+  if(fCalorimeter=="PHOS"){
+    colmax = 56;
+    rowmax = 64;
+    fNRCU   = 4 ;
+  }
+  
+  
+  fhE  = new TH1F ("hE","E reconstructed clusters ", nptbins*5,ptmin,ptmax*5);  
+  fhE->SetXTitle("E (GeV)");
+  outputContainer->Add(fhE);
+  
+  if(fFillAllTH12){
+    fhPt  = new TH1F ("hPt","p_{T} reconstructed clusters", nptbins,ptmin,ptmax); 
+    fhPt->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPt);
+    
+    fhPhi  = new TH1F ("hPhi","#phi reconstructed clusters ",nphibins,phimin,phimax); 
+    fhPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhPhi);
+    
+    fhEta  = new TH1F ("hEta","#eta reconstructed clusters ",netabins,etamin,etamax); 
+    fhEta->SetXTitle("#eta ");
+    outputContainer->Add(fhEta);
+  }
+  
+  fhEtaPhiE  = new TH3F ("hEtaPhiE","#eta vs #phi vs energy, reconstructed clusters",
+                         netabins,etamin,etamax,nphibins,phimin,phimax,nptbins,ptmin,ptmax); 
+  fhEtaPhiE->SetXTitle("#eta ");
+  fhEtaPhiE->SetYTitle("#phi (rad)");
+  fhEtaPhiE->SetZTitle("E (GeV) ");
+  outputContainer->Add(fhEtaPhiE);
+  
+  fhClusterTimeEnergy  = new TH2F ("hClusterTimeEnergy","energy vs TOF, reconstructed clusters",
+                                   nptbins,ptmin,ptmax, ntimebins,timemin,timemax); 
+  fhClusterTimeEnergy->SetXTitle("E (GeV) ");
+  fhClusterTimeEnergy->SetYTitle("TOF (ns)");
+  outputContainer->Add(fhClusterTimeEnergy);
+    
+  fhClusterPairDiffTimeE = new TH2F("hClusterPairDiffTimeE","cluster pair time difference vs E, only good clusters",
+                                    nptbins,ptmin,ptmax, tdbins,tdmin,tdmax);
+  fhClusterPairDiffTimeE->SetXTitle("E_{cluster} (GeV)");
+  fhClusterPairDiffTimeE->SetYTitle("#Delta t (ns)");
+  outputContainer->Add(fhClusterPairDiffTimeE);  
+  
+  
+  fhClusterMaxCellCloseCellRatio  = new TH2F ("hClusterMaxCellCloseCell","energy vs ratio of max cell / neighbour cell, reconstructed clusters",
+                                              nptbins,ptmin,ptmax, 100,0,1.); 
+  fhClusterMaxCellCloseCellRatio->SetXTitle("E_{cluster} (GeV) ");
+  fhClusterMaxCellCloseCellRatio->SetYTitle("ratio");
+  outputContainer->Add(fhClusterMaxCellCloseCellRatio);
+  
+  fhClusterMaxCellDiff  = new TH2F ("hClusterMaxCellDiff","energy vs difference of cluster energy - max cell energy / cluster energy, good clusters",
+                                       nptbins,ptmin,ptmax, 500,0,1.); 
+  fhClusterMaxCellDiff->SetXTitle("E_{cluster} (GeV) ");
+  fhClusterMaxCellDiff->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  outputContainer->Add(fhClusterMaxCellDiff);  
 
-       fhIM  = new TH2F ("hIM","Cluster pairs Invariant mass vs reconstructed pair energy",nptbins,ptmin,ptmax,200,0,1); 
-       fhIM->SetXTitle("E_{cluster pairs} (GeV) ");
-       fhIM->SetYTitle("M_{cluster pairs} (GeV/c^{2})");
-       outputContainer->Add(fhIM);
-       
-       fhAsym  = new TH2F ("hAssym","Cluster pairs Asymmetry vs reconstructed pair energy",nptbins,ptmin,ptmax,100,0,1); 
-       fhAsym->SetXTitle("E_{cluster pairs} (GeV) ");
-       fhAsym->SetYTitle("Asymmetry");
-       outputContainer->Add(fhAsym);   
-       
-       fhNCellsPerCluster  = new TH2F ("hNCellsPerCluster","# cells per cluster vs cluster energy", nptbins,ptmin,ptmax, 100,0,1000); 
-       fhNCellsPerCluster->SetXTitle("E (GeV)");
-       fhNCellsPerCluster->SetYTitle("n cells");
-       outputContainer->Add(fhNCellsPerCluster);
-       
-       fhNClusters  = new TH1F ("hNClusters","# clusters", 300,0,300); 
-       fhNClusters->SetXTitle("number of clusters");
-       outputContainer->Add(fhNClusters);
-       
-       //Calo cells
-       fhNCells  = new TH1F ("hNCells","# cells", 13000,0,13000); 
-       fhNCells->SetXTitle("n cells");
-       outputContainer->Add(fhNCells);
-    
-       fhAmplitude  = new TH1F ("hAmplitude","Amplitude", 100,0,1000); 
-       fhAmplitude->SetXTitle("Amplitude ");
-       outputContainer->Add(fhAmplitude);
-       
-       if(IsDataMC()){
-               
-               fhDeltaE  = new TH1F ("hDeltaE","MC - Reco E ", 200,-50,50); 
-               fhDeltaE->SetXTitle("#Delta E (GeV)");
-               outputContainer->Add(fhDeltaE);
-               
-               fhDeltaPt  = new TH1F ("hDeltaPt","MC - Reco p_{T} ", 200,-50,50); 
-               fhDeltaPt->SetXTitle("#Delta p_{T} (GeV/c)");
-               outputContainer->Add(fhDeltaPt);
-               
-               fhDeltaPhi  = new TH1F ("hDeltaPhi","MC - Reco #phi ",100,-2,2); 
-               fhDeltaPhi->SetXTitle("#Delta #phi (rad)");
-               outputContainer->Add(fhDeltaPhi);
-               
-               fhDeltaEta  = new TH1F ("hDeltaEta","MC- Reco #eta",100,-1,1); 
-               fhDeltaEta->SetXTitle("#Delta #eta ");
-               outputContainer->Add(fhDeltaEta);
-               
-               fhRatioE  = new TH1F ("hRatioE","Reco/MC E ", 200,0,2); 
-               fhRatioE->SetXTitle("E_{reco}/E_{gen}");
-               outputContainer->Add(fhRatioE);
-               
-               fhRatioPt  = new TH1F ("hRatioPt","Reco/MC p_{T} ", 200,0,2); 
-               fhRatioPt->SetXTitle("p_{T, reco}/p_{T, gen}");
-               outputContainer->Add(fhRatioPt);
-               
-               fhRatioPhi  = new TH1F ("hRatioPhi","Reco/MC #phi ",200,0,2); 
-               fhRatioPhi->SetXTitle("#phi_{reco}/#phi_{gen}");
-               outputContainer->Add(fhRatioPhi);
-               
-               fhRatioEta  = new TH1F ("hRatioEta","Reco/MC #eta",200,0,2); 
-               fhRatioEta->SetXTitle("#eta_{reco}/#eta_{gen} ");
-               outputContainer->Add(fhRatioEta);
-               
-               fh2E  = new TH2F ("h2E","E distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
-               fh2E->SetXTitle("E_{rec} (GeV)");
-               fh2E->SetYTitle("E_{gen} (GeV)");
-               outputContainer->Add(fh2E);       
-               
-               fh2Pt  = new TH2F ("h2Pt","p_T distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
-               fh2Pt->SetXTitle("p_{T,rec} (GeV/c)");
-               fh2Pt->SetYTitle("p_{T,gen} (GeV/c)");
-               outputContainer->Add(fh2Pt);
-               
-               fh2Phi  = new TH2F ("h2Phi","#phi distribution, reconstructed vs generated", nphibins,phimin,phimax, nphibins,phimin,phimax); 
-               fh2Phi->SetXTitle("#phi_{rec} (rad)");
-               fh2Phi->SetYTitle("#phi_{gen} (rad)");
-               outputContainer->Add(fh2Phi);
-               
-               fh2Eta  = new TH2F ("h2Eta","#eta distribution, reconstructed vs generated", netabins,etamin,etamax,netabins,etamin,etamax); 
-               fh2Eta->SetXTitle("#eta_{rec} ");
-               fh2Eta->SetYTitle("#eta_{gen} ");
-               outputContainer->Add(fh2Eta);
-               
-               //Fill histos depending on origin of cluster
-               fhGamE  = new TH2F ("hGamE","E reconstructed vs E generated from #gamma", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhGamE->SetXTitle("E (GeV)");
-               outputContainer->Add(fhGamE);
-               
-               fhGamPt  = new TH2F ("hGamPt","p_{T} reconstructed vs E generated from #gamma", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhGamPt->SetXTitle("p_{T} (GeV/c)");
-               outputContainer->Add(fhGamPt);
-               
-               fhGamPhi  = new TH2F ("hGamPhi","#phi reconstructed vs E generated from #gamma",nphibins,phimin,phimax,nphibins,phimin,phimax); 
-               fhGamPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGamPhi);
-               
-               fhGamEta  = new TH2F ("hGamEta","#eta reconstructed vs E generated from #gamma",netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhGamEta->SetXTitle("#eta ");
-               outputContainer->Add(fhGamEta);
-               
-               fhGamDeltaE  = new TH1F ("hGamDeltaE","#gamma MC - Reco E ", 200,-50,50); 
-               fhGamDeltaE->SetXTitle("#Delta E (GeV)");
-               outputContainer->Add(fhGamDeltaE);
-               
-               fhGamDeltaPt  = new TH1F ("hGamDeltaPt","#gamma MC - Reco p_{T} ", 200,-50,50); 
-               fhGamDeltaPt->SetXTitle("#Delta p_{T} (GeV/c)");
-               outputContainer->Add(fhGamDeltaPt);
-               
-               fhGamDeltaPhi  = new TH1F ("hGamDeltaPhi","#gamma MC - Reco #phi ",100,-2,2); 
-               fhGamDeltaPhi->SetXTitle("#Delta #phi (rad)");
-               outputContainer->Add(fhGamDeltaPhi);
-               
-               fhGamDeltaEta  = new TH1F ("hGamDeltaEta","#gamma MC- Reco #eta",100,-1,1); 
-               fhGamDeltaEta->SetXTitle("#Delta #eta ");
-               outputContainer->Add(fhGamDeltaEta);
-               
-               fhGamRatioE  = new TH1F ("hGamRatioE","#gamma Reco/MC E ", 200,0,2); 
-               fhGamRatioE->SetXTitle("E_{reco}/E_{gen}");
-               outputContainer->Add(fhGamRatioE);
-               
-               fhGamRatioPt  = new TH1F ("hGamRatioPt","#gamma Reco/MC p_{T} ", 200,0,2); 
-               fhGamRatioPt->SetXTitle("p_{T, reco}/p_{T, gen}");
-               outputContainer->Add(fhGamRatioPt);
-               
-               fhGamRatioPhi  = new TH1F ("hGamRatioPhi","#gamma Reco/MC #phi ",200,0,2); 
-               fhGamRatioPhi->SetXTitle("#phi_{reco}/#phi_{gen}");
-               outputContainer->Add(fhGamRatioPhi);
-               
-               fhGamRatioEta  = new TH1F ("hGamRatioEta","#gamma Reco/MC #eta",200,0,2); 
-               fhGamRatioEta->SetXTitle("#eta_{reco}/#eta_{gen} ");
-               outputContainer->Add(fhGamRatioEta);
+  fhClusterMaxCellDiffNoCut  = new TH2F ("hClusterMaxCellDiffNoCut","energy vs difference of cluster energy - max cell energy / cluster energy",
+                                    nptbins,ptmin,ptmax, 500,0,1.); 
+  fhClusterMaxCellDiffNoCut->SetXTitle("E_{cluster} (GeV) ");
+  fhClusterMaxCellDiffNoCut->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  outputContainer->Add(fhClusterMaxCellDiffNoCut);  
+  
+//  fhClusterMaxCellDiffDivLambda0  = new TH2F ("hClusterMaxCellDiffDivLambda0;","",
+//                                         nptbins,ptmin,ptmax, 500,0,5.); 
+//  fhClusterMaxCellDiffDivLambda0->SetXTitle("E_{cluster} (GeV) ");
+//  fhClusterMaxCellDiffDivLambda0->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster} / #lambda_{0}");
+//  outputContainer->Add(fhClusterMaxCellDiffDivLambda0);    
+  
+  fhLambda0vsClusterMaxCellDiffE0  = new TH2F ("hLambda0vsClusterMaxCellDiffE0","shower shape, #lambda^{2}_{0} vs fraction of energy carried by max cell, E < 2 GeV ",
+                                               ssbins,ssmin,ssmax,500,0,1.); 
+  fhLambda0vsClusterMaxCellDiffE0->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhLambda0vsClusterMaxCellDiffE0->SetXTitle("#lambda^{2}_{0}");
+  outputContainer->Add(fhLambda0vsClusterMaxCellDiffE0); 
+  
+  fhLambda0vsClusterMaxCellDiffE2  = new TH2F ("hLambda0vsClusterMaxCellDiffE2","shower shape, #lambda^{2}_{0} vs fraction of energy carried by max cell, 2 < E < 6 GeV ",
+                                               ssbins,ssmin,ssmax,500,0,1.); 
+  fhLambda0vsClusterMaxCellDiffE2->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhLambda0vsClusterMaxCellDiffE2->SetXTitle("#lambda^{2}_{0}");
+  outputContainer->Add(fhLambda0vsClusterMaxCellDiffE2); 
+  
+  fhLambda0vsClusterMaxCellDiffE6  = new TH2F ("hLambda0vsClusterMaxCellDiffE6","shower shape, #lambda^{2}_{0} vs fraction of energy carried by max cell, E > 6 ",
+                                               ssbins,ssmin,ssmax,500,0,1.); 
+  fhLambda0vsClusterMaxCellDiffE6->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhLambda0vsClusterMaxCellDiffE6->SetXTitle("#lambda^{2}_{0}");
+  outputContainer->Add(fhLambda0vsClusterMaxCellDiffE6); 
 
-               fhGam2E  = new TH2F ("hGam2E","#gamma E distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
-               fhGam2E->SetXTitle("E_{rec} (GeV)");
-               fhGam2E->SetYTitle("E_{gen} (GeV)");
-               outputContainer->Add(fhGam2E);    
-               
-               fhGam2Pt  = new TH2F ("hGam2Pt","#gamma p_T distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
-               fhGam2Pt->SetXTitle("p_{T,rec} (GeV/c)");
-               fhGam2Pt->SetYTitle("p_{T,gen} (GeV/c)");
-               outputContainer->Add(fhGam2Pt);
-               
-               fhGam2Phi  = new TH2F ("hGam2Phi","#gamma #phi distribution, reconstructed vs generated", nphibins,phimin,phimax, nphibins,phimin,phimax); 
-               fhGam2Phi->SetXTitle("#phi_{rec} (rad)");
-               fhGam2Phi->SetYTitle("#phi_{gen} (rad)");
-               outputContainer->Add(fhGam2Phi);
-               
-               fhGam2Eta  = new TH2F ("hGam2Eta","#gamma #eta distribution, reconstructed vs generated", netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhGam2Eta->SetXTitle("#eta_{rec} ");
-               fhGam2Eta->SetYTitle("#eta_{gen} ");
-               outputContainer->Add(fhGam2Eta);
+  fhNCellsvsClusterMaxCellDiffE0  = new TH2F ("hNCellsvsClusterMaxCellDiffE0","N cells per cluster vs fraction of energy carried by max cell, E < 2 GeV ",
+                                               nbins/5,nmin,nmax/5,500,0,1.); 
+  fhNCellsvsClusterMaxCellDiffE0->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhNCellsvsClusterMaxCellDiffE0->SetXTitle("N cells per cluster");
+  outputContainer->Add(fhNCellsvsClusterMaxCellDiffE0); 
+  
+  fhNCellsvsClusterMaxCellDiffE2  = new TH2F ("hNCellsvsClusterMaxCellDiffE2","N cells per cluster vs fraction of energy carried by max cell, 2 < E < 6 GeV ",
+                                               nbins/5,nmin,nmax/5,500,0,1.); 
+  fhNCellsvsClusterMaxCellDiffE2->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhNCellsvsClusterMaxCellDiffE2->SetXTitle("N cells per cluster");
+  outputContainer->Add(fhNCellsvsClusterMaxCellDiffE2); 
+  
+  fhNCellsvsClusterMaxCellDiffE6  = new TH2F ("hNCellsvsClusterMaxCellDiffE6","N cells per cluster vs fraction of energy carried by max cell, E > 6 ",
+                                               nbins/5,nmin,nmax/5,500,0,1.); 
+  fhNCellsvsClusterMaxCellDiffE6->SetYTitle("(E_{cluster} - E_{cell max})/ E_{cluster}");
+  fhNCellsvsClusterMaxCellDiffE6->SetXTitle("N cells per cluster");
+  outputContainer->Add(fhNCellsvsClusterMaxCellDiffE6); 
+  
+  
+  if(fCalorimeter=="EMCAL" && !GetCaloUtils()->GetEMCALRecoUtils()->IsRejectExoticCluster()){
+    
+    fhBadClusterEnergy  = new TH1F ("hBadClusterEnergy","Bad cluster energy", nptbins,ptmin,ptmax); 
+    fhBadClusterEnergy->SetXTitle("E_{cluster} (GeV) ");
+    outputContainer->Add(fhBadClusterEnergy);
+    
+    fhBadClusterMaxCellCloseCellRatio  = new TH2F ("hBadClusterMaxCellCloseCell","energy vs ratio of max cell / neighbour cell constributing cell, reconstructed bad clusters",
+                                                   nptbins,ptmin,ptmax, 100,0,1.); 
+    fhBadClusterMaxCellCloseCellRatio->SetXTitle("E_{cluster} (GeV) ");
+    fhBadClusterMaxCellCloseCellRatio->SetYTitle("ratio");
+    outputContainer->Add(fhBadClusterMaxCellCloseCellRatio);
+        
+    fhBadClusterMaxCellDiff  = new TH2F ("hBadClusterMaxCellDiff","energy vs difference of cluster energy - max cell energy / cluster energy for bad clusters",
+                                                   nptbins,ptmin,ptmax, 500,0,1.); 
+    fhBadClusterMaxCellDiff->SetXTitle("E_{cluster} (GeV) ");
+    fhBadClusterMaxCellDiff->SetYTitle("(E_{cluster} - E_{cell max}) / E_{cluster}");
+    outputContainer->Add(fhBadClusterMaxCellDiff);
+    
+    fhBadClusterTimeEnergy  = new TH2F ("hBadClusterTimeEnergy","energy vs TOF of reconstructed bad clusters",
+                                               nptbins,ptmin,ptmax, ntimebins,timemin,timemax); 
+    fhBadClusterTimeEnergy->SetXTitle("E_{cluster} (GeV) ");
+    fhBadClusterTimeEnergy->SetYTitle("TOF (ns)");
+    outputContainer->Add(fhBadClusterTimeEnergy);    
 
-               fhPi0E  = new TH2F ("hPi0E","E reconstructed vs E generated from #pi^0", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhPi0E->SetXTitle("E (GeV)");
-               outputContainer->Add(fhPi0E);
-               
-               fhPi0Pt  = new TH2F ("hPi0Pt","p_{T} reconstructed vs E generated from #pi^{0}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhPi0Pt->SetXTitle("p_{T} (GeV/c)");
-               outputContainer->Add(fhPi0Pt);
-               
-               fhPi0Phi  = new TH2F ("hPi0Phi","#phi reconstructed vs E generated from #pi^{0}",nphibins,phimin,phimax,nphibins,phimin,phimax); 
-               fhPi0Phi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhPi0Phi);
-               
-               fhPi0Eta  = new TH2F ("hPi0Eta","#eta reconstructed vs E generated from #pi^{0}",netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhPi0Eta->SetXTitle("#eta ");
-               outputContainer->Add(fhPi0Eta);
-               
-               fhEleE  = new TH2F ("hEleE","E reconstructed vs E generated from e^{#pm}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhEleE->SetXTitle("E (GeV)");
-               outputContainer->Add(fhEleE);           
-               
-               fhElePt  = new TH2F ("hElePt","p_{T} reconstructed vs E generated from e^{#pm}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhElePt->SetXTitle("p_{T} (GeV/c)");
-               outputContainer->Add(fhElePt);
-               
-               fhElePhi  = new TH2F ("hElePhi","#phi reconstructed vs E generated frome^{#pm}",nphibins,phimin,phimax,nphibins,phimin,phimax); 
-               fhElePhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhElePhi);
-               
-               fhEleEta  = new TH2F ("hEleEta","#eta reconstructed vs E generated from e^{#pm}",netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhEleEta->SetXTitle("#eta ");
-               outputContainer->Add(fhEleEta);
-               
-               fhNeHadE  = new TH2F ("hNeHadE","E reconstructed vs E generated from #pi^0", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhNeHadE->SetXTitle("E (GeV)");
-               outputContainer->Add(fhNeHadE);
-               
-               fhNeHadPt  = new TH2F ("hNeHadPt","p_{T} reconstructed vs E generated from neutral hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhNeHadPt->SetXTitle("p_{T} (GeV/c)");
-               outputContainer->Add(fhNeHadPt);
-               
-               fhNeHadPhi  = new TH2F ("hNeHadPhi","#phi reconstructed vs E generated from neutral hadron",nphibins,phimin,phimax,nphibins,phimin,phimax); 
-               fhNeHadPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhNeHadPhi);
-               
-               fhNeHadEta  = new TH2F ("hNeHadEta","#eta reconstructed vs E generated from neutral hadron",netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhNeHadEta->SetXTitle("#eta ");
-               outputContainer->Add(fhNeHadEta);
-               
-               fhChHadE  = new TH2F ("hChHadE","E reconstructed vs E generated from #pi^0", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhChHadE->SetXTitle("E (GeV)");
-               outputContainer->Add(fhChHadE);
-               
-               fhChHadPt  = new TH2F ("hChHadPt","p_{T} reconstructed vs E generated from charged hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
-               fhChHadPt->SetXTitle("p_{T} (GeV/c)");
-               outputContainer->Add(fhChHadPt);
-               
-               fhChHadPhi  = new TH2F ("hChHadPhi","#phi reconstructed vs E generated from charged hadron",nphibins,phimin,phimax,nphibins,phimin,phimax); 
-               fhChHadPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhChHadPhi);
-               
-               fhChHadEta  = new TH2F ("hChHadEta","#eta reconstructed vs E generated from charged hadron",netabins,etamin,etamax,netabins,etamin,etamax); 
-               fhChHadEta->SetXTitle("#eta ");
-               outputContainer->Add(fhChHadEta);
-               
-               //Vertex of generated particles 
-               
-               fhEMVxyz  = new TH2F ("hEMVxyz","Production vertex of reconstructed ElectroMagnetic particles",100,0,500,100,0,500);//,100,0,500); 
-               fhEMVxyz->SetXTitle("v_{x}");
-               fhEMVxyz->SetYTitle("v_{y}");
-               //fhEMVxyz->SetZTitle("v_{z}");
-               outputContainer->Add(fhEMVxyz);
-               
-               fhHaVxyz  = new TH2F ("hHaVxyz","Production vertex of reconstructed hadrons",100,0,500,100,0,500);//,100,0,500); 
-               fhHaVxyz->SetXTitle("v_{x}");
-               fhHaVxyz->SetYTitle("v_{y}");
-               //fhHaVxyz->SetZTitle("v_{z}");
-               outputContainer->Add(fhHaVxyz);
-               
-               fhEMR  = new TH2F ("hEMR","Distance to production vertex of reconstructed ElectroMagnetic particles vs E rec",nptbins,ptmin,ptmax,100,0,500); 
-               fhEMR->SetXTitle("E (GeV)");
-               fhEMR->SetYTitle("TMath::Sqrt(v_{x}^{2}+v_{y}^{2})");
-               outputContainer->Add(fhEMR);
-               
-               fhHaR  = new TH2F ("hHaR","Distance to production vertex of reconstructed Hadrons vs E rec",nptbins,ptmin,ptmax,100,0,500); 
-               fhHaR->SetXTitle("E (GeV)");
-               fhHaR->SetYTitle("TMath::Sqrt(v_{x}^{2}+v_{y}^{2})");
-               outputContainer->Add(fhHaR);
-               
-               
-               //Pure MC
-               fhGenGamPt  = new TH1F("hGenGamPt" ,"p_{T} of generated #gamma",nptbins,ptmin,ptmax);
-               fhGenGamEta = new TH1F("hGenGamEta","Y of generated #gamma",netabins,etamin,etamax);
-               fhGenGamPhi = new TH1F("hGenGamPhi","#phi of generated #gamma",nphibins,phimin,phimax);
-               
-               fhGenPi0Pt  = new TH1F("hGenPi0Pt" ,"p_{T} of generated #pi^{0}",nptbins,ptmin,ptmax);
-               fhGenPi0Eta = new TH1F("hGenPi0Eta","Y of generated #pi^{0}",netabins,etamin,etamax);
-               fhGenPi0Phi = new TH1F("hGenPi0Phi","#phi of generated #pi^{0}",nphibins,phimin,phimax);
-               
-               fhGenEtaPt  = new TH1F("hGenEtaPt" ,"p_{T} of generated #eta",nptbins,ptmin,ptmax);
-               fhGenEtaEta = new TH1F("hGenEtaEta","Y of generated #eta",netabins,etamin,etamax);
-               fhGenEtaPhi = new TH1F("hGenEtaPhi","#phi of generated #eta",nphibins,phimin,phimax);
-               
-               fhGenOmegaPt  = new TH1F("hGenOmegaPt" ,"p_{T} of generated #omega",nptbins,ptmin,ptmax);
-               fhGenOmegaEta = new TH1F("hGenOmegaEta","Y of generated #omega",netabins,etamin,etamax);
-               fhGenOmegaPhi = new TH1F("hGenOmegaPhi","#phi of generated #omega",nphibins,phimin,phimax);             
-               
-               fhGenElePt  = new TH1F("hGenElePt" ,"p_{T} of generated e^{#pm}",nptbins,ptmin,ptmax);
-               fhGenEleEta = new TH1F("hGenEleEta","Y of generated  e^{#pm}",netabins,etamin,etamax);
-               fhGenElePhi = new TH1F("hGenElePhi","#phi of generated  e^{#pm}",nphibins,phimin,phimax);               
-               
-               fhGenGamPt->SetXTitle("p_{T} (GeV/c)");
-               fhGenGamEta->SetXTitle("#eta");
-               fhGenGamPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenGamPt);
-               outputContainer->Add(fhGenGamEta);
-               outputContainer->Add(fhGenGamPhi);
+    fhBadClusterPairDiffTimeE = new TH2F("hBadClusterPairDiffTimeE","cluster pair time difference (bad - good) vs E from bad cluster",nptbins,ptmin,ptmax, tdbins,tdmin,tdmax);
+    fhBadClusterPairDiffTimeE->SetXTitle("E_{bad cluster} (GeV)");
+    fhBadClusterPairDiffTimeE->SetYTitle("#Delta t (ns)");
+    outputContainer->Add(fhBadClusterPairDiffTimeE);    
+      
+  }
+  
+  //Track Matching
+  if(fFillAllTMHisto){
+    if(fFillAllTH12){
+      fhECharged  = new TH1F ("hECharged","E reconstructed clusters, matched with track", nptbins,ptmin,ptmax); 
+      fhECharged->SetXTitle("E (GeV)");
+      outputContainer->Add(fhECharged);
+      
+      fhPtCharged  = new TH1F ("hPtCharged","p_{T} reconstructed clusters, matched with track", nptbins,ptmin,ptmax); 
+      fhPtCharged->SetXTitle("p_{T} (GeV/c)");
+      outputContainer->Add(fhPtCharged);
+      
+      fhPhiCharged  = new TH1F ("hPhiCharged","#phi reconstructed clusters, matched with track",nphibins,phimin,phimax); 
+      fhPhiCharged->SetXTitle("#phi (rad)");
+      outputContainer->Add(fhPhiCharged);
+      
+      fhEtaCharged  = new TH1F ("hEtaCharged","#eta reconstructed clusters, matched with track",netabins,etamin,etamax); 
+      fhEtaCharged->SetXTitle("#eta ");
+      outputContainer->Add(fhEtaCharged);
+    }
+    if(fFillAllTH3){
+      fhEtaPhiECharged  = new TH3F ("hEtaPhiECharged","#eta vs #phi, reconstructed clusters, matched with track",
+                                    netabins,etamin,etamax,nphibins,phimin,phimax,nptbins,ptmin,ptmax); 
+      fhEtaPhiECharged->SetXTitle("#eta ");
+      fhEtaPhiECharged->SetYTitle("#phi ");
+      fhEtaPhiECharged->SetZTitle("E (GeV) ");
+      outputContainer->Add(fhEtaPhiECharged);  
+    }
+    
+    fh1pOverE = new TH2F("h1pOverE","TRACK matches p/E",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fh1pOverE->SetYTitle("p/E");
+    fh1pOverE->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fh1pOverE);
+    
+    fh1dR = new TH1F("h1dR","TRACK matches dR",ndRbins,dRmin,dRmax);
+    fh1dR->SetXTitle("#Delta R (rad)");
+    outputContainer->Add(fh1dR) ;
+    
+    fh2MatchdEdx = new TH2F("h2MatchdEdx","dE/dx vs. p for all matches",nptbins,ptmin,ptmax,ndedxbins,dedxmin,dedxmax);
+    fh2MatchdEdx->SetXTitle("p (GeV/c)");
+    fh2MatchdEdx->SetYTitle("<dE/dx>");
+    outputContainer->Add(fh2MatchdEdx);
+    
+    fh2EledEdx = new TH2F("h2EledEdx","dE/dx vs. p for electrons",nptbins,ptmin,ptmax,ndedxbins,dedxmin,dedxmax);
+    fh2EledEdx->SetXTitle("p (GeV/c)");
+    fh2EledEdx->SetYTitle("<dE/dx>");
+    outputContainer->Add(fh2EledEdx) ;
+    
+    fh1pOverER02 = new TH2F("h1pOverER02","TRACK matches p/E, all",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fh1pOverER02->SetYTitle("p/E");
+    fh1pOverER02->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fh1pOverER02);        
+  }
+  
+  if(fFillAllPi0Histo){
+    fhIM  = new TH2F ("hIM","Cluster pairs Invariant mass vs reconstructed pair energy",nptbins,ptmin,ptmax,nmassbins,massmin,massmax); 
+    fhIM->SetXTitle("p_{T, cluster pairs} (GeV) ");
+    fhIM->SetYTitle("M_{cluster pairs} (GeV/c^{2})");
+    outputContainer->Add(fhIM);
+    
+    fhIMCellCut  = new TH2F ("hIMCellCut","Cluster (n cell > 1) pairs Invariant mass vs reconstructed pair energy",nptbins,ptmin,ptmax,nmassbins,massmin,massmax); 
+    fhIMCellCut->SetXTitle("p_{T, cluster pairs} (GeV) ");
+    fhIMCellCut->SetYTitle("M_{cluster pairs} (GeV/c^{2})");
+    outputContainer->Add(fhIMCellCut);
+    
+    fhAsym  = new TH2F ("hAssym","Cluster pairs Asymmetry vs reconstructed pair energy",nptbins,ptmin,ptmax,nasymbins,asymmin,asymmax); 
+    fhAsym->SetXTitle("p_{T, cluster pairs} (GeV) ");
+    fhAsym->SetYTitle("Asymmetry");
+    outputContainer->Add(fhAsym);      
+    
+  }
 
-               fhGenPi0Pt->SetXTitle("p_{T} (GeV/c)");
-               fhGenPi0Eta->SetXTitle("#eta");
-               fhGenPi0Phi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenPi0Pt);
-               outputContainer->Add(fhGenPi0Eta);
-               outputContainer->Add(fhGenPi0Phi);
-               
-               fhGenEtaPt->SetXTitle("p_{T} (GeV/c)");
-               fhGenEtaEta->SetXTitle("#eta");
-               fhGenEtaPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenEtaPt);
-               outputContainer->Add(fhGenEtaEta);
-               outputContainer->Add(fhGenEtaPhi);
-                               
-               fhGenOmegaPt->SetXTitle("p_{T} (GeV/c)");
-               fhGenOmegaEta->SetXTitle("#eta");
-               fhGenOmegaPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenOmegaPt);
-               outputContainer->Add(fhGenOmegaEta);
-               outputContainer->Add(fhGenOmegaPhi);
-               
-               fhGenElePt->SetXTitle("p_{T} (GeV/c)");
-               fhGenEleEta->SetXTitle("#eta");
-               fhGenElePhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenElePt);
-               outputContainer->Add(fhGenEleEta);
-               outputContainer->Add(fhGenElePhi);
-               
-               fhGenGamAccE   = new TH1F("hGenGamAccE" ,"E of generated #gamma in calorimeter acceptance",nptbins,ptmin,ptmax);
-               fhGenGamAccPt  = new TH1F("hGenGamAccPt" ,"p_{T} of generated #gamma in calorimeter acceptance",nptbins,ptmin,ptmax);
-               fhGenGamAccEta = new TH1F("hGenGamAccEta","Y of generated #gamma in calorimeter acceptance",netabins,etamin,etamax);
-               fhGenGamAccPhi = new TH1F("hGenGamAccPhi","#phi of generated #gamma  in calorimeter acceptance",nphibins,phimin,phimax);
-               
-               fhGenPi0AccE  = new TH1F("hGenPi0AccE" ,"E of generated #pi^{0} in calorimeter acceptance",nptbins,ptmin,ptmax);
-               fhGenPi0AccPt  = new TH1F("hGenPi0AccPt" ,"p_{T} of generated #pi^{0} in calorimeter acceptance",nptbins,ptmin,ptmax);
-               fhGenPi0AccEta = new TH1F("hGenPi0AccEta","Y of generated #pi^{0} in calorimeter acceptance",netabins,etamin,etamax);
-               fhGenPi0AccPhi = new TH1F("hGenPi0AccPhi","#phi of generated #pi^{0} in calorimeter acceptance",nphibins,phimin,phimax);
-               
-               fhGenGamAccE  ->SetXTitle("E (GeV)");
-               fhGenGamAccPt ->SetXTitle("p_{T} (GeV/c)");
-               fhGenGamAccEta->SetXTitle("#eta");
-               fhGenGamAccPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenGamAccE);             
-               outputContainer->Add(fhGenGamAccPt);
-               outputContainer->Add(fhGenGamAccEta);
-               outputContainer->Add(fhGenGamAccPhi);
-               
-               fhGenPi0AccE  ->SetXTitle("E (GeV)");           
-               fhGenPi0AccPt ->SetXTitle("p_{T} (GeV/c)");
-               fhGenPi0AccEta->SetXTitle("#eta");
-               fhGenPi0AccPhi->SetXTitle("#phi (rad)");
-               outputContainer->Add(fhGenPi0AccE);             
-               outputContainer->Add(fhGenPi0AccPt);
-               outputContainer->Add(fhGenPi0AccEta);
-               outputContainer->Add(fhGenPi0AccPhi);
-               
+  fhNCellsPerClusterNoCut  = new TH2F ("hNCellsPerClusterNoCut","# cells per cluster vs energy vs #eta, no bad clusters cut",nptbins,ptmin,ptmax, nbins/5,nmin,nmax/5); 
+  fhNCellsPerClusterNoCut->SetXTitle("E (GeV)");
+  fhNCellsPerClusterNoCut->SetYTitle("n cells");
+  outputContainer->Add(fhNCellsPerClusterNoCut);
+    
+  fhNCellsPerCluster  = new TH2F ("hNCellsPerCluster","# cells per cluster vs energy vs #eta",nptbins,ptmin,ptmax, nbins/5,nmin,nmax/5); 
+  fhNCellsPerCluster->SetXTitle("E (GeV)");
+  fhNCellsPerCluster->SetYTitle("n cells");
+  outputContainer->Add(fhNCellsPerCluster);
+    
+  if((fCalorimeter=="EMCAL" && GetReader()->GetEMCALPtMin() < 0.3) ||
+     (fCalorimeter=="PHOS"  && GetReader()->GetPHOSPtMin()  < 0.3)) {
+    fhNCellsPerClusterMIP  = new TH2F ("hNCellsPerClusterMIP","# cells per cluster vs energy vs #eta, smaller bin for MIP search", 
+                                       40,0.,2., 11,0,10); 
+    fhNCellsPerClusterMIP->SetXTitle("E (GeV)");
+    fhNCellsPerClusterMIP->SetYTitle("n cells");
+    outputContainer->Add(fhNCellsPerClusterMIP);
+    
+    
+    if(fFillAllTMHisto){
+      fhNCellsPerClusterMIPCharged  = new TH2F ("hNCellsPerClusterMIPCharged","# cells per track-matched cluster vs energy vs #eta, smaller bin for MIP search", 
+                                                40,0.,2., 11,0,10); 
+      fhNCellsPerClusterMIPCharged->SetXTitle("E (GeV)");
+      fhNCellsPerClusterMIPCharged->SetYTitle("n cells");
+      outputContainer->Add(fhNCellsPerClusterMIPCharged);
+    }
        }
-       
-       
-       fh1pOverE = new TH1F("h1pOverE","EMCAL-TRACK matches p/E",100,0.,10.);
-       fh1pOverE->SetXTitle("p/E");
-       outputContainer->Add(fh1pOverE);
-       
-       fh1dR = new TH1F("h1dR","EMCAL-TRACK matches dR",300, 0.,TMath::Pi());
-       fh1dR->SetXTitle("#Delta R (rad)");
-       outputContainer->Add(fh1dR) ;
-       
-       fh2MatchdEdx = new TH2F("h2MatchdEdx","dE/dx vs. p for all matches",200,0.,50.,200,0.,400.);
-       fh2MatchdEdx->SetXTitle("p (GeV/c)");
-       fh2MatchdEdx->SetYTitle("<dE/dx>");
-       outputContainer->Add(fh2MatchdEdx);
-       
-       fh2EledEdx = new TH2F("h2EledEdx","dE/dx vs. p for electrons",200,0.,50.,200,0.,400.);
-       fh2EledEdx->SetXTitle("p (GeV/c)");
-       fh2EledEdx->SetYTitle("<dE/dx>");
-       outputContainer->Add(fh2EledEdx) ;
-       
-       return outputContainer;
-}
-
-//__________________________________________________
-void AliAnaCalorimeterQA::Init()
-{ 
-       //Check if the data or settings are ok
-       if(fCalorimeter != "PHOS" && fCalorimeter !="EMCAL"){
-               printf("AliAnaCalorimeterQA::Init() - Wrong calorimeter name <%s>, END\n", fCalorimeter.Data());
-               abort();
-       }       
-       
-       if(GetReader()->GetDataType()== AliCaloTrackReader::kMC){
-               printf("AliAnaCalorimeterQA::Init() - Analysis of reconstructed data, MC reader not aplicable\n");
-               abort();
-       }       
-       
-}
-
-
-//__________________________________________________
-void AliAnaCalorimeterQA::InitParameters()
-{ 
-  //Initialize the parameters of the analysis.
-  AddToHistogramsName("AnaCaloQA_");
-
-  fCalorimeter = "EMCAL"; //or PHOS
-  fStyleMacro = "" ;
-}
-
-//__________________________________________________________________
-void AliAnaCalorimeterQA::Print(const Option_t * opt) const
-{
-  //Print some relevant parameters set for the analysis
-  if(! opt)
-    return;
   
-  printf("**** Print %s %s ****\n", GetName(), GetTitle() ) ;
-  AliAnaPartCorrBaseClass::Print(" ");
+  fhNClusters  = new TH1F ("hNClusters","# clusters", nbins,nmin,nmax); 
+  fhNClusters->SetXTitle("number of clusters");
+  outputContainer->Add(fhNClusters);
+  
+  if(fFillAllPosHisto2){
+    
+    if(fFillAllTH3){
+      fhXYZ  = new TH3F ("hXYZ","Cluster: x vs y vs z",xbins,xmin,xmax,ybins,ymin,ymax,zbins,zmin,zmax); 
+      fhXYZ->SetXTitle("x (cm)");
+      fhXYZ->SetYTitle("y (cm)");
+      fhXYZ->SetZTitle("z (cm) ");
+      outputContainer->Add(fhXYZ);  
+    }
+    
+    fhXNCells  = new TH2F ("hXNCells","Cluster X position vs N Clusters per Cell",xbins,xmin,xmax,nbins,nmin,nmax); 
+    fhXNCells->SetXTitle("x (cm)");
+    fhXNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhXNCells);
+    
+    fhZNCells  = new TH2F ("hZNCells","Cluster Z position vs N Clusters per Cell",zbins,zmin,zmax,nbins,nmin,nmax); 
+    fhZNCells->SetXTitle("z (cm)");
+    fhZNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhZNCells);
+    
+    fhXE  = new TH2F ("hXE","Cluster X position vs cluster energy",xbins,xmin,xmax,nptbins,ptmin,ptmax); 
+    fhXE->SetXTitle("x (cm)");
+    fhXE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhXE);
+    
+    fhZE  = new TH2F ("hZE","Cluster Z position vs cluster energy",zbins,zmin,zmax,nptbins,ptmin,ptmax); 
+    fhZE->SetXTitle("z (cm)");
+    fhZE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhZE);    
+    
+    
+    fhRNCells  = new TH2F ("hRNCells","Cluster R position vs N Clusters per Cell",rbins,rmin,rmax,nbins,nmin,nmax); 
+    fhRNCells->SetXTitle("r = #sqrt{x^{2}+y^{2}} (cm)");
+    fhRNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhRNCells);
+    
+    
+    fhYNCells  = new TH2F ("hYNCells","Cluster Y position vs N Clusters per Cell",ybins,ymin,ymax,nbins,nmin,nmax); 
+    fhYNCells->SetXTitle("y (cm)");
+    fhYNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhYNCells);
+    
+    fhRE  = new TH2F ("hRE","Cluster R position vs cluster energy",rbins,rmin,rmax,nptbins,ptmin,ptmax); 
+    fhRE->SetXTitle("r = #sqrt{x^{2}+y^{2}} (cm)");
+    fhRE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhRE);
+    
+    fhYE  = new TH2F ("hYE","Cluster Y position vs cluster energy",ybins,ymin,ymax,nptbins,ptmin,ptmax); 
+    fhYE->SetXTitle("y (cm)");
+    fhYE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhYE);
+  }
+  if(fFillAllPosHisto){
+    
+    fhRCellE  = new TH2F ("hRCellE","Cell R position vs cell energy",rbins,rmin,rmax,nptbins,ptmin,ptmax); 
+    fhRCellE->SetXTitle("r = #sqrt{x^{2}+y^{2}} (cm)");
+    fhRCellE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhRCellE);
+    
+    fhXCellE  = new TH2F ("hXCellE","Cell X position vs cell energy",xbins,xmin,xmax,nptbins,ptmin,ptmax); 
+    fhXCellE->SetXTitle("x (cm)");
+    fhXCellE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhXCellE);
+    
+    fhYCellE  = new TH2F ("hYCellE","Cell Y position vs cell energy",ybins,ymin,ymax,nptbins,ptmin,ptmax); 
+    fhYCellE->SetXTitle("y (cm)");
+    fhYCellE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhYCellE);
+    
+    fhZCellE  = new TH2F ("hZCellE","Cell Z position vs cell energy",zbins,zmin,zmax,nptbins,ptmin,ptmax); 
+    fhZCellE->SetXTitle("z (cm)");
+    fhZCellE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhZCellE);
+    
+    fhXYZCell  = new TH3F ("hXYZCell","Cell : x vs y vs z",xbins,xmin,xmax,ybins,ymin,ymax,zbins,zmin,zmax); 
+    fhXYZCell->SetXTitle("x (cm)");
+    fhXYZCell->SetYTitle("y (cm)");
+    fhXYZCell->SetZTitle("z (cm)");
+    outputContainer->Add(fhXYZCell);
+    
+    
+    Float_t dx = TMath::Abs(xmin)+TMath::Abs(xmax);
+    Float_t dy = TMath::Abs(ymin)+TMath::Abs(ymax);
+    Float_t dz = TMath::Abs(zmin)+TMath::Abs(zmax);
+    Float_t dr = TMath::Abs(rmin)+TMath::Abs(rmax);
+    
+    fhDeltaCellClusterRNCells  = new TH2F ("hDeltaCellClusterRNCells","Cluster-Cell R position vs N Clusters per Cell",rbins*2,-dr,dr,nbins,nmin,nmax); 
+    fhDeltaCellClusterRNCells->SetXTitle("r = #sqrt{x^{2}+y^{2}} (cm)");
+    fhDeltaCellClusterRNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhDeltaCellClusterRNCells);
+    
+    fhDeltaCellClusterXNCells  = new TH2F ("hDeltaCellClusterXNCells","Cluster-Cell X position vs N Clusters per Cell",xbins*2,-dx,dx,nbins,nmin,nmax); 
+    fhDeltaCellClusterXNCells->SetXTitle("x (cm)");
+    fhDeltaCellClusterXNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhDeltaCellClusterXNCells);
+    
+    fhDeltaCellClusterYNCells  = new TH2F ("hDeltaCellClusterYNCells","Cluster-Cell Y position vs N Clusters per Cell",ybins*2,-dy,dy,nbins,nmin,nmax); 
+    fhDeltaCellClusterYNCells->SetXTitle("y (cm)");
+    fhDeltaCellClusterYNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhDeltaCellClusterYNCells);
+    
+    fhDeltaCellClusterZNCells  = new TH2F ("hDeltaCellClusterZNCells","Cluster-Cell Z position vs N Clusters per Cell",zbins*2,-dz,dz,nbins,nmin,nmax); 
+    fhDeltaCellClusterZNCells->SetXTitle("z (cm)");
+    fhDeltaCellClusterZNCells->SetYTitle("N cells per cluster");
+    outputContainer->Add(fhDeltaCellClusterZNCells);
+    
+    fhDeltaCellClusterRE  = new TH2F ("hDeltaCellClusterRE","Cluster-Cell R position vs cluster energy",rbins*2,-dr,dr,nptbins,ptmin,ptmax); 
+    fhDeltaCellClusterRE->SetXTitle("r = #sqrt{x^{2}+y^{2}} (cm)");
+    fhDeltaCellClusterRE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhDeltaCellClusterRE);                
+    
+    fhDeltaCellClusterXE  = new TH2F ("hDeltaCellClusterXE","Cluster-Cell X position vs cluster energy",xbins*2,-dx,dx,nptbins,ptmin,ptmax); 
+    fhDeltaCellClusterXE->SetXTitle("x (cm)");
+    fhDeltaCellClusterXE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhDeltaCellClusterXE);
+    
+    fhDeltaCellClusterYE  = new TH2F ("hDeltaCellClusterYE","Cluster-Cell Y position vs cluster energy",ybins*2,-dy,dy,nptbins,ptmin,ptmax); 
+    fhDeltaCellClusterYE->SetXTitle("y (cm)");
+    fhDeltaCellClusterYE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhDeltaCellClusterYE);
+    
+    fhDeltaCellClusterZE  = new TH2F ("hDeltaCellClusterZE","Cluster-Cell Z position vs cluster energy",zbins*2,-dz,dz,nptbins,ptmin,ptmax); 
+    fhDeltaCellClusterZE->SetXTitle("z (cm)");
+    fhDeltaCellClusterZE->SetYTitle("E (GeV)");
+    outputContainer->Add(fhDeltaCellClusterZE);
+    
+    fhEtaPhiAmp  = new TH3F ("hEtaPhiAmp","Cell #eta vs cell #phi vs cell energy",netabins,etamin,etamax,nphibins,phimin,phimax,nptbins,ptmin,ptmax); 
+    fhEtaPhiAmp->SetXTitle("#eta ");
+    fhEtaPhiAmp->SetYTitle("#phi (rad)");
+    fhEtaPhiAmp->SetZTitle("E (GeV) ");
+    outputContainer->Add(fhEtaPhiAmp);         
+    
+  }
+  
+  //Calo cells
+  fhNCells  = new TH1F ("hNCells","# cells", colmax*rowmax*fNModules,0,colmax*rowmax*fNModules); 
+  fhNCells->SetXTitle("n cells");
+  outputContainer->Add(fhNCells);
+  
+  fhAmplitude  = new TH1F ("hAmplitude","Cell Energy", nptbins*2,ptmin,ptmax); 
+  fhAmplitude->SetXTitle("Cell Energy (GeV)");
+  outputContainer->Add(fhAmplitude);
+  
+  fhAmpId  = new TH2F ("hAmpId","Cell Energy", nfineptbins,ptfinemin,ptfinemax,rowmax*colmax*fNModules,0,rowmax*colmax*fNModules); 
+  fhAmpId->SetXTitle("Cell Energy (GeV)");
+  outputContainer->Add(fhAmpId);
+  
+  
+  //Cell Time histograms, time only available in ESDs
+  if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+    
+    fhCellTimeSpreadRespectToCellMax = new TH1F ("hCellTimeSpreadRespectToCellMax","t_{cell max}-t_{cell i} per cluster", 100,-200,200); 
+    fhCellTimeSpreadRespectToCellMax->SetXTitle("#Delta t (ns)");
+    outputContainer->Add(fhCellTimeSpreadRespectToCellMax);
+    
+    fhCellIdCellLargeTimeSpread= new TH1F ("hCellIdCellLargeTimeSpread","", colmax*rowmax*fNModules,0,colmax*rowmax*fNModules); 
+    fhCellIdCellLargeTimeSpread->SetXTitle("Absolute Cell Id");
+    outputContainer->Add(fhCellIdCellLargeTimeSpread);
+    
+    fhTime  = new TH1F ("hTime","Cell Time",ntimebins,timemin,timemax); 
+    fhTime->SetXTitle("Cell Time (ns)");
+    outputContainer->Add(fhTime);
+    
+    fhTimeId  = new TH2F ("hTimeId","Cell Time vs Absolute Id",ntimebins,timemin,timemax,rowmax*colmax*fNModules,0,rowmax*colmax*fNModules); 
+    fhTimeId->SetXTitle("Cell Time (ns)");
+    fhTimeId->SetYTitle("Cell Absolute Id");
+    outputContainer->Add(fhTimeId);
+    
+    fhTimeAmp  = new TH2F ("hTimeAmp","Cell Time vs Cell Energy",nptbins*2,ptmin,ptmax,ntimebins,timemin,timemax); 
+    fhTimeAmp->SetYTitle("Cell Time (ns)");
+    fhTimeAmp->SetXTitle("Cell Energy (GeV)");
+    outputContainer->Add(fhTimeAmp);
+    
+    //         fhT0Time  = new TH1F ("hT0Time","Cell Time",ntimebins,timemin,timemax); 
+    //         fhT0Time->SetXTitle("T_{0} - T_{EMCal} (ns)");
+    //         outputContainer->Add(fhT0Time);
+    //         
+    //         fhT0TimeId  = new TH2F ("hT0TimeId","Cell Time vs Absolute Id",ntimebins,timemin,timemax,rowmax*colmax*fNModules,0,rowmax*colmax*fNModules); 
+    //         fhT0TimeId->SetXTitle("T_{0} - T_{EMCal} (ns)");
+    //         fhT0TimeId->SetYTitle("Cell Absolute Id");
+    //         outputContainer->Add(fhT0TimeId);
+    //         
+    //         fhT0TimeAmp  = new TH2F ("hT0TimeAmp","Cell Time vs Cell Energy",nptbins*2,ptmin,ptmax,ntimebins,timemin,timemax); 
+    //         fhT0TimeAmp->SetYTitle("T_{0} - T_{EMCal} (ns)");
+    //         fhT0TimeAmp->SetXTitle("Cell Energy (GeV)");
+    //         outputContainer->Add(fhT0TimeAmp);
+  }
+       
+  if(fCorrelate){
+    //PHOS vs EMCAL
+    fhCaloCorrNClusters  = new TH2F ("hCaloCorrNClusters","# clusters in EMCAL vs PHOS", nbins,nmin,nmax,nbins,nmin,nmax); 
+    fhCaloCorrNClusters->SetXTitle("number of clusters in EMCAL");
+    fhCaloCorrNClusters->SetYTitle("number of clusters in PHOS");
+    outputContainer->Add(fhCaloCorrNClusters);
+    
+    fhCaloCorrEClusters  = new TH2F ("hCaloCorrEClusters","summed energy of clusters in EMCAL vs PHOS", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
+    fhCaloCorrEClusters->SetXTitle("#Sigma E of clusters in EMCAL (GeV)");
+    fhCaloCorrEClusters->SetYTitle("#Sigma E of clusters in PHOS (GeV)");
+    outputContainer->Add(fhCaloCorrEClusters);
+    
+    fhCaloCorrNCells  = new TH2F ("hCaloCorrNCells","# Cells in EMCAL vs PHOS", nbins,nmin,nmax, nbins,nmin,nmax); 
+    fhCaloCorrNCells->SetXTitle("number of Cells in EMCAL");
+    fhCaloCorrNCells->SetYTitle("number of Cells in PHOS");
+    outputContainer->Add(fhCaloCorrNCells);
+    
+    fhCaloCorrECells  = new TH2F ("hCaloCorrECells","summed energy of Cells in EMCAL vs PHOS", nptbins*2,ptmin,ptmax*2,nptbins*2,ptmin,ptmax*2); 
+    fhCaloCorrECells->SetXTitle("#Sigma E of Cells in EMCAL (GeV)");
+    fhCaloCorrECells->SetYTitle("#Sigma E of Cells in PHOS (GeV)");
+    outputContainer->Add(fhCaloCorrECells);
+    
+    //Calorimeter VS V0 signal
+    fhCaloV0SCorrNClusters  = new TH2F ("hCaloV0SNClusters",Form("# clusters in %s vs V0 signal",fCalorimeter.Data()), nv0sbins,nv0smin,nv0smax,nbins,nmin,nmax); 
+    fhCaloV0SCorrNClusters->SetXTitle("V0 signal");
+    fhCaloV0SCorrNClusters->SetYTitle(Form("number of clusters in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0SCorrNClusters);
+    
+    fhCaloV0SCorrEClusters  = new TH2F ("hCaloV0SEClusters",Form("summed energy of clusters in %s vs V0 signal",fCalorimeter.Data()), nv0sbins,nv0smin,nv0smax,nptbins,ptmin,ptmax); 
+    fhCaloV0SCorrEClusters->SetXTitle("V0 signal");
+    fhCaloV0SCorrEClusters->SetYTitle(Form("#Sigma E of clusters in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0SCorrEClusters);
+    
+    fhCaloV0SCorrNCells  = new TH2F ("hCaloV0SNCells",Form("# Cells in %s vs V0 signal",fCalorimeter.Data()), nv0sbins,nv0smin,nv0smax, nbins,nmin,nmax); 
+    fhCaloV0SCorrNCells->SetXTitle("V0 signal");
+    fhCaloV0SCorrNCells->SetYTitle(Form("number of Cells in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0SCorrNCells);
+    
+    fhCaloV0SCorrECells  = new TH2F ("hCaloV0SECells",Form("summed energy of Cells in %s vs V0 signal",fCalorimeter.Data()), nv0sbins,nv0smin,nv0smax,nptbins,ptmin,ptmax); 
+    fhCaloV0SCorrECells->SetXTitle("V0 signal");
+    fhCaloV0SCorrECells->SetYTitle(Form("#Sigma E of Cells in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0SCorrECells);    
+    
+    //Calorimeter VS V0 multiplicity
+    fhCaloV0MCorrNClusters  = new TH2F ("hCaloV0MNClusters",Form("# clusters in %s vs V0 signal",fCalorimeter.Data()), nv0mbins,nv0mmin,nv0mmax,nbins,nmin,nmax); 
+    fhCaloV0MCorrNClusters->SetXTitle("V0 signal");
+    fhCaloV0MCorrNClusters->SetYTitle(Form("number of clusters in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0MCorrNClusters);
+    
+    fhCaloV0MCorrEClusters  = new TH2F ("hCaloV0MEClusters",Form("summed energy of clusters in %s vs V0 signal",fCalorimeter.Data()), nv0mbins,nv0mmin,nv0mmax,nptbins,ptmin,ptmax); 
+    fhCaloV0MCorrEClusters->SetXTitle("V0 signal");
+    fhCaloV0MCorrEClusters->SetYTitle(Form("#Sigma E of clusters in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0MCorrEClusters);
+    
+    fhCaloV0MCorrNCells  = new TH2F ("hCaloV0MNCells",Form("# Cells in %s vs V0 signal",fCalorimeter.Data()), nv0mbins,nv0mmin,nv0mmax, nbins,nmin,nmax); 
+    fhCaloV0MCorrNCells->SetXTitle("V0 signal");
+    fhCaloV0MCorrNCells->SetYTitle(Form("number of Cells in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0MCorrNCells);
+    
+    fhCaloV0MCorrECells  = new TH2F ("hCaloV0MECells",Form("summed energy of Cells in %s vs V0 signal",fCalorimeter.Data()), nv0mbins,nv0mmin,nv0mmax,nptbins,ptmin,ptmax); 
+    fhCaloV0MCorrECells->SetXTitle("V0 signal");
+    fhCaloV0MCorrECells->SetYTitle(Form("#Sigma E of Cells in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloV0MCorrECells);    
+    
+    //Calorimeter VS Track multiplicity
+    fhCaloTrackMCorrNClusters  = new TH2F ("hCaloTrackMNClusters",Form("# clusters in %s vs # tracks",fCalorimeter.Data()), ntrmbins,ntrmmin,ntrmmax,nbins,nmin,nmax); 
+    fhCaloTrackMCorrNClusters->SetXTitle("# tracks");
+    fhCaloTrackMCorrNClusters->SetYTitle(Form("number of clusters in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloTrackMCorrNClusters);
+    
+    fhCaloTrackMCorrEClusters  = new TH2F ("hCaloTrackMEClusters",Form("summed energy of clusters in %s vs # tracks",fCalorimeter.Data()), ntrmbins,ntrmmin,ntrmmax,nptbins,ptmin,ptmax); 
+    fhCaloTrackMCorrEClusters->SetXTitle("# tracks");
+    fhCaloTrackMCorrEClusters->SetYTitle(Form("#Sigma E of clusters in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloTrackMCorrEClusters);
+    
+    fhCaloTrackMCorrNCells  = new TH2F ("hCaloTrackMNCells",Form("# Cells in %s vs # tracks",fCalorimeter.Data()), ntrmbins,ntrmmin,ntrmmax, nbins,nmin,nmax); 
+    fhCaloTrackMCorrNCells->SetXTitle("# tracks");
+    fhCaloTrackMCorrNCells->SetYTitle(Form("number of Cells in %s",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloTrackMCorrNCells);
+    
+    fhCaloTrackMCorrECells  = new TH2F ("hCaloTrackMECells",Form("summed energy of Cells in %s vs # tracks",fCalorimeter.Data()), ntrmbins,ntrmmin,ntrmmax,nptbins,ptmin,ptmax); 
+    fhCaloTrackMCorrECells->SetXTitle("# tracks");
+    fhCaloTrackMCorrECells->SetYTitle(Form("#Sigma E of Cells in %s (GeV)",fCalorimeter.Data()));
+    outputContainer->Add(fhCaloTrackMCorrECells);    
+    
+    
+  }//correlate calorimeters
+  
+  //Module histograms
+  fhEMod                 = new TH1F*[fNModules];
+  fhNClustersMod         = new TH1F*[fNModules];
+  fhNCellsPerClusterMod  = new TH2F*[fNModules];
+  fhNCellsPerClusterModNoCut  = new TH2F*[fNModules];
+  fhNCellsMod            = new TH1F*[fNModules];
+  fhGridCellsMod         = new TH2F*[fNModules];
+  fhGridCellsEMod        = new TH2F*[fNModules];
+  fhGridCellsTimeMod     = new TH2F*[fNModules];
+  fhAmplitudeMod         = new TH1F*[fNModules];
+  if(fCalorimeter=="EMCAL")
+    fhAmplitudeModFraction = new TH1F*[fNModules*3];
+  
+  fhTimeAmpPerRCU        = new TH2F*[fNModules*fNRCU];
+  //fhT0TimeAmpPerRCU      = new TH2F*[fNModules*fNRCU];
+  //fhTimeCorrRCU          = new TH2F*[fNModules*fNRCU*fNModules*fNRCU];
+  
+  fhIMMod                = new TH2F*[fNModules];
+  fhIMCellCutMod         = new TH2F*[fNModules];
+  
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    
+    fhEMod[imod]  = new TH1F (Form("hE_Mod%d",imod),Form("Cluster reconstructed Energy in Module %d ",imod), nptbins,ptmin,ptmax); 
+    fhEMod[imod]->SetXTitle("E (GeV)");
+    outputContainer->Add(fhEMod[imod]);
+    
+    fhNClustersMod[imod]  = new TH1F (Form("hNClusters_Mod%d",imod),Form("# clusters in Module %d",imod), nbins,nmin,nmax); 
+    fhNClustersMod[imod]->SetXTitle("number of clusters");
+    outputContainer->Add(fhNClustersMod[imod]);
+    
+    fhNCellsPerClusterMod[imod]  = new TH2F (Form("hNCellsPerCluster_Mod%d",imod),
+                                             Form("# cells per cluster vs cluster energy in Module %d",imod), 
+                                             nptbins,ptmin,ptmax, nbins,nmin,nmax); 
+    fhNCellsPerClusterMod[imod]->SetXTitle("E (GeV)");
+    fhNCellsPerClusterMod[imod]->SetYTitle("n cells");
+    outputContainer->Add(fhNCellsPerClusterMod[imod]);
 
-  printf("Select Calorimeter %s \n",fCalorimeter.Data());
-  printf("Plots style macro %s \n",fStyleMacro.Data()); 
-} 
+    fhNCellsPerClusterModNoCut[imod]  = new TH2F (Form("hNCellsPerClusterNoCut_Mod%d",imod),
+                                             Form("# cells per cluster vs cluster energy in Module %d, no cut",imod), 
+                                             nptbins,ptmin,ptmax, nbins,nmin,nmax); 
+    fhNCellsPerClusterModNoCut[imod]->SetXTitle("E (GeV)");
+    fhNCellsPerClusterModNoCut[imod]->SetYTitle("n cells");
+    outputContainer->Add(fhNCellsPerClusterModNoCut[imod]);
+    
+    
+    fhNCellsMod[imod]  = new TH1F (Form("hNCells_Mod%d",imod),Form("# cells in Module %d",imod), colmax*rowmax,0,colmax*rowmax); 
+    fhNCellsMod[imod]->SetXTitle("n cells");
+    outputContainer->Add(fhNCellsMod[imod]);
+    fhGridCellsMod[imod]  = new TH2F (Form("hGridCells_Mod%d",imod),Form("Entries in grid of cells in Module %d",imod), 
+                                      colmax+2,-1.5,colmax+0.5, rowmax+2,-1.5,rowmax+0.5); 
+    fhGridCellsMod[imod]->SetYTitle("row (phi direction)");
+    fhGridCellsMod[imod]->SetXTitle("column (eta direction)");
+    outputContainer->Add(fhGridCellsMod[imod]);
+    
+    fhGridCellsEMod[imod]  = new TH2F (Form("hGridCellsE_Mod%d",imod),Form("Accumulated energy in grid of cells in Module %d",imod), 
+                                       colmax+2,-1.5,colmax+0.5, rowmax+2,-1.5,rowmax+0.5); 
+    fhGridCellsEMod[imod]->SetYTitle("row (phi direction)");
+    fhGridCellsEMod[imod]->SetXTitle("column (eta direction)");
+    outputContainer->Add(fhGridCellsEMod[imod]);
+    
+    fhGridCellsTimeMod[imod]  = new TH2F (Form("hGridCellsTime_Mod%d",imod),Form("Accumulated time in grid of cells in Module %d, with E > 0.5 GeV",imod), 
+                                          colmax+2,-1.5,colmax+0.5, rowmax+2,-1.5,rowmax+0.5); 
+    fhGridCellsTimeMod[imod]->SetYTitle("row (phi direction)");
+    fhGridCellsTimeMod[imod]->SetXTitle("column (eta direction)");
+    outputContainer->Add(fhGridCellsTimeMod[imod]);
+    
+    fhAmplitudeMod[imod]  = new TH1F (Form("hAmplitude_Mod%d",imod),Form("Cell Energy in Module %d",imod), nptbins*2,ptmin,ptmax); 
+    fhAmplitudeMod[imod]->SetXTitle("Cell Energy (GeV)");
+    outputContainer->Add(fhAmplitudeMod[imod]);
+    
+    if(fCalorimeter == "EMCAL"){
+      for(Int_t ifrac = 0; ifrac < 3; ifrac++){
+        fhAmplitudeModFraction[imod*3+ifrac]  = new TH1F (Form("hAmplitude_Mod%d_Frac%d",imod,ifrac),Form("Cell reconstructed Energy in Module %d, Fraction %d ",imod,ifrac), nptbins,ptmin,ptmax); 
+        fhAmplitudeModFraction[imod*3+ifrac]->SetXTitle("E (GeV)");
+        outputContainer->Add(fhAmplitudeModFraction[imod*3+ifrac]);
+      }
+      
+    }
+    if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+      
+      for(Int_t ircu = 0; ircu < fNRCU; ircu++){
+        fhTimeAmpPerRCU[imod*fNRCU+ircu]  = new TH2F (Form("hTimeAmp_Mod%d_RCU%d",imod,ircu),
+                                                      Form("Cell Energy vs Cell Time in Module %d, RCU %d ",imod,ircu), 
+                                                      nptbins,ptmin,ptmax,ntimebins,timemin,timemax); 
+        fhTimeAmpPerRCU[imod*fNRCU+ircu]->SetXTitle("E (GeV)");
+        fhTimeAmpPerRCU[imod*fNRCU+ircu]->SetYTitle("time (ns)");
+        outputContainer->Add(fhTimeAmpPerRCU[imod*fNRCU+ircu]);
+        
+        //                             fhT0TimeAmpPerRCU[imod*fNRCU+ircu]  = new TH2F (Form("hT0TimeAmp_Mod%d_RCU%d",imod,ircu),
+        //                                                                                                                       Form("Cell Energy vs T0-Cell Time in Module %d, RCU %d ",imod,ircu), 
+        //                                                                                                                       nptbins,ptmin,ptmax,ntimebins,timemin,timemax); 
+        //                             fhT0TimeAmpPerRCU[imod*fNRCU+ircu]->SetXTitle("E (GeV)");
+        //                             fhT0TimeAmpPerRCU[imod*fNRCU+ircu]->SetYTitle("T_{0} - T_{EMCal} (ns)");
+        //                             outputContainer->Add(fhT0TimeAmpPerRCU[imod*fNRCU+ircu]);
+        //                     
+        
+        //                             for(Int_t imod2 = 0; imod2 < fNModules; imod2++){
+        //                                             for(Int_t ircu2 = 0; ircu2 < fNModules; ircu2++){
+        //                                                     Int_t index =  (imod2*fNRCU+ircu2)+(fNModules*fNRCU)*(ircu+imod)+fNRCU*fNModules*imod; 
+        //                                                     fhTimeCorrRCU[index]  = new TH2F (Form("hTimeCorrRCU_Mod%d_RCU%d_CompareTo_Mod%d_RCU%d",imod, ircu,imod2, ircu2),
+        //                                                                                                                                                     Form("Cell Energy > 0.3, Correlate cell Time in Module %d, RCU %d to Module %d, RCU %d",imod,ircu,imod2, ircu2),
+        //                                                                                                                                                     ntimebins,timemin,timemax,ntimebins,timemin,timemax); 
+        //                                                     fhTimeCorrRCU[index]->SetXTitle("Trigger Cell Time (ns)");
+        //                                                     fhTimeCorrRCU[index]->SetYTitle("Cell Time (ns)");
+        //                                                     outputContainer->Add(fhTimeCorrRCU[index]);
+        //                                             }
+        //                             }
+      }
+    }
+    if(fFillAllPi0Histo){
+      fhIMMod[imod]  = new TH2F (Form("hIM_Mod%d",imod),
+                                 Form("Cluster pairs Invariant mass vs reconstructed pair energy in Module %d",imod),
+                                 nptbins,ptmin,ptmax,nmassbins,massmin,massmax); 
+      fhIMMod[imod]->SetXTitle("p_{T, cluster pairs} (GeV) ");
+      fhIMMod[imod]->SetYTitle("M_{cluster pairs} (GeV/c^{2})");
+      outputContainer->Add(fhIMMod[imod]);
+      
+      fhIMCellCutMod[imod]  = new TH2F (Form("hIMCellCut_Mod%d",imod),
+                                        Form("Cluster (n cells > 1) pairs Invariant mass vs reconstructed pair energy in Module %d",imod),
+                                        nptbins,ptmin,ptmax,nmassbins,massmin,massmax); 
+      fhIMCellCutMod[imod]->SetXTitle("p_{T, cluster pairs} (GeV) ");
+      fhIMCellCutMod[imod]->SetYTitle("M_{cluster pairs} (GeV/c^{2})");
+      outputContainer->Add(fhIMCellCutMod[imod]);
+    }
+  }
+  
+  
+  //Monte Carlo Histograms
+  if(IsDataMC()){
+    
+    fhDeltaE  = new TH1F ("hDeltaE","MC - Reco E ", nptbins*2,-ptmax,ptmax); 
+    fhDeltaE->SetXTitle("#Delta E (GeV)");
+    outputContainer->Add(fhDeltaE);
+    
+    fhDeltaPt  = new TH1F ("hDeltaPt","MC - Reco p_{T} ", nptbins*2,-ptmax,ptmax); 
+    fhDeltaPt->SetXTitle("#Delta p_{T} (GeV/c)");
+    outputContainer->Add(fhDeltaPt);
+    
+    fhDeltaPhi  = new TH1F ("hDeltaPhi","MC - Reco #phi ",nphibins*2,-phimax,phimax); 
+    fhDeltaPhi->SetXTitle("#Delta #phi (rad)");
+    outputContainer->Add(fhDeltaPhi);
+    
+    fhDeltaEta  = new TH1F ("hDeltaEta","MC- Reco #eta",netabins*2,-etamax,etamax); 
+    fhDeltaEta->SetXTitle("#Delta #eta ");
+    outputContainer->Add(fhDeltaEta);
+    
+    fhRatioE  = new TH1F ("hRatioE","Reco/MC E ", nratiobins,ratiomin,ratiomax); 
+    fhRatioE->SetXTitle("E_{reco}/E_{gen}");
+    outputContainer->Add(fhRatioE);
+    
+    fhRatioPt  = new TH1F ("hRatioPt","Reco/MC p_{T} ", nratiobins,ratiomin,ratiomax); 
+    fhRatioPt->SetXTitle("p_{T, reco}/p_{T, gen}");
+    outputContainer->Add(fhRatioPt);
+    
+    fhRatioPhi  = new TH1F ("hRatioPhi","Reco/MC #phi ",nratiobins,ratiomin,ratiomax); 
+    fhRatioPhi->SetXTitle("#phi_{reco}/#phi_{gen}");
+    outputContainer->Add(fhRatioPhi);
+    
+    fhRatioEta  = new TH1F ("hRatioEta","Reco/MC #eta",nratiobins,ratiomin,ratiomax); 
+    fhRatioEta->SetXTitle("#eta_{reco}/#eta_{gen} ");
+    outputContainer->Add(fhRatioEta);
+    
+    fh2E  = new TH2F ("h2E","E distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
+    fh2E->SetXTitle("E_{rec} (GeV)");
+    fh2E->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fh2E);          
+    
+    fh2Pt  = new TH2F ("h2Pt","p_T distribution, reconstructed vs generated", nptbins,ptmin,ptmax,nptbins,ptmin,ptmax); 
+    fh2Pt->SetXTitle("p_{T,rec} (GeV/c)");
+    fh2Pt->SetYTitle("p_{T,gen} (GeV/c)");
+    outputContainer->Add(fh2Pt);
+    
+    fh2Phi  = new TH2F ("h2Phi","#phi distribution, reconstructed vs generated", nphibins,phimin,phimax, nphibins,phimin,phimax); 
+    fh2Phi->SetXTitle("#phi_{rec} (rad)");
+    fh2Phi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fh2Phi);
+    
+    fh2Eta  = new TH2F ("h2Eta","#eta distribution, reconstructed vs generated", netabins,etamin,etamax,netabins,etamin,etamax); 
+    fh2Eta->SetXTitle("#eta_{rec} ");
+    fh2Eta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fh2Eta);
+    
+    //Fill histos depending on origin of cluster
+    fhGamE  = new TH2F ("hGamE","E reconstructed vs E generated from #gamma", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhGamE->SetXTitle("E_{rec} (GeV)");
+    fhGamE->SetXTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhGamE);
+    
+    fhGamPt  = new TH2F ("hGamPt","p_{T} reconstructed vs E generated from #gamma", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhGamPt->SetXTitle("p_{T rec} (GeV/c)");
+    fhGamPt->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhGamPt);
+    
+    fhGamPhi  = new TH2F ("hGamPhi","#phi reconstructed vs E generated from #gamma",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhGamPhi->SetXTitle("#phi_{rec} (rad)");
+    fhGamPhi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhGamPhi);
+    
+    fhGamEta  = new TH2F ("hGamEta","#eta reconstructed vs E generated from #gamma",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhGamEta->SetXTitle("#eta_{rec} ");
+    fhGamEta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhGamEta);
+    
+    fhGamDeltaE  = new TH1F ("hGamDeltaE","#gamma MC - Reco E ", nptbins*2,-ptmax,ptmax); 
+    fhGamDeltaE->SetXTitle("#Delta E (GeV)");
+    outputContainer->Add(fhGamDeltaE);
+    
+    fhGamDeltaPt  = new TH1F ("hGamDeltaPt","#gamma MC - Reco p_{T} ", nptbins*2,-ptmax,ptmax); 
+    fhGamDeltaPt->SetXTitle("#Delta p_{T} (GeV/c)");
+    outputContainer->Add(fhGamDeltaPt);
+    
+    fhGamDeltaPhi  = new TH1F ("hGamDeltaPhi","#gamma MC - Reco #phi ",nphibins*2,-phimax,phimax); 
+    fhGamDeltaPhi->SetXTitle("#Delta #phi (rad)");
+    outputContainer->Add(fhGamDeltaPhi);
+    
+    fhGamDeltaEta  = new TH1F ("hGamDeltaEta","#gamma MC- Reco #eta",netabins*2,-etamax,etamax); 
+    fhGamDeltaEta->SetXTitle("#Delta #eta ");
+    outputContainer->Add(fhGamDeltaEta);
+    
+    fhGamRatioE  = new TH1F ("hGamRatioE","#gamma Reco/MC E ", nratiobins,ratiomin,ratiomax); 
+    fhGamRatioE->SetXTitle("E_{reco}/E_{gen}");
+    outputContainer->Add(fhGamRatioE);
+    
+    fhGamRatioPt  = new TH1F ("hGamRatioPt","#gamma Reco/MC p_{T} ", nratiobins,ratiomin,ratiomax); 
+    fhGamRatioPt->SetXTitle("p_{T, reco}/p_{T, gen}");
+    outputContainer->Add(fhGamRatioPt);
+    
+    fhGamRatioPhi  = new TH1F ("hGamRatioPhi","#gamma Reco/MC #phi ",nratiobins,ratiomin,ratiomax); 
+    fhGamRatioPhi->SetXTitle("#phi_{reco}/#phi_{gen}");
+    outputContainer->Add(fhGamRatioPhi);
+    
+    fhGamRatioEta  = new TH1F ("hGamRatioEta","#gamma Reco/MC #eta",nratiobins,ratiomin,ratiomax); 
+    fhGamRatioEta->SetXTitle("#eta_{reco}/#eta_{gen} ");
+    outputContainer->Add(fhGamRatioEta);
+    
+    fhPi0E  = new TH2F ("hPi0E","E reconstructed vs E generated from #pi^{0}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhPi0E->SetXTitle("E_{rec} (GeV)");
+    fhPi0E->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhPi0E);
+    
+    fhPi0Pt  = new TH2F ("hPi0Pt","p_{T} reconstructed vs E generated from #pi^{0}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhPi0Pt->SetXTitle("p_{T rec} (GeV/c)");
+    fhPi0Pt->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhPi0Pt);
+    
+    fhPi0Phi  = new TH2F ("hPi0Phi","#phi reconstructed vs E generated from #pi^{0}",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhPi0Phi->SetXTitle("#phi_{rec} (rad)");
+    fhPi0Phi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhPi0Phi);
+    
+    fhPi0Eta  = new TH2F ("hPi0Eta","#eta reconstructed vs E generated from #pi^{0}",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhPi0Eta->SetXTitle("#eta_{rec} ");
+    fhPi0Eta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhPi0Eta);
+    
+    fhEleE  = new TH2F ("hEleE","E reconstructed vs E generated from e^{#pm}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhEleE->SetXTitle("E_{rec} (GeV)");
+    fhEleE->SetXTitle("E_{gen} (GeV)");                
+    outputContainer->Add(fhEleE);              
+    
+    fhElePt  = new TH2F ("hElePt","p_{T} reconstructed vs E generated from e^{#pm}", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhElePt->SetXTitle("p_{T rec} (GeV/c)");
+    fhElePt->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhElePt);
+    
+    fhElePhi  = new TH2F ("hElePhi","#phi reconstructed vs E generated from e^{#pm}",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhElePhi->SetXTitle("#phi_{rec} (rad)");
+    fhElePhi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhElePhi);
+    
+    fhEleEta  = new TH2F ("hEleEta","#eta reconstructed vs E generated from e^{#pm}",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhEleEta->SetXTitle("#eta_{rec} ");
+    fhEleEta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhEleEta);
+    
+    fhNeHadE  = new TH2F ("hNeHadE","E reconstructed vs E generated from neutral hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhNeHadE->SetXTitle("E_{rec} (GeV)");
+    fhNeHadE->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhNeHadE);
+    
+    fhNeHadPt  = new TH2F ("hNeHadPt","p_{T} reconstructed vs E generated from neutral hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhNeHadPt->SetXTitle("p_{T rec} (GeV/c)");
+    fhNeHadPt->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhNeHadPt);
+    
+    fhNeHadPhi  = new TH2F ("hNeHadPhi","#phi reconstructed vs E generated from neutral hadron",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhNeHadPhi->SetXTitle("#phi_{rec} (rad)");
+    fhNeHadPhi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhNeHadPhi);
+    
+    fhNeHadEta  = new TH2F ("hNeHadEta","#eta reconstructed vs E generated from neutral hadron",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhNeHadEta->SetXTitle("#eta_{rec} ");
+    fhNeHadEta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhNeHadEta);
+    
+    fhChHadE  = new TH2F ("hChHadE","E reconstructed vs E generated from charged hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhChHadE->SetXTitle("E_{rec} (GeV)");
+    fhChHadE->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhChHadE);
+    
+    fhChHadPt  = new TH2F ("hChHadPt","p_{T} reconstructed vs E generated from charged hadron", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhChHadPt->SetXTitle("p_{T rec} (GeV/c)");
+    fhChHadPt->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhChHadPt);
+    
+    fhChHadPhi  = new TH2F ("hChHadPhi","#phi reconstructed vs E generated from charged hadron",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhChHadPhi->SetXTitle("#phi_{rec} (rad)");
+    fhChHadPhi->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhChHadPhi);
+    
+    fhChHadEta  = new TH2F ("hChHadEta","#eta reconstructed vs E generated from charged hadron",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhChHadEta->SetXTitle("#eta_{rec} ");
+    fhChHadEta->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhChHadEta);
+    
+    //Charged clusters
+    
+    fhGamECharged  = new TH2F ("hGamECharged","E reconstructed vs E generated from #gamma, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhGamECharged->SetXTitle("E_{rec} (GeV)");
+    fhGamECharged->SetXTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhGamECharged);
+    
+    fhGamPtCharged  = new TH2F ("hGamPtCharged","p_{T} reconstructed vs E generated from #gamma, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhGamPtCharged->SetXTitle("p_{T rec} (GeV/c)");
+    fhGamPtCharged->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhGamPtCharged);
+    
+    fhGamPhiCharged  = new TH2F ("hGamPhiCharged","#phi reconstructed vs E generated from #gamma, track matched cluster",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhGamPhiCharged->SetXTitle("#phi_{rec} (rad)");
+    fhGamPhiCharged->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhGamPhiCharged);
+    
+    fhGamEtaCharged  = new TH2F ("hGamEtaCharged","#eta reconstructed vs E generated from #gamma, track matched cluster",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhGamEtaCharged->SetXTitle("#eta_{rec} ");
+    fhGamEtaCharged->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhGamEtaCharged);
+    
+    fhPi0ECharged  = new TH2F ("hPi0ECharged","E reconstructed vs E generated from #pi^{0}, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhPi0ECharged->SetXTitle("E_{rec} (GeV)");
+    fhPi0ECharged->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhPi0ECharged);
+    
+    fhPi0PtCharged  = new TH2F ("hPi0PtCharged","p_{T} reconstructed vs E generated from #pi^{0}, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhPi0PtCharged->SetXTitle("p_{T rec} (GeV/c)");
+    fhPi0PtCharged->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhPi0PtCharged);
+    
+    fhPi0PhiCharged  = new TH2F ("hPi0PhiCharged","#phi reconstructed vs E generated from #pi^{0}, track matched cluster",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhPi0PhiCharged->SetXTitle("#phi_{rec} (rad)");
+    fhPi0PhiCharged->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhPi0PhiCharged);
+    
+    fhPi0EtaCharged  = new TH2F ("hPi0EtaCharged","#eta reconstructed vs E generated from #pi^{0}, track matched cluster",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhPi0EtaCharged->SetXTitle("#eta_{rec} ");
+    fhPi0EtaCharged->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhPi0EtaCharged);
+    
+    fhEleECharged  = new TH2F ("hEleECharged","E reconstructed vs E generated from e^{#pm}, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhEleECharged->SetXTitle("E_{rec} (GeV)");
+    fhEleECharged->SetXTitle("E_{gen} (GeV)");         
+    outputContainer->Add(fhEleECharged);               
+    
+    fhElePtCharged  = new TH2F ("hElePtCharged","p_{T} reconstructed vs E generated from e^{#pm}, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhElePtCharged->SetXTitle("p_{T rec} (GeV/c)");
+    fhElePtCharged->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhElePtCharged);
+    
+    fhElePhiCharged  = new TH2F ("hElePhiCharged","#phi reconstructed vs E generated from e^{#pm}, track matched cluster",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhElePhiCharged->SetXTitle("#phi_{rec} (rad)");
+    fhElePhiCharged->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhElePhiCharged);
+    
+    fhEleEtaCharged  = new TH2F ("hEleEtaCharged","#eta reconstructed vs E generated from e^{#pm}, track matched cluster",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhEleEtaCharged->SetXTitle("#eta_{rec} ");
+    fhEleEtaCharged->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhEleEtaCharged);
+    
+    fhNeHadECharged  = new TH2F ("hNeHadECharged","E reconstructed vs E generated from neutral hadron, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhNeHadECharged->SetXTitle("E_{rec} (GeV)");
+    fhNeHadECharged->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhNeHadECharged);
+    
+    fhNeHadPtCharged  = new TH2F ("hNeHadPtCharged","p_{T} reconstructed vs E generated from neutral hadron, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhNeHadPtCharged->SetXTitle("p_{T rec} (GeV/c)");
+    fhNeHadPtCharged->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhNeHadPtCharged);
+    
+    fhNeHadPhiCharged  = new TH2F ("hNeHadPhiCharged","#phi reconstructed vs E generated from neutral hadron, track matched cluster",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhNeHadPhiCharged->SetXTitle("#phi_{rec} (rad)");
+    fhNeHadPhiCharged->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhNeHadPhiCharged);
+    
+    fhNeHadEtaCharged  = new TH2F ("hNeHadEtaCharged","#eta reconstructed vs E generated from neutral hadron, track matched cluster",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhNeHadEtaCharged->SetXTitle("#eta_{rec} ");
+    fhNeHadEtaCharged->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhNeHadEtaCharged);
+    
+    fhChHadECharged  = new TH2F ("hChHadECharged","E reconstructed vs E generated from charged hadron, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhChHadECharged->SetXTitle("E_{rec} (GeV)");
+    fhChHadECharged->SetYTitle("E_{gen} (GeV)");
+    outputContainer->Add(fhChHadECharged);
+    
+    fhChHadPtCharged  = new TH2F ("hChHadPtCharged","p_{T} reconstructed vs E generated from charged hadron, track matched cluster", nptbins,ptmin,ptmax, nptbins,ptmin,ptmax); 
+    fhChHadPtCharged->SetXTitle("p_{T rec} (GeV/c)");
+    fhChHadPtCharged->SetYTitle("p_{T gen} (GeV/c)");
+    outputContainer->Add(fhChHadPtCharged);
+    
+    fhChHadPhiCharged  = new TH2F ("hChHadPhiCharged","#phi reconstructed vs E generated from charged hadron, track matched cluster",nphibins,phimin,phimax,nphibins,phimin,phimax); 
+    fhChHadPhiCharged->SetXTitle("#phi (rad)");
+    fhChHadPhiCharged->SetXTitle("#phi_{rec} (rad)");
+    fhChHadPhiCharged->SetYTitle("#phi_{gen} (rad)");
+    outputContainer->Add(fhChHadPhiCharged);
+    
+    fhChHadEtaCharged  = new TH2F ("hChHadEtaCharged","#eta reconstructed vs E generated from charged hadron, track matched cluster",netabins,etamin,etamax,netabins,etamin,etamax); 
+    fhChHadEtaCharged->SetXTitle("#eta_{rec} ");
+    fhChHadEtaCharged->SetYTitle("#eta_{gen} ");
+    outputContainer->Add(fhChHadEtaCharged);
+    
+    //Vertex of generated particles 
+    
+    fhEMVxyz  = new TH2F ("hEMVxyz","Production vertex of reconstructed ElectroMagnetic particles",nvdistbins,vdistmin,vdistmax,nvdistbins,vdistmin,vdistmax);//,100,0,500); 
+    fhEMVxyz->SetXTitle("v_{x}");
+    fhEMVxyz->SetYTitle("v_{y}");
+    //fhEMVxyz->SetZTitle("v_{z}");
+    outputContainer->Add(fhEMVxyz);
+    
+    fhHaVxyz  = new TH2F ("hHaVxyz","Production vertex of reconstructed hadrons",nvdistbins,vdistmin,vdistmax,nvdistbins,vdistmin,vdistmax);//,100,0,500); 
+    fhHaVxyz->SetXTitle("v_{x}");
+    fhHaVxyz->SetYTitle("v_{y}");
+    //fhHaVxyz->SetZTitle("v_{z}");
+    outputContainer->Add(fhHaVxyz);
+    
+    fhEMR  = new TH2F ("hEMR","Distance to production vertex of reconstructed ElectroMagnetic particles vs E rec",nptbins,ptmin,ptmax,nvdistbins,vdistmin,vdistmax); 
+    fhEMR->SetXTitle("E (GeV)");
+    fhEMR->SetYTitle("TMath::Sqrt(v_{x}^{2}+v_{y}^{2})");
+    outputContainer->Add(fhEMR);
+    
+    fhHaR  = new TH2F ("hHaR","Distance to production vertex of reconstructed Hadrons vs E rec",nptbins,ptmin,ptmax,nvdistbins,vdistmin,vdistmax); 
+    fhHaR->SetXTitle("E (GeV)");
+    fhHaR->SetYTitle("TMath::Sqrt(v_{x}^{2}+v_{y}^{2})");
+    outputContainer->Add(fhHaR);
+    
+    
+    
+    //Pure MC
+    fhGenGamPt  = new TH1F("hGenGamPt" ,"p_{T} of generated #gamma",nptbins,ptmin,ptmax);
+    fhGenGamEta = new TH1F("hGenGamEta","Y of generated #gamma",netabins,etamin,etamax);
+    fhGenGamPhi = new TH1F("hGenGamPhi","#phi of generated #gamma",nphibins,phimin,phimax);
+    
+    fhGenPi0Pt  = new TH1F("hGenPi0Pt" ,"p_{T} of generated #pi^{0}",nptbins,ptmin,ptmax);
+    fhGenPi0Eta = new TH1F("hGenPi0Eta","Y of generated #pi^{0}",netabins,etamin,etamax);
+    fhGenPi0Phi = new TH1F("hGenPi0Phi","#phi of generated #pi^{0}",nphibins,phimin,phimax);
+    
+    fhGenEtaPt  = new TH1F("hGenEtaPt" ,"p_{T} of generated #eta",nptbins,ptmin,ptmax);
+    fhGenEtaEta = new TH1F("hGenEtaEta","Y of generated #eta",netabins,etamin,etamax);
+    fhGenEtaPhi = new TH1F("hGenEtaPhi","#phi of generated #eta",nphibins,phimin,phimax);
+    
+    fhGenOmegaPt  = new TH1F("hGenOmegaPt" ,"p_{T} of generated #omega",nptbins,ptmin,ptmax);
+    fhGenOmegaEta = new TH1F("hGenOmegaEta","Y of generated #omega",netabins,etamin,etamax);
+    fhGenOmegaPhi = new TH1F("hGenOmegaPhi","#phi of generated #omega",nphibins,phimin,phimax);                
+    
+    fhGenElePt  = new TH1F("hGenElePt" ,"p_{T} of generated e^{#pm}",nptbins,ptmin,ptmax);
+    fhGenEleEta = new TH1F("hGenEleEta","Y of generated  e^{#pm}",netabins,etamin,etamax);
+    fhGenElePhi = new TH1F("hGenElePhi","#phi of generated  e^{#pm}",nphibins,phimin,phimax);          
+    
+    fhGenGamPt->SetXTitle("p_{T} (GeV/c)");
+    fhGenGamEta->SetXTitle("#eta");
+    fhGenGamPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenGamPt);
+    outputContainer->Add(fhGenGamEta);
+    outputContainer->Add(fhGenGamPhi);
+    
+    fhGenPi0Pt->SetXTitle("p_{T} (GeV/c)");
+    fhGenPi0Eta->SetXTitle("#eta");
+    fhGenPi0Phi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenPi0Pt);
+    outputContainer->Add(fhGenPi0Eta);
+    outputContainer->Add(fhGenPi0Phi);
+    
+    fhGenEtaPt->SetXTitle("p_{T} (GeV/c)");
+    fhGenEtaEta->SetXTitle("#eta");
+    fhGenEtaPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenEtaPt);
+    outputContainer->Add(fhGenEtaEta);
+    outputContainer->Add(fhGenEtaPhi);
+    
+    fhGenOmegaPt->SetXTitle("p_{T} (GeV/c)");
+    fhGenOmegaEta->SetXTitle("#eta");
+    fhGenOmegaPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenOmegaPt);
+    outputContainer->Add(fhGenOmegaEta);
+    outputContainer->Add(fhGenOmegaPhi);
+    
+    fhGenElePt->SetXTitle("p_{T} (GeV/c)");
+    fhGenEleEta->SetXTitle("#eta");
+    fhGenElePhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenElePt);
+    outputContainer->Add(fhGenEleEta);
+    outputContainer->Add(fhGenElePhi);
+    
+    fhGenGamAccE   = new TH1F("hGenGamAccE" ,"E of generated #gamma in calorimeter acceptance",nptbins,ptmin,ptmax);
+    fhGenGamAccPt  = new TH1F("hGenGamAccPt" ,"p_{T} of generated #gamma in calorimeter acceptance",nptbins,ptmin,ptmax);
+    fhGenGamAccEta = new TH1F("hGenGamAccEta","Y of generated #gamma in calorimeter acceptance",netabins,etamin,etamax);
+    fhGenGamAccPhi = new TH1F("hGenGamAccPhi","#phi of generated #gamma  in calorimeter acceptance",nphibins,phimin,phimax);
+    
+    fhGenPi0AccE   = new TH1F("hGenPi0AccE" ,"E of generated #pi^{0} in calorimeter acceptance",nptbins,ptmin,ptmax);
+    fhGenPi0AccPt  = new TH1F("hGenPi0AccPt" ,"p_{T} of generated #pi^{0} in calorimeter acceptance",nptbins,ptmin,ptmax);
+    fhGenPi0AccEta = new TH1F("hGenPi0AccEta","Y of generated #pi^{0} in calorimeter acceptance",netabins,etamin,etamax);
+    fhGenPi0AccPhi = new TH1F("hGenPi0AccPhi","#phi of generated #pi^{0} in calorimeter acceptance",nphibins,phimin,phimax);
+    
+    fhGenGamAccE  ->SetXTitle("E (GeV)");
+    fhGenGamAccPt ->SetXTitle("p_{T} (GeV/c)");
+    fhGenGamAccEta->SetXTitle("#eta");
+    fhGenGamAccPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenGamAccE);                
+    outputContainer->Add(fhGenGamAccPt);
+    outputContainer->Add(fhGenGamAccEta);
+    outputContainer->Add(fhGenGamAccPhi);
+    
+    fhGenPi0AccE  ->SetXTitle("E (GeV)");              
+    fhGenPi0AccPt ->SetXTitle("p_{T} (GeV/c)");
+    fhGenPi0AccEta->SetXTitle("#eta");
+    fhGenPi0AccPhi->SetXTitle("#phi (rad)");
+    outputContainer->Add(fhGenPi0AccE);                
+    outputContainer->Add(fhGenPi0AccPt);
+    outputContainer->Add(fhGenPi0AccEta);
+    outputContainer->Add(fhGenPi0AccPhi);
+    
+    //Track Matching 
+    
+    fhMCEle1pOverE = new TH2F("hMCEle1pOverE","TRACK matches p/E, MC electrons",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCEle1pOverE->SetYTitle("p/E");
+    fhMCEle1pOverE->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCEle1pOverE);
+    
+    fhMCEle1dR = new TH1F("hMCEle1dR","TRACK matches dR, MC electrons",ndRbins,dRmin,dRmax);
+    fhMCEle1dR->SetXTitle("#Delta R (rad)");
+    outputContainer->Add(fhMCEle1dR) ;
+    
+    fhMCEle2MatchdEdx = new TH2F("hMCEle2MatchdEdx","dE/dx vs. p for all matches, MC electrons",nptbins,ptmin,ptmax,ndedxbins,dedxmin,dedxmax);
+    fhMCEle2MatchdEdx->SetXTitle("p (GeV/c)");
+    fhMCEle2MatchdEdx->SetYTitle("<dE/dx>");
+    outputContainer->Add(fhMCEle2MatchdEdx);
+    
+    fhMCChHad1pOverE = new TH2F("hMCChHad1pOverE","TRACK matches p/E, MC charged hadrons",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCChHad1pOverE->SetYTitle("p/E");
+    fhMCChHad1pOverE->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCChHad1pOverE);
+    
+    fhMCChHad1dR = new TH1F("hMCChHad1dR","TRACK matches dR, MC charged hadrons",ndRbins,dRmin,dRmax);
+    fhMCChHad1dR->SetXTitle("#Delta R (rad)");
+    outputContainer->Add(fhMCChHad1dR) ;
+    
+    fhMCChHad2MatchdEdx = new TH2F("hMCChHad2MatchdEdx","dE/dx vs. p for all matches, MC charged hadrons",nptbins,ptmin,ptmax,ndedxbins,dedxmin,dedxmax);
+    fhMCChHad2MatchdEdx->SetXTitle("p (GeV/c)");
+    fhMCChHad2MatchdEdx->SetYTitle("<dE/dx>");
+    outputContainer->Add(fhMCChHad2MatchdEdx);
+    
+    fhMCNeutral1pOverE = new TH2F("hMCNeutral1pOverE","TRACK matches p/E, MC neutrals",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCNeutral1pOverE->SetYTitle("p/E");
+    fhMCNeutral1pOverE->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCNeutral1pOverE);
+    
+    fhMCNeutral1dR = new TH1F("hMCNeutral1dR","TRACK matches dR, MC neutrals",ndRbins,dRmin,dRmax);
+    fhMCNeutral1dR->SetXTitle("#Delta R (rad)");
+    outputContainer->Add(fhMCNeutral1dR) ;
+    
+    fhMCNeutral2MatchdEdx = new TH2F("hMCNeutral2MatchdEdx","dE/dx vs. p for all matches, MC neutrals",nptbins,ptmin,ptmax,ndedxbins,dedxmin,dedxmax);
+    fhMCNeutral2MatchdEdx->SetXTitle("p (GeV/c)");
+    fhMCNeutral2MatchdEdx->SetYTitle("<dE/dx>");
+    outputContainer->Add(fhMCNeutral2MatchdEdx);
+    
+    fhMCEle1pOverER02 = new TH2F("hMCEle1pOverER02","TRACK matches p/E, MC electrons",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCEle1pOverER02->SetYTitle("p/E");
+    fhMCEle1pOverER02->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCEle1pOverER02);
+    
+    fhMCChHad1pOverER02 = new TH2F("hMCChHad1pOverER02","TRACK matches p/E, MC charged hadrons",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCChHad1pOverER02->SetYTitle("p/E");
+    fhMCChHad1pOverER02->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCChHad1pOverER02);
+    
+    fhMCNeutral1pOverER02 = new TH2F("hMCNeutral1pOverER02","TRACK matches p/E, MC neutrals",nptbins,ptmin,ptmax, nPoverEbins,pOverEmin,pOverEmax);
+    fhMCNeutral1pOverER02->SetYTitle("p/E");
+    fhMCNeutral1pOverER02->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhMCNeutral1pOverER02);
+  }
+  
+  //  for(Int_t i = 0; i < outputContainer->GetEntries() ; i++)
+  //    printf("i=%d, name= %s\n",i,outputContainer->At(i)->GetName());
+  
+  return outputContainer;
+}
 
-//__________________________________________________________________
-void  AliAnaCalorimeterQA::MakeAnalysisFillHistograms() 
+//_______________________________________________________________________________________________________________________________________
+Int_t AliAnaCalorimeterQA::GetNewRebinForRePlotting(TH1D* histo, const Float_t newXmin, const Float_t newXmax,const Int_t newXnbins) const
 {
-       //Do analysis and fill histograms
-       TLorentzVector mom ;
-       TLorentzVector mom2 ;
-       //Play with the MC stack if available
-       AliStack * stack = 0x0;
-       TParticle * primary = 0x0;
-       if(IsDataMC()) stack =  GetMCStack() ;
-       
-       //Get List with clusters  
-       TRefArray * partList = new TRefArray();
-       if(fCalorimeter == "EMCAL") partList = GetAODEMCAL();
-       else if(fCalorimeter == "PHOS") partList = GetAODPHOS();
-       else {
-               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - Wrong calorimeter name <%s>, END\n", fCalorimeter.Data());
-               abort();
-       }
-       
-       if(!partList || partList->GetEntriesFast() == 0) return ;
-       
-       Int_t nclusters = partList->GetEntriesFast() ; 
-       fhNClusters->Fill(nclusters);
-       
-       if(GetDebug() > 0)
-               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - In %s there are %d clusters \n", fCalorimeter.Data(), nclusters);
-       
-       //Get vertex for photon momentum calculation
-       Double_t v[3] ; //vertex ;
-       GetReader()->GetVertex(v);
-       
-       for(Int_t iclus = 0; iclus < partList->GetEntriesFast(); iclus++){
-               
-               AliAODCaloCluster * calo =  (AliAODCaloCluster*) (partList->At(iclus));
-               //if(calo->GetNCells() <= 2) continue;
-               //Get cluster kinematics
-               calo->GetMomentum(mom,v);
-               Float_t e   = mom.E();
-               //if(e < 0.5) continue;
-               //printf("e %2.2f, n %f\n",e, calo->GetNCells());
-               Float_t pt  = mom.Pt();
-               Float_t eta = mom.Eta();
-               Float_t phi = mom.Phi();
-               if(phi < 0) phi +=TMath::TwoPi();
-               
-               fhE     ->Fill(e);              
-               fhPt    ->Fill(pt);
-               fhPhi   ->Fill(phi);
-               fhEta   ->Fill(eta);
-               fhEtaPhi->Fill(eta,phi);
+  //Calculate the rebinning for the new requested bin size, only used when replotting executing the Terminte
+  Float_t oldbinsize =  histo->GetBinWidth(0);
+  Float_t newbinsize = TMath::Abs(newXmax-newXmin) / newXnbins;
 
-               //matched cluster with tracks
-               if(calo->GetNTracksMatched() > 0){
-                       fhECharged     ->Fill(e);               
-                       fhPtCharged    ->Fill(pt);
-                       fhPhiCharged   ->Fill(phi);
-                       fhEtaCharged   ->Fill(eta);
-                       fhEtaPhiCharged->Fill(eta,phi);                         
-                       if((!strcmp(GetReader()->GetInputEvent()->GetName(),"AliESDEvent"))) {
-                               AliESDEvent *esd = (AliESDEvent*) GetReader()->GetInputEvent();
-                               AliESDCaloCluster * esdcalo = (AliESDCaloCluster*) esd->GetCaloCluster(calo->GetID());
-                               Int_t trackIndex = esdcalo->GetTrackMatched();
-                               //printf("track index %d ntracks %d\n", trackIndex, esd->GetNumberOfTracks());
-                               if(trackIndex >= 0){
-                                       AliESDtrack* track = (AliESDtrack*) esd->GetTrack(trackIndex);
-                                       if (track && track->GetOuterParam() ) {
-                               
-                                               Double_t tphi = track->GetOuterParam()->Phi();
-                                               Double_t teta = track->GetOuterParam()->Eta();
-                                               Double_t tmom = track->GetOuterParam()->P();
-                                               Double_t deta = teta - eta;
-                                               Double_t dphi = tphi - phi;
-                                               if(dphi > TMath::Pi()) dphi -= 2*TMath::Pi();
-                                               if(dphi < -TMath::Pi()) dphi += 2*TMath::Pi();
-                                               Double_t dR = sqrt(dphi*dphi + deta*deta);
-                                               
-                                               Double_t pOverE = tmom/e;
-                                               
-                                               fh1pOverE->Fill(pOverE);
-                                               fh1dR->Fill(dR);
-                                               fh2MatchdEdx->Fill(track->P(),track->GetTPCsignal());
-                                               
-                                               int nITS = track->GetNcls(0);
-                                               int nTPC = track->GetNcls(1);
-                                               if(dR < 0.02 && pOverE > 0.5 && pOverE < 1.5
-                                                  && calo->GetNCells() > 1 && nITS > 3 && nTPC > 20) {
-                                                       fh2EledEdx->Fill(track->P(),track->GetTPCsignal());
-                                                       //cout<<track->P()<<" "<<track->P()<<endl;
-                                               }
-                                       } 
-                                       else if(!track->GetOuterParam()){
-                                         ULong_t status=AliESDtrack::kTPCrefit;
-                                         status|=AliESDtrack::kITSrefit;
-                                         //printf("track status %d\n", track->GetStatus() );
-                                         fhEChargedNoOut     ->Fill(e);                
-                                         fhPtChargedNoOut     ->Fill(pt);
-                                         fhPhiChargedNoOut    ->Fill(phi);
-                                         fhEtaChargedNoOut    ->Fill(eta);
-                                         fhEtaPhiChargedNoOut ->Fill(eta,phi); 
-                                         if ( (track->GetStatus() & status) == status) printf("ITS+TPC\n");
-                                       }
-                                       else {
-                                               Printf("ERROR: Could not receive track %d", trackIndex);
-                                       }
-                               }// non negative track index
-                       }//do only if input are ESDs
-               }// at least one track matched
-               
-               if(IsDataMC()){
-               //Play with the MC stack if available
-                   Int_t label = calo->GetLabel(0);
-                       
-               if(label < 0 || !stack) {
-                               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() *** bad label or no stack ***:  label %d \n", label);
-                               continue;
-               }
-               
-               if(label >=  stack->GetNtrack()) {
-                               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() *** large label ***:  label %d, n tracks %d \n", label, stack->GetNtrack());
-                               continue ;
-               }
-               //cout<<"LABEL > "<<label<<endl;
-               primary = GetMCStack()->Particle(label);
-                   Int_t pdg = primary->GetPdgCode();
-                   Float_t vx = primary->Vx();
-                   Float_t vy = primary->Vy();
-                   //Float_t vz = primary->Vz();
-                   Float_t r = TMath::Sqrt(vx*vx + vy*vy);
-                   if((pdg == 22 || TMath::Abs(pdg)==11) && primary->GetStatusCode()!=1) {
-                     fhEMVxyz   ->Fill(vx,vy);//,vz);
-                     fhEMR      ->Fill(e,r);
-                   }
-                   
-                   //                  printf("reco e %f, pt %f, phi %f, eta %f \n", e, pt, phi, eta);
-                   //                  printf("prim e %f, pt %f, phi %f, eta %f \n", primary->Energy(),primary->Pt() ,primary->Phi() ,primary->Eta() );
-                   //                  printf("vertex: vx %f, vy %f, vz %f, r %f \n", vx, vy, vz, r);
-                   
-                   //Get final particle, no conversion products
-                   Int_t status =  primary->GetStatusCode();
-                   Int_t mother= primary->GetFirstMother();
-                   Int_t finallabel = -1;
-                   if(status == 0){
-                     while(mother >= 0){
-                       primary = GetMCStack()->Particle(mother);
-                       finallabel = mother;
-                       status = primary->GetStatusCode();
-                       mother= primary->GetFirstMother();
-                       if(status == 1) break;             
-                       //printf("mother %d\n",mother);
-                     } 
-                   }
-                   
-                       fh2E      ->Fill(e, primary->Energy());
-                       fh2Pt     ->Fill(pt, primary->Pt());
-                       fh2Phi    ->Fill(phi, primary->Phi());
-                       fh2Eta    ->Fill(eta, primary->Eta());
-                       fhDeltaE  ->Fill(primary->Energy()-e);
-                       fhDeltaPt ->Fill(primary->Pt()-pt);
-                       fhDeltaPhi->Fill(primary->Phi()-phi);
-                       fhDeltaEta->Fill(primary->Eta()-eta);
-                       if(primary->Energy() > 0) fhRatioE  ->Fill(e/primary->Energy());
-                   if(primary->Pt()     > 0) fhRatioPt ->Fill(pt/primary->Pt());
-                   if(primary->Phi()    > 0) fhRatioPhi->Fill(phi/primary->Phi());
-                   if(primary->Eta()    > 0) fhRatioEta->Fill(eta/primary->Eta());                     
-                       
-                   //cout<<"Final Label "<<finallabel<<" mother "<<mother<<endl;
-                   pdg = primary->GetPdgCode();
-                       Double_t  charge = TDatabasePDG::Instance()->GetParticle(pdg)->Charge();
+  //printf("bin size, old %f, new %f\n",oldbinsize,newbinsize);
+  if(newbinsize > oldbinsize) return (Int_t) (newbinsize/oldbinsize);
+  else  return 1;
 
-                   if(pdg == 22){
-                     //cout<<"pdg "<<pdg<<" status "<<status<<" "<<primary->GetStatusCode()<<endl;     
-                     TParticle *pi0 = 0x0;
-                     TParticle *p1 = 0x0;
-                     TParticle *p2 = 0x0;
-                     TParticle * tmp = 0x0;
-                     Int_t pdgpi0 = 0;
-                     Int_t mothertmp = 0;
-                     //Check if it is a decay photon from pi0, in this case, check if both decay contribute cluster
-                     Bool_t ok1 = kFALSE;
-                     Bool_t ok2 = kFALSE;
-                     
-                     if(calo->GetNLabel() > 1){
-                       if(pdg !=111){
-                         while(mother >= 0){
-                           pi0 = GetMCStack()->Particle(mother);
-                           pdgpi0 = pi0->GetPdgCode();
-                           if(pdgpi0 == 111) break;
-                           mother= pi0->GetFirstMother();
-                           //printf("mother %d\n",mother);
-                         }
-                       }
-                       else   pi0 = primary;
-                       //cout<<"MOTHER PI0 LABEL "<<mother<<" pt" << pi0->Pt()<<endl;
-                       if(pi0->GetNDaughters() == 2){
-                         //  cout<<"pi0, 2 daughters "<<endl;
-                         Int_t id1 = pi0->GetFirstDaughter();
-                         Int_t id2 = pi0->GetFirstDaughter()+1;
-                         p1=GetMCStack()->Particle(id1);
-                         p2=GetMCStack()->Particle(id2);
-                         
-                         if(p1->GetFirstMother()!=p2->GetFirstMother()) cout <<"Decay photon mothers are not the same!!"<<endl;
-                         if(p1->GetPdgCode()==22 && p2->GetPdgCode()==22){
-                           // cout<<"2 photons, labels "<< id1<<" "<<id2<<endl;
-                           for(UInt_t ilabel = 0; ilabel < calo->GetNLabel(); ilabel++){
-                             Int_t iprim = calo->GetLabel(ilabel);
-                             //cout<<"iprim "<<iprim<<endl;
-                             if (iprim == id1) ok1 = kTRUE;
-                             else if (iprim == id2) ok2 = kTRUE;
-                             mothertmp = iprim;
-                             while(mothertmp >= 0){
-                               tmp = GetMCStack()->Particle(mothertmp);                                    
-                               mothertmp= tmp->GetFirstMother();
-                               //      cout<<"mothertmp "<<mothertmp<<" "<<tmp->GetName()<< " pt "<<tmp->Pt()<<endl;
-                               if (mothertmp == id1) ok1 = kTRUE;
-                               else if (mothertmp == id2) ok2 = kTRUE;
-                               if(ok1 && ok2) break;
-                               //printf("mother %d\n",mother);
-                             }
-                           } 
-                         }//2 photon daughters
-                       }////mother pi0, 2 daughers
-                     }//more than one contribution to clust
-                     
-                     if(ok1 && ok2){
-                       //cout<<"Fill pi0"<< "E  "<< e <<" prim E "<<primary->Energy()<<endl;
-                       fhPi0E     ->Fill(e,primary->Energy()); 
-                       fhPi0Pt    ->Fill(pt,primary->Pt());
-                       fhPi0Eta   ->Fill(eta,primary->Eta());  
-                       fhPi0Phi   ->Fill(phi,primary->Phi());                                  
-                     }
-                     else{
-                       fhGamE     ->Fill(e,primary->Energy()); 
-                       fhGamPt    ->Fill(pt,primary->Pt());
-                       fhGamEta   ->Fill(eta,primary->Eta());  
-                       fhGamPhi   ->Fill(phi,primary->Phi());
-                       fhGamDeltaE  ->Fill(primary->Energy()-e);
-                       fhGamDeltaPt ->Fill(primary->Pt()-pt);
-                       fhGamDeltaPhi->Fill(primary->Phi()-phi);
-                       fhGamDeltaEta->Fill(primary->Eta()-eta);
-                       if(primary->Energy() > 0) fhGamRatioE  ->Fill(e/primary->Energy());
-                       if(primary->Pt()     > 0) fhGamRatioPt ->Fill(pt/primary->Pt());
-                       if(primary->Phi()    > 0) fhGamRatioPhi->Fill(phi/primary->Phi());
-                       if(primary->Eta()    > 0) fhGamRatioEta->Fill(eta/primary->Eta());
-                       fhGam2E      ->Fill(e, primary->Energy());
-                       fhGam2Pt     ->Fill(pt, primary->Pt());
-                       fhGam2Phi    ->Fill(phi, primary->Phi());
-                       fhGam2Eta    ->Fill(eta, primary->Eta());
-                     }
-                   }//pdg == 22
-                   else if(TMath::Abs(pdg) == 11) {
-                     fhEleE     ->Fill(e,primary->Energy());   
-                     fhElePt    ->Fill(pt,primary->Pt());
-                     fhEleEta   ->Fill(eta,primary->Eta());    
-                     fhElePhi   ->Fill(phi,primary->Phi());
-                     fhEMVxyz   ->Fill(vx,vy);//,vz);
-                     fhEMR      ->Fill(e,r);
-                   }
-                   else if(pdg == 111) {
-                     fhPi0E     ->Fill(e,primary->Energy());   
-                     fhPi0Pt    ->Fill(pt,primary->Pt());
-                     fhPi0Eta   ->Fill(eta,primary->Eta());    
-                     fhPi0Phi   ->Fill(phi,primary->Phi());
-                   }
-                   else if(charge == 0){
-                     fhNeHadE     ->Fill(e,primary->Energy()); 
-                     fhNeHadPt    ->Fill(pt,primary->Pt());
-                     fhNeHadEta   ->Fill(eta,primary->Eta());  
-                     fhNeHadPhi   ->Fill(phi,primary->Phi());  
-                     fhHaVxyz     ->Fill(vx,vy);//,vz);
-                     fhHaR        ->Fill(e,r);
-                   }
-                   else if(charge!=0){
-                     fhChHadE     ->Fill(e,primary->Energy()); 
-                     fhChHadPt    ->Fill(pt,primary->Pt());
-                     fhChHadEta   ->Fill(eta,primary->Eta());  
-                     fhChHadPhi   ->Fill(phi,primary->Phi());  
-                     fhHaVxyz     ->Fill(vx,vy);//,vz);
-                     fhHaR        ->Fill(e,r);
-                   }
-               }//Work with stack also
-               
-               //Invariant mass
-               if (nclusters > 1 ) {
-                       for(Int_t jclus = iclus + 1 ; jclus < nclusters ; jclus++) {
-                               AliAODCaloCluster * calo2 =  (AliAODCaloCluster*) (partList->At(jclus));
-                               //Get cluster kinematics
-                               calo2->GetMomentum(mom2,v);
-                               fhIM  ->Fill((mom+mom2).E(),(mom+mom2).M());
-                               fhAsym->Fill((mom+mom2).E(),TMath::Abs((e-mom2.E())/(e+mom2.E())));
-                       }// 2nd cluster loop
-               }////more than 1 cluster in calorimeter    
-               
-               //Cells per cluster
-               fhNCellsPerCluster->Fill(e,calo->GetNCells());
-               
-       }// 1st cluster loop
-       
-       //CaloCells
-       AliAODCaloCells * cell = new AliAODCaloCells ;
-       if(fCalorimeter == "PHOS") 
-               cell = (AliAODCaloCells *) GetPHOSCells();
-       else  
-               cell = (AliAODCaloCells *) GetEMCALCells();     
-       
-       if(!cell) {
-               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - ABORT: No CELLS available for analysis");
-               abort();
-       }
-       
-       //Some prints
-       if(GetDebug() > 0 && cell )
-               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - In ESD %s cell entries %d\n", fCalorimeter.Data(), cell->GetNumberOfCells());    
-       
-       Int_t ncells = cell->GetNumberOfCells() ;
-       fhNCells->Fill(ncells) ;
-       
-       for (Int_t iCell = 0; iCell < ncells; iCell++) {      
-               if(GetDebug() > 2)  printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - Cell : amp %f, absId %d \n", cell->GetAmplitude(iCell), cell->GetCellNumber(iCell));
-               fhAmplitude->Fill(cell->GetAmplitude(iCell));
-       }
-       
-       if(GetDebug() > 0) 
-               printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - end \n");  
-       
-       //Monte Carlo
-       if(IsDataMC()){
-               //Play with the MC stack if available
-               for(Int_t i=8 ; i<stack->GetNprimary(); i++){
-                       primary = stack->Particle(i) ;
-                       
-                       //if (!primary->IsPrimary()) continue;
-                       if (TMath::Abs(primary->Eta()) > 1) continue;
-                       
-                       Int_t kf = primary->GetPdgCode();
-                       //printf("kf %d\n",kf);
-                       
-                       Bool_t in = kTRUE;
-                       primary->Momentum(mom);
-                       if(IsFidutialCutOn()) in =  GetFidutialCut()->IsInFidutialCut(mom,fCalorimeter) ;
-                       
-                       if (kf==22) {
-                               fhGenGamPt ->Fill(primary->Pt());
-                               fhGenGamEta->Fill(primary->Eta());
-                               fhGenGamPhi->Fill(primary->Phi());
-                               if(in){
-                                       fhGenGamAccE  ->Fill(primary->Energy());
-                                       fhGenGamAccPt ->Fill(primary->Pt());
-                                       fhGenGamAccEta->Fill(primary->Eta());
-                                       fhGenGamAccPhi->Fill(primary->Phi());                                   
-                               }
-                       }
-                       else if (kf==111) {
-                               fhGenPi0Pt ->Fill(primary->Pt());
-                               fhGenPi0Eta->Fill(primary->Eta());
-                               fhGenPi0Phi->Fill(primary->Phi());
-                               if(in){
-                                       fhGenPi0AccE  ->Fill(primary->Energy());                                        
-                                       fhGenPi0AccPt ->Fill(primary->Pt());
-                                       fhGenPi0AccEta->Fill(primary->Eta());
-                                       fhGenPi0AccPhi->Fill(primary->Phi());                                   
-                               }
-                       }
-                       else if (kf==221) {
-                               fhGenEtaPt ->Fill(primary->Pt());
-                               fhGenEtaEta->Fill(primary->Eta());
-                               fhGenEtaPhi->Fill(primary->Phi());
-                       }
-                       else if (kf==223) {
-                               fhGenOmegaPt ->Fill(primary->Pt());
-                               fhGenOmegaEta->Fill(primary->Eta());
-                               fhGenOmegaPhi->Fill(primary->Phi());
-                       }
-                       else if (TMath::Abs(kf)==11) {
-                               fhGenElePt ->Fill(primary->Pt());
-                               fhGenEleEta->Fill(primary->Eta());
-                               fhGenElePhi->Fill(primary->Phi());
-                       }
-               } //primary loop
-       } //Is data MC
-       
 }
 
-//________________________________________________________________________
-void AliAnaCalorimeterQA::ReadHistograms(TList* outputList)
-{
-       // Needed when Terminate is executed in distributed environment
-       // Refill analysis histograms of this class with corresponding histograms in output list. 
-       
-       // Histograms of this analsys are kept in the same list as other analysis, recover the position of
-       // the first one and then add the next 
-       Int_t index = outputList->IndexOf(outputList->FindObject(GetAddedHistogramsStringToName()+"hE"));
-       //printf("Calo: %s, index: %d\n",fCalorimeter.Data(),index);
-       //Read histograms, must be in the same order as in GetCreateOutputObject.
-       fhE      = (TH1F *) outputList->At(index++);    
-       fhPt     = (TH1F *) outputList->At(index++); 
-       fhPhi    = (TH1F *) outputList->At(index++); 
-       fhEta    = (TH1F *) outputList->At(index++);
-       fhEtaPhi = (TH2F *) outputList->At(index++);
-       
-       fhECharged      = (TH1F *) outputList->At(index++);     
-       fhPtCharged     = (TH1F *) outputList->At(index++); 
-       fhPhiCharged    = (TH1F *) outputList->At(index++); 
-       fhEtaCharged    = (TH1F *) outputList->At(index++);
-       fhEtaPhiCharged = (TH2F *) outputList->At(index++);
-       
-       fhEChargedNoOut      = (TH1F *) outputList->At(index++);        
-       fhPtChargedNoOut     = (TH1F *) outputList->At(index++); 
-       fhPhiChargedNoOut    = (TH1F *) outputList->At(index++); 
-       fhEtaChargedNoOut    = (TH1F *) outputList->At(index++);
-       fhEtaPhiChargedNoOut = (TH2F *) outputList->At(index++);
-
-       fhIM     = (TH2F *) outputList->At(index++);
-       fhAsym   = (TH2F *) outputList->At(index++);
-       
-       fhNCellsPerCluster = (TH2F *) outputList->At(index++);
-       fhNClusters  = (TH1F *) outputList->At(index++); 
-       fhNCells     = (TH1F *) outputList->At(index++); 
-       fhAmplitude  = (TH1F *) outputList->At(index++); 
-       
-       if(IsDataMC()){
-               fhDeltaE   = (TH1F *) outputList->At(index++); 
-               fhDeltaPt  = (TH1F *) outputList->At(index++); 
-               fhDeltaPhi = (TH1F *) outputList->At(index++); 
-               fhDeltaEta = (TH1F *) outputList->At(index++); 
-               
-               fhRatioE   = (TH1F *) outputList->At(index++); 
-               fhRatioPt  = (TH1F *) outputList->At(index++); 
-               fhRatioPhi = (TH1F *) outputList->At(index++); 
-               fhRatioEta = (TH1F *) outputList->At(index++); 
-               
-               fh2E       = (TH2F *) outputList->At(index++); 
-               fh2Pt      = (TH2F *) outputList->At(index++); 
-               fh2Phi     = (TH2F *) outputList->At(index++); 
-               fh2Eta     = (TH2F *) outputList->At(index++); 
-               
-               fhGamE     = (TH2F *) outputList->At(index++); 
-               fhGamPt    = (TH2F *) outputList->At(index++); 
-               fhGamPhi   = (TH2F *) outputList->At(index++); 
-               fhGamEta   = (TH2F *) outputList->At(index++); 
-               
-               fhGamDeltaE   = (TH1F *) outputList->At(index++); 
-               fhGamDeltaPt  = (TH1F *) outputList->At(index++); 
-               fhGamDeltaPhi = (TH1F *) outputList->At(index++); 
-               fhGamDeltaEta = (TH1F *) outputList->At(index++); 
-               
-               fhGamRatioE   = (TH1F *) outputList->At(index++); 
-               fhGamRatioPt  = (TH1F *) outputList->At(index++); 
-               fhGamRatioPhi = (TH1F *) outputList->At(index++); 
-               fhGamRatioEta = (TH1F *) outputList->At(index++); 
+//__________________________________________________
+void AliAnaCalorimeterQA::Init()
+{ 
+  //Check if the data or settings are ok
+  
+  if(fCalorimeter != "PHOS" && fCalorimeter !="EMCAL")
+    AliFatal(Form("Wrong calorimeter name <%s>", fCalorimeter.Data()));
+  
+  if(GetReader()->GetDataType()== AliCaloTrackReader::kMC)
+    AliFatal("Analysis of reconstructed data, MC reader not aplicable");
+  
+}
 
-               fhGam2E       = (TH2F *) outputList->At(index++); 
-               fhGam2Pt      = (TH2F *) outputList->At(index++); 
-               fhGam2Phi     = (TH2F *) outputList->At(index++); 
-               fhGam2Eta     = (TH2F *) outputList->At(index++); 
 
-               fhPi0E     = (TH2F *) outputList->At(index++); 
-               fhPi0Pt    = (TH2F *) outputList->At(index++); 
-               fhPi0Phi   = (TH2F *) outputList->At(index++); 
-               fhPi0Eta   = (TH2F *) outputList->At(index++);          
-               
-               fhEleE     = (TH2F *) outputList->At(index++); 
-               fhElePt    = (TH2F *) outputList->At(index++); 
-               fhElePhi   = (TH2F *) outputList->At(index++); 
-               fhEleEta   = (TH2F *) outputList->At(index++);          
-               
-               fhNeHadE     = (TH2F *) outputList->At(index++); 
-               fhNeHadPt    = (TH2F *) outputList->At(index++); 
-               fhNeHadPhi   = (TH2F *) outputList->At(index++); 
-               fhNeHadEta   = (TH2F *) outputList->At(index++);                
-               
-               fhChHadE     = (TH2F *) outputList->At(index++); 
-               fhChHadPt    = (TH2F *) outputList->At(index++); 
-               fhChHadPhi   = (TH2F *) outputList->At(index++); 
-               fhChHadEta   = (TH2F *) outputList->At(index++);                                
-               
-//             fhEMVxyz     = (TH3F *) outputList->At(index++); 
-//             fhHaVxyz     = (TH3F *) outputList->At(index++); 
-               
-               fhEMVxyz     = (TH2F *) outputList->At(index++); 
-               fhHaVxyz     = (TH2F *) outputList->At(index++); 
-               fhEMR        = (TH2F *) outputList->At(index++); 
-               fhHaR        = (TH2F *) outputList->At(index++); 
-               
-               fhGenGamPt    = (TH1F *) outputList->At(index++); 
-               fhGenGamEta   = (TH1F *) outputList->At(index++); 
-               fhGenGamPhi   = (TH1F *) outputList->At(index++); 
-               
-               fhGenPi0Pt    = (TH1F *) outputList->At(index++); 
-               fhGenPi0Eta   = (TH1F *) outputList->At(index++); 
-               fhGenPi0Phi   = (TH1F *) outputList->At(index++); 
-               
-               fhGenEtaPt    = (TH1F *) outputList->At(index++); 
-               fhGenEtaEta   = (TH1F *) outputList->At(index++); 
-               fhGenEtaPhi   = (TH1F *) outputList->At(index++); 
-               
-               fhGenOmegaPt  = (TH1F *) outputList->At(index++); 
-               fhGenOmegaEta = (TH1F *) outputList->At(index++); 
-               fhGenOmegaPhi = (TH1F *) outputList->At(index++); 
-               
-               fhGenElePt    = (TH1F *) outputList->At(index++); 
-               fhGenEleEta   = (TH1F *) outputList->At(index++); 
-               fhGenElePhi   = (TH1F *) outputList->At(index++); 
-               
-               fhGenGamAccE   = (TH1F *) outputList->At(index++);              
-               fhGenGamAccPt  = (TH1F *) outputList->At(index++); 
-               fhGenGamAccEta = (TH1F *) outputList->At(index++); 
-               fhGenGamAccPhi = (TH1F *) outputList->At(index++); 
-               
-               fhGenPi0AccE   = (TH1F *) outputList->At(index++);              
-               fhGenPi0AccPt  = (TH1F *) outputList->At(index++); 
-               fhGenPi0AccEta = (TH1F *) outputList->At(index++); 
-               fhGenPi0AccPhi = (TH1F *) outputList->At(index++); 
-               
-       }//Is data MC   
-       
-       fh1pOverE =    (TH1F *) outputList->At(index++);
-       fh1dR =        (TH1F *) outputList->At(index++);
-       fh2MatchdEdx = (TH2F *) outputList->At(index++);
-       fh2EledEdx =   (TH2F *) outputList->At(index++);
-       
-//     for(Int_t i = 0;  i<index ; i++) cout<<outputList->At(i)->GetName()<<endl;
+//__________________________________________________
+void AliAnaCalorimeterQA::InitParameters()
+{ 
+  //Initialize the parameters of the analysis.
+  AddToHistogramsName("AnaCaloQA_");
+  
+  fCalorimeter     = "EMCAL"; //or PHOS
+  fStyleMacro      = "" ;
+  fNModules        = 12; // set maximum to maximum number of EMCAL modules
+  fNRCU            = 2;  // set maximum number of RCU in EMCAL per SM
+  fTimeCutMin      = -1;
+  fTimeCutMax      = 9999999;
+  fEMCALCellAmpMin = 0.0;
+  fPHOSCellAmpMin  = 0.0;
+       
 }
 
 //__________________________________________________________________
-void  AliAnaCalorimeterQA::Terminate(TList* outputList) 
+void AliAnaCalorimeterQA::Print(const Option_t * opt) const
 {
-       
-       //Do some plots to end
-        if(fStyleMacro!="")gROOT->Macro(fStyleMacro); 
-       //Recover histograms from output histograms list, needed for distributed analysis.      
-       ReadHistograms(outputList);
-       
-       //printf(" AliAnaCalorimeterQA::Terminate()  *** %s Report:", GetName()) ; 
-       //printf(" AliAnaCalorimeterQA::Terminate()        pt         : %5.3f , RMS : %5.3f \n", fhPt->GetMean(),   fhPt->GetRMS() ) ;
+  //Print some relevant parameters set for the analysis
+  if(! opt)
+    return;
+  
+  printf("**** Print %s %s ****\n", GetName(), GetTitle() ) ;
+  AliAnaPartCorrBaseClass::Print(" ");
+  
+  printf("Select Calorimeter %s \n",fCalorimeter.Data());
+  printf("Plots style macro  %s \n",fStyleMacro.Data()); 
+  printf("Time Cut: %3.1f < TOF  < %3.1f\n", fTimeCutMin, fTimeCutMax);
+  printf("EMCAL Min Amplitude   : %2.1f GeV/c\n", fEMCALCellAmpMin) ;
+  printf("PHOS Min Amplitude    : %2.1f GeV/c\n", fPHOSCellAmpMin) ;
 
-       char name[128];
-       char cname[128];
-       
-       //Reconstructed distributions
-       //printf("c\n");
-       sprintf(cname,"QA_%s_rec",fCalorimeter.Data());
-       TCanvas  * c = new TCanvas(cname, "Reconstructed distributions", 400, 400) ;
-       c->Divide(2, 2);
-       
-       c->cd(1) ; 
-       gPad->SetLogy();
-       fhE->SetLineColor(4);
-       fhE->Draw();
-       
-       c->cd(2) ; 
-       gPad->SetLogy();
-       fhPt->SetLineColor(4);
-       fhPt->Draw();
-       
-       c->cd(3) ; 
-       fhPhi->SetLineColor(4);
-       fhPhi->Draw();
-       
-       c->cd(4) ; 
-       fhEta->SetLineColor(4);
-       fhEta->Draw();
-       
-       sprintf(name,"QA_%s_ReconstructedDistributions.eps",fCalorimeter.Data());
-       c->Print(name);
-       
-       //Reconstructed distributions, matched with tracks
-       //printf("c2\n");
-       sprintf(cname,"QA_%s_rectrackmatch",fCalorimeter.Data());
-       TCanvas  * c2 = new TCanvas(cname, "Reconstructed distributions, matched with tracks", 400, 400) ;
-       c2->Divide(2, 2);
-       
-       c2->cd(1) ; 
-       gPad->SetLogy();
-       fhECharged->SetLineColor(4);
-       fhECharged->Draw();
-       
-       c2->cd(2) ; 
-       gPad->SetLogy();
-       fhPtCharged->SetLineColor(4);
-       fhPtCharged->Draw();
-       
-       c2->cd(3) ; 
-       fhPhiCharged->SetLineColor(4);
-       fhPhiCharged->Draw();
-       
-       c2->cd(4) ; 
-       fhEtaCharged->SetLineColor(4);
-       fhEtaCharged->Draw();
-       
-       sprintf(name,"QA_%s_ReconstructedDistributions_TrackMatched.eps",fCalorimeter.Data());
-       c2->Print(name);
-       
-       TH1F *  hEChargedClone   = (TH1F*)   fhECharged->Clone("EChargedClone");
-       TH1F *  hPtChargedClone  = (TH1F*)   fhPtCharged->Clone("PtChargedClone");
-       TH1F *  hEtaChargedClone = (TH1F*)   fhEtaCharged->Clone("EtaChargedClone");
-       TH1F *  hPhiChargedClone = (TH1F*)   fhPhiCharged->Clone("PhiChargedClone");
+} 
 
-       TH1F *  hEChargedClone2   = (TH1F*)   fhECharged->Clone("EChargedClone2");
-       TH1F *  hPtChargedClone2  = (TH1F*)   fhPtCharged->Clone("PtChargedClone2");
-       TH1F *  hEtaChargedClone2 = (TH1F*)   fhEtaCharged->Clone("EtaChargedClone2");
-       TH1F *  hPhiChargedClone2 = (TH1F*)   fhPhiCharged->Clone("PhiChargedClone2");
+//__________________________________________________________________
+void  AliAnaCalorimeterQA::MakeAnalysisFillHistograms() 
+{
+  //Fill Calorimeter QA histograms
+  TLorentzVector mom  ;
+  TLorentzVector mom2 ;
+  TObjArray * caloClusters = NULL;
+  Int_t nLabel = 0;
+  Int_t *labels=0x0;
+  Int_t nCaloClusters = 0;
+  Int_t nCaloClustersAccepted = 0;
+  Int_t nCaloCellsPerCluster = 0;
+  Int_t nTracksMatched = 0;
+  Int_t trackIndex = 0;
+  Int_t nModule = -1;
+  
+  //Get vertex for photon momentum calculation and event selection
+  Double_t v[3] = {0,0,0}; //vertex ;
+  GetReader()->GetVertex(v);
+  if (TMath::Abs(v[2]) > GetZvertexCut()) return ;  
+  
+  //Play with the MC stack if available        
+  //Get the MC arrays and do some checks
+  if(IsDataMC()){
+    if(GetReader()->ReadStack()){
+      
+      if(!GetMCStack()) 
+        AliFatal("Stack not available, is the MC handler called?\n");
+      
+      //Fill some pure MC histograms, only primaries.
+      for(Int_t i=0 ; i<GetMCStack()->GetNprimary(); i++){//Only primary particles, for all MC transport put GetNtrack()
+        TParticle *primary = GetMCStack()->Particle(i) ;
+        //printf("i %d, %s: status = %d, primary? %d\n",i, primary->GetName(), primary->GetStatusCode(), primary->IsPrimary());
+        if (primary->GetStatusCode() > 11) continue; //Working for PYTHIA and simple generators, check for HERWIG 
+        primary->Momentum(mom);
+        MCHistograms(mom,TMath::Abs(primary->GetPdgCode()));
+      } //primary loop
+    }
+    else if(GetReader()->ReadAODMCParticles()){
+      
+      if(!GetReader()->GetAODMCParticles(0))   
+        AliFatal("AODMCParticles not available!");
+      
+      //Fill some pure MC histograms, only primaries.
+      for(Int_t i=0 ; i < (GetReader()->GetAODMCParticles(0))->GetEntriesFast(); i++){
+        AliAODMCParticle *aodprimary = (AliAODMCParticle*) (GetReader()->GetAODMCParticles(0))->At(i) ;
+        //printf("i %d, %s: primary? %d physical primary? %d, flag %d\n",
+        //        i,(TDatabasePDG::Instance()->GetParticle(aodprimary->GetPdgCode()))->GetName(), 
+        //        aodprimary->IsPrimary(), aodprimary->IsPhysicalPrimary(), aodprimary->GetFlag());
+        if (!aodprimary->IsPrimary()) continue; //accept all which is not MC transport generated. Don't know how to avoid partons
+        //aodprimary->Momentum(mom);
+        mom.SetPxPyPzE(aodprimary->Px(),aodprimary->Py(),aodprimary->Pz(),aodprimary->E());
+        MCHistograms(mom,TMath::Abs(aodprimary->GetPdgCode()));
+      } //primary loop
+      
+    }
+  }// is data and MC   
+  
+  
+  //Get List with CaloClusters  
+  if      (fCalorimeter == "PHOS")  caloClusters = GetPHOSClusters();
+  else if (fCalorimeter == "EMCAL") caloClusters = GetEMCALClusters();
+  else 
+    AliFatal(Form("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - Wrong calorimeter name <%s>, END\n", fCalorimeter.Data()));
+  
+  //  if     (fCalorimeter == "EMCAL") GetReader()->GetInputEvent()->GetEMCALClusters(caloClusters);//GetEMCALClusters();
+  //  else if(fCalorimeter == "PHOS")  GetReader()->GetInputEvent()->GetPHOSClusters (caloClusters);//GetPHOSClusters();
+  //  else 
+  //    AliFatal(Form("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - Wrong calorimeter name <%s>, END\n", fCalorimeter.Data()));
+  
+  if(!caloClusters) {
+    AliFatal(Form("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - No CaloClusters available\n"));
+  }
+  else{
+    //----------------------------------------------------------
+    //Correlate Calorimeters and V0 and track Multiplicity
+    //----------------------------------------------------------
+    if(fCorrelate)     Correlate();
+    
+    //----------------------------------------------------------
+    // CALOCLUSTERS
+    //----------------------------------------------------------
+    
+    nCaloClusters = caloClusters->GetEntriesFast() ; 
+    Int_t *nClustersInModule = new Int_t[fNModules];
+    for(Int_t imod = 0; imod < fNModules; imod++ ) nClustersInModule[imod] = 0;
+    
+    if(GetDebug() > 0)
+      printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - In %s there are %d clusters \n", fCalorimeter.Data(), nCaloClusters);
+    
+    AliVTrack * track = 0x0;
+    Float_t pos[3] ;
+    Double_t tof = 0;
+    //Loop over CaloClusters
+    //if(nCaloClusters > 0)printf("QA  : Vertex Cut passed %f, cut %f, entries %d, %s\n",v[2], 40., nCaloClusters, fCalorimeter.Data());
+    for(Int_t iclus = 0; iclus < nCaloClusters; iclus++){
+      
+      if(GetDebug() > 0) printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - cluster: %d/%d, data %d \n",
+                                iclus+1,nCaloClusters,GetReader()->GetDataType());
+      
+      AliVCluster* clus =  (AliVCluster*)caloClusters->At(iclus);
+      AliVCaloCells * cell = 0x0; 
+      if(fCalorimeter == "PHOS") cell =  GetPHOSCells();
+      else                                      cell =  GetEMCALCells();
+      
+      //Get cluster kinematics
+      clus->GetPosition(pos);
+      clus->GetMomentum(mom,v);
+      tof = clus->GetTOF()*1e9;
+      if(tof < fTimeCutMin || tof > fTimeCutMax) continue;
+      
+      //Check only certain regions
+      Bool_t in = kTRUE;
+      if(IsFiducialCutOn()) in =  GetFiducialCut()->IsInFiducialCut(mom,fCalorimeter) ;
+      if(!in) continue;
+      
+      //MC labels
+      nLabel = clus->GetNLabels();
+      labels = clus->GetLabels();
+      
+      //Cells per cluster
+      nCaloCellsPerCluster = clus->GetNCells();
+      //if(mom.E() > 10 && nCaloCellsPerCluster == 1 ) printf("%s:************** E = %f ********** ncells = %d\n",fCalorimeter.Data(), mom.E(),nCaloCellsPerCluster);
+      
+      //matched cluster with tracks
+      nTracksMatched = clus->GetNTracksMatched();
+      if(GetReader()->GetDataType() == AliCaloTrackReader::kESD){
+        trackIndex     = clus->GetTrackMatchedIndex();
+        if(trackIndex >= 0){
+          track = (AliVTrack*)GetReader()->GetInputEvent()->GetTrack(trackIndex);
+        }
+        else{
+          if(nTracksMatched == 1) nTracksMatched = 0;
+          track = 0;
+        }
+      }//kESD
+      else{//AODs
+        if(nTracksMatched > 0) track = (AliVTrack*)clus->GetTrackMatched(0);
+      }
+      
+      //======================
+      //Cells in cluster
+      //======================
+      
+      //Get list of contributors
+      UShort_t * indexList = clus->GetCellsAbsId() ;
+      // check time of cells respect to max energy cell
+      //Get maximum energy cell
+      Int_t absId   = -1 ;
+      //printf("nCaloCellsPerCluster %d\n",nCaloCellsPerCluster);
+      if(fFillAllPosHisto){
+        //Loop on cluster cells
+        for (Int_t ipos = 0; ipos < nCaloCellsPerCluster; ipos++) {
+          //   printf("Index %d\n",ipos);
+          absId  = indexList[ipos]; 
+          
+          //Get position of cell compare to cluster
+          
+          if(fCalorimeter=="EMCAL" && GetCaloUtils()->IsEMCALGeoMatrixSet()){
+            
+            Double_t cellpos[] = {0, 0, 0};
+            GetEMCALGeometry()->GetGlobal(absId, cellpos);
+            
+            fhDeltaCellClusterXNCells->Fill(pos[0]-cellpos[0],nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterYNCells->Fill(pos[1]-cellpos[1],nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterZNCells->Fill(pos[2]-cellpos[2],nCaloCellsPerCluster) ;
+            
+            fhDeltaCellClusterXE->Fill(pos[0]-cellpos[0],mom.E())  ; 
+            fhDeltaCellClusterYE->Fill(pos[1]-cellpos[1],mom.E())  ; 
+            fhDeltaCellClusterZE->Fill(pos[2]-cellpos[2],mom.E())  ; 
+            
+            Float_t r     = TMath::Sqrt(pos[0]*pos[0]        +pos[1]*pos[1]);//     +pos[2]*pos[2]);
+            Float_t rcell = TMath::Sqrt(cellpos[0]*cellpos[0]+cellpos[1]*cellpos[1]);//+cellpos[2]*cellpos[2]);
+            fhDeltaCellClusterRNCells->Fill(r-rcell, nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterRE     ->Fill(r-rcell, mom.E())  ; 
+            
+            //                                 Float_t celleta = 0, cellphi = 0;
+            //                                 GetEMCALGeometry()->EtaPhiFromIndex(absId, celleta, cellphi); 
+            //                                 Int_t imod = -1, iTower = -1, iIphi = -1, iIeta = -1, iphi = -1, ieta = -1;
+            //                                 GetEMCALGeometry()->GetCellIndex(absId,imod,iTower,iIphi,iIeta); 
+            //                                 GetEMCALGeometry()->GetCellPhiEtaIndexInSModule(imod,iTower,
+            //                                                                                                                                                          iIphi, iIeta,iphi,ieta);
+            //                                 printf("AbsId %d, SM %d, Index eta %d, phi %d\n", absId, imod, ieta, iphi);
+            //                                 printf("Cluster E %f, eta %f, phi %f; Cell: Amp %f, eta %f, phi%f\n", mom.E(),mom.Eta(), mom.Phi()*TMath::RadToDeg(), cell->GetCellAmplitude(absId),celleta, cellphi*TMath::RadToDeg());
+            //                                 printf("x cluster %f, x cell %f, cluster-cell %f\n",pos[0], cellpos[0],pos[0]-cellpos[0]);
+            //                                 printf("y cluster %f, y cell %f, cluster-cell %f\n",pos[1], cellpos[1],pos[1]-cellpos[1]);
+            //                                 printf("z cluster %f, z cell %f, cluster-cell %f\n",pos[2], cellpos[2],pos[2]-cellpos[2]);
+            //                                 printf("r cluster %f, r cell %f, cluster-cell %f\n",r,      rcell,     r-rcell);
+            //                                 
+            
+          }//EMCAL and its matrices are available
+          else if(fCalorimeter=="PHOS" && GetCaloUtils()->IsPHOSGeoMatrixSet()){
+            TVector3 xyz;
+            Int_t relId[4], module;
+            Float_t xCell, zCell;
+            
+            GetPHOSGeometry()->AbsToRelNumbering(absId,relId);
+            module = relId[0];
+            GetPHOSGeometry()->RelPosInModule(relId,xCell,zCell);
+            GetPHOSGeometry()->Local2Global(module,xCell,zCell,xyz);
+            
+            fhDeltaCellClusterXNCells->Fill(pos[0]-xyz.X(),nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterYNCells->Fill(pos[1]-xyz.Y(),nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterZNCells->Fill(pos[2]-xyz.Z(),nCaloCellsPerCluster) ;
+            
+            fhDeltaCellClusterXE->Fill(pos[0]-xyz.X(),mom.E())  ; 
+            fhDeltaCellClusterYE->Fill(pos[1]-xyz.Y(),mom.E())  ; 
+            fhDeltaCellClusterZE->Fill(pos[2]-xyz.Z(),mom.E())  ; 
+            
+            Float_t r     = TMath::Sqrt(pos[0]*pos[0]  +pos[1]*pos[1]);//     +pos[2]*pos[2]);
+            Float_t rcell = TMath::Sqrt(xyz.X()*xyz.X()+xyz.Y()*xyz.Y());//+xyz.Z()*xyz.Z());
+            fhDeltaCellClusterRNCells->Fill(r-rcell, nCaloCellsPerCluster) ; 
+            fhDeltaCellClusterRE     ->Fill(r-rcell, mom.E())  ; 
+            
+            //                   printf("x cluster %f, x cell %f, cluster-cell %f\n",pos[0], cellpos[0],pos[0]-cellpos[0]);
+            //                 printf("y cluster %f, y cell %f, cluster-cell %f\n",pos[1], cellpos[1],pos[1]-cellpos[1]);
+            //                 printf("z cluster %f, z cell %f, cluster-cell %f\n",pos[2], cellpos[2],pos[2]-cellpos[2]);
+            //                                 printf("r cluster %f, r cell %f, cluster-cell %f\n",r,      rcell,     r-rcell);
+          }//PHOS and its matrices are available
+          
+          
+        }// cluster cell loop
+      }//Fill all position histograms
 
-       //Ratio: reconstructed track matched/ all reconstructed
-       //printf("c3\n");
-       sprintf(cname,"QA_%s_rectrackmatchrat",fCalorimeter.Data());
-       TCanvas  * c3 = new TCanvas(cname, "Ratio: reconstructed track matched/ all reconstructed", 400, 400) ;
-       c3->Divide(2, 2);
-       
-       c3->cd(1) ;
-       hEChargedClone->SetYTitle("track matched / all");
-       hEChargedClone->Divide(fhE);
-       hEChargedClone->Draw();
-       
-       c3->cd(2) ; 
-       hPtChargedClone->SetYTitle("track matched / all");
-       hPtChargedClone->Divide(fhPt);
-       hPtChargedClone->Draw();
-       
-       c3->cd(3) ;
-       hPhiChargedClone->SetYTitle("track matched / all");
-       hPhiChargedClone->Divide(fhPhi);
-       hPhiChargedClone->Draw();
-       
-       c3->cd(4) ; 
-       hEtaChargedClone->SetYTitle("track matched / all");
-       hEtaChargedClone->Divide(fhEta);
-       hEtaChargedClone->Draw();
-       
-       sprintf(name,"QA_%s_RatioReconstructedMatchedDistributions.eps",fCalorimeter.Data());
-       c3->Print(name);
-       
-       //Ratio: reconstructed track matched (minus no track param) / all
-       //printf("c333\n");
-       sprintf(cname,"QA_%s_rectrackmatchratout",fCalorimeter.Data());
-       TCanvas  * c333 = new TCanvas(cname, "Ratio: reconstructed track matched (with outer track param)/ all", 400, 400) ;
-       c333->Divide(2, 2);
+      // Get the fraction of the cluster energy that carries the cell with highest energy
+      Float_t maxCellFraction = 0.;
+      Int_t absIdMax = GetCaloUtils()->GetMaxEnergyCell(cell, clus,maxCellFraction);
+      Double_t tmax  = cell->GetCellTime(absIdMax)*1e9;
 
-       c333->cd(1) ;
-       hEChargedClone2->Add(fhEChargedNoOut,-1);
-       hEChargedClone2->SetYTitle("track matched / all");
-       hEChargedClone2->Divide(fhE);
-       hEChargedClone2->Draw();
-       
-       c333->cd(2) ; 
-       hPtChargedClone2->Add(fhPtChargedNoOut,-1);
-       hPtChargedClone2->SetYTitle("track matched / all");
-       hPtChargedClone2->Divide(fhPt);
-       hPtChargedClone2->Draw();
-       
-       c333->cd(3) ;
-       hPhiChargedClone2->Add(fhPhiChargedNoOut,-1);
-       hPhiChargedClone2->SetYTitle("track matched / all");
-       hPhiChargedClone2->Divide(fhPhi);
-       hPhiChargedClone2->Draw();
-       
-       c333->cd(4) ; 
-       hEtaChargedClone2->Add(fhEtaChargedNoOut,-1);
-       hEtaChargedClone2->SetYTitle("track matched / all");
-       hEtaChargedClone2->Divide(fhEta);
-       hEtaChargedClone2->Draw();
-       
-       sprintf(name,"QA_%s_RatioReconstructedMatchedDistributionsOuter.eps",fCalorimeter.Data());
-       c333->Print(name);
+      if     (clus->E() < 2.){
+        fhLambda0vsClusterMaxCellDiffE0->Fill(clus->GetM02(),      maxCellFraction);
+        fhNCellsvsClusterMaxCellDiffE0 ->Fill(nCaloCellsPerCluster,maxCellFraction);
+      }
+      else if(clus->E() < 6.){
+        fhLambda0vsClusterMaxCellDiffE2->Fill(clus->GetM02(),      maxCellFraction);
+        fhNCellsvsClusterMaxCellDiffE2 ->Fill(nCaloCellsPerCluster,maxCellFraction);
+      }
+      else{
+        fhLambda0vsClusterMaxCellDiffE6->Fill(clus->GetM02(),      maxCellFraction);  
+        fhNCellsvsClusterMaxCellDiffE6 ->Fill(nCaloCellsPerCluster,maxCellFraction);
+      }
+      
+      fhNCellsPerClusterNoCut  ->Fill(clus->E(), nCaloCellsPerCluster);
+      nModule = GetModuleNumber(clus);
+      if(nModule >=0 && nModule < fNModules) fhNCellsPerClusterModNoCut[nModule]->Fill(clus->E(), nCaloCellsPerCluster);
 
-       //Reconstructed distributions, matched with tracks
-       //printf("c2\n");
-       sprintf(cname,"QA_%s_rectrackmatch_noout",fCalorimeter.Data());
-       TCanvas  * c22 = new TCanvas(cname, "Reconstructed distributions, matched with tracks, no outer track param", 400, 400) ;
-       c22->Divide(2, 2);
-       
-       c22->cd(1) ; 
-       gPad->SetLogy();
-       fhEChargedNoOut->SetLineColor(4);
-       fhEChargedNoOut->Draw();
-       
-       c22->cd(2) ; 
-       gPad->SetLogy();
-       fhPtChargedNoOut->SetLineColor(4);
-       fhPtChargedNoOut->Draw();
-       
-       c22->cd(3) ; 
-       fhPhiChargedNoOut->SetLineColor(4);
-       fhPhiChargedNoOut->Draw();
-       
-       c22->cd(4) ; 
-       fhEtaChargedNoOut->SetLineColor(4);
-       fhEtaChargedNoOut->Draw();
-       
-       sprintf(name,"QA_%s_ReconstructedDistributions_TrackMatched_NoOutParam.eps",fCalorimeter.Data());
-       c22->Print(name);
-       
-       //Ratio: reconstructed track matched/ all reconstructed
-       //printf("c33\n");
-       TH1F *  hEChargedNoOutClone   = (TH1F*)   fhEChargedNoOut->Clone("EChargedNoOutClone");
-       TH1F *  hPtChargedNoOutClone  = (TH1F*)   fhPtChargedNoOut->Clone("PtChargedNoOutClone");
-       TH1F *  hEtaChargedNoOutClone = (TH1F*)   fhEtaChargedNoOut->Clone("EtaChargedNoOutClone");
-       TH1F *  hPhiChargedNoOutClone = (TH1F*)   fhPhiChargedNoOut->Clone("PhiChargedNoOutClone");     
-       
-       sprintf(cname,"QA_%s_rectrackmatchratnoout",fCalorimeter.Data());
-       TCanvas  * c33 = new TCanvas(cname, "Ratio: reconstructed track matched/ all reconstructed", 400, 400) ;
-       c33->Divide(2, 2);
-       
-       c33->cd(1) ;
-       hEChargedNoOutClone->SetYTitle("track matched no out/ all matched");
-       hEChargedNoOutClone->Divide(fhECharged);
-       hEChargedNoOutClone->Draw();
-       
-       c33->cd(2) ; 
-       hPtChargedNoOutClone->SetYTitle("track matched no out / all matched");
-       hPtChargedNoOutClone->Divide(fhPtCharged);
-       hPtChargedNoOutClone->Draw();
-       
-       c33->cd(3) ;
-       hPhiChargedNoOutClone->SetYTitle("track matched no out/ all matched");
-       hPhiChargedNoOutClone->Divide(fhPhiCharged);
-       hPhiChargedNoOutClone->Draw();
-       
-       c33->cd(4) ; 
-       hEtaChargedNoOutClone->SetYTitle("track matched no out/ all matched");
-       hEtaChargedNoOutClone->Divide(fhEtaCharged);
-       hEtaChargedNoOutClone->Draw();
-       
-       sprintf(name,"QA_%s_RatioMatchedDistributionsAllToNoOut.eps",fCalorimeter.Data());
-       c33->Print(name);
+      fhClusterMaxCellDiffNoCut->Fill(clus->E(),maxCellFraction);
+      //fhClusterMaxCellDiffDivLambda0->Fill(clus->E(),maxCellFraction / clus->GetNCells());
 
-       //eta vs phi
-       //printf("c4\n");
-       sprintf(cname,"QA_%s_etavsphi",fCalorimeter.Data());
-       TCanvas  * c4 = new TCanvas(cname, "reconstructed #eta vs #phi", 200, 600) ;
-       c4->Divide(1, 3);
-               
-       c4->cd(1) ;
-       fhEtaPhi->Draw("cont");
-       
-       c4->cd(2) ; 
-       fhEtaPhiCharged->Draw("cont");
-       
-       c4->cd(3) ; 
-       fhEtaPhiChargedNoOut->Draw("cont");
+      //Check bad clusters if rejection was not on
+      Bool_t badCluster = kFALSE;
+      if(fCalorimeter=="EMCAL" && !GetCaloUtils()->GetEMCALRecoUtils()->IsRejectExoticCluster()){
+        //Bad clusters histograms
+        //Float_t minNCells = TMath::Max(1,TMath::Nint(1 + TMath::Log(clus->E() - 5 )*1.5 ));
+        //if(nCaloCellsPerCluster <= minNCells) {
+        if(clus->GetM02() < 0.05) {
 
-       sprintf(name,"QA_%s_ReconstructedEtaVsPhi.eps",fCalorimeter.Data());
-       c4->Print(name);
-       
-       //Invariant mass
-       Int_t binmin = -1;
-       Int_t binmax = -1;
+          //if(clus->GetM02() > 0 || TMath::Abs(clus->GetM20()) > 0 || clus->GetDispersion() > 0)
+          
+          Int_t sm =0; Int_t ietaa=-1; Int_t iphii = 0; Int_t rcu = 0;
+          sm = GetModuleNumberCellIndexes(absId,fCalorimeter, ietaa, iphii, rcu);
+//          if(clus->GetNCells() > 3){
+//            printf("Bad  : E %f, ncells %d, nclusters %d, dist to bad %f, l0 %f, l1 %f, d %f, cell max t %f, cluster TOF %f, sm %d, icol %d, irow %d, rcu %d\n", 
+//                   clus->E(), clus->GetNCells(),nCaloClusters, clus->GetDistanceToBadChannel(), 
+//                   clus->GetM02(), clus->GetM20(), clus->GetDispersion(),tmax, tof,sm,ietaa,iphii,rcu);
+//          }
+          
+          badCluster = kTRUE;
+          
+          fhBadClusterEnergy     ->Fill(clus->E());
+          fhBadClusterMaxCellDiff->Fill(clus->E(),maxCellFraction);
+          fhBadClusterTimeEnergy ->Fill(clus->E(),tof);
+          //printf("bad tof : %2.3f\n",tof);
+          //if(clus->E() - emax < 0)printf("What?\n");
 
-       if(fhIM->GetEntries() > 1){
-               Int_t nebins  = fhIM->GetNbinsX();
-               Int_t emax = (Int_t) fhIM->GetXaxis()->GetXmax();
-               Int_t emin = (Int_t) fhIM->GetXaxis()->GetXmin();
-               if (emin != 0 ) printf("emin != 0 \n");
-               //printf("IM: nBinsX %d, emin %2.2f, emax %2.2f\n",nebins,emin,emax);
-               
-               sprintf(cname,"QA_%s_IM",fCalorimeter.Data());
-       //      printf("c5\n");
-               TCanvas  * c5 = new TCanvas(cname, "Invariant mass", 400, 400) ;
-               c5->Divide(2, 2);
-               
-               c5->cd(1) ; 
-               fhIM->SetLineColor(4);
-               fhIM->Draw();
-               
-               c5->cd(2) ; 
-               binmin = 0;
-               binmax =  (Int_t) (5-emin)*nebins/emax;
-               TH1D *pyim5 = fhIM->ProjectionY("pyim5",binmin,binmax);
-               pyim5->SetTitle("E_{pair} < 5 GeV");
-               pyim5->SetLineColor(4);
-               pyim5->Draw();
-               
-               c5->cd(3) ; 
-               binmin =  (Int_t) (5-emin)*nebins/emax;
-               binmax =  (Int_t) (10-emin)*nebins/emax;
-               TH1D *pyim510 = fhIM->ProjectionY("pyim5_10",binmin,binmax);
-               pyim510->SetTitle("5 < E_{pair} < 10 GeV");
-               pyim510->SetLineColor(4);
-               pyim510->Draw();
-               
-               c5->cd(4) ;
-               binmin =  (Int_t) (10-emin)*nebins/emax;
-               binmax = -1;
-               TH1D *pyim10 = fhIM->ProjectionY("pyim10",binmin,binmax);
-               pyim10->SetTitle("E_{pair} > 10 GeV");
-               pyim10->SetLineColor(4);
-               pyim10->Draw();
-               
-               sprintf(name,"QA_%s_InvariantMass.eps",fCalorimeter.Data());
-               c5->Print(name);
-       }
-       
-       //Asymmetry
-       if(fhAsym->GetEntries() > 1){
-               Int_t nebins  = fhAsym->GetNbinsX();
-               Int_t emax = (Int_t) fhAsym->GetXaxis()->GetXmax();
-               Int_t emin = (Int_t) fhAsym->GetXaxis()->GetXmin();
-               if (emin != 0 ) printf("emin != 0 \n");
-               //printf("Asym: nBinsX %d, emin %2.2f, emax %2.2f\n",nebins,emin,emax);
-               
-               sprintf(cname,"QA_%s_Asym",fCalorimeter.Data());
-               //      printf("c5\n");
-               TCanvas  * c5b = new TCanvas(cname, "Asymmetry", 400, 400) ;
-               c5b->Divide(2, 2);
-               
-               c5b->cd(1) ; 
-               fhAsym->SetLineColor(4);
-               fhAsym->Draw();
-               
-               c5b->cd(2) ; 
-               binmin = 0;
-               binmax = (Int_t) (5-emin)*nebins/emax;
-               TH1D *pyAsym5 = fhAsym->ProjectionY("pyAsym5",binmin,binmax);
-               pyAsym5->SetTitle("E_{pair} < 5 GeV");
-               pyAsym5->SetLineColor(4);
-               pyAsym5->Draw();
-               
-               c5b->cd(3) ; 
-               binmin = (Int_t) (5-emin)*nebins/emax;
-               binmax = (Int_t) (10-emin)*nebins/emax;
-               TH1D *pyAsym510 = fhAsym->ProjectionY("pyAsym5_10",binmin,binmax);
-               pyAsym510->SetTitle("5 < E_{pair} < 10 GeV");
-               pyAsym510->SetLineColor(4);
-               pyAsym510->Draw();
-               
-               c5b->cd(4) ;
-               binmin = (Int_t) (10-emin)*nebins/emax;
-               binmax = -1;
-               TH1D *pyAsym10 = fhAsym->ProjectionY("pyAsym10",binmin,binmax);
-               pyAsym10->SetTitle("E_{pair} > 10 GeV");
-               pyAsym10->SetLineColor(4);
-               pyAsym10->Draw();
-               
-               sprintf(name,"QA_%s_Asymmetry.eps",fCalorimeter.Data());
-               c5b->Print(name);
-       }
-       
-       
-       //Reconstructed vs MC distributions
-       //printf("c6\n");
-       sprintf(cname,"QA_%s_recvsmc",fCalorimeter.Data());
-       TCanvas  * c6 = new TCanvas(cname, "Reconstructed vs MC distributions", 400, 400) ;
-       c6->Divide(2, 2);
-       
-       c6->cd(1) ; 
-       fh2E->SetLineColor(4);
-       fh2E->Draw();
-       
-       c6->cd(2) ; 
-       fh2Pt->SetLineColor(4);
-       fh2Pt->Draw();
-       
-       c6->cd(3) ; 
-       fh2Phi->SetLineColor(4);
-       fh2Phi->Draw();
-       
-       c6->cd(4) ; 
-       fh2Eta->SetLineColor(4);
-       fh2Eta->Draw();
-       
-       sprintf(name,"QA_%s_ReconstructedVSMCDistributions.eps",fCalorimeter.Data());
-       c6->Print(name);        
-       
-       
-       //Reconstructed vs MC distributions
-       //printf("c6\n");
-       sprintf(cname,"QA_%s_gamrecvsmc",fCalorimeter.Data());
-       TCanvas  * c6Gam = new TCanvas(cname, "Reconstructed vs MC distributions", 400, 400) ;
-       c6Gam->Divide(2, 2);
-       
-       c6Gam->cd(1) ; 
-       fhGam2E->SetLineColor(4);
-       fhGam2E->Draw();
-       
-       c6Gam->cd(2) ; 
-       fhGam2Pt->SetLineColor(4);
-       fhGam2Pt->Draw();
-       
-       c6Gam->cd(3) ; 
-       fhGam2Phi->SetLineColor(4);
-       fhGam2Phi->Draw();
-       
-       c6Gam->cd(4) ; 
-       fhGam2Eta->SetLineColor(4);
-       fhGam2Eta->Draw();
-       
-       sprintf(name,"QA_%s_GammaReconstructedVSMCDistributions.eps",fCalorimeter.Data());
-       c6->Print(name);        
-
-       //Generated - reconstructed  
-       //printf("c7\n");
-       sprintf(cname,"QA_%s_diffgenrec",fCalorimeter.Data());
-       TCanvas  * c7 = new TCanvas(cname, "generated - reconstructed", 400, 400) ;
-       c7->Divide(2, 2);
-       
-       c7->cd(1) ; 
-       gPad->SetLogy();
-       fhGamDeltaE->SetLineColor(4);
-       fhDeltaE->Draw();
-       fhGamDeltaE->Draw("same");
-
-       TLegend pLegendd(0.65,0.55,0.9,0.8);
-       pLegendd.SetTextSize(0.06);
-       pLegendd.AddEntry(fhDeltaE,"all","L");
-       pLegendd.AddEntry(fhGamDeltaE,"from  #gamma","L");
-       pLegendd.SetFillColor(10);
-       pLegendd.SetBorderSize(1);
-       pLegendd.Draw();
+          //Clusters in event time difference
+          
+            for(Int_t iclus2 = 0; iclus2 < nCaloClusters; iclus2++ ){
+              
+              AliVCluster* clus2 =  (AliVCluster*)caloClusters->At(iclus2);
+              
+              if(clus->GetID()==clus2->GetID()) continue;
+              
+              if(clus->GetM02() > 0.01) {
+                fhBadClusterPairDiffTimeE  ->Fill(clus->E(), tof-clus2->GetTOF()*1.e9);
+//               if(clus->GetNCells()>3) printf("\t i %d, E %f, nCells %d, dist to bad %f, good tof %f, bad tof %f, diff %f \n",
+//                       iclus2, clus2->E(), clus2->GetNCells(), clus->GetDistanceToBadChannel(), tof,clus2->GetTOF()*1.e9,tof-clus2->GetTOF()*1.e9);
+              }
+//              else{  
+//                Int_t absId2 = clus2->GetCellsAbsId()[0];
+//                Int_t sm2 =0; Int_t ietaa2=-1; Int_t iphii2 = 0; Int_t rcu2 = 0;
+//                sm2 = GetModuleNumberCellIndexes(absId2,fCalorimeter, ietaa2, iphii2, rcu2);
+//                 if(clus->GetNCells()>3) printf("i %d, E %f, nCells %d, bad tof %f, bad tof %f, diff %f, sm %d, icol %d, irow %d, rcu %d\n",
+//                       iclus2, clus2->E(), clus2->GetNCells(), tof,clus2->GetTOF()*1.e9,tof-clus2->GetTOF()*1.e9,sm2,ietaa2,iphii2,rcu2);
+//                
+//              }
+              
+            }
+          
+          
+          for (Int_t ipos = 0; ipos < nCaloCellsPerCluster; ipos++) {
+            // printf("Index %d\n",ipos);  
+            absId  = indexList[ipos]; 
+            if(absId!=absIdMax){
+              Float_t frac = cell->GetCellAmplitude(absId)/cell->GetCellAmplitude(absIdMax);
+              //printf("bad frac : %2.3f, e %2.2f, ncells %d, min %2.1f\n",frac,mom.E(),nCaloCellsPerCluster,minNCells);
+              fhBadClusterMaxCellCloseCellRatio->Fill(mom.E(),frac);
+            }
+          }
+        }//Bad cluster
+      }
+      
+      if(!badCluster){
+        
+        //        if(TMath::Abs(clus->GetM20()) < 0.0001 && clus->GetNCells() > 3){
+        //          Int_t sm =0; Int_t ietaa=-1; Int_t iphii = 0; Int_t rcu = 0;
+        //          sm = GetModuleNumberCellIndexes(absId,fCalorimeter, ietaa, iphii, rcu);
+        //          printf("Good : E %f, mcells %d, l0 %f, l1 %f, d %f, cell max t %f, cluster TOF %f, sm %d, icol %d, irow %d \n", 
+        //                 clus->E(), clus->GetNCells(),clus->GetM02(), clus->GetM20(), clus->GetDispersion(),tmax, tof,sm,ietaa,iphii);
+        //
+        //        }
+        
+        fhClusterMaxCellDiff->Fill(clus->E(),maxCellFraction);
+        fhClusterTimeEnergy ->Fill(mom.E(),tof);
+        
+        //Clusters in event time difference
+        for(Int_t iclus2 = 0; iclus2 < nCaloClusters; iclus2++ ){
+          
+          AliVCluster* clus2 =  (AliVCluster*) caloClusters->At(iclus2);
+          
+          if(clus->GetID()==clus2->GetID()) continue;
+          
+          if(clus->GetM02() > 0.01) {
+            fhClusterPairDiffTimeE  ->Fill(clus->E(), tof-clus2->GetTOF()*1.e9);
+          }
+        }        
+        
+        for (Int_t ipos = 0; ipos < nCaloCellsPerCluster; ipos++) {
+          //   printf("Index %d\n",ipos);            
+          absId  = indexList[ipos]; 
+          if(absId!=absIdMax){
+            Float_t frac = cell->GetCellAmplitude(absId)/cell->GetCellAmplitude(absIdMax);
+            //printf("good frac : %2.3f\n",frac);
+            fhClusterMaxCellCloseCellRatio->Fill(mom.E(),frac);
+          }
+        }
+        
+        // check time of cells respect to max energy cell
+        if(nCaloCellsPerCluster > 1 &&  GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+          for (Int_t ipos = 0; ipos < nCaloCellsPerCluster; ipos++) {
+            absId  = indexList[ipos];             
+            if(absId == absIdMax) continue;
+            Float_t diff = (tmax-cell->GetCellTime(absId))*1e9;
+            fhCellTimeSpreadRespectToCellMax->Fill(diff);
+            if(TMath::Abs(TMath::Abs(diff) > 100)) fhCellIdCellLargeTimeSpread->Fill(absId);
+          }// fill cell-cluster histogram loop
+        }//check time of cells respect to max energy cell
+        
+        
+        //Get module of cluster
+        nCaloClustersAccepted++;
+        if(nModule >=0 && nModule < fNModules) nClustersInModule[nModule]++;
+        
+        //-----------------------------------------------------------
+        //Fill histograms related to single cluster or track matching
+        //-----------------------------------------------------------
+        ClusterHistograms(mom, pos, nCaloCellsPerCluster, nModule, nTracksMatched, track, labels, nLabel);     
+        
+        
+        //-----------------------------------------------------------
+        //Invariant mass
+        //-----------------------------------------------------------
+        if(fFillAllPi0Histo){
+          if(GetDebug()>1) printf("Invariant mass \n");
+          
+          //do not do for bad vertex
+          // Float_t fZvtxCut = 40. ;  
+          if(v[2]<-GetZvertexCut() || v[2]> GetZvertexCut()) continue ; //Event can not be used (vertex, centrality,... cuts not fulfilled)
+          
+          Int_t nModule2 = -1;
+          Int_t nCaloCellsPerCluster2=0;
+          if (nCaloClusters > 1 ) {
+            for(Int_t jclus = iclus + 1 ; jclus < nCaloClusters ; jclus++) {
+              AliVCluster* clus2 =  (AliVCluster*)caloClusters->At(jclus);
+              
+              //Get cluster kinematics
+              clus2->GetMomentum(mom2,v);
+              //Check only certain regions
+              Bool_t in2 = kTRUE;
+              if(IsFiducialCutOn()) in2 =  GetFiducialCut()->IsInFiducialCut(mom2,fCalorimeter) ;
+              if(!in2) continue;       
+              //Get module of cluster
+              nModule2 = GetModuleNumber(clus2);
+              //Cells per cluster
+              nCaloCellsPerCluster2 = clus2->GetNCells();
+            }
+            //Fill invariant mass histograms
+            //All modules
+            
+            //printf("QA : Fill inv mass histo: pt1 %f, pt2 %f, pt12 %f, mass %f, calo %s \n",mom.Pt(),mom2.Pt(),(mom+mom2).Pt(),(mom+mom2).M(), fCalorimeter.Data());
+            fhIM  ->Fill((mom+mom2).Pt(),(mom+mom2).M());
+            //Single module
+            if(nModule == nModule2 && nModule >=0 && nModule < fNModules)
+              fhIMMod[nModule]->Fill((mom+mom2).Pt(),(mom+mom2).M());
+            
+            //Select only clusters with at least 2 cells
+            if(nCaloCellsPerCluster > 1 && nCaloCellsPerCluster2 > 1) {
+              //All modules
+              fhIMCellCut  ->Fill((mom+mom2).Pt(),(mom+mom2).M());
+              //Single modules
+              if(nModule == nModule2 && nModule >=0 && nModule < fNModules)
+                fhIMCellCutMod[nModule]->Fill((mom+mom2).Pt(),(mom+mom2).M());
+            }
+            
+            //Asymetry histograms
+            fhAsym->Fill((mom+mom2).Pt(),TMath::Abs((mom.E()-mom2.E())/(mom.E()+mom2.E())));
+            
+          }// 2nd cluster loop
+        }//Fill Pi0
+        
+      }//good cluster
+      
+    }//cluster loop
 
-       c7->cd(2) ; 
-       gPad->SetLogy();
-       fhGamDeltaPt->SetLineColor(4);
-       fhDeltaPt->Draw();
-               fhGamDeltaPt->Draw("same");
+    //Number of clusters histograms
+    if(nCaloClustersAccepted > 0) fhNClusters->Fill(nCaloClustersAccepted);
+    //  Number of clusters per module
+    for(Int_t imod = 0; imod < fNModules; imod++ ){ 
+      if(GetDebug() > 1) 
+        printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - module %d calo %s clusters %d\n", imod, fCalorimeter.Data(), nClustersInModule[imod]); 
+      fhNClustersMod[imod]->Fill(nClustersInModule[imod]);
+    }
+    delete [] nClustersInModule;
+    //delete caloClusters;
+  }// calo clusters array exists
+  
+  //----------------------------------------------------------
+  // CALOCELLS
+  //----------------------------------------------------------
+  
+  AliVCaloCells * cell = 0x0; 
+  Int_t ncells = 0;
+  if(fCalorimeter == "PHOS") 
+    cell = GetPHOSCells();
+  else                       
+    cell = GetEMCALCells();
+  
+  if(!cell){ 
+    AliFatal(Form("No %s CELLS available for analysis",fCalorimeter.Data()));
+    return; // just to trick coverity
+  }
+  
+  if(GetDebug() > 0) 
+    printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - %s cell entries %d\n", fCalorimeter.Data(), cell->GetNumberOfCells());    
+  
+  //Init arrays and used variables
+  Int_t *nCellsInModule = new Int_t[fNModules];
+  for(Int_t imod = 0; imod < fNModules; imod++ ) nCellsInModule[imod] = 0;
+  Int_t icol     = -1;
+  Int_t irow     = -1;
+  Int_t iRCU     = -1;
+  Float_t amp    = 0.;
+  Float_t time   = 0.;
+  Int_t id       = -1;
+  Float_t recalF = 1.;  
+  
+  for (Int_t iCell = 0; iCell < cell->GetNumberOfCells(); iCell++) {      
+    if(GetDebug() > 2)  
+      printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - Cell : amp %f, absId %d \n", cell->GetAmplitude(iCell), cell->GetCellNumber(iCell));
+    nModule = GetModuleNumberCellIndexes(cell->GetCellNumber(iCell),fCalorimeter, icol, irow, iRCU);
+    if(GetDebug() > 2) 
+      printf("\t module %d, column %d, row %d \n", nModule,icol,irow);
+    
+    if(nModule < fNModules) {  
+      
+      //Check if the cell is a bad channel
+      if(GetCaloUtils()->IsBadChannelsRemovalSwitchedOn()){
+        if(fCalorimeter=="EMCAL"){
+          if(GetCaloUtils()->GetEMCALChannelStatus(nModule,icol,irow)) continue;
+        }
+        else {
+          if(GetCaloUtils()->GetPHOSChannelStatus(nModule,icol,irow)) {
+            printf("PHOS bad channel\n");
+            continue;
+          }
+        }
+      } // use bad channel map
+      
+      //Get Recalibration factor if set
+      if (GetCaloUtils()->IsRecalibrationOn()) {
+        if(fCalorimeter == "PHOS") recalF = GetCaloUtils()->GetPHOSChannelRecalibrationFactor(nModule,icol,irow);
+        else                              recalF = GetCaloUtils()->GetEMCALChannelRecalibrationFactor(nModule,icol,irow);
+        //if(fCalorimeter == "PHOS")printf("Recalibration factor (sm,row,col)=(%d,%d,%d) -  %f\n",nModule,icol,irow,recalF);
+      }
+      
+      amp     = cell->GetAmplitude(iCell)*recalF;
+      time    = cell->GetTime(iCell)*1e9;//transform time to ns
+      
+      //Remove noisy channels, only possible in ESDs
+      if(GetReader()->GetDataType() == AliCaloTrackReader::kESD){
+        if(time < fTimeCutMin || time > fTimeCutMax) continue;
+      }
+      //if(amp > 3 && fCalorimeter=="EMCAL") printf("Amp = %f, time = %f, (mod, col, row)= (%d,%d,%d)\n",
+      //                                                                                  amp,time,nModule,icol,irow);
+      
+      id      = cell->GetCellNumber(iCell);
+      fhAmplitude->Fill(amp);
+      fhAmpId    ->Fill(amp,id);
+      
+      fhAmplitudeMod[nModule]->Fill(amp);
+      if(fCalorimeter=="EMCAL"){
+        Int_t ifrac = 0;
+        if(icol > 15 && icol < 32) ifrac = 1;
+        else if(icol > 31) ifrac = 2;
+        fhAmplitudeModFraction[nModule*3+ifrac]->Fill(amp);
+      }
+      
+      nCellsInModule[nModule]++;
+      fhGridCellsMod[nModule]    ->Fill(icol,irow);
+      fhGridCellsEMod[nModule]   ->Fill(icol,irow,amp);
+      
+      if(GetReader()->GetDataType() == AliCaloTrackReader::kESD){
+        //printf("%s: time %g\n",fCalorimeter.Data(), time);
+        fhTime     ->Fill(time);
+        fhTimeId   ->Fill(time,id);
+        fhTimeAmp  ->Fill(amp,time);
+        
+        //Double_t t0 = GetReader()->GetInputEvent()->GetT0();
+        //printf("---->>> Time EMCal %e, T0 %e, T0 vertex %e, T0 clock %e, T0 trig %d \n",time,t0, 
+        //        GetReader()->GetInputEvent()->GetT0zVertex(),
+        //        GetReader()->GetInputEvent()->GetT0clock(),
+        //        GetReader()->GetInputEvent()->GetT0Trig());
+        //fhT0Time     ->Fill(time-t0);
+        //fhT0TimeId   ->Fill(time-t0,id);
+        //fhT0TimeAmp  ->Fill(amp,time-t0);
+        
+        //printf("id %d, nModule %d, iRCU %d: Histo Name %s\n",id, nModule,iRCU, fhTimeAmpPerRCU[nModule*fNRCU+iRCU]->GetName());
+        //fhT0TimeAmpPerRCU[nModule*fNRCU+iRCU]->Fill(amp, time-t0);
+        
+        fhTimeAmpPerRCU  [nModule*fNRCU+iRCU]->Fill(amp, time);
+        
+        if(amp > 0.3){
+          fhGridCellsTimeMod[nModule]->Fill(icol,irow,time);
+          
+          //                                   AliESDCaloCells * cell2 = 0x0; 
+          //                                   if(fCalorimeter == "PHOS") cell2 =  GetReader()->GetInputEvent()->GetPHOSCells();
+          //                                   else                       cell2 = GetReader()->GetInputEvent()->GetEMCALCells();
+          //                                   Int_t icol2    = -1;
+          //                                   Int_t irow2    = -1;
+          //                                   Int_t iRCU2    = -1;
+          //                                   Float_t amp2   =  0.;
+          //                                   Float_t time2  =  0.;
+          //                                   Int_t id2      = -1;
+          //                                   Int_t nModule2 = -1;
+          //                                   for (Int_t iCell2 = 0; iCell2 < ncells; iCell2++) {  
+          //                                           amp2    = cell2->GetAmplitude(iCell2);
+          //                                           if(amp2 < 0.3) continue;
+          //                                           if(iCell2 == iCell) continue;
+          //                                           time2    = cell2->GetTime(iCell2)*1e9;//transform time to ns
+          //                                           //printf("%s: time %g\n",fCalorimeter.Data(), time);
+          //                                           id2      = cell2->GetCellNumber(iCell2);
+          //                                           nModule2 = GetModuleNumberCellIndexes(cell2->GetCellNumber(iCell2), fCalorimeter, icol2, irow2, iRCU2);
+          //                                           Int_t index = (nModule2*fNRCU+iRCU2)+(fNModules*fNRCU)*(iRCU+fNRCU*nModule); 
+          //                                           //printf("id %d, nModule %d, iRCU %d, id2 %d, nModule2 %d, iRCU2 %d, index %d: Histo Name %s\n",id, nModule,iRCU,cell2->GetCellNumber(iCell2),nModule2,iRCU2,index, fhTimeCorrRCU[index]->GetName());
+          //                                           fhTimeCorrRCU[index]->Fill(time,time2); 
+          //                                           
+          //                                   }// second cell loop
+          
+        }// amplitude cut
+      }
+      
+      
+      //Get Eta-Phi position of Cell
+      if(fFillAllPosHisto)
+      {
+        if(fCalorimeter=="EMCAL" && GetCaloUtils()->IsEMCALGeoMatrixSet()){
+          Float_t celleta = 0.;
+          Float_t cellphi = 0.;
+          GetEMCALGeometry()->EtaPhiFromIndex(id, celleta, cellphi); 
+          
+          fhEtaPhiAmp->Fill(celleta,cellphi,amp);
+          Double_t cellpos[] = {0, 0, 0};
+          GetEMCALGeometry()->GetGlobal(id, cellpos);
+          fhXCellE->Fill(cellpos[0],amp)  ; 
+          fhYCellE->Fill(cellpos[1],amp)  ; 
+          fhZCellE->Fill(cellpos[2],amp)  ;
+          Float_t rcell = TMath::Sqrt(cellpos[0]*cellpos[0]+cellpos[1]*cellpos[1]);//+cellpos[2]*cellpos[2]);
+          fhRCellE->Fill(rcell,amp)  ;
+          fhXYZCell->Fill(cellpos[0],cellpos[1],cellpos[2])  ;
+        }//EMCAL Cells
+        else if(fCalorimeter=="PHOS" && GetCaloUtils()->IsPHOSGeoMatrixSet()){
+          TVector3 xyz;
+          Int_t relId[4], module;
+          Float_t xCell, zCell;
+          
+          GetPHOSGeometry()->AbsToRelNumbering(id,relId);
+          module = relId[0];
+          GetPHOSGeometry()->RelPosInModule(relId,xCell,zCell);
+          GetPHOSGeometry()->Local2Global(module,xCell,zCell,xyz);
+          Float_t rcell = TMath::Sqrt(xyz.X()*xyz.X()+xyz.Y()*xyz.Y());
+          fhXCellE ->Fill(xyz.X(),amp)  ; 
+          fhYCellE ->Fill(xyz.Y(),amp)  ; 
+          fhZCellE ->Fill(xyz.Z(),amp)  ;
+          fhRCellE ->Fill(rcell  ,amp)  ;
+          fhXYZCell->Fill(xyz.X(),xyz.Y(),xyz.Z())  ;
+        }//PHOS cells
+      }//fill cell position histograms
+      
+      if     (fCalorimeter=="EMCAL" && amp > fEMCALCellAmpMin) ncells ++ ;
+      else if(fCalorimeter=="PHOS"  && amp > fPHOSCellAmpMin)  ncells ++ ;
+      //else  
+      //  printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - no %s CELLS passed the analysis cut\n",fCalorimeter.Data());    
+    }//nmodules
+  }//cell loop
+  if(ncells > 0 )fhNCells->Fill(ncells) ; //fill the cells after the cut 
+  
+  //Number of cells per module
+  for(Int_t imod = 0; imod < fNModules; imod++ ) {
+    if(GetDebug() > 1) 
+      printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - module %d calo %s cells %d\n", imod, fCalorimeter.Data(), nCellsInModule[imod]); 
+    fhNCellsMod[imod]->Fill(nCellsInModule[imod]) ;
+  }
+  delete [] nCellsInModule;
+  
+  if(GetDebug() > 0)
+    printf("AliAnaCalorimeterQA::MakeAnalysisFillHistograms() - End \n");
+}
 
-       c7->cd(3) ; 
-       fhGamDeltaPhi->SetLineColor(4);
-       fhDeltaPhi->Draw();
-               fhGamDeltaPhi->Draw("same");
-       
-       c7->cd(4) ; 
-       fhGamDeltaEta->SetLineColor(4);
-       fhDeltaEta->Draw();
-       fhGamDeltaEta->Draw("same");
 
-       sprintf(name,"QA_%s_DiffGeneratedReconstructed.eps",fCalorimeter.Data());
-       c7->Print(name);
-       
-       
-       // Reconstructed / Generated 
-       //printf("c8\n");
-       sprintf(cname,"QA_%s_ratiorecgen",fCalorimeter.Data());
-       TCanvas  * c8 = new TCanvas(cname, " reconstructed / generated", 400, 400) ;
-       c8->Divide(2, 2);
+//_____________________________________________________________________________________________
+void AliAnaCalorimeterQA::ClusterHistograms(const TLorentzVector mom, 
+                                            Float_t *pos, const Int_t nCaloCellsPerCluster,const Int_t nModule,
+                                            const Int_t nTracksMatched,  const AliVTrack * track,  
+                                            const Int_t * labels, const Int_t nLabels){
+  //Fill CaloCluster related histograms
+       
+  AliAODMCParticle * aodprimary  = 0x0;
+  TParticle * primary = 0x0;
+  Int_t tag = 0;       
+  
+  Float_t e   = mom.E();
+  Float_t pt  = mom.Pt();
+  Float_t eta = mom.Eta();
+  Float_t phi = mom.Phi();
+  if(phi < 0) phi +=TMath::TwoPi();
+  if(GetDebug() > 0) {
+    printf("AliAnaCalorimeterQA::ClusterHistograms() - cluster: E %2.3f, pT %2.3f, eta %2.3f, phi %2.3f \n",e,pt,eta,phi*TMath::RadToDeg());
+    if(IsDataMC()) {
+      //printf("\t Primaries: nlabels %d, labels pointer %p\n",nLabels,labels);
+      printf("\t Primaries: nlabels %d\n",nLabels);
+      if(!nLabels || !labels) printf("\t Strange, no labels!!!\n");
+    }
+  }
+  
+  fhE     ->Fill(e);   
+  if(nModule >=0 && nModule < fNModules) fhEMod[nModule]->Fill(e);
+  if(fFillAllTH12){
+    fhPt     ->Fill(pt);
+    fhPhi    ->Fill(phi);
+    fhEta    ->Fill(eta);
+  }
+  
+  fhEtaPhiE->Fill(eta,phi,e);
+  
+  //Cells per cluster
+  fhNCellsPerCluster   ->Fill(e, nCaloCellsPerCluster);
+  if((fCalorimeter=="EMCAL" && GetReader()->GetEMCALPtMin() < 0.3) ||
+     (fCalorimeter=="PHOS"  && GetReader()->GetPHOSPtMin()  < 0.3)) fhNCellsPerClusterMIP->Fill(e, nCaloCellsPerCluster);
+  
+  //Position
+  if(fFillAllPosHisto2){
+    fhXE     ->Fill(pos[0],e);
+    fhYE     ->Fill(pos[1],e);
+    fhZE     ->Fill(pos[2],e);
+    if(fFillAllTH3)
+      fhXYZ    ->Fill(pos[0], pos[1],pos[2]);
+    
+    fhXNCells->Fill(pos[0],nCaloCellsPerCluster);
+    fhYNCells->Fill(pos[1],nCaloCellsPerCluster);
+    fhZNCells->Fill(pos[2],nCaloCellsPerCluster);
+    Float_t rxyz = TMath::Sqrt(pos[0]*pos[0]+pos[1]*pos[1]);//+pos[2]*pos[2]);
+    fhRE     ->Fill(rxyz,e);
+    fhRNCells->Fill(rxyz  ,nCaloCellsPerCluster);
+  }
+  
+  if(nModule >=0 && nModule < fNModules) fhNCellsPerClusterMod[nModule]->Fill(e, nCaloCellsPerCluster);
+  
+  //Fill histograms only possible when simulation
+  if(IsDataMC() && nLabels > 0 && labels){
+    
+    //Play with the MC stack if available
+    Int_t label = labels[0];
+    
+    if(label < 0) {
+      if(GetDebug() >= 0) printf("AliAnaCalorimeterQA::ClusterHistograms() *** bad label ***:  label %d \n", label);
+      return;
+    }
+    
+    Int_t pdg  =-1; Int_t pdg0  =-1;Int_t status = -1; Int_t iMother = -1; Int_t iParent = -1;
+    Float_t vxMC= 0; Float_t vyMC = 0; 
+    Float_t eMC = 0; Float_t ptMC= 0; Float_t phiMC =0; Float_t etaMC = 0;
+    Int_t charge = 0;  
+    
+    //Check the origin.
+    tag = GetMCAnalysisUtils()->CheckOrigin(labels,nLabels, GetReader(),0);
+    
+    if(GetReader()->ReadStack() && !GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCUnknown)){ //it MC stack and known tag
+      
+      if( label >= GetMCStack()->GetNtrack()) {
+        if(GetDebug() >= 0) printf("AliAnaCalorimeterQA::ClusterHistograms() *** large label ***:  label %d, n tracks %d \n", label, GetMCStack()->GetNtrack());
+        return ;
+      }
+      
+      primary = GetMCStack()->Particle(label);
+      iMother = label;
+      pdg0    = TMath::Abs(primary->GetPdgCode());
+      pdg     = pdg0;
+      status  = primary->GetStatusCode();
+      vxMC    = primary->Vx();
+      vyMC    = primary->Vy();
+      iParent = primary->GetFirstMother();
+      
+      if(GetDebug() > 1 ) {
+        printf("AliAnaCalorimeterQA::ClusterHistograms() - Cluster most contributing mother: \n");
+        printf("\t Mother label %d, pdg %d, %s, status %d, parent %d \n",iMother, pdg0, primary->GetName(),status, iParent);
+      }
+      
+      //Get final particle, no conversion products
+      if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCConversion)){
+        //Get the parent
+        primary = GetMCStack()->Particle(iParent);
+        pdg = TMath::Abs(primary->GetPdgCode());
+        if(GetDebug() > 1 ) printf("AliAnaCalorimeterQA::ClusterHistograms() - Converted cluster!. Find before conversion: \n");
+        while((pdg == 22 || pdg == 11) && status != 1){
+          iMother = iParent;
+          primary = GetMCStack()->Particle(iMother);
+          status  = primary->GetStatusCode();
+          iParent = primary->GetFirstMother();
+          pdg     = TMath::Abs(primary->GetPdgCode());
+          if(GetDebug() > 1 )printf("\t pdg %d, index %d, %s, status %d \n",pdg, iMother,  primary->GetName(),status); 
+        }      
+        
+        if(GetDebug() > 1 ) {
+          printf("AliAnaCalorimeterQA::ClusterHistograms() - Converted Cluster mother before conversion: \n");
+          printf("\t Mother label %d, pdg %d, %s, status %d, parent %d \n",iMother, pdg, primary->GetName(), status, iParent);
+        }
+        
+      }
+      
+      //Overlapped pi0 (or eta, there will be very few), get the meson
+      if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCPi0) || 
+         GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCEta)){
+        if(GetDebug() > 1 ) printf("AliAnaCalorimeterQA::ClusterHistograms() - Overlapped Meson decay!, Find it: \n");
+        while(pdg != 111 && pdg != 221){
+          iMother = iParent;
+          primary = GetMCStack()->Particle(iMother);
+          status  = primary->GetStatusCode();
+          iParent = primary->GetFirstMother();
+          pdg     = TMath::Abs(primary->GetPdgCode());
+          if(GetDebug() > 1 ) printf("\t pdg %d, %s, index %d\n",pdg,  primary->GetName(),iMother);
+          if(iMother==-1) {
+            printf("AliAnaCalorimeterQA::ClusterHistograms() - Tagged as Overlapped photon but meson not found, why?\n");
+            //break;
+          }
+        }
+        
+        if(GetDebug() > 2 ) printf("AliAnaCalorimeterQA::ClusterHistograms() - Overlapped %s decay, label %d \n", 
+                                   primary->GetName(),iMother);
+      }
+      
+      eMC    = primary->Energy();
+      ptMC   = primary->Pt();
+      phiMC  = primary->Phi();
+      etaMC  = primary->Eta();
+      pdg    = TMath::Abs(primary->GetPdgCode());
+      charge = (Int_t) TDatabasePDG::Instance()->GetParticle(pdg)->Charge();
+      
+    }
+    else if(GetReader()->ReadAODMCParticles() && !GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCUnknown)){//it MC AOD and known tag
+      //Get the list of MC particles
+      if(!GetReader()->GetAODMCParticles(0)) 
+        AliFatal("MCParticles not available!");
+      
+      aodprimary = (AliAODMCParticle*) (GetReader()->GetAODMCParticles(0))->At(label);
+      iMother = label;
+      pdg0    = TMath::Abs(aodprimary->GetPdgCode());
+      pdg     = pdg0;
+      status  = aodprimary->IsPrimary();
+      vxMC    = aodprimary->Xv();
+      vyMC    = aodprimary->Yv();
+      iParent = aodprimary->GetMother();
+      
+      if(GetDebug() > 1 ) {
+        printf("AliAnaCalorimeterQA::ClusterHistograms() - Cluster most contributing mother: \n");
+        printf("\t Mother label %d, pdg %d, Primary? %d, Physical Primary? %d, parent %d \n",
+               iMother, pdg0, aodprimary->IsPrimary(), aodprimary->IsPhysicalPrimary(), iParent);
+      }
+      
+      //Get final particle, no conversion products
+      if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCConversion)){
+        if(GetDebug() > 1 ) 
+          printf("AliAnaCalorimeterQA::ClusterHistograms() - Converted cluster!. Find before conversion: \n");
+        //Get the parent
+        aodprimary = (AliAODMCParticle*)(GetReader()->GetAODMCParticles(0))->At(iParent);
+        pdg = TMath::Abs(aodprimary->GetPdgCode());
+        while ((pdg == 22 || pdg == 11) && !aodprimary->IsPhysicalPrimary()) {
+          iMother    = iParent;
+          aodprimary = (AliAODMCParticle*)(GetReader()->GetAODMCParticles(0))->At(iMother);
+          status     = aodprimary->IsPrimary();
+          iParent    = aodprimary->GetMother();
+          pdg        = TMath::Abs(aodprimary->GetPdgCode());
+          if(GetDebug() > 1 )
+            printf("\t pdg %d, index %d, Primary? %d, Physical Primary? %d \n",
+                   pdg, iMother, aodprimary->IsPrimary(), aodprimary->IsPhysicalPrimary());    
+        }      
+        
+        if(GetDebug() > 1 ) {
+          printf("AliAnaCalorimeterQA::ClusterHistograms() - Converted Cluster mother before conversion: \n");
+          printf("\t Mother label %d, pdg %d, parent %d, Primary? %d, Physical Primary? %d \n",
+                 iMother, pdg, iParent, aodprimary->IsPrimary(), aodprimary->IsPhysicalPrimary());
+        }
+        
+      }
+      
+      //Overlapped pi0 (or eta, there will be very few), get the meson
+      if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCPi0) || 
+         GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCEta)){
+        if(GetDebug() > 1 ) printf("AliAnaCalorimeterQA::ClusterHistograms() - Overlapped Meson decay!, Find it: PDG %d, mom %d \n",pdg, iMother);
+        while(pdg != 111 && pdg != 221){
+          
+          iMother    = iParent;
+          aodprimary = (AliAODMCParticle*)(GetReader()->GetAODMCParticles(0))->At(iMother);
+          status     = aodprimary->IsPrimary();
+          iParent    = aodprimary->GetMother();
+          pdg        = TMath::Abs(aodprimary->GetPdgCode());
+          
+          if(GetDebug() > 1 ) printf("\t pdg %d, index %d\n",pdg, iMother);
+          
+          if(iMother==-1) {
+            printf("AliAnaCalorimeterQA::ClusterHistograms() - Tagged as Overlapped photon but meson not found, why?\n");
+            //break;
+          }
+        }      
+        
+        if(GetDebug() > 2 ) printf("AliAnaCalorimeterQA::ClusterHistograms() - Overlapped %s decay, label %d \n", 
+                                   aodprimary->GetName(),iMother);
+      }        
+      
+      status = aodprimary->IsPrimary();
+      eMC    = aodprimary->E();
+      ptMC   = aodprimary->Pt();
+      phiMC  = aodprimary->Phi();
+      etaMC  = aodprimary->Eta();
+      pdg    = TMath::Abs(aodprimary->GetPdgCode());
+      charge = aodprimary->Charge();
+      
+    }
+    
+    //Float_t vz = primary->Vz();
+    Float_t rVMC = TMath::Sqrt(vxMC*vxMC + vyMC*vyMC);
+    if((pdg == 22 || TMath::Abs(pdg)==11) && status!=1) {
+      fhEMVxyz   ->Fill(vxMC,vyMC);//,vz);
+      fhEMR      ->Fill(e,rVMC);
+    }
+    
+    //printf("reco e %f, pt %f, phi %f, eta %f \n", e, pt, phi, eta);
+    //printf("prim e %f, pt %f, phi %f, eta %f \n", eMC,ptMC,phiMC ,etaMC );
+    //printf("vertex: vx %f, vy %f, vz %f, r %f \n", vxMC, vyMC, vz, r);
+    
+    
+    fh2E      ->Fill(e, eMC);
+    fh2Pt     ->Fill(pt, ptMC);
+    fh2Phi    ->Fill(phi, phiMC);
+    fh2Eta    ->Fill(eta, etaMC);
+    fhDeltaE  ->Fill(eMC-e);
+    fhDeltaPt ->Fill(ptMC-pt);
+    fhDeltaPhi->Fill(phiMC-phi);
+    fhDeltaEta->Fill(etaMC-eta);
+    if(eMC   > 0) fhRatioE  ->Fill(e/eMC);
+    if(ptMC  > 0) fhRatioPt ->Fill(pt/ptMC);
+    if(phiMC > 0) fhRatioPhi->Fill(phi/phiMC);
+    if(etaMC > 0) fhRatioEta->Fill(eta/etaMC);                 
+    
+    
+    //Overlapped pi0 (or eta, there will be very few)
+    if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCPi0) || 
+       GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCEta)){
+      fhPi0E     ->Fill(e,eMC);        
+      fhPi0Pt    ->Fill(pt,ptMC);
+      fhPi0Eta   ->Fill(eta,etaMC);    
+      fhPi0Phi   ->Fill(phi,phiMC);
+      if( nTracksMatched > 0){
+        fhPi0ECharged     ->Fill(e,eMC);               
+        fhPi0PtCharged    ->Fill(pt,ptMC);
+        fhPi0PhiCharged   ->Fill(phi,phiMC);
+        fhPi0EtaCharged   ->Fill(eta,etaMC);
+      }
+    }//Overlapped pizero decay
+    else if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCPhoton)){
+      fhGamE     ->Fill(e,eMC);        
+      fhGamPt    ->Fill(pt,ptMC);
+      fhGamEta   ->Fill(eta,etaMC);    
+      fhGamPhi   ->Fill(phi,phiMC);
+      fhGamDeltaE  ->Fill(eMC-e);
+      fhGamDeltaPt ->Fill(ptMC-pt);    
+      fhGamDeltaPhi->Fill(phiMC-phi);
+      fhGamDeltaEta->Fill(etaMC-eta);
+      if(eMC > 0) fhGamRatioE  ->Fill(e/eMC);
+      if(ptMC     > 0) fhGamRatioPt ->Fill(pt/ptMC);
+      if(phiMC    > 0) fhGamRatioPhi->Fill(phi/phiMC);
+      if(etaMC    > 0) fhGamRatioEta->Fill(eta/etaMC);
+      if( nTracksMatched > 0){
+        fhGamECharged     ->Fill(e,eMC);               
+        fhGamPtCharged    ->Fill(pt,ptMC);
+        fhGamPhiCharged   ->Fill(phi,phiMC);
+        fhGamEtaCharged   ->Fill(eta,etaMC);
+      }
+    }//photon
+    else if(GetMCAnalysisUtils()->CheckTagBit(tag, AliMCAnalysisUtils::kMCElectron)){
+      fhEleE     ->Fill(e,eMC);        
+      fhElePt    ->Fill(pt,ptMC);
+      fhEleEta   ->Fill(eta,etaMC);    
+      fhElePhi   ->Fill(phi,phiMC);
+      fhEMVxyz   ->Fill(vxMC,vyMC);//,vz);
+      fhEMR      ->Fill(e,rVMC);
+      if( nTracksMatched > 0){
+        fhEleECharged     ->Fill(e,eMC);               
+        fhElePtCharged    ->Fill(pt,ptMC);
+        fhElePhiCharged   ->Fill(phi,phiMC);
+        fhEleEtaCharged   ->Fill(eta,etaMC);
+      }
+    }
+    else if(charge == 0){
+      fhNeHadE     ->Fill(e,eMC);      
+      fhNeHadPt    ->Fill(pt,ptMC);
+      fhNeHadEta   ->Fill(eta,etaMC);  
+      fhNeHadPhi   ->Fill(phi,phiMC);  
+      fhHaVxyz     ->Fill(vxMC,vyMC);//,vz);
+      fhHaR        ->Fill(e,rVMC);
+      if( nTracksMatched > 0){
+        fhNeHadECharged     ->Fill(e,eMC);             
+        fhNeHadPtCharged    ->Fill(pt,ptMC);
+        fhNeHadPhiCharged   ->Fill(phi,phiMC);
+        fhNeHadEtaCharged   ->Fill(eta,etaMC);
+      }
+    }
+    else if(charge!=0){
+      fhChHadE     ->Fill(e,eMC);      
+      fhChHadPt    ->Fill(pt,ptMC);
+      fhChHadEta   ->Fill(eta,etaMC);  
+      fhChHadPhi   ->Fill(phi,phiMC);  
+      fhHaVxyz     ->Fill(vxMC,vyMC);//,vz);
+      fhHaR        ->Fill(e,rVMC);
+      if( nTracksMatched > 0){
+        fhChHadECharged     ->Fill(e,eMC);             
+        fhChHadPtCharged    ->Fill(pt,ptMC);
+        fhChHadPhiCharged   ->Fill(phi,phiMC);
+        fhChHadEtaCharged   ->Fill(eta,etaMC);
+      }
+    }
+  }//Work with MC
+  
        
-       c8->cd(1) ; 
-       gPad->SetLogy();
-       fhGamRatioE->SetLineColor(4);
-       fhRatioE->Draw();
-       fhGamRatioE->Draw("same");
-
-       TLegend pLegendr(0.65,0.55,0.9,0.8);
-       pLegendr.SetTextSize(0.06);
-       pLegendr.AddEntry(fhRatioE,"all","L");
-       pLegendr.AddEntry(fhGamRatioE,"from  #gamma","L");
-       pLegendr.SetFillColor(10);
-       pLegendr.SetBorderSize(1);
-       pLegendr.Draw();
+  //Match tracks and clusters
+  //To be Modified in case of AODs
+  
+  if( nTracksMatched > 0 &&  fFillAllTMHisto){
+    if(fFillAllTH12 && fFillAllTMHisto){
+      fhECharged      ->Fill(e);       
+      fhPtCharged     ->Fill(pt);
+      fhPhiCharged    ->Fill(phi);
+      fhEtaCharged    ->Fill(eta);
+    }
+    
+    if(fFillAllTMHisto){
+      if(fFillAllTH3)fhEtaPhiECharged->Fill(eta,phi,e);                
+      if((fCalorimeter=="EMCAL" && GetReader()->GetEMCALPtMin() < 0.3) ||
+         (fCalorimeter=="PHOS"  && GetReader()->GetPHOSPtMin()  < 0.3))   fhNCellsPerClusterMIPCharged->Fill(e, nCaloCellsPerCluster);
+    }
+    //printf("track index %d ntracks %d\n", esd->GetNumberOfTracks()); 
+    //Study the track and matched cluster if track exists.
+    if(!track) return;
+    Double_t emcpos[3] = {0.,0.,0.};
+    Double_t emcmom[3] = {0.,0.,0.};
+    Double_t radius    = 441.0; //[cm] EMCAL radius +13cm
+    Double_t bfield    = 0.;
+    Double_t tphi      = 0;
+    Double_t teta      = 0;
+    Double_t tmom      = 0;
+    Double_t tpt       = 0;
+    Double_t tmom2     = 0;
+    Double_t tpcSignal = 0;
+    Bool_t okpos = kFALSE;
+    Bool_t okmom = kFALSE;
+    Bool_t okout = kFALSE;
+    Int_t nITS   = 0;
+    Int_t nTPC   = 0;
+    
+    //In case of ESDs get the parameters in this way
+    if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+      if (track->GetOuterParam() ) {
+        okout = kTRUE;
+        
+        bfield = GetReader()->GetInputEvent()->GetMagneticField();
+        okpos = track->GetOuterParam()->GetXYZAt(radius,bfield,emcpos);
+        okmom = track->GetOuterParam()->GetPxPyPzAt(radius,bfield,emcmom);
+        if(!(okpos && okmom)) return;
+        
+        TVector3 position(emcpos[0],emcpos[1],emcpos[2]);
+        TVector3 momentum(emcmom[0],emcmom[1],emcmom[2]);
+        tphi = position.Phi();
+        teta = position.Eta();
+        tmom = momentum.Mag();
+        
+        //Double_t tphi  = track->GetOuterParam()->Phi();
+        //Double_t teta  = track->GetOuterParam()->Eta();
+        //Double_t tmom  = track->GetOuterParam()->P();
+        tpt       = track->Pt();
+        tmom2     = track->P();
+        tpcSignal = track->GetTPCsignal();
+        
+        nITS = track->GetNcls(0);
+        nTPC = track->GetNcls(1);
+      }//Outer param available 
+    }// ESDs
+    else if(GetReader()->GetDataType()==AliCaloTrackReader::kAOD) {
+      AliAODPid* pid = (AliAODPid*) ((AliAODTrack *) track)->GetDetPid();
+      if (pid) {
+        okout = kTRUE;
+        pid->GetEMCALPosition(emcpos);
+        pid->GetEMCALMomentum(emcmom); 
+        
+        TVector3 position(emcpos[0],emcpos[1],emcpos[2]);
+        TVector3 momentum(emcmom[0],emcmom[1],emcmom[2]);
+        tphi = position.Phi();
+        teta = position.Eta();
+        tmom = momentum.Mag();
+        
+        tpt       = track->Pt();
+        tmom2     = track->P();
+        tpcSignal = pid->GetTPCsignal();
+        
+        //nITS = ((AliAODTrack*)track)->GetNcls(0);
+        //nTPC = ((AliAODTrack*)track)->GetNcls(1);
+      }//pid 
+    }//AODs
+               
+    if(okout){
+      Double_t deta = teta - eta;
+      Double_t dphi = tphi - phi;
+      if(dphi > TMath::Pi()) dphi -= 2*TMath::Pi();
+      if(dphi < -TMath::Pi()) dphi += 2*TMath::Pi();
+      Double_t dR = sqrt(dphi*dphi + deta*deta);
+                       
+      Double_t pOverE = tmom/e;
+                       
+      fh1pOverE->Fill(tpt, pOverE);
+      if(dR < 0.02) fh1pOverER02->Fill(tpt,pOverE);
+                       
+      fh1dR->Fill(dR);
+      fh2MatchdEdx->Fill(tmom2,tpcSignal);
+                       
+      if(IsDataMC() && primary){ 
+        Int_t pdg = primary->GetPdgCode();
+        Double_t  charge = TDatabasePDG::Instance()->GetParticle(pdg)->Charge();
+                               
+        if(TMath::Abs(pdg) == 11){
+          fhMCEle1pOverE->Fill(tpt,pOverE);
+          fhMCEle1dR->Fill(dR);
+          fhMCEle2MatchdEdx->Fill(tmom2,tpcSignal);            
+          if(dR < 0.02) fhMCEle1pOverER02->Fill(tpt,pOverE);
+        }
+        else if(charge!=0){
+          fhMCChHad1pOverE->Fill(tpt,pOverE);
+          fhMCChHad1dR->Fill(dR);
+          fhMCChHad2MatchdEdx->Fill(tmom2,tpcSignal);  
+          if(dR < 0.02) fhMCChHad1pOverER02->Fill(tpt,pOverE);
+        }
+        else if(charge == 0){
+          fhMCNeutral1pOverE->Fill(tpt,pOverE);
+          fhMCNeutral1dR->Fill(dR);
+          fhMCNeutral2MatchdEdx->Fill(tmom2,tpcSignal);        
+          if(dR < 0.02) fhMCNeutral1pOverER02->Fill(tpt,pOverE);
+        }
+      }//DataMC
+      
+      if(dR < 0.02 && pOverE > 0.5 && pOverE < 1.5
+         && nCaloCellsPerCluster > 1 && nITS > 3 && nTPC > 20) {
+        fh2EledEdx->Fill(tmom2,tpcSignal);
+      }
+    }
+    else{//no ESD external param or AODPid
+      //                                       ULong_t status=AliESDtrack::kTPCrefit;
+      //                               status|=AliESDtrack::kITSrefit;
+      //printf("track status %d\n", track->GetStatus() );
+      //                               fhEChargedNoOut      ->Fill(e);         
+      //                               fhPtChargedNoOut     ->Fill(pt);
+      //                               fhPhiChargedNoOut    ->Fill(phi);
+      //                               fhEtaChargedNoOut    ->Fill(eta);
+      //                               fhEtaPhiChargedNoOut ->Fill(eta,phi);
+      //                               if(GetDebug() >= 0 && ((track->GetStatus() & status) == status)) printf("ITS+TPC\n");
+      if(GetDebug() >= 0) printf("No ESD external param or AliAODPid \n");
+      
+    }//No out params
+  }//matched clusters with tracks
+  
+}// Clusters
 
-       c8->cd(2) ; 
-       gPad->SetLogy();
-       fhGamRatioPt->SetLineColor(4);
-       fhRatioPt->Draw();
-               fhGamRatioPt->Draw("same");
 
-       c8->cd(3) ; 
-       fhGamRatioPhi->SetLineColor(4);
-       fhRatioPhi->Draw();
-               fhGamRatioPhi->Draw("same");
+//__________________________________
+void AliAnaCalorimeterQA::Correlate(){
+  // Correlate information from PHOS and EMCAL and with V0 and track multiplicity
+  
+  //Clusters 
+  TObjArray * caloClustersEMCAL = GetEMCALClusters();
+  TObjArray * caloClustersPHOS  = GetPHOSClusters();
+  
+  Int_t nclEMCAL = caloClustersEMCAL->GetEntriesFast();
+  Int_t nclPHOS  = caloClustersPHOS ->GetEntriesFast();
+  
+  Float_t sumClusterEnergyEMCAL = 0;
+  Float_t sumClusterEnergyPHOS  = 0;
+  Int_t iclus = 0;
+  for(iclus = 0 ; iclus <  caloClustersEMCAL->GetEntriesFast() ; iclus++) 
+    sumClusterEnergyEMCAL += ((AliVCluster*)caloClustersEMCAL->At(iclus))->E();
+  for(iclus = 0 ; iclus <  caloClustersPHOS->GetEntriesFast(); iclus++) 
+    sumClusterEnergyPHOS += ((AliVCluster*)caloClustersPHOS->At(iclus))->E();
+  
+  
+  //Cells
+  
+  AliVCaloCells * cellsEMCAL = GetEMCALCells();
+  AliVCaloCells * cellsPHOS  = GetPHOSCells();
+  
+  Int_t ncellsEMCAL = cellsEMCAL->GetNumberOfCells();
+  Int_t ncellsPHOS  = cellsPHOS ->GetNumberOfCells();
+  
+  Float_t sumCellEnergyEMCAL = 0;
+  Float_t sumCellEnergyPHOS  = 0;
+  Int_t icell = 0;
+  for(icell = 0 ; icell < cellsEMCAL->GetNumberOfCells()  ; icell++) 
+    sumCellEnergyEMCAL += cellsEMCAL->GetAmplitude(icell);
+  for(icell = 0 ; icell <  cellsPHOS->GetNumberOfCells(); icell++) 
+    sumCellEnergyPHOS += cellsPHOS->GetAmplitude(icell);
+  
+  
+  //Fill Histograms
+  fhCaloCorrNClusters->Fill(nclEMCAL,nclPHOS);
+  fhCaloCorrEClusters->Fill(sumClusterEnergyEMCAL,sumClusterEnergyPHOS);
+  fhCaloCorrNCells   ->Fill(ncellsEMCAL,ncellsPHOS);
+  fhCaloCorrECells   ->Fill(sumCellEnergyEMCAL,sumCellEnergyPHOS);
+  
+  Int_t v0S = GetV0Signal(0)+GetV0Signal(1);
+  Int_t v0M = GetV0Multiplicity(0)+GetV0Multiplicity(1);
+  Int_t trM = GetTrackMultiplicity();
+  if(fCalorimeter=="PHOS"){
+    fhCaloV0MCorrNClusters   ->Fill(v0M,nclPHOS);
+    fhCaloV0MCorrEClusters   ->Fill(v0M,sumClusterEnergyPHOS);
+    fhCaloV0MCorrNCells      ->Fill(v0M,ncellsPHOS);
+    fhCaloV0MCorrECells      ->Fill(v0M,sumCellEnergyPHOS);
+    
+    fhCaloV0SCorrNClusters   ->Fill(v0S,nclPHOS);
+    fhCaloV0SCorrEClusters   ->Fill(v0S,sumClusterEnergyPHOS);
+    fhCaloV0SCorrNCells      ->Fill(v0S,ncellsPHOS);
+    fhCaloV0SCorrECells      ->Fill(v0S,sumCellEnergyPHOS);
+    
+    fhCaloTrackMCorrNClusters->Fill(trM,nclPHOS);
+    fhCaloTrackMCorrEClusters->Fill(trM,sumClusterEnergyPHOS);    
+    fhCaloTrackMCorrNCells   ->Fill(trM,ncellsPHOS);
+    fhCaloTrackMCorrECells   ->Fill(trM,sumCellEnergyPHOS);
+  }
+  else{
+    fhCaloV0MCorrNClusters   ->Fill(v0M,nclEMCAL);
+    fhCaloV0MCorrEClusters   ->Fill(v0M,sumClusterEnergyEMCAL);
+    fhCaloV0MCorrNCells      ->Fill(v0M,ncellsEMCAL);
+    fhCaloV0MCorrECells      ->Fill(v0M,sumCellEnergyEMCAL);
+    
+    fhCaloV0SCorrNClusters   ->Fill(v0S,nclEMCAL);
+    fhCaloV0SCorrEClusters   ->Fill(v0S,sumClusterEnergyEMCAL);
+    fhCaloV0SCorrNCells      ->Fill(v0S,ncellsEMCAL);
+    fhCaloV0SCorrECells      ->Fill(v0S,sumCellEnergyEMCAL);
+    
+    fhCaloTrackMCorrNClusters->Fill(trM,nclEMCAL);
+    fhCaloTrackMCorrEClusters->Fill(trM,sumClusterEnergyEMCAL);    
+    fhCaloTrackMCorrNCells   ->Fill(trM,ncellsEMCAL);
+    fhCaloTrackMCorrECells   ->Fill(trM,sumCellEnergyEMCAL);
+  }
+  
+  if(GetDebug() > 0 )
+  {
+    printf("AliAnaCalorimeterQA::Correlate(): \n");
+    printf("\t EMCAL: N cells %d, N clusters  %d, summed E cells %f, summed E clusters %f \n",
+           ncellsEMCAL,nclEMCAL, sumCellEnergyEMCAL,sumClusterEnergyEMCAL);
+    printf("\t PHOS : N cells %d, N clusters  %d, summed E cells %f, summed E clusters %f \n",
+           ncellsPHOS,nclPHOS,sumCellEnergyPHOS,sumClusterEnergyPHOS);
+    printf("\t V0 : Signal %d, Multiplicity  %d, Track Multiplicity %d \n", v0S,v0M,trM);
+  }
+}
 
-       c8->cd(4) ; 
-       fhGamRatioEta->SetLineColor(4);
-       fhRatioEta->Draw();
-               fhGamRatioEta->Draw("same");
 
-       sprintf(name,"QA_%s_ReconstructedDivGenerated.eps",fCalorimeter.Data());
-       c8->Print(name);
-       
-       // CaloClusters CaloCells
-       //printf("c9\n");
-       sprintf(cname,"QA_%s_nclustercellsamp",fCalorimeter.Data());
-       TCanvas  * c9 = new TCanvas(cname, " CaloClusters and CaloCells", 400, 400) ;
-       c9->Divide(2, 2);
-       
-       c9->cd(1) ; 
-       gPad->SetLogy();
-       gPad->SetLogx();
-       fhNClusters->SetLineColor(4);
-       fhNClusters->Draw();
-       
-       c9->cd(2) ; 
-       gPad->SetLogy();
-       gPad->SetLogx();
-       fhNCells->SetLineColor(4);
-       fhNCells->Draw();
-       
-       c9->cd(3) ; 
-       gPad->SetLogy();
-       gPad->SetLogx();
-       fhNCellsPerCluster->SetLineColor(4);
-       fhNCellsPerCluster->Draw();
-       
-       c9->cd(4) ; 
-       gPad->SetLogy();
-       //gPad->SetLogx();
-       fhAmplitude->SetLineColor(4);
-       fhAmplitude->Draw();
-       
-       sprintf(name,"QA_%s_CaloClustersAndCaloCells.eps",fCalorimeter.Data());
-       c9->Print(name);
-       
-       
-       //MC
-       
-       //Generated distributions
-       //printf("c1\n");
-       sprintf(cname,"QA_%s_gen",fCalorimeter.Data());
-       TCanvas  * c10 = new TCanvas(cname, "Generated distributions", 600, 200) ;
-       c10->Divide(3, 1);
-       
-       c10->cd(1) ; 
-       gPad->SetLogy();
-       TH1F * haxispt  = (TH1F*) fhGenPi0Pt->Clone("axispt");  
-       haxispt->SetTitle("Generated Particles p_{T}, |#eta| < 1");
-       fhGenPi0Pt->SetLineColor(1);
-       fhGenGamPt->SetLineColor(4);
-       fhGenEtaPt->SetLineColor(2);
-       fhGenOmegaPt->SetLineColor(7);
-       fhGenElePt->SetLineColor(6);
-       
-       //Select the maximum of the histogram to show all lines.
-       if(fhGenPi0Pt->GetMaximum() >= fhGenGamPt->GetMaximum() && fhGenPi0Pt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
-          fhGenPi0Pt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenPi0Pt->GetMaximum() >= fhGenElePt->GetMaximum())
-               haxispt->SetMaximum(fhGenPi0Pt->GetMaximum());
-       else if(fhGenGamPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenGamPt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
-          fhGenGamPt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenGamPt->GetMaximum() >= fhGenElePt->GetMaximum())
-               haxispt->SetMaximum(fhGenGamPt->GetMaximum());
-       else if(fhGenEtaPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenEtaPt->GetMaximum() >= fhGenGamPt->GetMaximum() && 
-                       fhGenEtaPt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenEtaPt->GetMaximum() >= fhGenElePt->GetMaximum())
-               haxispt->SetMaximum(fhGenEtaPt->GetMaximum());  
-       else if(fhGenOmegaPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenOmegaPt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
-                       fhGenOmegaPt->GetMaximum() >= fhGenGamPt->GetMaximum() && fhGenOmegaPt->GetMaximum() >= fhGenElePt->GetMaximum())
-               haxispt->SetMaximum(fhGenOmegaPt->GetMaximum());
-       else if(fhGenElePt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenElePt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
-                       fhGenElePt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenElePt->GetMaximum() >= fhGenGamPt->GetMaximum())
-               haxispt->SetMaximum(fhGenElePt->GetMaximum());
-       
-       haxispt->Draw("axis");
-       fhGenPi0Pt->Draw("same");
-       fhGenGamPt->Draw("same");
-       fhGenEtaPt->Draw("same");
-       fhGenOmegaPt->Draw("same");
-       fhGenElePt->Draw("same");
-       
-       TLegend pLegend(0.75,0.45,0.9,0.8);
-       pLegend.SetTextSize(0.06);
-       pLegend.AddEntry(fhGenPi0Pt,"#pi^{0}","L");
-       pLegend.AddEntry(fhGenGamPt,"#gamma","L");
-       pLegend.AddEntry(fhGenEtaPt,"#eta","L");
-       pLegend.AddEntry(fhGenOmegaPt,"#omega","L");
-       pLegend.AddEntry(fhGenElePt,"e^{#pm}","L");
-       pLegend.SetFillColor(10);
-       pLegend.SetBorderSize(1);
-       pLegend.Draw();
-       
-       c10->cd(2) ;
-       gPad->SetLogy();
-       TH1F * haxiseta  = (TH1F*) fhGenPi0Eta->Clone("axiseta");  
-       haxiseta->SetTitle("Generated Particles #eta, |#eta| < 1");
-       fhGenPi0Eta->SetLineColor(1);
-       fhGenGamEta->SetLineColor(4);
-       fhGenEtaEta->SetLineColor(2);
-       fhGenOmegaEta->SetLineColor(7);
-       fhGenEleEta->SetLineColor(6);
-       //Select the maximum of the histogram to show all lines.
-       if(fhGenPi0Eta->GetMaximum() >= fhGenGamEta->GetMaximum() && fhGenPi0Eta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
-          fhGenPi0Eta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenPi0Eta->GetMaximum() >= fhGenEleEta->GetMaximum())
-               haxiseta->SetMaximum(fhGenPi0Eta->GetMaximum());
-       else if(fhGenGamEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenGamEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
-                       fhGenGamEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenGamEta->GetMaximum() >= fhGenEleEta->GetMaximum())
-               haxiseta->SetMaximum(fhGenGamEta->GetMaximum());
-       else if(fhGenEtaEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenEtaEta->GetMaximum() >= fhGenGamEta->GetMaximum() && 
-                       fhGenEtaEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenEtaEta->GetMaximum() >= fhGenEleEta->GetMaximum())
-               haxiseta->SetMaximum(fhGenEtaEta->GetMaximum());        
-       else if(fhGenOmegaEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenOmegaEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
-                       fhGenOmegaEta->GetMaximum() >= fhGenGamEta->GetMaximum() && fhGenOmegaEta->GetMaximum() >= fhGenEleEta->GetMaximum())
-               haxiseta->SetMaximum(fhGenOmegaEta->GetMaximum());
-       else if(fhGenEleEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenEleEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
-                       fhGenEleEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenEleEta->GetMaximum() >= fhGenGamEta->GetMaximum())
-               haxiseta->SetMaximum(fhGenEleEta->GetMaximum());
-       
-       haxiseta->Draw("axis");
-       fhGenPi0Eta->Draw("same");
-       fhGenGamEta->Draw("same");
-       fhGenEtaEta->Draw("same");
-       fhGenOmegaEta->Draw("same");
-       fhGenEleEta->Draw("same");
-       
-       
-       c10->cd(3) ; 
-       gPad->SetLogy();
-       TH1F * haxisphi  = (TH1F*) fhGenPi0Phi->Clone("axisphi");  
-       haxisphi->SetTitle("Generated Particles #phi, |#eta| < 1");
-       fhGenPi0Phi->SetLineColor(1);
-       fhGenGamPhi->SetLineColor(4);
-       fhGenEtaPhi->SetLineColor(2);
-       fhGenOmegaPhi->SetLineColor(7);
-       fhGenElePhi->SetLineColor(6);
-       //Select the maximum of the histogram to show all lines.
-       if(fhGenPi0Phi->GetMaximum() >= fhGenGamPhi->GetMaximum() && fhGenPi0Phi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
-          fhGenPi0Phi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenPi0Phi->GetMaximum() >= fhGenElePhi->GetMaximum())
-               haxisphi->SetMaximum(fhGenPi0Phi->GetMaximum());
-       else if(fhGenGamPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenGamPhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
-                       fhGenGamPhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenGamPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
-               haxisphi->SetMaximum(fhGenGamPhi->GetMaximum());
-       else if(fhGenEtaPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenEtaPhi->GetMaximum() >= fhGenGamPhi->GetMaximum() && 
-                       fhGenEtaPhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenEtaPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
-               haxisphi->SetMaximum(fhGenEtaPhi->GetMaximum());        
-       else if(fhGenOmegaPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenOmegaPhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
-                       fhGenOmegaPhi->GetMaximum() >= fhGenGamPhi->GetMaximum() && fhGenOmegaPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
-               haxisphi->SetMaximum(fhGenOmegaPhi->GetMaximum());
-       else if(fhGenElePhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenElePhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
-                       fhGenElePhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenElePhi->GetMaximum() >= fhGenGamPhi->GetMaximum())
-               haxisphi->SetMaximum(fhGenElePhi->GetMaximum());
-       
-       haxisphi->Draw("axis");
-       fhGenPi0Phi->Draw("same");
-       fhGenGamPhi->Draw("same");
-       fhGenEtaPhi->Draw("same");
-       fhGenOmegaPhi->Draw("same");
-       fhGenElePhi->Draw("same");
-       
-       sprintf(name,"QA_%s_GeneratedDistributions.eps",fCalorimeter.Data());
-       c10->Print(name);
-       
-       
-       //Reconstructed clusters depending on its original particle.
-       //printf("c1\n");
-       sprintf(cname,"QA_%s_recgenid",fCalorimeter.Data());
-       TCanvas  * c11 = new TCanvas(cname, "Reconstructed particles, function of their original particle ID", 400, 400) ;
-       c11->Divide(2, 2);
-       
-       
-       c11->cd(1) ; 
-       gPad->SetLogy();
-       TH1F * hGamE   = (TH1F*) fhGamE->ProjectionY("hGamE",-1,-1);
-       TH1F * hPi0E   = (TH1F*) fhPi0E->ProjectionY("hPi0E",-1,-1);
-       TH1F * hEleE   = (TH1F*) fhEleE->ProjectionY("hEleE",-1,-1);
-       TH1F * hNeHadE = (TH1F*) fhNeHadE->ProjectionY("hNeHadE",-1,-1);
-       TH1F * hChHadE = (TH1F*) fhNeHadE->ProjectionY("hChHadE",-1,-1);
-       TH1F * haxisE  = (TH1F*) hPi0E->Clone("axisE");  
-       haxisE->SetTitle("Reconstructed particles E, function of their original particle ID");
-       hPi0E->SetLineColor(1);
-       hGamE->SetLineColor(4);
-       hNeHadE->SetLineColor(2);
-       hChHadE->SetLineColor(7);
-       hEleE->SetLineColor(6);
-       
-       //Select the maximum of the histogram to show all lines.
-       if(hPi0E->GetMaximum() >= hGamE->GetMaximum() && hPi0E->GetMaximum() >= hNeHadE->GetMaximum() && 
-          hPi0E->GetMaximum() >= hChHadE->GetMaximum() && hPi0E->GetMaximum() >= hEleE->GetMaximum())
-               haxisE->SetMaximum(hPi0E->GetMaximum());
-       else if(hGamE->GetMaximum() >= hPi0E->GetMaximum() && hGamE->GetMaximum() >= hNeHadE->GetMaximum() && 
-                       hGamE->GetMaximum() >= hChHadE->GetMaximum() && hGamE->GetMaximum() >= hEleE->GetMaximum())
-               haxisE->SetMaximum(hGamE->GetMaximum());
-       else if(hNeHadE->GetMaximum() >= hPi0E->GetMaximum() && hNeHadE->GetMaximum() >= hGamE->GetMaximum() && 
-                       hNeHadE->GetMaximum() >= hChHadE->GetMaximum() && hNeHadE->GetMaximum() >= hEleE->GetMaximum())
-               haxisE->SetMaximum(hNeHadE->GetMaximum());      
-       else if(hChHadE->GetMaximum() >= hPi0E->GetMaximum() && hChHadE->GetMaximum() >= hNeHadE->GetMaximum() && 
-                       hChHadE->GetMaximum() >= hGamE->GetMaximum() && hChHadE->GetMaximum() >= hEleE->GetMaximum())
-               haxisE->SetMaximum(hChHadE->GetMaximum());
-       else if(hEleE->GetMaximum() >= hPi0E->GetMaximum() && hEleE->GetMaximum() >= hNeHadE->GetMaximum() && 
-                       hEleE->GetMaximum() >= hChHadE->GetMaximum() && hEleE->GetMaximum() >= hGamE->GetMaximum())
-               haxisE->SetMaximum(hEleE->GetMaximum());
-       
-       haxisE->Draw("axis");
-       hPi0E->Draw("same");
-       hGamE->Draw("same");
-       hNeHadE->Draw("same");
-       hChHadE->Draw("same");
-       hEleE->Draw("same");
-       
-       TLegend pLegend2(0.75,0.45,0.9,0.8);
-       pLegend2.SetTextSize(0.06);
-       pLegend2.AddEntry(hPi0E,"#pi^{0}","L");
-       pLegend2.AddEntry(hGamE,"#gamma","L");
-       pLegend2.AddEntry(hEleE,"e^{#pm}","L");
-       pLegend2.AddEntry(hChHadE,"h^{#pm}","L");
-       pLegend2.AddEntry(hNeHadE,"h^{0}","L");
-       pLegend2.SetFillColor(10);
-       pLegend2.SetBorderSize(1);
-       pLegend2.Draw();
-       
-       
-       c11->cd(2) ; 
-       gPad->SetLogy();
-       //printf("%s, %s, %s, %s, %s\n",fhGamPt->GetName(),fhPi0Pt->GetName(),fhElePt->GetName(),fhNeHadPt->GetName(), fhChHadPt->GetName());
-       TH1F * hGamPt   = (TH1F*) fhGamPt->ProjectionY("hGamPt",-1,-1);
-       TH1F * hPi0Pt   = (TH1F*) fhPi0Pt->ProjectionY("hPi0Pt",-1,-1);
-       TH1F * hElePt   = (TH1F*) fhElePt->ProjectionY("hElePt",-1,-1);
-       TH1F * hNeHadPt = (TH1F*) fhNeHadPt->ProjectionY("hNeHadPt",-1,-1);
-       TH1F * hChHadPt = (TH1F*) fhNeHadPt->ProjectionY("hChHadPt",-1,-1);
-       haxispt  = (TH1F*) hPi0Pt->Clone("axispt");  
-       haxispt->SetTitle("Reconstructed particles p_{T}, function of their original particle ID");
-       hPi0Pt->SetLineColor(1);
-       hGamPt->SetLineColor(4);
-       hNeHadPt->SetLineColor(2);
-       hChHadPt->SetLineColor(7);
-       hElePt->SetLineColor(6);
-       
-       //Select the maximum of the histogram to show all lines.
-       if(hPi0Pt->GetMaximum() >= hGamPt->GetMaximum() && hPi0Pt->GetMaximum() >= hNeHadPt->GetMaximum() && 
-          hPi0Pt->GetMaximum() >= hChHadPt->GetMaximum() && hPi0Pt->GetMaximum() >= hElePt->GetMaximum())
-               haxispt->SetMaximum(hPi0Pt->GetMaximum());
-       else if(hGamPt->GetMaximum() >= hPi0Pt->GetMaximum() && hGamPt->GetMaximum() >= hNeHadPt->GetMaximum() && 
-                       hGamPt->GetMaximum() >= hChHadPt->GetMaximum() && hGamPt->GetMaximum() >= hElePt->GetMaximum())
-               haxispt->SetMaximum(hGamPt->GetMaximum());
-       else if(hNeHadPt->GetMaximum() >= hPi0Pt->GetMaximum() && hNeHadPt->GetMaximum() >= hGamPt->GetMaximum() && 
-                       hNeHadPt->GetMaximum() >= hChHadPt->GetMaximum() && hNeHadPt->GetMaximum() >= hElePt->GetMaximum())
-               haxispt->SetMaximum(hNeHadPt->GetMaximum());    
-       else if(hChHadPt->GetMaximum() >= hPi0Pt->GetMaximum() && hChHadPt->GetMaximum() >= hNeHadPt->GetMaximum() && 
-                       hChHadPt->GetMaximum() >= hGamPt->GetMaximum() && hChHadPt->GetMaximum() >= hElePt->GetMaximum())
-               haxispt->SetMaximum(hChHadPt->GetMaximum());
-       else if(hElePt->GetMaximum() >= hPi0Pt->GetMaximum() && hElePt->GetMaximum() >= hNeHadPt->GetMaximum() && 
-                       hElePt->GetMaximum() >= hChHadPt->GetMaximum() && hElePt->GetMaximum() >= hGamPt->GetMaximum())
-               haxispt->SetMaximum(hElePt->GetMaximum());
-       
-       haxispt->Draw("axis");
-       hPi0Pt->Draw("same");
-       hGamPt->Draw("same");
-       hNeHadPt->Draw("same");
-       hChHadPt->Draw("same");
-       hElePt->Draw("same");
-       
-       
-       c11->cd(3) ;
-       gPad->SetLogy();
+//______________________________________________________________________________
+void AliAnaCalorimeterQA::MCHistograms(const TLorentzVector mom, const Int_t pdg){
+  //Fill pure monte carlo related histograms
+       
+  Float_t eMC    = mom.E();
+  Float_t ptMC   = mom.Pt();
+  Float_t phiMC  = mom.Phi();
+  if(phiMC < 0) 
+    phiMC  += TMath::TwoPi();
+  Float_t etaMC  = mom.Eta();
+  
+  if (TMath::Abs(etaMC) > 1) return;
+  
+  Bool_t in = kTRUE;
+  if(IsFiducialCutOn()) in =  GetFiducialCut()->IsInFiducialCut(mom,fCalorimeter) ;
+  
+  if (pdg==22) {
+    fhGenGamPt ->Fill(ptMC);
+    fhGenGamEta->Fill(etaMC);
+    fhGenGamPhi->Fill(phiMC);
+    if(in){
+      fhGenGamAccE  ->Fill(eMC);
+      fhGenGamAccPt ->Fill(ptMC);
+      fhGenGamAccEta->Fill(etaMC);
+      fhGenGamAccPhi->Fill(phiMC);                                     
+    }
+  }
+  else if (pdg==111) {
+    fhGenPi0Pt ->Fill(ptMC);
+    fhGenPi0Eta->Fill(etaMC);
+    fhGenPi0Phi->Fill(phiMC);
+    if(in){
+      fhGenPi0AccE  ->Fill(eMC);                                       
+      fhGenPi0AccPt ->Fill(ptMC);
+      fhGenPi0AccEta->Fill(etaMC);
+      fhGenPi0AccPhi->Fill(phiMC);                                     
+    }
+  }
+  else if (pdg==221) {
+    fhGenEtaPt ->Fill(ptMC);
+    fhGenEtaEta->Fill(etaMC);
+    fhGenEtaPhi->Fill(phiMC);
+  }
+  else if (pdg==223) {
+    fhGenOmegaPt ->Fill(ptMC);
+    fhGenOmegaEta->Fill(etaMC);
+    fhGenOmegaPhi->Fill(phiMC);
+  }
+  else if (TMath::Abs(pdg)==11) {
+    fhGenElePt ->Fill(ptMC);
+    fhGenEleEta->Fill(etaMC);
+    fhGenElePhi->Fill(phiMC);
+  }    
+  
+}
 
-       TH1F * hGamEta   = (TH1F*) fhGamEta->ProjectionY("hGamEta",-1,-1);
-       TH1F * hPi0Eta   = (TH1F*) fhPi0Eta->ProjectionY("hPi0Eta",-1,-1);
-       TH1F * hEleEta   = (TH1F*) fhEleEta->ProjectionY("hEleEta",-1,-1);
-       TH1F * hNeHadEta = (TH1F*) fhNeHadEta->ProjectionY("hNeHadEta",-1,-1);
-       TH1F * hChHadEta = (TH1F*) fhNeHadEta->ProjectionY("hChHadEta",-1,-1);
-       haxiseta  = (TH1F*) hPi0Eta->Clone("axiseta");  
-       haxiseta->SetTitle("Reconstructed particles #eta, function of their original particle ID");
-       hPi0Eta->SetLineColor(1);
-       hGamEta->SetLineColor(4);
-       hNeHadEta->SetLineColor(2);
-       hChHadEta->SetLineColor(7);
-       hEleEta->SetLineColor(6);
-       //Select the maximum of the histogram to show all lines.
-       if(hPi0Eta->GetMaximum() >= hGamEta->GetMaximum() && hPi0Eta->GetMaximum() >= hNeHadEta->GetMaximum() && 
-          hPi0Eta->GetMaximum() >= hChHadEta->GetMaximum() && hPi0Eta->GetMaximum() >= hEleEta->GetMaximum())
-               haxiseta->SetMaximum(hPi0Eta->GetMaximum());
-       else if(hGamEta->GetMaximum() >= hPi0Eta->GetMaximum() && hGamEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
-                       hGamEta->GetMaximum() >= hChHadEta->GetMaximum() && hGamEta->GetMaximum() >= hEleEta->GetMaximum())
-               haxiseta->SetMaximum(hGamEta->GetMaximum());
-       else if(hNeHadEta->GetMaximum() >= hPi0Eta->GetMaximum() && hNeHadEta->GetMaximum() >= hGamEta->GetMaximum() && 
-                       hNeHadEta->GetMaximum() >= hChHadEta->GetMaximum() && hNeHadEta->GetMaximum() >= hEleEta->GetMaximum())
-               haxiseta->SetMaximum(hNeHadEta->GetMaximum());  
-       else if(hChHadEta->GetMaximum() >= hPi0Eta->GetMaximum() && hChHadEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
-                       hChHadEta->GetMaximum() >= hGamEta->GetMaximum() && hChHadEta->GetMaximum() >= hEleEta->GetMaximum())
-               haxiseta->SetMaximum(hChHadEta->GetMaximum());
-       else if(hEleEta->GetMaximum() >= hPi0Eta->GetMaximum() && hEleEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
-                       hEleEta->GetMaximum() >= hChHadEta->GetMaximum() && hEleEta->GetMaximum() >= hGamEta->GetMaximum())
-               haxiseta->SetMaximum(hEleEta->GetMaximum());
-       
-       haxiseta->Draw("axis");
-       hPi0Eta->Draw("same");
-       hGamEta->Draw("same");
-       hNeHadEta->Draw("same");
-       hChHadEta->Draw("same");
-       hEleEta->Draw("same");
-       
+//________________________________________________________________________
+void AliAnaCalorimeterQA::ReadHistograms(TList* outputList)
+{
+  // Needed when Terminate is executed in distributed environment
+  // Refill analysis histograms of this class with corresponding histograms in output list. 
        
-       c11->cd(4) ; 
-       gPad->SetLogy();
-       TH1F * hGamPhi   = (TH1F*) fhGamPhi->ProjectionY("hGamPhi",-1,-1);
-       TH1F * hPi0Phi   = (TH1F*) fhPi0Phi->ProjectionY("hPi0Phi",-1,-1);
-       TH1F * hElePhi   = (TH1F*) fhElePhi->ProjectionY("hElePhi",-1,-1);
-       TH1F * hNeHadPhi = (TH1F*) fhNeHadPhi->ProjectionY("hNeHadPhi",-1,-1);
-       TH1F * hChHadPhi = (TH1F*) fhNeHadPhi->ProjectionY("hChHadPhi",-1,-1);
-       haxisphi  = (TH1F*) hPi0Phi->Clone("axisphi");  
-       haxisphi->SetTitle("Reconstructed particles #phi, function of their original particle ID");
+  // Histograms of this analsys are kept in the same list as other analysis, recover the position of
+  // the first one and then add the next 
+  Int_t index = outputList->IndexOf(outputList->FindObject(GetAddedHistogramsStringToName()+"hE"));
+  //printf("Calo: %s, index: %d, nmodules %d\n",fCalorimeter.Data(),index,fNModules);
+  
+  //Read histograms, must be in the same order as in GetCreateOutputObject.
+  fhE       = (TH1F *) outputList->At(index++);        
+  if(fFillAllTH12){
+    fhPt      = (TH1F *) outputList->At(index++); 
+    fhPhi     = (TH1F *) outputList->At(index++); 
+    fhEta     = (TH1F *) outputList->At(index++);
+  }
+  
+  fhEtaPhiE = (TH3F *) outputList->At(index++);
+  
+  fhClusterTimeEnergy = (TH2F*) outputList->At(index++);
+  
+  if(fFillAllTH12){
+    fhECharged       = (TH1F *) outputList->At(index++);       
+    fhPtCharged      = (TH1F *) outputList->At(index++); 
+    fhPhiCharged     = (TH1F *) outputList->At(index++); 
+    fhEtaCharged     = (TH1F *) outputList->At(index++);
+  }
+  
+  fhEtaPhiECharged = (TH3F *) outputList->At(index++);
+  
+  fh1pOverE =    (TH2F *) outputList->At(index++);
+  fh1dR =        (TH1F *) outputList->At(index++);
+  fh2MatchdEdx = (TH2F *) outputList->At(index++);
+  fh2EledEdx =   (TH2F *) outputList->At(index++);
+  fh1pOverER02 = (TH2F *) outputList->At(index++);
+  
+  fhIM        = (TH2F *) outputList->At(index++);
+  fhIMCellCut = (TH2F *) outputList->At(index++);
+  fhAsym      = (TH2F *) outputList->At(index++);
+  
+  fhNCellsPerCluster           = (TH2F *) outputList->At(index++);
+  fhNCellsPerClusterMIP        = (TH2F *) outputList->At(index++);
+  fhNCellsPerClusterMIPCharged = (TH2F *) outputList->At(index++);
+  fhNClusters  = (TH1F *) outputList->At(index++); 
+  
+  fhRNCells = (TH2F *) outputList->At(index++);
+  fhXNCells = (TH2F *) outputList->At(index++);
+  fhYNCells = (TH2F *) outputList->At(index++);
+  fhZNCells = (TH2F *) outputList->At(index++);
+  fhRE   = (TH2F *) outputList->At(index++);
+  fhXE   = (TH2F *) outputList->At(index++);
+  fhYE   = (TH2F *) outputList->At(index++);
+  fhZE   = (TH2F *) outputList->At(index++); 
+  fhXYZ          = (TH3F *) outputList->At(index++);
+  if(fFillAllPosHisto){
+    fhRCellE     = (TH2F *) outputList->At(index++);
+    fhXCellE     = (TH2F *) outputList->At(index++);
+    fhYCellE     = (TH2F *) outputList->At(index++);
+    fhZCellE     = (TH2F *) outputList->At(index++); 
+    fhXYZCell    = (TH3F *) outputList->At(index++); 
+    fhDeltaCellClusterRNCells = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterXNCells = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterYNCells = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterZNCells = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterRE         = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterXE         = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterYE         = (TH2F *) outputList->At(index++);
+    fhDeltaCellClusterZE         = (TH2F *) outputList->At(index++); 
+    fhEtaPhiAmp               = (TH3F *) outputList->At(index++); 
+  }
+  
+  fhNCells     = (TH1F *) outputList->At(index++); 
+  fhAmplitude  = (TH1F *) outputList->At(index++); 
+  fhAmpId      = (TH2F *) outputList->At(index++); 
+  
+  if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+    
+    fhCellTimeSpreadRespectToCellMax = (TH1F *) outputList->At(index++);
+    fhCellIdCellLargeTimeSpread      = (TH1F *) outputList->At(index++);
+    
+    fhTime       = (TH1F *) outputList->At(index++); 
+    fhTimeId     = (TH2F *) outputList->At(index++); 
+    fhTimeAmp    = (TH2F *) outputList->At(index++); 
+    
+    //         fhT0Time       = (TH1F *) outputList->At(index++); 
+    //         fhT0TimeId     = (TH2F *) outputList->At(index++); 
+    //         fhT0TimeAmp    = (TH2F *) outputList->At(index++); 
+    
+  }
+  
+  
+  if(fCorrelate){
+    fhCaloCorrNClusters = (TH2F *) outputList->At(index++);
+    fhCaloCorrEClusters = (TH2F *) outputList->At(index++); 
+    fhCaloCorrNCells    = (TH2F *) outputList->At(index++); 
+    fhCaloCorrECells    = (TH2F *) outputList->At(index++); 
+    
+    fhCaloV0SCorrNClusters = (TH2F *) outputList->At(index++);
+    fhCaloV0SCorrEClusters = (TH2F *) outputList->At(index++); 
+    fhCaloV0SCorrNCells    = (TH2F *) outputList->At(index++); 
+    fhCaloV0SCorrECells    = (TH2F *) outputList->At(index++); 
+    
+    fhCaloV0MCorrNClusters = (TH2F *) outputList->At(index++);
+    fhCaloV0MCorrEClusters = (TH2F *) outputList->At(index++); 
+    fhCaloV0MCorrNCells    = (TH2F *) outputList->At(index++); 
+    fhCaloV0MCorrECells    = (TH2F *) outputList->At(index++); 
+    
+    fhCaloTrackMCorrNClusters = (TH2F *) outputList->At(index++);
+    fhCaloTrackMCorrEClusters = (TH2F *) outputList->At(index++); 
+    fhCaloTrackMCorrNCells    = (TH2F *) outputList->At(index++); 
+    fhCaloTrackMCorrECells    = (TH2F *) outputList->At(index++); 
+  }
+  
+  //Module histograms
+  fhEMod                 = new TH1F*[fNModules];
+  fhNClustersMod         = new TH1F*[fNModules];
+  fhNCellsPerClusterMod  = new TH2F*[fNModules];
+  fhNCellsMod            = new TH1F*[fNModules];
+  fhGridCellsMod         = new TH2F*[fNModules];
+  fhGridCellsEMod        = new TH2F*[fNModules];
+  if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) 
+    fhGridCellsTimeMod     = new TH2F*[fNModules];
+  fhAmplitudeMod         = new TH1F*[fNModules];
+  if(fCalorimeter=="EMCAL")
+    fhAmplitudeModFraction = new TH1F*[fNModules*3];
+  
+  //EMCAL
+  fhTimeAmpPerRCU        = new TH2F*[fNModules*fNRCU];
+  
+  fhIMMod                = new TH2F*[fNModules];
+  fhIMCellCutMod         = new TH2F*[fNModules];
+  
+  for(Int_t imod = 0 ; imod < fNModules; imod++){
+    fhEMod[imod]                 = (TH1F *) outputList->At(index++);
+    fhNClustersMod[imod]         = (TH1F *) outputList->At(index++); 
+    fhNCellsPerClusterMod[imod]  = (TH2F *) outputList->At(index++); 
+    fhNCellsMod[imod]            = (TH1F *) outputList->At(index++);   
+    fhGridCellsMod[imod]         = (TH2F *) outputList->At(index++);
+    fhGridCellsEMod[imod]        = (TH2F *) outputList->At(index++); 
+    if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) 
+      fhGridCellsTimeMod[imod]     = (TH2F *) outputList->At(index++); 
+    fhAmplitudeMod[imod]         = (TH1F *) outputList->At(index++);
+    
+    if(fCalorimeter=="EMCAL"){
+      for(Int_t ifrac = 0; ifrac < 3; ifrac++){
+        fhAmplitudeModFraction[imod*3+ifrac] = (TH1F *) outputList->At(index++); 
+      }
+    }
+    
+    for(Int_t ircu = 0; ircu < fNRCU; ircu++){
+      fhTimeAmpPerRCU[imod*fNRCU+ircu] = (TH2F *) outputList->At(index++); 
+      //fhT0TimeAmpPerRCU[imod*fNRCU+ircu] = (TH2F *) outputList->At(index++); 
+      //                       for(Int_t imod2 = 0; imod2 < fNModules; imod2++){
+      //                               for(Int_t ircu2 = 0; ircu2 < fNModules; ircu2++){
+      //                                       fhTimeCorrRCU[imod*fNRCU+ircu+imod2*fNRCU+ircu2]  = (TH2F *) outputList->At(index++);
+      //                               }
+      //                       }
+    }
+    fhIMMod[imod]                = (TH2F *) outputList->At(index++); 
+    fhIMCellCutMod[imod]         = (TH2F *) outputList->At(index++);   
+    
+  }
+  
+  if(IsDataMC()){
+    fhDeltaE   = (TH1F *) outputList->At(index++); 
+    fhDeltaPt  = (TH1F *) outputList->At(index++); 
+    fhDeltaPhi = (TH1F *) outputList->At(index++); 
+    fhDeltaEta = (TH1F *) outputList->At(index++); 
+    
+    fhRatioE   = (TH1F *) outputList->At(index++); 
+    fhRatioPt  = (TH1F *) outputList->At(index++); 
+    fhRatioPhi = (TH1F *) outputList->At(index++); 
+    fhRatioEta = (TH1F *) outputList->At(index++); 
+    
+    fh2E       = (TH2F *) outputList->At(index++); 
+    fh2Pt      = (TH2F *) outputList->At(index++); 
+    fh2Phi     = (TH2F *) outputList->At(index++); 
+    fh2Eta     = (TH2F *) outputList->At(index++); 
+    
+    fhGamE     = (TH2F *) outputList->At(index++); 
+    fhGamPt    = (TH2F *) outputList->At(index++); 
+    fhGamPhi   = (TH2F *) outputList->At(index++); 
+    fhGamEta   = (TH2F *) outputList->At(index++); 
+    
+    fhGamDeltaE   = (TH1F *) outputList->At(index++); 
+    fhGamDeltaPt  = (TH1F *) outputList->At(index++); 
+    fhGamDeltaPhi = (TH1F *) outputList->At(index++); 
+    fhGamDeltaEta = (TH1F *) outputList->At(index++); 
+    
+    fhGamRatioE   = (TH1F *) outputList->At(index++); 
+    fhGamRatioPt  = (TH1F *) outputList->At(index++); 
+    fhGamRatioPhi = (TH1F *) outputList->At(index++); 
+    fhGamRatioEta = (TH1F *) outputList->At(index++); 
+    
+    fhPi0E     = (TH2F *) outputList->At(index++); 
+    fhPi0Pt    = (TH2F *) outputList->At(index++); 
+    fhPi0Phi   = (TH2F *) outputList->At(index++); 
+    fhPi0Eta   = (TH2F *) outputList->At(index++);             
+    
+    fhEleE     = (TH2F *) outputList->At(index++); 
+    fhElePt    = (TH2F *) outputList->At(index++); 
+    fhElePhi   = (TH2F *) outputList->At(index++); 
+    fhEleEta   = (TH2F *) outputList->At(index++);             
+    
+    fhNeHadE     = (TH2F *) outputList->At(index++); 
+    fhNeHadPt    = (TH2F *) outputList->At(index++); 
+    fhNeHadPhi   = (TH2F *) outputList->At(index++); 
+    fhNeHadEta   = (TH2F *) outputList->At(index++);           
+    
+    fhChHadE     = (TH2F *) outputList->At(index++); 
+    fhChHadPt    = (TH2F *) outputList->At(index++); 
+    fhChHadPhi   = (TH2F *) outputList->At(index++); 
+    fhChHadEta   = (TH2F *) outputList->At(index++);                           
+    
+    fhGamECharged     = (TH2F *) outputList->At(index++); 
+    fhGamPtCharged    = (TH2F *) outputList->At(index++); 
+    fhGamPhiCharged   = (TH2F *) outputList->At(index++); 
+    fhGamEtaCharged   = (TH2F *) outputList->At(index++); 
+    
+    fhPi0ECharged     = (TH2F *) outputList->At(index++); 
+    fhPi0PtCharged    = (TH2F *) outputList->At(index++); 
+    fhPi0PhiCharged   = (TH2F *) outputList->At(index++); 
+    fhPi0EtaCharged   = (TH2F *) outputList->At(index++);              
+    
+    fhEleECharged     = (TH2F *) outputList->At(index++); 
+    fhElePtCharged    = (TH2F *) outputList->At(index++); 
+    fhElePhiCharged   = (TH2F *) outputList->At(index++); 
+    fhEleEtaCharged   = (TH2F *) outputList->At(index++);              
+    
+    fhNeHadECharged     = (TH2F *) outputList->At(index++); 
+    fhNeHadPtCharged    = (TH2F *) outputList->At(index++); 
+    fhNeHadPhiCharged   = (TH2F *) outputList->At(index++); 
+    fhNeHadEtaCharged   = (TH2F *) outputList->At(index++);            
+    
+    fhChHadECharged     = (TH2F *) outputList->At(index++); 
+    fhChHadPtCharged    = (TH2F *) outputList->At(index++); 
+    fhChHadPhiCharged   = (TH2F *) outputList->At(index++); 
+    fhChHadEtaCharged   = (TH2F *) outputList->At(index++);                            
+               
+    //         fhEMVxyz     = (TH3F *) outputList->At(index++); 
+    //         fhHaVxyz     = (TH3F *) outputList->At(index++); 
+               
+    fhEMVxyz     = (TH2F *) outputList->At(index++); 
+    fhHaVxyz     = (TH2F *) outputList->At(index++); 
+    fhEMR        = (TH2F *) outputList->At(index++); 
+    fhHaR        = (TH2F *) outputList->At(index++); 
+    
+    fhGenGamPt    = (TH1F *) outputList->At(index++); 
+    fhGenGamEta   = (TH1F *) outputList->At(index++); 
+    fhGenGamPhi   = (TH1F *) outputList->At(index++); 
+    
+    fhGenPi0Pt    = (TH1F *) outputList->At(index++); 
+    fhGenPi0Eta   = (TH1F *) outputList->At(index++); 
+    fhGenPi0Phi   = (TH1F *) outputList->At(index++); 
+    
+    fhGenEtaPt    = (TH1F *) outputList->At(index++); 
+    fhGenEtaEta   = (TH1F *) outputList->At(index++); 
+    fhGenEtaPhi   = (TH1F *) outputList->At(index++); 
+    
+    fhGenOmegaPt  = (TH1F *) outputList->At(index++); 
+    fhGenOmegaEta = (TH1F *) outputList->At(index++); 
+    fhGenOmegaPhi = (TH1F *) outputList->At(index++); 
+    
+    fhGenElePt    = (TH1F *) outputList->At(index++); 
+    fhGenEleEta   = (TH1F *) outputList->At(index++); 
+    fhGenElePhi   = (TH1F *) outputList->At(index++); 
+    
+    fhGenGamAccE   = (TH1F *) outputList->At(index++);                 
+    fhGenGamAccPt  = (TH1F *) outputList->At(index++); 
+    fhGenGamAccEta = (TH1F *) outputList->At(index++); 
+    fhGenGamAccPhi = (TH1F *) outputList->At(index++); 
+    
+    fhGenPi0AccE   = (TH1F *) outputList->At(index++);                 
+    fhGenPi0AccPt  = (TH1F *) outputList->At(index++); 
+    fhGenPi0AccEta = (TH1F *) outputList->At(index++); 
+    fhGenPi0AccPhi = (TH1F *) outputList->At(index++); 
+    
+    fhMCEle1pOverE =    (TH2F *) outputList->At(index++);
+    fhMCEle1dR =        (TH1F *) outputList->At(index++);
+    fhMCEle2MatchdEdx = (TH2F *) outputList->At(index++);
+    
+    fhMCChHad1pOverE =    (TH2F *) outputList->At(index++);
+    fhMCChHad1dR =        (TH1F *) outputList->At(index++);
+    fhMCChHad2MatchdEdx = (TH2F *) outputList->At(index++);
+    
+    fhMCNeutral1pOverE    = (TH2F *) outputList->At(index++);
+    fhMCNeutral1dR        = (TH1F *) outputList->At(index++);
+    fhMCNeutral2MatchdEdx = (TH2F *) outputList->At(index++);
+    
+    fhMCEle1pOverER02     =    (TH2F *) outputList->At(index++);
+    fhMCChHad1pOverER02   =    (TH2F *) outputList->At(index++);
+    fhMCNeutral1pOverER02 =    (TH2F *) outputList->At(index++);
+  }
+}
 
-       hPi0Phi->SetLineColor(1);
-       hGamPhi->SetLineColor(4);
-       hNeHadPhi->SetLineColor(2);
-       hChHadPhi->SetLineColor(7);
-       hElePhi->SetLineColor(6);
-       //Select the maximum of the histogram to show all lines.
-       if(hPi0Phi->GetMaximum() >= hGamPhi->GetMaximum() && hPi0Phi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
-          hPi0Phi->GetMaximum() >= hChHadPhi->GetMaximum() && hPi0Phi->GetMaximum() >= hElePhi->GetMaximum())
-               haxisphi->SetMaximum(hPi0Phi->GetMaximum());
-       else if(hGamPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hGamPhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
-                       hGamPhi->GetMaximum() >= hChHadPhi->GetMaximum() && hGamPhi->GetMaximum() >= hElePhi->GetMaximum())
-               haxisphi->SetMaximum(hGamPhi->GetMaximum());
-       else if(hNeHadPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hNeHadPhi->GetMaximum() >= hGamPhi->GetMaximum() && 
-                       hNeHadPhi->GetMaximum() >= hChHadPhi->GetMaximum() && hNeHadPhi->GetMaximum() >= hElePhi->GetMaximum())
-               haxisphi->SetMaximum(hNeHadPhi->GetMaximum());  
-       else if(hChHadPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hChHadPhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
-                       hChHadPhi->GetMaximum() >= hGamPhi->GetMaximum() && hChHadPhi->GetMaximum() >= hElePhi->GetMaximum())
-               haxisphi->SetMaximum(hChHadPhi->GetMaximum());
-       else if(hElePhi->GetMaximum() >= hPi0Phi->GetMaximum() && hElePhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
-                       hElePhi->GetMaximum() >= hChHadPhi->GetMaximum() && hElePhi->GetMaximum() >= hGamPhi->GetMaximum())
-               haxisphi->SetMaximum(hElePhi->GetMaximum());
-       
-       haxisphi->Draw("axis");
-       hPi0Phi->Draw("same");
-       hGamPhi->Draw("same");
-       hNeHadPhi->Draw("same");
-       hChHadPhi->Draw("same");
-       hElePhi->Draw("same");
-       
-       sprintf(name,"QA_%s_RecDistributionsGenID.eps",fCalorimeter.Data());
-       c11->Print(name);
-       
-       
-       //Ratio reconstructed clusters / generated particles in acceptance, for different particle ID
-       //printf("c12\n");
-       
-       TH1F *  hPi0EClone   = (TH1F*)   hPi0E  ->Clone("hPi0EClone");
-       TH1F *  hGamEClone   = (TH1F*)   hGamE  ->Clone("hGamEClone");
-       TH1F *  hPi0PtClone  = (TH1F*)   hPi0Pt ->Clone("hPi0PtClone");
-       TH1F *  hGamPtClone  = (TH1F*)   hGamPt ->Clone("hGamPtClone"); 
-       TH1F *  hPi0EtaClone = (TH1F*)   hPi0Eta->Clone("hPi0EtaClone");
-       TH1F *  hGamEtaClone = (TH1F*)   hGamEta->Clone("hGamEtaClone");        
-       TH1F *  hPi0PhiClone = (TH1F*)   hPi0Phi->Clone("hPi0PhiClone");
-       TH1F *  hGamPhiClone = (TH1F*)   hGamPhi->Clone("hGamPhiClone");
-       sprintf(cname,"QA_%s_recgenidratio",fCalorimeter.Data());
-       TCanvas  * c12 = new TCanvas(cname, "Ratio reconstructed clusters / generated particles in acceptance, for different particle ID", 400, 400) ;
-       c12->Divide(2, 2);
-       
-       c12->cd(1) ; 
-       gPad->SetLogy();
-       haxisE->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
-       hPi0EClone->Divide(fhGenPi0AccE);
-       hGamEClone->Divide(fhGenGamAccE);
-       haxisE->SetMaximum(1.2);
-       haxisE->SetYTitle("ratio = rec/gen");
-       haxisE->Draw("axis");
-       hPi0EClone->SetLineColor(1);
-       hGamEClone->SetLineColor(4);
-       hPi0EClone->Draw("same");
-       hGamEClone->Draw("same");
-       
-       TLegend pLegend3(0.75,0.45,0.9,0.8);
-       pLegend3.SetTextSize(0.06);
-       pLegend3.AddEntry(hPi0EClone,"#pi^{0}","L");
-       pLegend3.AddEntry(hGamEClone,"#gamma","L");
-       pLegend3.SetFillColor(10);
-       pLegend3.SetBorderSize(1);
-       pLegend3.Draw();
-       
-       c12->cd(2) ; 
-       gPad->SetLogy();
-       haxispt->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
-       hPi0PtClone->Divide(fhGenPi0AccPt);
-       hGamPtClone->Divide(fhGenGamAccPt);
-       haxispt->SetMaximum(1.2);
-       haxispt->SetYTitle("ratio = rec/gen");
-       haxispt->Draw("axis");
-       hPi0PtClone->SetLineColor(1);
-       hGamPtClone->SetLineColor(4);
-       hPi0PtClone->Draw("same");
-       hGamPtClone->Draw("same");
-       
-       c12->cd(3) ;
-       gPad->SetLogy();
-       
-       haxiseta->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
-       hPi0EtaClone->Divide(fhGenPi0AccEta);
-       hGamEtaClone->Divide(fhGenGamAccEta);
-       haxiseta->SetMaximum(1.2);
-       haxiseta->SetYTitle("ratio = rec/gen");
-       haxiseta->Draw("axis");
-       hPi0EtaClone->SetLineColor(1);
-       hGamEtaClone->SetLineColor(4);
-       hPi0EtaClone->Draw("same");
-       hGamEtaClone->Draw("same");
-       
-       
-       c12->cd(4) ; 
-       gPad->SetLogy();
-       haxisphi->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
-       hPi0PhiClone->Divide(fhGenPi0AccPhi);
-       hGamPhiClone->Divide(fhGenGamAccPhi);
-       haxisphi->SetYTitle("ratio = rec/gen");
-       haxisphi->SetMaximum(1.2);
-       haxisphi->Draw("axis");
-       hPi0PhiClone->SetLineColor(1);
-       hGamPhiClone->SetLineColor(4);
-       hPi0PhiClone->Draw("same");
-       hGamPhiClone->Draw("same");
-       
-       
-       sprintf(name,"QA_%s_EfficiencyGenID.eps",fCalorimeter.Data());
-       c12->Print(name);
-       
-       
-       //Reconstructed distributions
-       //printf("c1\n");
-       sprintf(cname,"QA_%s_vertex",fCalorimeter.Data());
-       TCanvas  * c13 = new TCanvas(cname, "Particle vertex", 400, 400) ;
-       c13->Divide(2, 2);
-       
-       c13->cd(1) ; 
-       //gPad->SetLogy();
-       fhEMVxyz->Draw();
-       
-       c13->cd(2) ; 
-       //gPad->SetLogy();
-       fhHaVxyz->Draw();
-       
-       c13->cd(3) ;
-       gPad->SetLogy();
-       TH1F * hEMR = (TH1F*) fhEMR->ProjectionY("hEM",-1,-1); 
-       hEMR->SetLineColor(4);
-       hEMR->Draw();
-       
-       c13->cd(4) ; 
-       gPad->SetLogy();
-       TH1F * hHaR = (TH1F*) fhHaR->ProjectionY("hHa",-1,-1); 
-       hHaR->SetLineColor(4);
-       hHaR->Draw();
-       
-       
-       sprintf(name,"QA_%s_ParticleVertex.eps",fCalorimeter.Data());
-       c13->Print(name);
+//__________________________________________________________________
+void  AliAnaCalorimeterQA::Terminate(TList* outputList) 
+{
+  //Do plots if requested      
+  
+  if(GetDebug() > 0) printf("AliAnaCalorimeterQA::Terminate() - Make plots for %s? %d\n",fCalorimeter.Data(), MakePlotsOn());
+  
+  //Do some plots to end
+  if(fStyleMacro!="")gROOT->Macro(fStyleMacro); 
+  //Recover histograms from output histograms list, needed for distributed analysis.   
+  ReadHistograms(outputList);
+  
+  //printf(" AliAnaCalorimeterQA::Terminate()  *** %s Report:", GetName()) ; 
+  //printf(" AliAnaCalorimeterQA::Terminate()        pt         : %5.3f , RMS : %5.3f \n", fhPt->GetMean(),   fhPt->GetRMS() ) ;
+  
+  const Int_t buffersize = 255;
+  char name[buffersize];
+  char cname[buffersize];
+  
+  //In case terminate is executed after the analysis, in a second step, and we want to rebin or to change the range of the histograms for plotting
+  Int_t nptbins     = GetHistoPtBins();                Float_t ptmax     = GetHistoPtMax();           Float_t ptmin     = GetHistoPtMin();
+  Int_t nphibins    = GetHistoPhiBins();          Float_t phimax    = GetHistoPhiMax();          Float_t phimin    = GetHistoPhiMin();
+  Int_t netabins    = GetHistoEtaBins();          Float_t etamax    = GetHistoEtaMax();          Float_t etamin    = GetHistoEtaMin(); 
+  //   Int_t nmassbins   = GetHistoMassBins();         Float_t massmax   = GetHistoMassMax();         Float_t massmin   = GetHistoMassMin();
+  //   Int_t nasymbins   = GetHistoAsymmetryBins();    Float_t asymmax   = GetHistoAsymmetryMax();    Float_t asymmin   = GetHistoAsymmetryMin();
+  //   Int_t nPoverEbins = GetHistoPOverEBins();       Float_t pOverEmax = GetHistoPOverEMax();       Float_t pOverEmin = GetHistoPOverEMin();
+  //   Int_t ndedxbins   = GetHistodEdxBins();         Float_t dedxmax   = GetHistodEdxMax();         Float_t dedxmin   = GetHistodEdxMin();
+  //   Int_t ndRbins     = GetHistodRBins();           Float_t dRmax     = GetHistodRMax();           Float_t dRmin     = GetHistodRMin();
+  Int_t ntimebins   = GetHistoTimeBins();         Float_t timemax   = GetHistoTimeMax();         Float_t timemin   = GetHistoTimeMin();       
+  Int_t nbins       = GetHistoNClusterCellBins(); Int_t nmax        = GetHistoNClusterCellMax(); Int_t nmin        = GetHistoNClusterCellMin(); 
+  //   Int_t nratiobins  = GetHistoRatioBins();        Float_t ratiomax  = GetHistoRatioMax();        Float_t ratiomin  = GetHistoRatioMin();
+  //   Int_t nvdistbins  = GetHistoVertexDistBins();   Float_t vdistmax  = GetHistoVertexDistMax();   Float_t vdistmin  = GetHistoVertexDistMin();
+  Int_t rbins       = GetHistoRBins();            Float_t rmax        = GetHistoRMax();          Float_t rmin      = GetHistoRMin(); 
+  Int_t xbins       = GetHistoXBins();            Float_t xmax        = GetHistoXMax();          Float_t xmin      = GetHistoXMin(); 
+  Int_t ybins       = GetHistoYBins();            Float_t ymax        = GetHistoYMax();          Float_t ymin      = GetHistoYMin(); 
+  Int_t zbins       = GetHistoZBins();            Float_t zmax        = GetHistoZMax();          Float_t zmin      = GetHistoZMin(); 
+  
+  //Color code for the different modules
+  Int_t modColorIndex[]={2,4,6,8};
+  
+  //--------------------------------------------------
+  // Cluster energy distributions, module dependence
+  //--------------------------------------------------
+  snprintf(cname,buffersize,"QA_%s_ClusterEnergy",fCalorimeter.Data());
+  TCanvas  * c = new TCanvas(cname, "Energy distributions", 800, 400) ;
+  c->Divide(2, 1);
+  Int_t rbE = GetNewRebinForRePlotting((TH1D*)fhE, ptmin, ptmax,nptbins) ;
+  //printf("new E rb %d\n",rbE);
+  fhE->Rebin(rbE);
+  fhE->SetAxisRange(ptmin,ptmax,"X");
+  c->cd(1) ; 
+  if(fhE->GetEntries() > 0) gPad->SetLogy();
+  TLegend pLegendE(0.7,0.6,0.9,0.8);
+  pLegendE.SetTextSize(0.03);
+  pLegendE.AddEntry(fhE,"all modules","L");
+  pLegendE.SetFillColor(10);
+  pLegendE.SetBorderSize(1);
+  
+  fhE->SetMinimum(1);  
+  fhE->SetLineColor(1);
+  fhE->Draw("HE");
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    fhEMod[imod]->Rebin(rbE);
+    fhEMod[imod]->SetLineColor(modColorIndex[imod]);
+    fhEMod[imod]->Draw("HE same");
+    pLegendE.AddEntry(fhEMod[imod],Form("module %d",imod),"L");
+  }
+  pLegendE.Draw();
+  
+  //Ratio of modules
+  c->cd(2) ; 
+  TLegend pLegendER(0.55,0.8,0.9,0.9);
+  pLegendER.SetTextSize(0.03);
+  pLegendER.SetFillColor(10);
+  pLegendER.SetBorderSize(1);
+  
+  for(Int_t imod = 1; imod < fNModules; imod++){
+    TH1D * htmp = (TH1D*)fhEMod[imod]->Clone(Form("hERat%d",imod));
+    htmp->Divide(fhEMod[0]);
+    htmp->SetLineColor(modColorIndex[imod]);
+    if(imod==1){
+      htmp->SetTitle("Ratio module X / module 0");
+      htmp->SetAxisRange(ptmin,ptmax,"X");
+      htmp->SetMaximum(5);
+      htmp->SetMinimum(0);
+      htmp->SetAxisRange(ptmin,ptmax,"X");
+      htmp->Draw("HE");
+    }
+    else 
+      htmp->Draw("same HE");
+    
+    pLegendER.AddEntry(fhEMod[imod],Form("module %d / module 0",imod),"L");
+  }
+  pLegendER.Draw();
+  
+  snprintf(name,buffersize,"QA_%s_ClusterEnergy.eps",fCalorimeter.Data());
+  c->Print(name); printf("Plot: %s\n",name);
+  
+  //--------------------------------------------------
+  // Cell energy distributions, module dependence
+  //--------------------------------------------------
+  snprintf(cname,buffersize,"%s_QA_CellEnergy",fCalorimeter.Data());
+  TCanvas  * ca = new TCanvas(cname, "Cell Energy distributions", 800, 400) ;
+  ca->Divide(2, 1);
+  
+  Int_t rbAmp = GetNewRebinForRePlotting((TH1D*)fhAmplitude, ptmin, ptmax,nptbins*2) ;
+  //printf("new Amp rb %d\n",rbAmp);
+  fhAmplitude->Rebin(rbAmp);
+  fhAmplitude->SetAxisRange(ptmin,ptmax,"X");
+  
+  ca->cd(1) ; 
+  if(fhAmplitude->GetEntries() > 0) gPad->SetLogy();
+  TLegend pLegendA(0.7,0.6,0.9,0.8);
+  pLegendA.SetTextSize(0.03);
+  pLegendA.AddEntry(fhE,"all modules","L");
+  pLegendA.SetFillColor(10);
+  pLegendA.SetBorderSize(1);
+  fhAmplitude->SetMinimum(0.1);
+  fhAmplitude->SetLineColor(1);
+  fhAmplitude->Draw("HE");
+  
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    fhAmplitudeMod[imod]->Rebin(rbAmp);
+    fhAmplitudeMod[imod]->SetLineColor(modColorIndex[imod]);
+    fhAmplitudeMod[imod]->Draw("HE same");
+    pLegendA.AddEntry(fhAmplitudeMod[imod],Form("module %d",imod),"L");
+  }
+  pLegendA.Draw();
+  
+  
+  ca->cd(2) ; 
+  TLegend pLegendAR(0.55,0.8,0.9,0.9);
+  pLegendAR.SetTextSize(0.03);
+  pLegendAR.SetFillColor(10);
+  pLegendAR.SetBorderSize(1);
+  
+  for(Int_t imod = 1; imod < fNModules; imod++){
+    TH1D * htmp = (TH1D*)fhAmplitudeMod[imod]->Clone(Form("hAmpRat%d",imod));
+    htmp->Divide(fhAmplitudeMod[0]);
+    htmp->SetLineColor(modColorIndex[imod]);
+    if(imod==1){
+      htmp->SetTitle("Ratio cells energy in  module X / module 0");
+      htmp->SetAxisRange(ptmin,ptmax,"X");
+      htmp->SetMaximum(5);
+      htmp->SetMinimum(0);
+      htmp->Draw("HE");
+    }
+    else 
+      htmp->Draw("same HE");
+    pLegendAR.AddEntry(fhAmplitudeMod[imod],Form("module %d",imod),"L");
+  }
+  
+  pLegendAR.Draw();
+  snprintf(name,buffersize,"QA_%s_CellEnergy.eps",fCalorimeter.Data());
+  ca->Print(name); printf("Plot: %s\n",name);  
+  
+  //----------------------------------------------------------
+  // Cell energy distributions, FRACTION of module dependence
+  // See Super Module calibration difference
+  //---------------------------------------------------------  
+  if(fCalorimeter=="EMCAL"){
+    //Close To Eta 0 
+    snprintf(cname,buffersize,"%s_QA_SMThirds",fCalorimeter.Data());
+    TCanvas  * cfrac = new TCanvas(cname, "SM Thirds ratios", 800, 1200) ;
+    cfrac->Divide(2, 3);
+    cfrac->cd(1) ; 
+    if(fhAmplitude->GetEntries() > 0) 
+      gPad->SetLogy();
+    TLegend pLegend1(0.6,0.6,0.9,0.8);
+    pLegend1.SetTextSize(0.03);
+    pLegend1.SetFillColor(10);
+    pLegend1.SetBorderSize(1);
+    pLegend1.SetHeader("Third close to Eta=0");
+    fhAmplitudeModFraction[0]->SetTitle("Third close to Eta=0");
+    fhAmplitudeModFraction[0]->SetAxisRange(ptmin,ptmax,"X");
+    fhAmplitudeModFraction[0]->Draw("axis");
+    TH1D * hAverageThird1 = (TH1D *)fhAmplitudeModFraction[3*0+2]->Clone("AverageThird1");
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      Int_t ifrac = 0;
+      if(imod%2==0) ifrac = 2;
+      if(imod > 0) hAverageThird1->Add( fhAmplitudeModFraction[3*imod+ifrac]);
+      fhAmplitudeModFraction[3*imod+ifrac]->SetLineColor(modColorIndex[imod]);
+      fhAmplitudeModFraction[3*imod+ifrac]->Draw("HE same");
+      pLegend1.AddEntry(fhAmplitudeModFraction[3*imod+ifrac],Form("super module %d",imod),"L");
+    }
+    hAverageThird1 ->Scale(1./fNModules);
+    pLegend1.Draw();
+    //Ratio
+    cfrac->cd(2) ; 
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      Int_t ifrac = 0;
+      if(imod%2==0) ifrac = 2;
+      TH1D * htmp =  (TH1D*)fhAmplitudeModFraction[3*imod+ifrac]->Clone(Form("ThirdFractionAverage_%d_%d",imod,ifrac));
+      htmp->Divide(hAverageThird1);
+      if(imod ==0) {
+        htmp ->SetTitle("Close to eta = 0");
+        htmp ->SetMaximum(5);
+        htmp ->SetMinimum(0);
+        htmp ->SetAxisRange(ptmin,ptmax,"X");
+        htmp ->SetYTitle("ratio third to average");
+        htmp -> Draw("HE");
+      }
+      else htmp -> Draw("same HE");
+    }
+    //pLegend1.Draw();
+    
+    //Middle Eta
+    cfrac->cd(3) ; 
+    if(fhAmplitude->GetEntries() > 0) 
+      gPad->SetLogy();
+    TLegend pLegend2(0.6,0.6,0.9,0.8);
+    pLegend2.SetTextSize(0.03);
+    pLegend2.SetFillColor(10);
+    pLegend2.SetBorderSize(1);
+    pLegend2.SetHeader("Middle Third");
+    
+    fhAmplitudeModFraction[0]->SetTitle("Middle Third");
+    fhAmplitudeModFraction[0]->SetAxisRange(ptmin,ptmax,"X");
+    fhAmplitudeModFraction[0]->Draw("axis");
+    
+    TH1D * hAverageThird2 = (TH1D *)fhAmplitudeModFraction[3*0+1]->Clone("AverageThird2");
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      Int_t ifrac = 1;
+      if(imod > 0) hAverageThird2->Add( fhAmplitudeModFraction[3*imod+ifrac]);
+      fhAmplitudeModFraction[3*imod+ifrac]->SetLineColor(modColorIndex[imod]);
+      fhAmplitudeModFraction[3*imod+ifrac]->Draw("HE same");
+      pLegend2.AddEntry(fhAmplitudeModFraction[3*imod+ifrac],Form("super module %d",imod),"L");
+    }
+    hAverageThird2->Scale(1./fNModules);
+    pLegend2.Draw();
+    
+    //Ratio
+    cfrac->cd(4) ; 
+    
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      Int_t ifrac = 1;
+      TH1D * htmp =  (TH1D*)fhAmplitudeModFraction[3*imod+ifrac]->Clone(Form("ThirdFractionAverage_%d_%d",imod,ifrac));
+      htmp->Divide(hAverageThird2);
+      if(imod ==0) {
+        htmp ->SetTitle("Middle");
+        htmp ->SetMaximum(5);
+        htmp ->SetMinimum(0);
+        htmp ->SetAxisRange(ptmin,ptmax,"X");
+        htmp ->SetYTitle("ratio third to average");
+        htmp -> Draw("HE");
+      }
+      else htmp -> Draw("same HE");
+    }
+    //pLegend2.Draw();
+    
+    //Close To Eta 0.7 
+    cfrac->cd(5) ; 
+    if(fhAmplitude->GetEntries() > 0) 
+      gPad->SetLogy();
+    TLegend pLegend3(0.6,0.6,0.9,0.8);
+    pLegend3.SetTextSize(0.03);
+    pLegend3.SetFillColor(10);
+    pLegend3.SetBorderSize(1);
+    pLegend3.SetHeader("Third close to Eta=0.7");
+    
+    fhAmplitudeModFraction[0]->SetTitle("Third close to Eta=0.7");
+    fhAmplitudeModFraction[0]->SetAxisRange(ptmin,ptmax,"X");
+    fhAmplitudeModFraction[0]->Draw("axis");
+    
+    TH1D * hAverageThird3 = (TH1D *)fhAmplitudeModFraction[3*0+0]->Clone("AverageThird3");
+    for(Int_t imod = 0; imod < 4; imod++){
+      Int_t ifrac = 2;
+      if(imod%2==0) ifrac = 0;
+      if(imod > 0) hAverageThird3->Add( fhAmplitudeModFraction[3*imod+ifrac]);
+      fhAmplitudeModFraction[3*imod+ifrac]->SetLineColor(modColorIndex[imod]);
+      fhAmplitudeModFraction[3*imod+ifrac]->Draw("HE same");
+      pLegend3.AddEntry(fhAmplitudeModFraction[3*imod+ifrac],Form("super module %d",imod),"L");
+    }
+    hAverageThird3 ->Scale(1./fNModules);
+    pLegend3.Draw();
+    
+    cfrac->cd(6) ; 
+    
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      Int_t ifrac = 2;
+      if(imod%2==0) ifrac = 0;
+      TH1D * htmp =  (TH1D*)fhAmplitudeModFraction[3*imod+ifrac]->Clone(Form("ThirdFractionAverage_%d_%d",imod,ifrac));
+      htmp->Divide(hAverageThird3);
+      if(imod ==0) {
+        htmp ->SetTitle("Close to eta = 0.7");
+        htmp ->SetMaximum(5);
+        htmp ->SetMinimum(0);
+        htmp ->SetAxisRange(ptmin,ptmax,"X");
+        htmp ->SetYTitle("ratio third to average");
+        htmp ->Draw("HE");
+      }
+      else htmp ->Draw("same HE");
+    }
+    //pLegend3.Draw();
+    
+    snprintf(name,buffersize,"QA_%s_CellEnergyModuleFraction.eps",fCalorimeter.Data());
+    cfrac->Print(name); printf("Create plot %s\n",name);
+  }//EMCAL     
+  
+  
+  //----------------------------------------------------------
+  // Cluster eta and phi distributions, energy cut dependence
+  //---------------------------------------------------------  
+  
+  snprintf(cname,buffersize,"%s_QA_EtaPhiCluster",fCalorimeter.Data());
+  TCanvas  * cetaphic = new TCanvas(cname, "Eta-Phi Reconstructed distributions", 1200, 400) ;
+  cetaphic->Divide(3, 1);
+  Int_t binmin = 0;
+  Int_t rbPhi  = 1;
+  Int_t rbEta  = 1;
+  Int_t ncuts  = 7;
+  Float_t ecut[]     = {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3};
+  Int_t   ecutcolor[]= {2, 4, 6, 7, 8, 9, 12};
+  TH1D * hE = fhEtaPhiE->ProjectionZ();
+  
+  //PHI
+  cetaphic->cd(1) ; 
+  gPad->SetLogy();
+  gPad->SetGridy();
+  
+  TLegend pLegendPhiCl(0.83,0.6,0.95,0.93);
+  pLegendPhiCl.SetTextSize(0.03);
+  pLegendPhiCl.SetFillColor(10);
+  pLegendPhiCl.SetBorderSize(1);
+  
+  TH1D * htmp = fhEtaPhiE->ProjectionY("hphi_cluster_nocut",0,-1,0,-1);
+  if(htmp){
+    htmp->SetMinimum(1);
+    rbPhi =  GetNewRebinForRePlotting(htmp, phimin, phimax,nphibins) ;
+    //printf("new Phi rb %d\n",rbPhi);
+    htmp->Rebin(rbPhi);
+    htmp->SetTitle("#phi of clusters for energy in cluster > threshold");
+    htmp->SetAxisRange(phimin,phimax,"X");
+    htmp->Draw("HE");
+    pLegendPhiCl.AddEntry(htmp,"No cut","L");
+    
+    for (Int_t i = 0; i < ncuts; i++) {
+      binmin =  hE->FindBin(ecut[i]);
+      //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+      htmp = fhEtaPhiE->ProjectionY(Form("hphi_cluster_cut%d",i),0,-1,binmin,-1);
+      htmp->SetLineColor(ecutcolor[i]);
+      htmp->Rebin(rbPhi);
+      htmp->Draw("same HE");
+      pLegendPhiCl.AddEntry(htmp,Form("E>%1.1f",ecut[i]),"L");
+      
+    }
+  }
+  pLegendPhiCl.Draw();
+  
+  //ETA
+  cetaphic->cd(2) ; 
+  gPad->SetLogy();
+  gPad->SetGridy();
+  
+  delete htmp; 
+  htmp = fhEtaPhiE->ProjectionX("heta_cluster_nocut",0,-1,0,-1);
+  if(htmp){
+    rbEta =  GetNewRebinForRePlotting(htmp,etamin, etamax,netabins) ;
+    //printf("new Eta rb %d\n",rbEta);
+    htmp->Rebin(rbEta);
+    htmp->SetMinimum(1);
+    htmp ->SetLineColor(1);
+    htmp->SetTitle("#eta of clusters for energy in cluster > threshold");
+    htmp->SetAxisRange(etamin,etamax,"X");
+    htmp->Draw("HE");
+    
+    for (Int_t i = 0; i < ncuts; i++) {
+      binmin =  hE->FindBin(ecut[i]);
+      //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+      htmp = fhEtaPhiE->ProjectionX(Form("heta_cluster_cut%d",i),0,-1,binmin,-1);
+      htmp->SetLineColor(ecutcolor[i]);
+      htmp->Rebin(rbEta);
+      htmp->Draw("same HE");   
+    }
+  }
+  //ETA vs PHI 
+  cetaphic->cd(3) ;
+  TH2D* hEtaPhiCl = (TH2D*) fhEtaPhiE->Project3D("xy");
+  hEtaPhiCl->SetAxisRange(etamin,etamax,"X");
+  hEtaPhiCl->SetAxisRange(phimin,phimax,"Y");
+  hEtaPhiCl->Draw("colz");
+  
+  snprintf(name,buffersize,"QA_%s_ClusterEtaPhi.eps",fCalorimeter.Data());
+  cetaphic->Print(name); printf("Create plot %s\n",name);
+  
+  //----------------------------------------------------------
+  // Cell eta and phi distributions, energy cut dependence
+  //---------------------------------------------------------  
        
+  snprintf(cname,buffersize,"%s_QA_EtaPhiCell",fCalorimeter.Data());
+  TCanvas  * cetaphicell = new TCanvas(cname, "Eta-Phi Cells distributions", 1200, 400) ;
+  cetaphicell->Divide(3, 1);
+  
+  //PHI
+  cetaphicell->cd(1) ; 
+  gPad->SetLogy();
+  gPad->SetGridy();
+  
+  TLegend pLegendPhiCell(0.83,0.6,0.95,0.93);
+  pLegendPhiCell.SetTextSize(0.03);
+  pLegendPhiCell.SetFillColor(10);
+  pLegendPhiCell.SetBorderSize(1);
+  
+  delete htmp; 
+  htmp = fhEtaPhiAmp->ProjectionY("hphi_cell_nocut",0,-1,0,-1);
+  if(htmp){
+    htmp->SetMinimum(1);
+    htmp->Rebin(rbPhi);
+    htmp->SetTitle("#phi of cells for cell energy > threshold");
+    htmp->SetAxisRange(phimin,phimax,"X");
+    htmp->Draw("HE");
+    pLegendPhiCell.AddEntry(htmp,"No cut","L");
+    
+    for (Int_t i = 0; i < ncuts; i++) {
+      binmin =  hE->FindBin(ecut[i]);
+      //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+      htmp = fhEtaPhiAmp->ProjectionY(Form("hphi_cell_cut%d",i),0,-1,binmin,-1);
+      htmp->SetLineColor(ecutcolor[i]);
+      htmp->Rebin(rbPhi);
+      htmp->Draw("same HE");
+      pLegendPhiCl.AddEntry(htmp,Form("E>%1.1f",ecut[i]),"L");
+      
+    }
+  }
+  pLegendPhiCell.Draw();
+  
+  //ETA
+  cetaphicell->cd(2) ; 
+  gPad->SetLogy();
+  gPad->SetGridy();
+  
+  delete htmp; 
+  htmp = fhEtaPhiAmp->ProjectionX("heta_cell_nocut",0,-1,0,-1);
+  if(htmp){
+    htmp ->SetLineColor(1);
+    htmp->Rebin(rbEta);
+    htmp->SetMinimum(1);
+    htmp->SetTitle("#eta of cells for cell energy > threshold");
+    htmp->SetAxisRange(etamin,etamax,"X");
+    htmp->Draw("HE");
+    
+    for (Int_t i = 0; i < ncuts; i++) {
+      binmin =  hE->FindBin(ecut[i]);
+      //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+      htmp = fhEtaPhiAmp->ProjectionX(Form("heta_cell_cut%d",i),0,-1,binmin,-1);
+      htmp->SetLineColor(ecutcolor[i]);
+      htmp->Rebin(rbEta);
+      htmp->Draw("same HE");
+      
+    }
+  }
+  //ETA vs PHI 
+  cetaphicell->cd(3) ;
+  TH2D* hEtaPhiCell = (TH2D*) fhEtaPhiAmp->Project3D("xy");
+  hEtaPhiCell->SetAxisRange(etamin,etamax,"X");
+  hEtaPhiCell->SetAxisRange(phimin,phimax,"Y");
+  hEtaPhiCell->Draw("colz");
+  
+  snprintf(name,buffersize,"QA_%s_CellEtaPhi.eps",fCalorimeter.Data());
+  cetaphicell->Print(name); printf("Create plot %s\n",name);
+  
+  
+  ////////////////////////////////////////        
+  ///////// Global Positions /////////////       
+  ////////////////////////////////////////       
+       
+  //CLUSTERS
+  Int_t rbX = 1;
+  Int_t rbY = 1;
+  Int_t rbZ = 1;
+  if(fFillAllPosHisto)
+  {
+    snprintf(cname,buffersize,"%s_QA_ClusterXY",fCalorimeter.Data());
+    TCanvas  * cxyz = new TCanvas(cname, "Cluster XY distributions", 1200, 400) ;
+    cxyz->Divide(3, 1);
+    
+    cxyz->cd(1) ; 
+    TH2D * hXY = (TH2D*) fhXYZ->Project3D("yx" );
+    hXY->SetTitle("Cluster X vs Y");
+    hXY->GetYaxis()->SetTitleOffset(1.6);
+    hXY->Draw("colz");
+    cxyz->cd(2) ; 
+    TH2D * hYZ = (TH2D*) fhXYZ->Project3D("yz" );
+    hYZ->SetTitle("Cluster Z vs Y");
+    hYZ->GetYaxis()->SetTitleOffset(1.6);
+    hYZ->Draw("colz"); 
+    cxyz->cd(3) ; 
+    TH2D * hXZ = (TH2D*) fhXYZ->Project3D("zx" );
+    hXZ->SetTitle("Cluster X vs Z");
+    hXZ->GetYaxis()->SetTitleOffset(1.6);
+    hXZ->Draw("colz");
+    
+    snprintf(name,buffersize,"QA_%s_ClusterXY_YZ_XZ.eps",fCalorimeter.Data());
+    cxyz->Print(name); printf("Create plot %s\n",name);
+    
+    snprintf(cname,buffersize,"QA_%s_ClusterX",fCalorimeter.Data());
+    TCanvas  * cx = new TCanvas(cname, "Cluster X distributions", 1200, 400) ;
+    cx->Divide(3, 1);
+    
+    cx->cd(1) ; 
+    TH1D * hX = (TH1D*) fhXYZ->Project3D("xe" );
+    //gPad->SetLogy();
+    gPad->SetGridy();
+    hX->SetTitle("Cluster X ");
+    hX->Draw("HE");
+    rbX =  GetNewRebinForRePlotting(hX, xmin, xmax,xbins) ;
+    //printf("new X rb %d\n",rbX);
+    hX->Rebin(rbX);
+    hX->SetMinimum(hX->GetMaximum()/2);
+    hX->SetAxisRange(xmin,xmax);
+    
+    cx->cd(2) ; 
+    TH1D * hY = (TH1D*) fhXYZ->Project3D("ye" );
+    //gPad->SetLogy();
+    hY->SetTitle("Cluster Y ");
+    rbY =  GetNewRebinForRePlotting(hY, ymin, ymax, ybins) ;
+    //printf("new Y rb %d\n",rbY);
+    hY->Rebin(rbY);
+    hY->SetMinimum(1);
+    hY->SetAxisRange(ymin,ymax);
+    hY->Draw("HE");    
+    
+    cx->cd(3) ; 
+    TH1D * hZ = (TH1D*) fhXYZ->Project3D("ze" );
+    //gPad->SetLogy();
+    gPad->SetGridy();
+    rbZ =  GetNewRebinForRePlotting(hZ,zmin, zmax,zbins) ;
+    //printf("new Z rb %d\n",rbZ);
+    hZ->Rebin(rbZ);    
+    hZ->SetMinimum(hZ->GetMaximum()/2);
+    hZ->SetAxisRange(zmin,zmax);
+    hZ->Draw("HE");
+    
+    snprintf(name,buffersize,"QA_%s_ClusterX_Y_Z.eps",fCalorimeter.Data());
+    cx->Print(name); printf("Create plot %s\n",name);
+  }
+  //CELLS
+  if(fFillAllPosHisto)
+  { 
+    snprintf(cname,buffersize,"%s_QA_CellXY",fCalorimeter.Data());
+    TCanvas  * cellxyz = new TCanvas(cname, "Cell XY distributions", 1200, 400) ;
+    cellxyz->Divide(3, 1);
+    
+    cellxyz->cd(1) ; 
+    TH2D * hXYCell = (TH2D*) fhXYZCell->Project3D("yx" );
+    hXYCell->SetTitle("Cell X vs Y");
+    hXYCell->GetYaxis()->SetTitleOffset(1.6);
+    hXYCell->Draw("colz");
+    cellxyz->cd(2) ; 
+    TH2D * hYZCell = (TH2D*) fhXYZCell->Project3D("yz" );
+    hYZCell->SetTitle("Cell Z vs Y");
+    hYZCell->GetYaxis()->SetTitleOffset(1.6);
+    hYZCell->Draw("colz");     
+    cellxyz->cd(3) ; 
+    TH2D * hXZCell = (TH2D*) fhXYZCell->Project3D("zx" );
+    hXZCell->SetTitle("Cell X vs Z");
+    hXZCell->GetYaxis()->SetTitleOffset(1.6);
+    hXZCell->Draw("colz");
+    
+    snprintf(name,buffersize,"QA_%s_CellXY_YZ_XZ.eps",fCalorimeter.Data());
+    cellxyz->Print(name); printf("Create plot %s\n",name);
+    
+    
+    snprintf(cname,buffersize,"%s_QA_CellX",fCalorimeter.Data());
+    TCanvas  * cellx = new TCanvas(cname, "Cell X distributions", 1200, 400) ;
+    cellx->Divide(3, 1);
+    
+    cellx->cd(1) ; 
+    TH1D * hXCell = (TH1D*) fhXYZCell->Project3D("xe" );
+    //gPad->SetLogy();
+    gPad->SetGridy();
+    hXCell->SetTitle("Cell X ");
+    hXCell->Rebin(rbX);
+    hXCell->SetMinimum(hXCell->GetMaximum()/2);
+    hXCell->SetAxisRange(xmin,xmax);
+    hXCell->Draw("HE");
+    
+    cellx->cd(2) ; 
+    TH1D * hYCell = (TH1D*) fhXYZCell->Project3D("ye" );
+    //gPad->SetLogy();
+    hYCell->SetTitle("Cell Y ");
+    hYCell->Rebin(rbY);
+    hYCell->SetAxisRange(ymin,ymax);
+    hYCell->SetMinimum(1);
+    hYCell->Draw("HE");        
+    
+    cellx->cd(3) ; 
+    TH1D * hZCell = (TH1D*) fhXYZCell->Project3D("ze" );
+    //gPad->SetLogy();
+    gPad->SetGridy();
+    hZCell->SetAxisRange(zmin,zmax);
+    hZCell->SetTitle("Cell Z ");
+    hZCell->Rebin(rbZ);
+    hZCell->SetMinimum(hZCell->GetMaximum()/2);
+    hZCell->Draw("HE");
+    
+    snprintf(name,buffersize,"QA_%s_CellX_Y_Z.eps",fCalorimeter.Data());
+    cellx->Print(name); printf("Create plot %s\n",name);
+    
+    
+    //----------------------------------------------------------
+    // Cluster X, Y, Z, R, energy cut dependence
+    //---------------------------------------------------------        
+    
+    snprintf(cname,buffersize,"%s_QA_ClusterX_Y_Z_R_ECut",fCalorimeter.Data());
+    TCanvas  * cxe = new TCanvas(cname, "Cluster X Y Z R, E cut", 800, 800) ;
+    cxe->Divide(2, 2);         
+    //R
+    cxe->cd(1) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    TLegend pLegendXCl(0.83,0.6,0.95,0.93);
+    pLegendXCl.SetTextSize(0.03);
+    pLegendXCl.SetFillColor(10);
+    pLegendXCl.SetBorderSize(1);
+    
+    delete htmp; 
+    htmp = fhRE->ProjectionX("hre_cluster_nocut",0,-1);
+    Int_t rbR=1;
+    if(htmp){
+      htmp->SetMinimum(1);
+      rbR =  GetNewRebinForRePlotting(htmp, rmin, rmax,rbins) ;
+      //printf("new R rb %d\n",rbR);
+      htmp->Rebin(rbR);
+      htmp->SetTitle("r of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(rmin,rmax,"X");
+      htmp->Draw("HE");
+      pLegendXCl.AddEntry(htmp,"No cut","L");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhRE->ProjectionX(Form("hre_cluster_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbR);
+        htmp->Draw("same HE");
+        pLegendXCl.AddEntry(htmp,Form("E>%1.1f",ecut[i]),"L");
+      }
+    }
+    pLegendXCl.Draw();
+    
+    //X
+    cxe->cd(2) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhXE->ProjectionX("hxe_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbX);
+      htmp->SetTitle("x of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(xmin,xmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhXE->ProjectionX(Form("hxe_cluster_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbX);
+        htmp->Draw("same HE");
+      }
+    }
+    //Y
+    cxe->cd(3) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhYE->ProjectionX("hye_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbY);
+      htmp->SetTitle("y of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(ymin,ymax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhYE->ProjectionX(Form("hye_cluster_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbY);
+        htmp->Draw("same HE");
+      }
+    }
+    //Z
+    cxe->cd(4) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhZE->ProjectionX("hze_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbZ);
+      htmp->SetTitle("z of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(zmin,zmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhZE->ProjectionX(Form("hze_cluster_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbZ);
+        htmp->Draw("same HE"); 
+      }
+    }
+    
+    snprintf(name,buffersize,"QA_%s_ClusterX_Y_Z_R_ECut.eps",fCalorimeter.Data());
+    cxe->Print(name); printf("Create plot %s\n",name);
+    
+    
+    //----------------------------------------------------------
+    // Cluster X, Y, Z, R, NCells in cluster dependence
+    //---------------------------------------------------------        
+    Int_t ncellcut[]={2, 3, 4};
+    Int_t ncellcuts = 3;
+    snprintf(cname,buffersize,"%s_QA_ClusterX_Y_Z_R_NCellsCut",fCalorimeter.Data());
+    TCanvas  * cxn = new TCanvas(cname, "Cluster X Y Z R, NCells cut", 800, 800) ;
+    cxn->Divide(2, 2);         
+    //R
+    cxn->cd(1) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    TLegend pLegendXClN(0.83,0.6,0.95,0.93);
+    pLegendXClN.SetTextSize(0.03);
+    pLegendXClN.SetFillColor(10);
+    pLegendXClN.SetBorderSize(1);
+    
+    delete htmp; 
+    htmp = fhRNCells->ProjectionX("hrn_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbR);
+      htmp->SetTitle("r of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(rmin,rmax,"X");
+      htmp->Draw("HE");
+      pLegendXClN.AddEntry(htmp,"No cut","L");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        if(i < ncellcuts-1) htmp = fhRNCells->ProjectionX(Form("hrn_cluster_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhRNCells->ProjectionX(Form("hrn_cluster_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbR);
+        htmp->Draw("same HE");
+        if(i < ncellcuts-1) pLegendXClN.AddEntry(htmp,Form("n = %1.1d",ncellcut[i]-1),"L");
+        else pLegendXClN.AddEntry(htmp,Form("n >= %1.1d",ncellcut[i]-1),"L");
+        
+      }
+    }
+    pLegendXClN.Draw();
+    
+    //X
+    cxn->cd(2) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhXNCells->ProjectionX("hxn_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbX);
+      htmp->SetTitle("x of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(xmin,xmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        if(i < ncellcuts-1)htmp = fhXNCells->ProjectionX(Form("hxn_cluster_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhXNCells->ProjectionX(Form("hxn_cluster_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbX);
+        htmp->Draw("same HE");   
+      }
+    }
+    //Y
+    cxn->cd(3) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhYNCells->ProjectionX("hyn_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbY);
+      htmp->SetTitle("y of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(ymin,ymax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        if(i < ncellcuts-1) htmp = fhYNCells->ProjectionX(Form("hyn_cluster_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhYNCells->ProjectionX(Form("hyn_cluster_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbY);
+        htmp->Draw("same HE");  
+      }
+    }
+    //Z
+    cxn->cd(4) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhZNCells->ProjectionX("hzn_cluster_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbZ);
+      htmp->SetTitle("z of clusters for energy in cluster > threshold");
+      htmp->SetAxisRange(zmin,zmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        if(i < ncellcuts-1)htmp = fhZNCells->ProjectionX(Form("hzn_cluster_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhZNCells->ProjectionX(Form("hzn_cluster_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbZ);
+        htmp->Draw("same HE");    
+      }
+    }
+    
+    snprintf(name,buffersize,"QA_%s_ClusterX_Y_Z_R_NCellsCut.eps",fCalorimeter.Data());
+    cxn->Print(name); printf("Create plot %s\n",name);
+    
+    
+    //----------------------------------------------------------
+    // Cell X, Y, Z, R, energy cut dependence
+    //---------------------------------------------------------        
+    
+    snprintf(cname,buffersize,"%s_QA_CellX_Y_Z_R_ECut",fCalorimeter.Data());
+    TCanvas  * cxecell = new TCanvas(cname, "Cell X Y Z R, E cut", 800, 800) ;
+    cxecell->Divide(2, 2);             
+    //R
+    cxecell->cd(1) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    TLegend pLegendXCell(0.83,0.6,0.95,0.93);
+    pLegendXCell.SetTextSize(0.03);
+    pLegendXCell.SetFillColor(10);
+    pLegendXCell.SetBorderSize(1);
+    
+    delete htmp; 
+    htmp = fhRCellE->ProjectionX("hre_cell_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbR);
+      htmp->SetTitle("r of cells for energy in cluster > threshold");
+      htmp->SetAxisRange(rmin,rmax,"X");
+      htmp->Draw("HE");
+      pLegendXCell.AddEntry(htmp,"No cut","L");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhRCellE->ProjectionX(Form("hre_celr_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbR);
+        htmp->Draw("same HE");
+        pLegendXCell.AddEntry(htmp,Form("E>%1.1f",ecut[i]),"L"); 
+      }
+    }
+    pLegendXCell.Draw();
+    
+    //X
+    cxecell->cd(2) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhXCellE->ProjectionX("hxe_cells_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbX);
+      htmp->SetTitle("x of cells for energy in cluster > threshold");
+      htmp->SetAxisRange(xmin,xmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        htmp = fhXCellE->ProjectionX(Form("hxe_cells_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbX);
+        htmp->Draw("same HE");
+      }
+    }
+    //Y
+    cxecell->cd(3) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhYCellE->ProjectionX("hye_cells_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbY);
+      htmp->SetTitle("y of cells for energy in cluster > threshold");
+      htmp->SetAxisRange(ymin,ymax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhYCellE->ProjectionX(Form("hye_cells_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbY);
+        htmp->Draw("same HE");
+      }
+    }
+    //Z
+    cxecell->cd(4) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhZCellE->ProjectionX("hze_cells_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbZ);
+      htmp->SetTitle("z of cells for energy in cluster > threshold");
+      htmp->SetAxisRange(zmin,zmax,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhZCellE->ProjectionX(Form("hze_cells_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbZ);
+        htmp->Draw("same HE"); 
+      }
+    }
+    snprintf(name,buffersize,"QA_%s_CellX_Y_Z_R_ECut.eps",fCalorimeter.Data());
+    cxecell->Print(name); printf("Create plot %s\n",name);
+    
+    
+    //----------------------------------------------------------
+    // Cluster-Cell X, Y, Z, R, cluster energy cut dependence
+    //---------------------------------------------------------        
+    Int_t rbDR= 1;//rbR;
+    Int_t rbDX= 1;//rbX;
+    Int_t rbDY= 1;//rbY;
+    Int_t rbDZ= 1;//rbZ;
+    
+    snprintf(cname,buffersize,"%s_QA_DeltaClusterCellX_Y_Z_R_ECut",fCalorimeter.Data());
+    TCanvas  * cxde = new TCanvas(cname, "Cluster-Cell X, Y, Z, R, E cut", 800, 800) ;
+    cxde->Divide(2, 2);                
+    //R
+    cxde->cd(1) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    TLegend pLegendXClD(0.83,0.6,0.95,0.93);
+    pLegendXClD.SetTextSize(0.03);
+    pLegendXClD.SetFillColor(10);
+    pLegendXClD.SetBorderSize(1);
+    
+    delete htmp; 
+    htmp = fhDeltaCellClusterRE->ProjectionX("hrde_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDR);
+      htmp->SetTitle("r clusters - r cells for energy in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      pLegendXCl.AddEntry(htmp,"No cut","L");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhDeltaCellClusterRE->ProjectionX(Form("hrde_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDR);
+        htmp->Draw("same HE");
+        pLegendXClD.AddEntry(htmp,Form("E>%1.1f",ecut[i]),"L");
+      }
+    }
+    pLegendXClD.Draw();
+    
+    //X
+    cxde->cd(2) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhDeltaCellClusterXE->ProjectionX("hxde_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDX);
+      htmp->SetTitle("x clusters -x cells for energy in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhDeltaCellClusterXE->ProjectionX(Form("hxde_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDX);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    //Y
+    cxde->cd(3) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhDeltaCellClusterYE->ProjectionX("hyde_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDY);
+      htmp->SetTitle("y clusters - ycells for energy in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhDeltaCellClusterYE->ProjectionX(Form("hyde_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDY);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    //Z
+    cxde->cd(4) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    delete htmp; 
+    htmp = fhDeltaCellClusterZE->ProjectionX("hzde_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbZ);
+      htmp->SetTitle("z clusters - z cells for energy in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncuts; i++) {
+        binmin =  hE->FindBin(ecut[i]);
+        //printf(" bins %d for e %f\n",binmin[i],ecut[i]);
+        delete htmp; 
+        htmp = fhDeltaCellClusterZE->ProjectionX(Form("hzde_cut%d",i),binmin,-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbZ);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    
+    snprintf(name,buffersize,"QA_%s_DeltaClusterCellX_Y_Z_R_ECut.eps",fCalorimeter.Data());
+    cxde->Print(name); printf("Create plot %s\n",name);
+    
+    
+    //----------------------------------------------------------
+    // Cluster-Cell X, Y, Z, R, NCells in cluster dependence
+    //---------------------------------------------------------        
+    snprintf(cname,buffersize,"%s_QA_DeltaClusterCellX_Y_Z_R_NCellsCut",fCalorimeter.Data());
+    TCanvas  * cxdn = new TCanvas(cname, "Cluster-Cell X Y Z R, NCells cut", 800, 800) ;
+    cxdn->Divide(2, 2);                
+    //R
+    cxdn->cd(1) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    
+    TLegend pLegendXClDN(0.83,0.6,0.95,0.93);
+    pLegendXClDN.SetTextSize(0.03);
+    pLegendXClDN.SetFillColor(10);
+    pLegendXClDN.SetBorderSize(1);
+    delete htmp; 
+    htmp = fhDeltaCellClusterRNCells->ProjectionX("hrdn_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDR);
+      htmp->SetTitle("r clusters - r cells for n cells in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      pLegendXClDN.AddEntry(htmp,"No cut","L");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        delete htmp; 
+        if(i < ncellcuts-1) htmp = fhDeltaCellClusterRNCells->ProjectionX(Form("hrdn_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhDeltaCellClusterRNCells->ProjectionX(Form("hrdn_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDR);
+        htmp->Draw("same HE");
+        if(i < ncellcuts-1) pLegendXClDN.AddEntry(htmp,Form("n = %1.1d",ncellcut[i]-1),"L");
+        else pLegendXClDN.AddEntry(htmp,Form("n >= %1.1d",ncellcut[i]-1),"L");
+        
+      }
+    }
+    pLegendXClDN.Draw();
+    
+    //X
+    cxdn->cd(2) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhDeltaCellClusterXNCells->ProjectionX("hxdn_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDX);
+      htmp->SetTitle("x clusters - x cells for n cells in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        delete htmp; 
+        if(i < ncellcuts-1)htmp = fhDeltaCellClusterXNCells->ProjectionX(Form("hxdn_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhDeltaCellClusterXNCells->ProjectionX(Form("hxdn_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDX);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    //Y
+    cxdn->cd(3) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhDeltaCellClusterYNCells->ProjectionX("hydn_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDY);
+      htmp->SetTitle("y clusters - y cells for n cells in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        delete htmp; 
+        if(i < ncellcuts-1) htmp = fhDeltaCellClusterYNCells->ProjectionX(Form("hydn_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhDeltaCellClusterYNCells->ProjectionX(Form("hydn_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDY);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    //Z
+    cxdn->cd(4) ; 
+    gPad->SetLogy();
+    gPad->SetGridy();
+    delete htmp; 
+    htmp = fhDeltaCellClusterZNCells->ProjectionX("hzdn_nocut",0,-1);
+    if(htmp){
+      htmp->SetMinimum(1);
+      htmp->Rebin(rbDZ);
+      htmp->SetTitle("z clusters - z cells for ncells in cluster > threshold");
+      htmp->SetAxisRange(-50,50,"X");
+      htmp->Draw("HE");
+      
+      for (Int_t i = 0; i < ncellcuts; i++) {
+        delete htmp; 
+        if(i < ncellcuts-1)htmp = fhDeltaCellClusterZNCells->ProjectionX(Form("hzdn_cut%d",i),ncellcut[i],ncellcut[i]);
+        else htmp = fhDeltaCellClusterZNCells->ProjectionX(Form("hzdn_cut%d",i),ncellcut[i],-1);
+        htmp->SetLineColor(ecutcolor[i]);
+        htmp->Rebin(rbDZ);
+        htmp->Draw("same HE");
+        
+      }
+    }
+    
+    snprintf(name,buffersize,"QA_%s_DeltaClusterCellX_Y_Z_R_NCellsCut.eps",fCalorimeter.Data());
+    cxdn->Print(name); printf("Create plot %s\n",name);
+    
+  }
+  
+  //----------------------------------------------------------
+  //Reconstructed clusters energy-eta-phi distributions, matched with tracks
+  //----------------------------------------------------------
+  TH1F *       hEChargedClone   = 0 ;
+  TH1F *       hPtChargedClone  = 0 ;
+  TH1F *       hEtaChargedClone = 0 ;
+  TH1F *       hPhiChargedClone = 0 ;
+  if(fFillAllTH12){
+    hEChargedClone   = (TH1F*)   fhECharged->Clone(Form("%sClone",fhECharged->GetName()));
+    hPtChargedClone  = (TH1F*)   fhPtCharged->Clone(Form("%sClone",fhPtCharged->GetName()));
+    hEtaChargedClone = (TH1F*)   fhEtaCharged->Clone(Form("%sClone",fhEtaCharged->GetName()));
+    hPhiChargedClone = (TH1F*)   fhPhiCharged->Clone(Form("%sClone",fhPhiCharged->GetName()));
+    
+    snprintf(cname,buffersize,"QA_%s_rectrackmatch",fCalorimeter.Data());
+    TCanvas  * ccltm = new TCanvas(cname, "Reconstructed clusters E-Phi-Eta, matched with tracks", 1200, 400) ;
+    ccltm->Divide(3, 1);
+    
+    ccltm->cd(1) ; 
+    if(fhECharged->GetEntries() > 0) gPad->SetLogy();
+    fhECharged->Rebin(rbE);
+    fhECharged->SetAxisRange(ptmin,ptmax,"X");
+    fhECharged->SetMinimum(1);
+    fhECharged->Draw();
+    
+    ccltm->cd(2) ; 
+    if(fhPhiCharged->GetEntries() > 0) gPad->SetLogy();
+    fhPhiCharged->Rebin(rbPhi);
+    fhPhiCharged->SetAxisRange(phimin,phimax,"X");
+    fhPhiCharged->Draw();
+    fhPhiCharged->Draw();
+    
+    ccltm->cd(3) ;
+    if(fhEtaCharged->GetEntries() > 0) gPad->SetLogy();
+    fhEtaCharged->Rebin(rbEta);
+    fhEtaCharged->SetAxisRange(etamin,etamax,"X");     
+    fhEtaCharged->Draw();
+    fhEtaCharged->Draw();
+    
+    snprintf(name,buffersize,"QA_%s_ClusterEnergyPhiEta_TrackMatched.eps",fCalorimeter.Data());
+    ccltm->Print(name); printf("Plot: %s\n",name);
+    
+    //----------------------------------------------------------
+    // Ratio  of reconstructed clusters energy-eta-phi distributions, matched with tracks over all
+    //----------------------------------------------------------
+    
+    snprintf(cname,buffersize,"%s_QA_ChargedRatio",fCalorimeter.Data());
+    TCanvas  * ccharge = new TCanvas(cname, "Charged clusters over all clusters", 1200, 400) ;
+    ccharge->Divide(3, 1);
+    
+    ccharge->cd(1) ; 
+    fhECharged->Sumw2();
+    fhE->Sumw2();
+    fhECharged->Divide(fhE);
+    fhECharged->SetAxisRange(ptmin,ptmax,"X");
+    fhECharged->SetMaximum(0.5);
+    fhECharged->SetYTitle("track-matched clusters / all clusters");
+    fhECharged->Draw("HE");
+    
+    ccharge->cd(2) ; 
+    fhPhiCharged->Sumw2();
+    fhPhi->Rebin(rbPhi);
+    fhPhi->Sumw2();
+    fhPhiCharged->Divide(fhPhi);
+    fhPhiCharged->SetAxisRange(phimin,phimax,"X");
+    fhPhiCharged->SetMaximum(0.5);
+    fhPhiCharged->SetYTitle("track-matched clusters / all clusters");
+    fhPhiCharged->Draw("HE");
+    
+    ccharge->cd(3) ; 
+    fhEtaCharged->Sumw2();
+    fhEta->Rebin(rbEta);
+    fhEta->Sumw2();
+    fhEtaCharged->Divide(fhEta);
+    fhEtaCharged->SetAxisRange(etamin,etamax,"X");
+    fhEtaCharged->SetMaximum(0.5);
+    fhEtaCharged->SetYTitle("track-matched clusters / all clusters");
+    fhEtaCharged->Draw("HE");
+    
+    snprintf(name,buffersize,"QA_%s_ClustersMatchedToAllRatios.eps",fCalorimeter.Data());
+    ccharge->Print(name); printf("Create plot %s\n",name);
+  }
+  //-------------------------------------------        
+  // N Cells - N Clusters - N Cells per cluster
+  //-------------------------------------------
+  snprintf(cname,buffersize,"QA_%s_nclustercells",fCalorimeter.Data());
+  TCanvas  * cN = new TCanvas(cname, " Number of CaloClusters and CaloCells", 800, 1200) ;
+  cN->Divide(2, 3);
+  
+  cN->cd(1) ; 
+  
+  TLegend pLegendN(0.7,0.6,0.9,0.8);
+  pLegendN.SetTextSize(0.03);
+  pLegendN.AddEntry(fhNClusters,"all modules","L");
+  pLegendN.SetFillColor(10);
+  pLegendN.SetBorderSize(1);
+  
+  if(fhNClusters->GetEntries() > 0) gPad->SetLogy();
+  gPad->SetLogx();
+  fhNClusters->SetLineColor(1);
+  
+  Int_t rbN = 1;
+  if(fhNClusters->GetNbinsX()> nbins) rbN = fhNClusters->GetNbinsX()/nbins;
+  
+  fhNClusters->SetAxisRange(nmin,nmax,"X");
+  fhNClusters->Draw("HE");
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    fhNClustersMod[imod]->SetAxisRange(nmin,nmax,"X");
+    fhNClustersMod[imod]->SetLineColor(modColorIndex[imod]);
+    fhNClustersMod[imod]->Draw("same");
+    pLegendN.AddEntry(fhNClustersMod[imod],Form("module %d",imod),"L");
+  }
+  pLegendN.Draw();
+  
+  cN->cd(2) ; 
+  gPad->SetLogx();
+  for(Int_t imod = 1; imod < fNModules; imod++){
+    delete htmp; 
+    htmp = (TH1D*)fhNClustersMod[imod]->Clone(Form("hNClustersRat%d",imod));
+    htmp->Divide(fhNClustersMod[0]);
+    htmp->SetLineColor(modColorIndex[imod]);
+    if(imod==1){
+      htmp->SetTitle("Ratio # clusters in  module X / module 0");
+      htmp->SetMaximum(5);
+      htmp->SetMinimum(0);
+      htmp->Draw("HE");
+    }
+    else 
+      htmp->Draw("same HE");
+    
+  }
+  
+  cN->cd(3) ; 
+  if(fhNCells->GetEntries() > 0) gPad->SetLogy();
+  gPad->SetLogx();
+  fhNCells->SetLineColor(1);
+  fhNCells->SetAxisRange(nmin,nmax,"X");
+  fhNCells->Draw("HE");
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    fhNCellsMod[imod]->SetAxisRange(nmin,nmax,"X");
+    fhNCellsMod[imod]->SetLineColor(modColorIndex[imod]);
+    fhNCellsMod[imod]->Draw("same HE");
+  }
+  
+  
+  cN->cd(4) ; 
+  gPad->SetLogx();
+  for(Int_t imod = 1; imod < fNModules; imod++){
+    delete htmp; 
+    htmp = (TH1D*)fhNCellsMod[imod]->Clone(Form("hNCellsRat%d",imod));
+    htmp->Divide(fhNCellsMod[0]);
+    htmp->SetLineColor(modColorIndex[imod]);
+    if(imod==1){
+      htmp->SetTitle("Ratio # cells in  module X / module 0");
+      htmp->SetMaximum(5);
+      htmp->SetMinimum(0);
+      htmp->Draw("HE");
+    }
+    else 
+      htmp->Draw("same HE");
+    
+  }
+  
+  cN->cd(5) ; 
+  if(fhNCellsPerCluster->GetEntries() > 0) gPad->SetLogy();
+  gPad->SetLogx();
+  TH1D *cpc = fhNCellsPerCluster->ProjectionY("cpc",-1,-1);
+  cpc->SetLineColor(1);
+  cpc->SetTitle("# cells per cluster");
+  cpc->Draw("HE"); 
+  TH1D ** hNCellsCluster1D = new TH1D*[fNModules];
+  
+  for(Int_t imod = 0; imod < fNModules; imod++){
+    hNCellsCluster1D[imod] = fhNCellsPerClusterMod[imod]->ProjectionY(Form("cpc_%d",imod),-1,-1);
+    hNCellsCluster1D[imod]->SetLineColor(modColorIndex[imod]);
+    hNCellsCluster1D[imod]->Draw("same HE");
+  }
+  
+  
+  cN->cd(6) ; 
+  gPad->SetLogx();
+  for(Int_t imod = 1; imod < fNModules; imod++){
+    delete htmp; 
+    htmp = (TH1D*)hNCellsCluster1D[imod]->Clone(Form("hNClustersCells1DRat%d",imod));
+    htmp->Divide(hNCellsCluster1D[0]);
+    htmp->SetLineColor(modColorIndex[imod]);
+    if(imod==1){
+      htmp->SetTitle("Ratio # cells per cluster in  module X / module 0");
+      //htmp->SetAxisRange(ptmin,ptmax,"X");
+      htmp->SetMaximum(3.5);
+      htmp->SetMinimum(0);
+      htmp->Draw("HE");
+    }
+    else 
+      htmp->Draw("same HE");
+  }
+  delete [] hNCellsCluster1D;
+  
+  snprintf(name,buffersize,"QA_%s_NumberCaloClustersAndCaloCells.eps",fCalorimeter.Data());
+  cN->Print(name); printf("Print plot %s\n",name);
+  
+  //----------------------------------------------------       
+  // Cell Time histograms, time only available in ESDs
+  //----------------------------------------------------
+  if(GetReader()->GetDataType()==AliCaloTrackReader::kESD) {
+    
+    snprintf(cname,buffersize,"QA_%s_cellstime",fCalorimeter.Data());
+    TCanvas  * ctime = new TCanvas(cname, " Cells time", 1200, 400) ;
+    ctime->Divide(3, 1);
+    
+    Int_t rbTime = 1;
+    if(fhTime->GetNbinsX()> ntimebins) rbTime = fhTime->GetNbinsX()/ntimebins;
+    
+    ctime->cd(1) ; 
+    if(fhTime->GetEntries() > 0) gPad->SetLogy();
+    fhTime->Rebin(rbTime);
+    fhTime->SetAxisRange(timemin,timemax,"X");
+    fhTime->Draw();
+    
+    ctime->cd(2) ; 
+    fhTimeId->SetTitleOffset(1.8,"Y");
+    fhTimeId->SetAxisRange(timemin,timemax,"X");
+    fhTimeId->Draw("colz");
+    
+    ctime->cd(3) ; 
+    fhTimeAmp->SetTitle("Cell Energy vs Cell Time");
+    fhTimeAmp->SetTitleOffset(1.8,"Y");
+    fhTimeAmp->SetAxisRange(timemin,timemax,"Y");
+    fhTimeAmp->SetAxisRange(ptmin,ptmax,"X");          
+    fhTimeAmp->Draw("colz");
+    
+    snprintf(name,buffersize,"QA_%s_CellsTime.eps",fCalorimeter.Data());
+    ctime->Print(name); printf("Plot: %s\n",name);
+  }
+  
+  
+  //---------------------------------
+  //Grid of cell per module plots 
+  //---------------------------------
+  {
+    //Number of entries per cell
+    gStyle->SetPadRightMargin(0.15);
+    snprintf(cname,buffersize,"%s_QA_GridCellEntries",fCalorimeter.Data());
+    TCanvas *cgrid   = new TCanvas("cgrid","Number of entries per cell", 12,12,800,400);
+    if(fNModules%2 == 0)
+      cgrid->Divide(fNModules/2,2); 
+    else
+      cgrid->Divide(fNModules/2+1,2); 
+               
+    for(Int_t imod = 0; imod < fNModules ; imod++){
+      cgrid->cd(imod+1);
+      gPad->SetLogz();
+      gPad->SetGridy();
+      gPad->SetGridx();
+      //fhGridCellsMod[imod]->GetYAxis()->SetTitleColor(1);
+      fhGridCellsMod[imod]->SetZTitle("Counts    ");
+      fhGridCellsMod[imod]->SetYTitle("row (phi direction)    ");
+      //fhGridCellsMod[imod]->SetLabelSize(0.025,"z");
+      fhGridCellsMod[imod]->Draw("colz");
+    }
+    snprintf(name,buffersize,"QA_%s_GridCellsEntries.eps",fCalorimeter.Data());
+    cgrid->Print(name); printf("Create plot %s\n",name);
+    
+    snprintf(cname,buffersize,"%s_QA_GridCellAccumEnergy",fCalorimeter.Data());
+    TCanvas *cgridE   = new TCanvas("cgridE","Summed energy per cell", 12,12,800,400);
+    if(fNModules%2 == 0)
+      cgridE->Divide(fNModules/2,2); 
+    else
+      cgridE->Divide(fNModules/2+1,2); 
+    for(Int_t imod = 0; imod < fNModules ; imod++){
+      cgridE->cd(imod+1);
+      gPad->SetLogz();
+      gPad->SetGridy();
+      gPad->SetGridx();
+      //fhGridCellsEMod[imod]->SetLabelSize(0.025,"z");
+      fhGridCellsEMod[imod]->SetZTitle("Accumulated Energy (GeV)    ");
+      fhGridCellsEMod[imod]->SetYTitle("row (phi direction)    ");
+      fhGridCellsEMod[imod]->Draw("colz");
+    }
+    snprintf(name,buffersize,"QA_%s_GridCellsAccumEnergy.eps",fCalorimeter.Data());
+    cgridE->Print(name); printf("Create plot %s\n",name);
+    
+    //Accumulated energy per cell
+    snprintf(cname,buffersize,"%s_QA_GridCellAverageEnergy",fCalorimeter.Data());
+    TCanvas *cgridEA   = new TCanvas("cgridEA","Average energy per cell", 12,12,800,400);
+    if(fNModules%2 == 0)         
+      cgridEA->Divide(fNModules/2,2);
+    else
+      cgridEA->Divide(fNModules/2+1,2);  
+    for(Int_t imod = 0; imod < fNModules ; imod++){
+      cgridEA->cd(imod+1);
+      gPad->SetLogz();
+      gPad->SetGridy();
+      gPad->SetGridx();
+      //fhGridCellsEMod[imod]->SetLabelSize(0.025,"z");
+      fhGridCellsEMod[imod]->SetZTitle("Average Energy (GeV)    ");
+      fhGridCellsEMod[imod]->Divide(fhGridCellsMod[imod]);
+      fhGridCellsEMod[imod]->Draw("colz");
+    }
+    snprintf(name,buffersize,"QA_%s_GridCellsAverageEnergy.eps",fCalorimeter.Data());
+    cgridEA->Print(name); printf("Create plot %s\n",name);
+               
+    //Accumulated Time per cell, E > 0.5 GeV
+               
+    snprintf(cname,buffersize,"%s_QA_GridCellAccumTime",fCalorimeter.Data());
+    TCanvas *cgridT   = new TCanvas("cgridT","Summed time per cell", 12,12,800,400);
+    if(fNModules%2 == 0)
+      cgridT->Divide(fNModules/2,2); 
+    else
+      cgridE->Divide(fNModules/2+1,2); 
+    for(Int_t imod = 0; imod < fNModules ; imod++){
+      cgridT->cd(imod+1);
+      gPad->SetLogz();
+      gPad->SetGridy();
+      gPad->SetGridx();
+      //fhGridCellsTimeMod[imod]->SetLabelSize(0.025,"z");
+      fhGridCellsTimeMod[imod]->SetZTitle("Accumulated Time (ns)    ");
+      fhGridCellsTimeMod[imod]->SetYTitle("row (phi direction)    ");
+      fhGridCellsTimeMod[imod]->Draw("colz");
+    }
+    snprintf(name,buffersize,"QA_%s_GridCellsAccumTime.eps",fCalorimeter.Data());
+    cgridT->Print(name); printf("Create plot %s\n",name);
+               
+  }
+  
+  //---------------------------------------------
+  //Calorimeter Correlation, PHOS vs EMCAL
+  //---------------------------------------------
+  if(fCorrelate){
+    
+    snprintf(cname,buffersize,"QA_%s_CaloCorr_EMCALvsPHOS",fCalorimeter.Data());
+    TCanvas  * ccorr = new TCanvas(cname, " EMCAL vs PHOS", 400, 400) ;
+    ccorr->Divide(2, 2);
+    
+    ccorr->cd(1) ; 
+    //gPad->SetLogy();
+    //gPad->SetLogx();
+    fhCaloCorrNClusters->SetAxisRange(nmin,nmax,"X");
+    fhCaloCorrNClusters->SetAxisRange(nmin,nmax,"Y");          
+    fhCaloCorrNClusters ->Draw();
+    
+    ccorr->cd(2) ; 
+    //gPad->SetLogy();
+    //gPad->SetLogx();
+    fhCaloCorrNCells->SetAxisRange(nmin,nmax,"X");
+    fhCaloCorrNCells->SetAxisRange(nmin,nmax,"Y");             
+    fhCaloCorrNCells->Draw();
+    
+    //gPad->SetLogy();
+    //gPad->SetLogx();
+    fhCaloCorrEClusters->SetAxisRange(ptmin,ptmax,"X");
+    fhCaloCorrEClusters->SetAxisRange(ptmin,ptmax,"Y");                
+    fhCaloCorrEClusters->Draw();
+    
+    ccorr->cd(4) ; 
+    //gPad->SetLogy();
+    //gPad->SetLogx();
+    fhCaloCorrECells->SetAxisRange(ptmin,ptmax,"X");
+    fhCaloCorrECells->SetAxisRange(ptmin,ptmax,"Y");           
+    fhCaloCorrECells->Draw();
+    
+    snprintf(name,buffersize,"QA_%s_CaloCorr_EMCALvsPHOS.eps",fCalorimeter.Data());
+    ccorr->Print(name); printf("Plot: %s\n",name);
+  }
+  
+  //----------------------------
+  //Invariant mass
+  //-----------------------------
        
-       //Track-matching distributions
-       if(!strcmp(GetReader()->GetInputEvent()->GetName(),"AliESDEvent")){
-               sprintf(cname,"QA_%s_trkmatch",fCalorimeter.Data());
-               TCanvas *cme = new TCanvas(cname,"Track-matching distributions", 400, 400);
-               cme->Divide(2,2);
+  Int_t imbinmin = -1;
+  Int_t imbinmax = -1;
+  
+  if(fhIM->GetEntries() > 1){
+    Int_t nebins  = fhIM->GetNbinsX();
+    Int_t emax = (Int_t) fhIM->GetXaxis()->GetXmax();
+    Int_t emin = (Int_t) fhIM->GetXaxis()->GetXmin();
+    if (emin != 0 ) printf("emin != 0 \n");
+    //printf("IM: nBinsX %d, emin %2.2f, emax %2.2f\n",nebins,emin,emax);
+    
+    snprintf(cname,buffersize,"QA_%s_IM",fCalorimeter.Data());
+    // printf("c5\n");
+    TCanvas  * c5 = new TCanvas(cname, "Invariant mass", 600, 400) ;
+    c5->Divide(2, 3);
+    
+    c5->cd(1) ; 
+    //fhIM->SetLineColor(4);
+    //fhIM->Draw();
+    imbinmin = 0;
+    imbinmax =  (Int_t) (1-emin)*nebins/emax;
+    TH1D *pyim1 = fhIM->ProjectionY(Form("%s_py1",fhIM->GetName()),imbinmin,imbinmax);
+    pyim1->SetTitle("E_{pair} < 1 GeV");
+    pyim1->SetLineColor(1);
+    pyim1->Draw();
+    TLegend pLegendIM(0.7,0.6,0.9,0.8);
+    pLegendIM.SetTextSize(0.03);
+    pLegendIM.AddEntry(pyim1,"all modules","L");
+    pLegendIM.SetFillColor(10);
+    pLegendIM.SetBorderSize(1);
+    //FIXME
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim1 = fhIMMod[imod]->ProjectionY(Form("%s_py1",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pLegendIM.AddEntry(pyim1,Form("module %d",imod),"L");
+      pyim1->SetLineColor(imod+1);
+      pyim1->Draw("same");
+    }
+    pLegendIM.Draw();
+    
+    c5->cd(2) ; 
+    imbinmin =  (Int_t) (1-emin)*nebins/emax;
+    imbinmax =  (Int_t) (2-emin)*nebins/emax;
+    TH1D *pyim2 = fhIM->ProjectionY(Form("%s_py2",fhIM->GetName()),imbinmin,imbinmax);
+    pyim2->SetTitle("1 < E_{pair} < 2 GeV");
+    pyim2->SetLineColor(1);
+    pyim2->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim2 = fhIMMod[imod]->ProjectionY(Form("%s_py2",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pyim2->SetLineColor(imod+1);
+      pyim2->Draw("same");
+    }
+    
+    c5->cd(3) ; 
+    imbinmin =  (Int_t) (2-emin)*nebins/emax;
+    imbinmax =  (Int_t) (3-emin)*nebins/emax;
+    TH1D *pyim3 = fhIM->ProjectionY(Form("%s_py3",fhIM->GetName()),imbinmin,imbinmax);
+    pyim3->SetTitle("2 < E_{pair} < 3 GeV");
+    pyim3->SetLineColor(1);
+    pyim3->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim3 = fhIMMod[imod]->ProjectionY(Form("%s_py3",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pyim3->SetLineColor(imod+1);
+      pyim3->Draw("same");
+    }
+    
+    c5->cd(4) ;
+    imbinmin =  (Int_t) (3-emin)*nebins/emax;
+    imbinmax =  (Int_t) (4-emin)*nebins/emax;
+    TH1D *pyim4 = fhIM->ProjectionY(Form("%s_py4",fhIM->GetName()),imbinmin,imbinmax);
+    pyim4->SetTitle("3 < E_{pair} < 4 GeV");
+    pyim4->SetLineColor(1);
+    pyim4->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim4 = fhIMMod[imod]->ProjectionY(Form("%s_py4",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pyim4->SetLineColor(imod+1);
+      pyim4->Draw("same");
+    }
+    
+    c5->cd(5) ;
+    imbinmin =  (Int_t) (4-emin)*nebins/emax;
+    imbinmax =  (Int_t) (5-emin)*nebins/emax;
+    TH1D *pyim5 = fhIM->ProjectionY(Form("%s_py5",fhIM->GetName()),imbinmin,imbinmax);
+    pyim5->SetTitle("4< E_{pair} < 5 GeV");
+    pyim5->SetLineColor(1);
+    pyim5->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim5 = fhIMMod[imod]->ProjectionY(Form("%s_py5",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pyim5->SetLineColor(imod+1);
+      pyim5->Draw("same");
+    }
+    
+    c5->cd(6) ;
+    imbinmin =  (Int_t) (5-emin)*nebins/emax;
+    imbinmax =  -1;
+    TH1D *pyim10 = fhIM->ProjectionY(Form("%s_py6",fhIM->GetName()),imbinmin,imbinmax);
+    pyim10->SetTitle("E_{pair} > 5 GeV");
+    pyim10->SetLineColor(1);
+    pyim10->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyim10 = fhIMMod[imod]->ProjectionY(Form("%s_py6",fhIMMod[imod]->GetName()),imbinmin,imbinmax);
+      pyim10->SetLineColor(imod+1);
+      pyim10->Draw("same");
+    }
+    
+    snprintf(name,buffersize,"QA_%s_InvariantMass.eps",fCalorimeter.Data());
+    c5->Print(name); printf("Plot: %s\n",name);
+  }
+  
+  //--------------------------------------------------
+  //Invariant mass, clusters with more than one cell
+  //-------------------------------------------------
+  if(fhIMCellCut->GetEntries() > 1){
+    Int_t nebins  = fhIMCellCut->GetNbinsX();
+    Int_t emax = (Int_t) fhIMCellCut->GetXaxis()->GetXmax();
+    Int_t emin = (Int_t) fhIMCellCut->GetXaxis()->GetXmin();
+    if (emin != 0 ) printf("emin != 0 \n");
+    //printf("IMCellCut: nBinsX %d, emin %2.2f, emax %2.2f\n",nebins,emin,emax);
                
-               cme->cd(1);
-               fh1pOverE->Draw();
+    snprintf(cname,buffersize,"QA_%s_IMCellCut",fCalorimeter.Data());
+    // printf("c5cc\n");
+    TCanvas  * c5cc = new TCanvas(cname, "Invariant mass, Cell Cut", 600, 400) ;
+    c5cc->Divide(2, 3);
+    
+    c5cc->cd(1) ; 
+    //fhIMCellCut->SetLineColor(4);
+    //fhIMCellCut->Draw();
+    imbinmin = 0;
+    imbinmax =  (Int_t) (1-emin)*nebins/emax;
+    TH1D *pyimcc1 = fhIMCellCut->ProjectionY(Form("%s_py1",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc1->SetTitle("E_{pair} < 1 GeV");
+    pyimcc1->SetLineColor(1);
+    pyimcc1->Draw();
+    TLegend pLegendIMCellCut(0.7,0.6,0.9,0.8);
+    pLegendIMCellCut.SetTextSize(0.03);
+    pLegendIMCellCut.AddEntry(pyimcc1,"all modules","L");
+    pLegendIMCellCut.SetFillColor(10);
+    pLegendIMCellCut.SetBorderSize(1);
+    
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc1 = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py1",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pLegendIMCellCut.AddEntry(pyimcc1,Form("module %d",imod),"L");
+      pyimcc1->SetLineColor(imod+1);
+      pyimcc1->Draw("same");
+    }
+    pLegendIMCellCut.Draw();
+    
+    c5cc->cd(2) ; 
+    imbinmin =  (Int_t) (1-emin)*nebins/emax;
+    imbinmax =  (Int_t) (2-emin)*nebins/emax;
+    TH1D *pyimcc2 = fhIMCellCut->ProjectionY(Form("%s_py2",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc2->SetTitle("1 < E_{pair} < 2 GeV");
+    pyimcc2->SetLineColor(1);
+    pyimcc2->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc2 = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py1",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pyimcc2->SetLineColor(imod+1);
+      pyimcc2->Draw("same");
+    }
+    
+    c5cc->cd(3) ; 
+    imbinmin =  (Int_t) (2-emin)*nebins/emax;
+    imbinmax =  (Int_t) (3-emin)*nebins/emax;
+    TH1D *pyimcc3 = fhIMCellCut->ProjectionY(Form("%s_py3",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc3->SetTitle("2 < E_{pair} < 3 GeV");
+    pyimcc3->SetLineColor(1);
+    pyimcc3->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc3 = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py1",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pyimcc3->SetLineColor(imod+1);
+      pyimcc3->Draw("same");
+    }
+    
+    c5cc->cd(4) ;
+    imbinmin =  (Int_t) (3-emin)*nebins/emax;
+    imbinmax =  (Int_t) (4-emin)*nebins/emax;
+    TH1D *pyimcc4 = fhIMCellCut->ProjectionY(Form("%s_py4",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc4->SetTitle("3 < E_{pair} < 4 GeV");
+    pyimcc4->SetLineColor(1);
+    pyimcc4->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc4 = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py5",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pyimcc4->SetLineColor(imod+1);
+      pyimcc4->Draw("same");
+    }
+    
+    c5cc->cd(5) ;
+    imbinmin =  (Int_t) (4-emin)*nebins/emax;
+    imbinmax =  (Int_t) (5-emin)*nebins/emax;
+    TH1D *pyimcc5cc = fhIMCellCut->ProjectionY(Form("%s_py5",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc5cc->SetTitle("4< E_{pair} < 5 GeV");
+    pyimcc5cc->SetLineColor(1);
+    pyimcc5cc->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc5cc = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py5",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pyimcc5cc->SetLineColor(imod+1);
+      pyimcc5cc->Draw("same");
+    }
+    
+    c5cc->cd(6) ;
+    imbinmin =  (Int_t) (5-emin)*nebins/emax;
+    imbinmax =  -1;
+    TH1D *pyimcc10 = fhIMCellCut->ProjectionY(Form("%s_py6",fhIMCellCut->GetName()),imbinmin,imbinmax);
+    pyimcc10->SetTitle("E_{pair} > 5 GeV");
+    pyimcc10->SetLineColor(1);
+    pyimcc10->Draw();
+    for(Int_t imod = 0; imod < fNModules; imod++){
+      pyimcc10 = fhIMCellCutMod[imod]->ProjectionY(Form("%s_py1",fhIMCellCutMod[imod]->GetName()),imbinmin,imbinmax);
+      pyimcc10->SetLineColor(imod+1);
+      pyimcc10->Draw("same");
+    }
+    
+    snprintf(name,buffersize,"QA_%s_InvariantMass_CellCut.eps",fCalorimeter.Data());
+    c5cc->Print(name); printf("Plot: %s\n",name);
+  }
+  
+  
+  //Asymmetry
+  if(fhAsym->GetEntries() > 1){
+    Int_t nebins  = fhAsym->GetNbinsX();
+    Int_t emax = (Int_t) fhAsym->GetXaxis()->GetXmax();
+    Int_t emin = (Int_t) fhAsym->GetXaxis()->GetXmin();
+    if (emin != 0 ) printf("emin != 0 \n");
+    //printf("Asym: nBinsX %d, emin %2.2f, emax %2.2f\n",nebins,emin,emax);
+    
+    snprintf(cname,buffersize,"QA_%s_Asym",fCalorimeter.Data());
+    // printf("c5\n");
+    TCanvas  * c5b = new TCanvas(cname, "Asymmetry", 400, 400) ;
+    c5b->Divide(2, 2);
+    
+    c5b->cd(1) ; 
+    fhAsym->SetTitleOffset(1.6,"Y");
+    fhAsym->SetLineColor(4);
+    fhAsym->Draw();
+    
+    c5b->cd(2) ; 
+    imbinmin = 0;
+    imbinmax = (Int_t) (5-emin)*nebins/emax;
+    TH1D *pyAsym5 = fhAsym->ProjectionY(Form("%s_py5",fhAsym->GetName()),imbinmin,imbinmax);
+    pyAsym5->SetTitle("E_{pair} < 5 GeV");
+    pyAsym5->SetLineColor(4);
+    pyAsym5->Draw();
+    
+    c5b->cd(3) ; 
+    imbinmin = (Int_t) (5-emin)*nebins/emax;
+    imbinmax = (Int_t) (10-emin)*nebins/emax;
+    TH1D *pyAsym510 = fhAsym->ProjectionY(Form("%s_py510",fhAsym->GetName()),imbinmin,imbinmax);
+    pyAsym510->SetTitle("5 < E_{pair} < 10 GeV");
+    pyAsym510->SetLineColor(4);
+    pyAsym510->Draw();
+    
+    c5b->cd(4) ;
+    imbinmin = (Int_t) (10-emin)*nebins/emax;
+    imbinmax = -1;
+    TH1D *pyAsym10 = fhAsym->ProjectionY(Form("%s_py10",fhAsym->GetName()),imbinmin,imbinmax);
+    pyAsym10->SetTitle("E_{pair} > 10 GeV");
+    pyAsym10->SetLineColor(4);
+    pyAsym10->Draw();
+    
+    snprintf(name,buffersize,"QA_%s_Asymmetry.eps",fCalorimeter.Data());
+    c5b->Print(name); printf("Plot: %s\n",name);
+  }
+  
+  
+  if(IsDataMC()){
+    //Reconstructed vs MC distributions
+    //printf("c6\n");
+    snprintf(cname,buffersize,"QA_%s_recvsmc",fCalorimeter.Data());
+    TCanvas  * c6 = new TCanvas(cname, "Reconstructed vs MC distributions", 400, 400) ;
+    c6->Divide(2, 2);
+    
+    c6->cd(1) ; 
+    fh2E->SetTitleOffset(1.6,"Y");
+    fh2E->SetLineColor(4);
+    fh2E->Draw();
+    
+    c6->cd(2) ; 
+    fh2Pt->SetTitleOffset(1.6,"Y");
+    fh2Pt->SetLineColor(4);
+    fh2Pt->Draw();
+    
+    c6->cd(3) ; 
+    fh2Phi->SetTitleOffset(1.6,"Y");
+    fh2Phi->SetLineColor(4);
+    fh2Phi->Draw();
+    
+    c6->cd(4) ; 
+    fh2Eta->SetTitleOffset(1.6,"Y");
+    fh2Eta->SetLineColor(4);
+    fh2Eta->Draw();
+    
+    snprintf(name,buffersize,"QA_%s_ReconstructedVSMCDistributions.eps",fCalorimeter.Data());
+    c6->Print(name); printf("Plot: %s\n",name);        
+    
+    //Reconstructed vs MC distributions
+    //printf("c6\n");
+    snprintf(cname,buffersize,"QA_%s_gamrecvsmc",fCalorimeter.Data());
+    TCanvas  * c6Gam = new TCanvas(cname, "Reconstructed vs MC distributions", 400, 400) ;
+    c6Gam->Divide(2, 2);
+    
+    c6Gam->cd(1) ; 
+    fhGamE->Draw();
+    
+    c6Gam->cd(2) ; 
+    fhGamPt->Draw();
+    
+    c6Gam->cd(3) ; 
+    fhGamPhi->Draw();
+    
+    c6Gam->cd(4) ; 
+    fhGamEta->Draw();
+    
+    snprintf(name,buffersize,"QA_%s_GammaReconstructedVSMCDistributions.eps",fCalorimeter.Data());
+    c6->Print(name); printf("Plot: %s\n",name);        
+    
+    //Generated - reconstructed  
+    //printf("c7\n");
+    snprintf(cname,buffersize,"QA_%s_diffgenrec",fCalorimeter.Data());
+    TCanvas  * c7 = new TCanvas(cname, "generated - reconstructed", 400, 400) ;
+    c7->Divide(2, 2);
+    
+    c7->cd(1) ; 
+    if(fhDeltaE->GetEntries() > 0) gPad->SetLogy();
+    fhGamDeltaE->SetLineColor(4);
+    fhDeltaE->Draw();
+    fhGamDeltaE->Draw("same");
+    
+    TLegend pLegendd(0.65,0.55,0.9,0.8);
+    pLegendd.SetTextSize(0.06);
+    pLegendd.AddEntry(fhDeltaE,"all","L");
+    pLegendd.AddEntry(fhGamDeltaE,"from  #gamma","L");
+    pLegendd.SetFillColor(10);
+    pLegendd.SetBorderSize(1);
+    pLegendd.Draw();
+    
+    c7->cd(2) ; 
+    if(fhDeltaPt->GetEntries() > 0) gPad->SetLogy();
+    fhGamDeltaPt->SetLineColor(4);
+    fhDeltaPt->Draw();
+    fhGamDeltaPt->Draw("same");
+    
+    c7->cd(3) ; 
+    fhGamDeltaPhi->SetLineColor(4);
+    fhDeltaPhi->Draw();
+    fhGamDeltaPhi->Draw("same");
+    
+    c7->cd(4) ; 
+    fhGamDeltaEta->SetLineColor(4);
+    fhDeltaEta->Draw();
+    fhGamDeltaEta->Draw("same");
+    
+    snprintf(name,buffersize,"QA_%s_DiffGeneratedReconstructed.eps",fCalorimeter.Data());
+    c7->Print(name); printf("Plot: %s\n",name);
+    
+    // Reconstructed / Generated 
+    //printf("c8\n");
+    snprintf(cname,buffersize,"QA_%s_ratiorecgen",fCalorimeter.Data());
+    TCanvas  * c8 = new TCanvas(cname, " reconstructed / generated", 400, 400) ;
+    c8->Divide(2, 2);
+    
+    c8->cd(1) ; 
+    if(fhRatioE->GetEntries() > 0) gPad->SetLogy();
+    fhGamRatioE->SetLineColor(4);
+    fhRatioE->Draw();
+    fhGamRatioE->Draw("same");
+    
+    TLegend pLegendr(0.65,0.55,0.9,0.8);
+    pLegendr.SetTextSize(0.06);
+    pLegendr.AddEntry(fhRatioE,"all","L");
+    pLegendr.AddEntry(fhGamRatioE,"from  #gamma","L");
+    pLegendr.SetFillColor(10);
+    pLegendr.SetBorderSize(1);
+    pLegendr.Draw();
+    
+    c8->cd(2) ; 
+    if(fhRatioPt->GetEntries() > 0) gPad->SetLogy();
+    fhGamRatioPt->SetLineColor(4);
+    fhRatioPt->Draw();
+    fhGamRatioPt->Draw("same");
+    
+    c8->cd(3) ; 
+    fhGamRatioPhi->SetLineColor(4);
+    fhRatioPhi->Draw();
+    fhGamRatioPhi->Draw("same");
+    
+    c8->cd(4) ; 
+    fhGamRatioEta->SetLineColor(4);
+    fhRatioEta->Draw();
+    fhGamRatioEta->Draw("same");
+    
+    snprintf(name,buffersize,"QA_%s_ReconstructedDivGenerated.eps",fCalorimeter.Data());
+    c8->Print(name); printf("Plot: %s\n",name);
+    
+    //MC
+    
+    //Generated distributions
+    //printf("c1\n");
+    snprintf(cname,buffersize,"QA_%s_gen",fCalorimeter.Data());
+    TCanvas  * c10 = new TCanvas(cname, "Generated distributions", 600, 200) ;
+    c10->Divide(3, 1);
+    
+    c10->cd(1) ; 
+    gPad->SetLogy();
+    TH1F * haxispt  = (TH1F*) fhGenPi0Pt->Clone(Form("%s_axispt",fhGenPi0Pt->GetName()));  
+    haxispt->SetTitle("Generated Particles p_{T}, |#eta| < 1");
+    fhGenPi0Pt->SetLineColor(1);
+    fhGenGamPt->SetLineColor(4);
+    fhGenEtaPt->SetLineColor(2);
+    fhGenOmegaPt->SetLineColor(7);
+    fhGenElePt->SetLineColor(6);
+    
+    //Select the maximum of the histogram to show all lines.
+    if(fhGenPi0Pt->GetMaximum() >= fhGenGamPt->GetMaximum() && fhGenPi0Pt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
+       fhGenPi0Pt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenPi0Pt->GetMaximum() >= fhGenElePt->GetMaximum())
+      haxispt->SetMaximum(fhGenPi0Pt->GetMaximum());
+    else if(fhGenGamPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenGamPt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
+            fhGenGamPt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenGamPt->GetMaximum() >= fhGenElePt->GetMaximum())
+      haxispt->SetMaximum(fhGenGamPt->GetMaximum());
+    else if(fhGenEtaPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenEtaPt->GetMaximum() >= fhGenGamPt->GetMaximum() && 
+            fhGenEtaPt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenEtaPt->GetMaximum() >= fhGenElePt->GetMaximum())
+      haxispt->SetMaximum(fhGenEtaPt->GetMaximum());   
+    else if(fhGenOmegaPt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenOmegaPt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
+            fhGenOmegaPt->GetMaximum() >= fhGenGamPt->GetMaximum() && fhGenOmegaPt->GetMaximum() >= fhGenElePt->GetMaximum())
+      haxispt->SetMaximum(fhGenOmegaPt->GetMaximum());
+    else if(fhGenElePt->GetMaximum() >= fhGenPi0Pt->GetMaximum() && fhGenElePt->GetMaximum() >= fhGenEtaPt->GetMaximum() && 
+            fhGenElePt->GetMaximum() >= fhGenOmegaPt->GetMaximum() && fhGenElePt->GetMaximum() >= fhGenGamPt->GetMaximum())
+      haxispt->SetMaximum(fhGenElePt->GetMaximum());
+    haxispt->SetMinimum(1);
+    haxispt->Draw("axis");
+    fhGenPi0Pt->Draw("same");
+    fhGenGamPt->Draw("same");
+    fhGenEtaPt->Draw("same");
+    fhGenOmegaPt->Draw("same");
+    fhGenElePt->Draw("same");
+    
+    TLegend pLegend(0.85,0.65,0.95,0.93);
+    pLegend.SetTextSize(0.06);
+    pLegend.AddEntry(fhGenPi0Pt,"  #pi^{0}","L");
+    pLegend.AddEntry(fhGenGamPt,"  #gamma","L");
+    pLegend.AddEntry(fhGenEtaPt,"  #eta","L");
+    pLegend.AddEntry(fhGenOmegaPt,"  #omega","L");
+    pLegend.AddEntry(fhGenElePt,"  e^{#pm}","L");
+    pLegend.SetFillColor(10);
+    pLegend.SetBorderSize(1);
+    pLegend.Draw();
+    
+    c10->cd(2) ;
+    gPad->SetLogy();
+    TH1F * haxiseta  = (TH1F*) fhGenPi0Eta->Clone(Form("%s_axiseta",fhGenPi0Eta->GetName()));  
+    haxiseta->SetTitle("Generated Particles #eta, |#eta| < 1");
+    fhGenPi0Eta->SetLineColor(1);
+    fhGenGamEta->SetLineColor(4);
+    fhGenEtaEta->SetLineColor(2);
+    fhGenOmegaEta->SetLineColor(7);
+    fhGenEleEta->SetLineColor(6);
+    //Select the maximum of the histogram to show all lines.
+    if(fhGenPi0Eta->GetMaximum() >= fhGenGamEta->GetMaximum() && fhGenPi0Eta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
+       fhGenPi0Eta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenPi0Eta->GetMaximum() >= fhGenEleEta->GetMaximum())
+      haxiseta->SetMaximum(fhGenPi0Eta->GetMaximum());
+    else if(fhGenGamEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenGamEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
+            fhGenGamEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenGamEta->GetMaximum() >= fhGenEleEta->GetMaximum())
+      haxiseta->SetMaximum(fhGenGamEta->GetMaximum());
+    else if(fhGenEtaEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenEtaEta->GetMaximum() >= fhGenGamEta->GetMaximum() && 
+            fhGenEtaEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenEtaEta->GetMaximum() >= fhGenEleEta->GetMaximum())
+      haxiseta->SetMaximum(fhGenEtaEta->GetMaximum()); 
+    else if(fhGenOmegaEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenOmegaEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
+            fhGenOmegaEta->GetMaximum() >= fhGenGamEta->GetMaximum() && fhGenOmegaEta->GetMaximum() >= fhGenEleEta->GetMaximum())
+      haxiseta->SetMaximum(fhGenOmegaEta->GetMaximum());
+    else if(fhGenEleEta->GetMaximum() >= fhGenPi0Eta->GetMaximum() && fhGenEleEta->GetMaximum() >= fhGenEtaEta->GetMaximum() && 
+            fhGenEleEta->GetMaximum() >= fhGenOmegaEta->GetMaximum() && fhGenEleEta->GetMaximum() >= fhGenGamEta->GetMaximum())
+      haxiseta->SetMaximum(fhGenEleEta->GetMaximum());
+    haxiseta->SetMinimum(100);
+    haxiseta->Draw("axis");
+    fhGenPi0Eta->Draw("same");
+    fhGenGamEta->Draw("same");
+    fhGenEtaEta->Draw("same");
+    fhGenOmegaEta->Draw("same");
+    fhGenEleEta->Draw("same");
+    
+    
+    c10->cd(3) ; 
+    gPad->SetLogy();
+    TH1F * haxisphi  = (TH1F*) fhGenPi0Phi->Clone(Form("%s_axisphi",fhGenPi0Phi->GetName()));  
+    haxisphi->SetTitle("Generated Particles #phi, |#eta| < 1");
+    fhGenPi0Phi->SetLineColor(1);
+    fhGenGamPhi->SetLineColor(4);
+    fhGenEtaPhi->SetLineColor(2);
+    fhGenOmegaPhi->SetLineColor(7);
+    fhGenElePhi->SetLineColor(6);
+    //Select the maximum of the histogram to show all lines.
+    if(fhGenPi0Phi->GetMaximum() >= fhGenGamPhi->GetMaximum() && fhGenPi0Phi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
+       fhGenPi0Phi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenPi0Phi->GetMaximum() >= fhGenElePhi->GetMaximum())
+      haxisphi->SetMaximum(fhGenPi0Phi->GetMaximum());
+    else if(fhGenGamPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenGamPhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
+            fhGenGamPhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenGamPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
+      haxisphi->SetMaximum(fhGenGamPhi->GetMaximum());
+    else if(fhGenEtaPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenEtaPhi->GetMaximum() >= fhGenGamPhi->GetMaximum() && 
+            fhGenEtaPhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenEtaPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
+      haxisphi->SetMaximum(fhGenEtaPhi->GetMaximum()); 
+    else if(fhGenOmegaPhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenOmegaPhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
+            fhGenOmegaPhi->GetMaximum() >= fhGenGamPhi->GetMaximum() && fhGenOmegaPhi->GetMaximum() >= fhGenElePhi->GetMaximum())
+      haxisphi->SetMaximum(fhGenOmegaPhi->GetMaximum());
+    else if(fhGenElePhi->GetMaximum() >= fhGenPi0Phi->GetMaximum() && fhGenElePhi->GetMaximum() >= fhGenEtaPhi->GetMaximum() && 
+            fhGenElePhi->GetMaximum() >= fhGenOmegaPhi->GetMaximum() && fhGenElePhi->GetMaximum() >= fhGenGamPhi->GetMaximum())
+      haxisphi->SetMaximum(fhGenElePhi->GetMaximum());
+    haxisphi->SetMinimum(100);
+    haxisphi->Draw("axis");
+    fhGenPi0Phi->Draw("same");
+    fhGenGamPhi->Draw("same");
+    fhGenEtaPhi->Draw("same");
+    fhGenOmegaPhi->Draw("same");
+    fhGenElePhi->Draw("same");
+    
+    snprintf(name,buffersize,"QA_%s_GeneratedDistributions.eps",fCalorimeter.Data());
+    c10->Print(name); printf("Plot: %s\n",name);
+    
+    
+    //Reconstructed clusters depending on its original particle.
+    //printf("c1\n");
+    snprintf(cname,buffersize,"QA_%s_recgenid",fCalorimeter.Data());
+    TCanvas  * c11 = new TCanvas(cname, "Reconstructed particles, function of their original particle ID", 400, 400) ;
+    c11->Divide(2, 2);
+    
+    
+    c11->cd(1) ; 
+    gPad->SetLogy();
+    TH1F * hGamE   = (TH1F*) fhGamE->ProjectionX(Form("%s_px",fhGamE->GetName()),-1,-1);
+    TH1F * hPi0E   = (TH1F*) fhPi0E->ProjectionX(Form("%s_px",fhPi0E->GetName()),-1,-1);
+    TH1F * hEleE   = (TH1F*) fhEleE->ProjectionX(Form("%s_px",fhEleE->GetName()),-1,-1);
+    TH1F * hNeHadE = (TH1F*) fhNeHadE->ProjectionX(Form("%s_px",fhNeHadE->GetName()),-1,-1);
+    TH1F * hChHadE = (TH1F*) fhChHadE->ProjectionX(Form("%s_px",fhChHadE->GetName()),-1,-1);
+    TH1F * haxisE  = (TH1F*) hPi0E->Clone(Form("%s_axisE",fhPi0E->GetName()));  
+    haxisE->SetTitle("Reconstructed particles E, function of their original particle ID");
+    hPi0E->SetLineColor(1);
+    hGamE->SetLineColor(4);
+    hNeHadE->SetLineColor(2);
+    hChHadE->SetLineColor(7);
+    hEleE->SetLineColor(6);
+    
+    //Select the maximum of the histogram to show all lines.
+    if(hPi0E->GetMaximum() >= hGamE->GetMaximum() && hPi0E->GetMaximum() >= hNeHadE->GetMaximum() && 
+       hPi0E->GetMaximum() >= hChHadE->GetMaximum() && hPi0E->GetMaximum() >= hEleE->GetMaximum())
+      haxisE->SetMaximum(hPi0E->GetMaximum());
+    else if(hGamE->GetMaximum() >= hPi0E->GetMaximum() && hGamE->GetMaximum() >= hNeHadE->GetMaximum() && 
+            hGamE->GetMaximum() >= hChHadE->GetMaximum() && hGamE->GetMaximum() >= hEleE->GetMaximum())
+      haxisE->SetMaximum(hGamE->GetMaximum());
+    else if(hNeHadE->GetMaximum() >= hPi0E->GetMaximum() && hNeHadE->GetMaximum() >= hGamE->GetMaximum() && 
+            hNeHadE->GetMaximum() >= hChHadE->GetMaximum() && hNeHadE->GetMaximum() >= hEleE->GetMaximum())
+      haxisE->SetMaximum(hNeHadE->GetMaximum());       
+    else if(hChHadE->GetMaximum() >= hPi0E->GetMaximum() && hChHadE->GetMaximum() >= hNeHadE->GetMaximum() && 
+            hChHadE->GetMaximum() >= hGamE->GetMaximum() && hChHadE->GetMaximum() >= hEleE->GetMaximum())
+      haxisE->SetMaximum(hChHadE->GetMaximum());
+    else if(hEleE->GetMaximum() >= hPi0E->GetMaximum() && hEleE->GetMaximum() >= hNeHadE->GetMaximum() && 
+            hEleE->GetMaximum() >= hChHadE->GetMaximum() && hEleE->GetMaximum() >= hGamE->GetMaximum())
+      haxisE->SetMaximum(hEleE->GetMaximum());
+    haxisE->SetXTitle("E (GeV)");
+    haxisE->SetMinimum(1);
+    haxisE->Draw("axis");
+    hPi0E->Draw("same");
+    hGamE->Draw("same");
+    hNeHadE->Draw("same");
+    hChHadE->Draw("same");
+    hEleE->Draw("same");
+    
+    TLegend pLegend2(0.8,0.65,0.95,0.93);
+    pLegend2.SetTextSize(0.06);
+    pLegend2.AddEntry(hPi0E,"  #pi^{0}","L");
+    pLegend2.AddEntry(hGamE,"  #gamma","L");
+    pLegend2.AddEntry(hEleE,"  e^{#pm}","L");
+    pLegend2.AddEntry(hChHadE,"  h^{#pm}","L");
+    pLegend2.AddEntry(hNeHadE,"  h^{0}","L");
+    pLegend2.SetFillColor(10);
+    pLegend2.SetBorderSize(1);
+    pLegend2.Draw();
+    
+    
+    c11->cd(2) ; 
+    gPad->SetLogy();
+    //printf("%s, %s, %s, %s, %s\n",fhGamPt->GetName(),fhPi0Pt->GetName(),fhElePt->GetName(),fhNeHadPt->GetName(), fhChHadPt->GetName());
+    TH1F * hGamPt   = (TH1F*) fhGamPt->ProjectionX(Form("%s_px",fhGamPt->GetName()),-1,-1);
+    TH1F * hPi0Pt   = (TH1F*) fhPi0Pt->ProjectionX(Form("%s_px",fhPi0Pt->GetName()),-1,-1);
+    TH1F * hElePt   = (TH1F*) fhElePt->ProjectionX(Form("%s_px",fhElePt->GetName()),-1,-1);
+    TH1F * hNeHadPt = (TH1F*) fhNeHadPt->ProjectionX(Form("%s_px",fhNeHadPt->GetName()),-1,-1);
+    TH1F * hChHadPt = (TH1F*) fhChHadPt->ProjectionX(Form("%s_px",fhChHadPt->GetName()),-1,-1);
+    haxispt  = (TH1F*) hPi0Pt->Clone(Form("%s_axisPt",fhPi0Pt->GetName()));  
+    haxispt->SetTitle("Reconstructed particles p_{T}, function of their original particle ID");
+    hPi0Pt->SetLineColor(1);
+    hGamPt->SetLineColor(4);
+    hNeHadPt->SetLineColor(2);
+    hChHadPt->SetLineColor(7);
+    hElePt->SetLineColor(6);
+    
+    //Select the maximum of the histogram to show all lines.
+    if(hPi0Pt->GetMaximum() >= hGamPt->GetMaximum() && hPi0Pt->GetMaximum() >= hNeHadPt->GetMaximum() && 
+       hPi0Pt->GetMaximum() >= hChHadPt->GetMaximum() && hPi0Pt->GetMaximum() >= hElePt->GetMaximum())
+      haxispt->SetMaximum(hPi0Pt->GetMaximum());
+    else if(hGamPt->GetMaximum() >= hPi0Pt->GetMaximum() && hGamPt->GetMaximum() >= hNeHadPt->GetMaximum() && 
+            hGamPt->GetMaximum() >= hChHadPt->GetMaximum() && hGamPt->GetMaximum() >= hElePt->GetMaximum())
+      haxispt->SetMaximum(hGamPt->GetMaximum());
+    else if(hNeHadPt->GetMaximum() >= hPi0Pt->GetMaximum() && hNeHadPt->GetMaximum() >= hGamPt->GetMaximum() && 
+            hNeHadPt->GetMaximum() >= hChHadPt->GetMaximum() && hNeHadPt->GetMaximum() >= hElePt->GetMaximum())
+      haxispt->SetMaximum(hNeHadPt->GetMaximum());     
+    else if(hChHadPt->GetMaximum() >= hPi0Pt->GetMaximum() && hChHadPt->GetMaximum() >= hNeHadPt->GetMaximum() && 
+            hChHadPt->GetMaximum() >= hGamPt->GetMaximum() && hChHadPt->GetMaximum() >= hElePt->GetMaximum())
+      haxispt->SetMaximum(hChHadPt->GetMaximum());
+    else if(hElePt->GetMaximum() >= hPi0Pt->GetMaximum() && hElePt->GetMaximum() >= hNeHadPt->GetMaximum() && 
+            hElePt->GetMaximum() >= hChHadPt->GetMaximum() && hElePt->GetMaximum() >= hGamPt->GetMaximum())
+      haxispt->SetMaximum(hElePt->GetMaximum());
+    haxispt->SetXTitle("p_{T} (GeV/c)");
+    haxispt->SetMinimum(1);
+    haxispt->Draw("axis");
+    hPi0Pt->Draw("same");
+    hGamPt->Draw("same");
+    hNeHadPt->Draw("same");
+    hChHadPt->Draw("same");
+    hElePt->Draw("same");
+    
+    c11->cd(3) ;
+    gPad->SetLogy();
+    
+    TH1F * hGamEta   = (TH1F*) fhGamEta->ProjectionX(Form("%s_px",fhGamEta->GetName()),-1,-1);
+    TH1F * hPi0Eta   = (TH1F*) fhPi0Eta->ProjectionX(Form("%s_px",fhPi0Eta->GetName()),-1,-1);
+    TH1F * hEleEta   = (TH1F*) fhEleEta->ProjectionX(Form("%s_px",fhEleEta->GetName()),-1,-1);
+    TH1F * hNeHadEta = (TH1F*) fhNeHadEta->ProjectionX(Form("%s_px",fhNeHadEta->GetName()),-1,-1);
+    TH1F * hChHadEta = (TH1F*) fhChHadEta->ProjectionX(Form("%s_px",fhChHadEta->GetName()),-1,-1);
+    haxiseta  = (TH1F*) hPi0Eta->Clone(Form("%s_axisEta",fhPi0Eta->GetName()));  
+    haxiseta->SetTitle("Reconstructed particles #eta, function of their original particle ID");
+    hPi0Eta->SetLineColor(1);
+    hGamEta->SetLineColor(4);
+    hNeHadEta->SetLineColor(2);
+    hChHadEta->SetLineColor(7);
+    hEleEta->SetLineColor(6);
+    //Select the maximum of the histogram to show all lines.
+    if(hPi0Eta->GetMaximum() >= hGamEta->GetMaximum() && hPi0Eta->GetMaximum() >= hNeHadEta->GetMaximum() && 
+       hPi0Eta->GetMaximum() >= hChHadEta->GetMaximum() && hPi0Eta->GetMaximum() >= hEleEta->GetMaximum())
+      haxiseta->SetMaximum(hPi0Eta->GetMaximum());
+    else if(hGamEta->GetMaximum() >= hPi0Eta->GetMaximum() && hGamEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
+            hGamEta->GetMaximum() >= hChHadEta->GetMaximum() && hGamEta->GetMaximum() >= hEleEta->GetMaximum())
+      haxiseta->SetMaximum(hGamEta->GetMaximum());
+    else if(hNeHadEta->GetMaximum() >= hPi0Eta->GetMaximum() && hNeHadEta->GetMaximum() >= hGamEta->GetMaximum() && 
+            hNeHadEta->GetMaximum() >= hChHadEta->GetMaximum() && hNeHadEta->GetMaximum() >= hEleEta->GetMaximum())
+      haxiseta->SetMaximum(hNeHadEta->GetMaximum());   
+    else if(hChHadEta->GetMaximum() >= hPi0Eta->GetMaximum() && hChHadEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
+            hChHadEta->GetMaximum() >= hGamEta->GetMaximum() && hChHadEta->GetMaximum() >= hEleEta->GetMaximum())
+      haxiseta->SetMaximum(hChHadEta->GetMaximum());
+    else if(hEleEta->GetMaximum() >= hPi0Eta->GetMaximum() && hEleEta->GetMaximum() >= hNeHadEta->GetMaximum() && 
+            hEleEta->GetMaximum() >= hChHadEta->GetMaximum() && hEleEta->GetMaximum() >= hGamEta->GetMaximum())
+      haxiseta->SetMaximum(hEleEta->GetMaximum());
+    
+    haxiseta->SetXTitle("#eta");
+    haxiseta->Draw("axis");
+    hPi0Eta->Draw("same");
+    hGamEta->Draw("same");
+    hNeHadEta->Draw("same");
+    hChHadEta->Draw("same");
+    hEleEta->Draw("same");
+    
+    
+    c11->cd(4) ; 
+    gPad->SetLogy();
+    TH1F * hGamPhi   = (TH1F*) fhGamPhi->ProjectionX(Form("%s_px",fhGamPhi->GetName()),-1,-1);
+    TH1F * hPi0Phi   = (TH1F*) fhPi0Phi->ProjectionX(Form("%s_px",fhPi0Phi->GetName()),-1,-1);
+    TH1F * hElePhi   = (TH1F*) fhElePhi->ProjectionX(Form("%s_px",fhElePhi->GetName()),-1,-1);
+    TH1F * hNeHadPhi = (TH1F*) fhNeHadPhi->ProjectionX(Form("%s_px",fhNeHadPhi->GetName()),-1,-1);
+    TH1F * hChHadPhi = (TH1F*) fhChHadPhi->ProjectionX(Form("%s_px",fhChHadPhi->GetName()),-1,-1);
+    haxisphi  = (TH1F*) hPi0Phi->Clone(Form("%s_axisPhi",fhPi0Phi->GetName()));  
+    haxisphi->SetTitle("Reconstructed particles #phi, function of their original particle ID");
+    
+    hPi0Phi->SetLineColor(1);
+    hGamPhi->SetLineColor(4);
+    hNeHadPhi->SetLineColor(2);
+    hChHadPhi->SetLineColor(7);
+    hElePhi->SetLineColor(6);
+    //Select the maximum of the histogram to show all lines.
+    if(hPi0Phi->GetMaximum() >= hGamPhi->GetMaximum() && hPi0Phi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
+       hPi0Phi->GetMaximum() >= hChHadPhi->GetMaximum() && hPi0Phi->GetMaximum() >= hElePhi->GetMaximum())
+      haxisphi->SetMaximum(hPi0Phi->GetMaximum());
+    else if(hGamPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hGamPhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
+            hGamPhi->GetMaximum() >= hChHadPhi->GetMaximum() && hGamPhi->GetMaximum() >= hElePhi->GetMaximum())
+      haxisphi->SetMaximum(hGamPhi->GetMaximum());
+    else if(hNeHadPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hNeHadPhi->GetMaximum() >= hGamPhi->GetMaximum() && 
+            hNeHadPhi->GetMaximum() >= hChHadPhi->GetMaximum() && hNeHadPhi->GetMaximum() >= hElePhi->GetMaximum())
+      haxisphi->SetMaximum(hNeHadPhi->GetMaximum());   
+    else if(hChHadPhi->GetMaximum() >= hPi0Phi->GetMaximum() && hChHadPhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
+            hChHadPhi->GetMaximum() >= hGamPhi->GetMaximum() && hChHadPhi->GetMaximum() >= hElePhi->GetMaximum())
+      haxisphi->SetMaximum(hChHadPhi->GetMaximum());
+    else if(hElePhi->GetMaximum() >= hPi0Phi->GetMaximum() && hElePhi->GetMaximum() >= hNeHadPhi->GetMaximum() && 
+            hElePhi->GetMaximum() >= hChHadPhi->GetMaximum() && hElePhi->GetMaximum() >= hGamPhi->GetMaximum())
+      haxisphi->SetMaximum(hElePhi->GetMaximum());
+    haxisphi->SetXTitle("#phi (rad)");
+    haxisphi->Draw("axis");
+    hPi0Phi->Draw("same");
+    hGamPhi->Draw("same");
+    hNeHadPhi->Draw("same");
+    hChHadPhi->Draw("same");
+    hElePhi->Draw("same");
+    
+    snprintf(name,buffersize,"QA_%s_RecDistributionsGenID.eps",fCalorimeter.Data());
+    c11->Print(name); printf("Plot: %s\n",name);
+    
+    
+    //Ratio reconstructed clusters / generated particles in acceptance, for different particle ID
+    //printf("c1\n");
+    
+    TH1F *     hPi0EClone   = (TH1F*)   hPi0E  ->Clone(Form("%s_Clone",fhPi0E->GetName()));
+    TH1F *     hGamEClone   = (TH1F*)   hGamE  ->Clone(Form("%s_Clone",fhGamE->GetName()));
+    TH1F *     hPi0PtClone  = (TH1F*)   hPi0Pt ->Clone(Form("%s_Clone",fhPi0Pt->GetName()));
+    TH1F *     hGamPtClone  = (TH1F*)   hGamPt ->Clone(Form("%s_Clone",fhGamPt->GetName()));   
+    TH1F *     hPi0EtaClone = (TH1F*)   hPi0Eta->Clone(Form("%s_Clone",fhPi0Eta->GetName()));
+    TH1F *     hGamEtaClone = (TH1F*)   hGamEta->Clone(Form("%s_Clone",fhGamEta->GetName()));  
+    TH1F *     hPi0PhiClone = (TH1F*)   hPi0Phi->Clone(Form("%s_Clone",fhPi0Phi->GetName()));
+    TH1F *     hGamPhiClone = (TH1F*)   hGamPhi->Clone(Form("%s_Clone",fhGamPhi->GetName()));  
+    
+    snprintf(cname,buffersize,"QA_%s_recgenidratio",fCalorimeter.Data());
+    TCanvas  * c12 = new TCanvas(cname, "Ratio reconstructed clusters / generated particles in acceptance, for different particle ID", 400, 400) ;
+    c12->Divide(2, 2);
+    
+    c12->cd(1) ; 
+    gPad->SetLogy();
+    haxisE->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
+    hPi0EClone->Divide(fhGenPi0AccE);
+    hGamEClone->Divide(fhGenGamAccE);
+    haxisE->SetMaximum(5);
+    haxisE->SetMinimum(1e-2);
+    haxisE->SetXTitle("E (GeV)");
+    haxisE->SetYTitle("ratio = rec/gen");
+    haxisE->Draw("axis");
+    hPi0E->Draw("same");
+    hGamE->Draw("same");
+    
+    TLegend pLegend3(0.75,0.2,0.9,0.4);
+    pLegend3.SetTextSize(0.06);
+    pLegend3.AddEntry(hPi0EClone,"  #pi^{0}","L");
+    pLegend3.AddEntry(hGamEClone,"  #gamma","L");
+    pLegend3.SetFillColor(10);
+    pLegend3.SetBorderSize(1);
+    pLegend3.Draw();
+    
+    c12->cd(2) ; 
+    gPad->SetLogy();
+    haxispt->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
+    hPi0PtClone->Divide(fhGenPi0AccPt);
+    hGamPtClone->Divide(fhGenGamAccPt);
+    haxispt->SetMaximum(5);
+    haxispt->SetMinimum(1e-2);
+    haxispt->SetXTitle("p_{T} (GeV/c)");
+    haxispt->SetYTitle("ratio = rec/gen");
+    haxispt->Draw("axis");
+    hPi0PtClone->Draw("same");
+    hGamPtClone->Draw("same");
+    
+    c12->cd(3) ;
+    gPad->SetLogy();
+    
+    haxiseta->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
+    hPi0EtaClone->Divide(fhGenPi0AccEta);
+    hGamEtaClone->Divide(fhGenGamAccEta);
+    haxiseta->SetMaximum(1.2);
+    haxiseta->SetMinimum(1e-2);
+    haxiseta->SetYTitle("ratio = rec/gen");
+    haxiseta->SetXTitle("#eta");
+    haxiseta->Draw("axis");
+    hPi0EtaClone->Draw("same");
+    hGamEtaClone->Draw("same");
+    
+    
+    c12->cd(4) ; 
+    gPad->SetLogy();
+    haxisphi->SetTitle("Ratio reconstructed clusters / generated particles in acceptance, for different particle ID");
+    hPi0PhiClone->Divide(fhGenPi0AccPhi);
+    hGamPhiClone->Divide(fhGenGamAccPhi);
+    haxisphi->SetYTitle("ratio = rec/gen");
+    haxisphi->SetXTitle("#phi (rad)");
+    haxisphi->SetMaximum(1.2);
+    haxisphi->SetMinimum(1e-2);
+    haxisphi->Draw("axis");
+    hPi0PhiClone->Draw("same");
+    hGamPhiClone->Draw("same");
+    
+    snprintf(name,buffersize,"QA_%s_EfficiencyGenID.eps",fCalorimeter.Data());
+    c12->Print(name); printf("Plot: %s\n",name);
+    
+    
+    
+    //Reconstructed distributions
+    //printf("c1\n");
+    snprintf(cname,buffersize,"QA_%s_vertex",fCalorimeter.Data());
+    TCanvas  * c13 = new TCanvas(cname, "Particle vertex", 400, 400) ;
+    c13->Divide(2, 2);
+    
+    c13->cd(1) ; 
+    //gPad->SetLogy();
+    fhEMVxyz->SetTitleOffset(1.6,"Y");
+    fhEMVxyz->Draw();
+    
+    c13->cd(2) ; 
+    //gPad->SetLogy();
+    fhHaVxyz->SetTitleOffset(1.6,"Y");
+    fhHaVxyz->Draw();
+    
+    c13->cd(3) ;
+    gPad->SetLogy();
+    TH1F * hEMR = (TH1F*) fhEMR->ProjectionY(Form("%s_py",fhEMR->GetName()),-1,-1); 
+    hEMR->SetLineColor(4);
+    hEMR->Draw();
+    
+    c13->cd(4) ; 
+    gPad->SetLogy();
+    TH1F * hHaR = (TH1F*) fhHaR->ProjectionY(Form("%s_py",fhHaR->GetName()),-1,-1); 
+    hHaR->SetLineColor(4);
+    hHaR->Draw();
+    
+    
+    snprintf(name,buffersize,"QA_%s_ParticleVertex.eps",fCalorimeter.Data());
+    c13->Print(name); printf("Plot: %s\n",name);
+    
+    
+    //Track-matching distributions
+    if(fFillAllTH12){
+      //Reconstructed distributions, matched with tracks, generated particle dependence
+      //printf("c2\n");
+      snprintf(cname,buffersize,"QA_%s_rectrackmatchGenID",fCalorimeter.Data());
+      TCanvas  * c22ch = new TCanvas(cname, "Reconstructed distributions, matched with tracks, for different particle ID", 400, 400) ;
+      c22ch->Divide(2, 2);
+      
+      c22ch->cd(1) ; 
+      
+      TH1F * hGamECharged   = (TH1F*) fhGamECharged->ProjectionX(Form("%s_px",fhGamECharged->GetName()),-1,-1);
+      TH1F * hPi0ECharged   = (TH1F*) fhPi0ECharged->ProjectionX(Form("%s_px",fhPi0ECharged->GetName()),-1,-1);
+      TH1F * hEleECharged   = (TH1F*) fhEleECharged->ProjectionX(Form("%s_px",fhEleECharged->GetName()),-1,-1);
+      TH1F * hNeHadECharged = (TH1F*) fhNeHadECharged->ProjectionX(Form("%s_px",fhNeHadECharged->GetName()),-1,-1);
+      TH1F * hChHadECharged = (TH1F*) fhChHadECharged->ProjectionX(Form("%s_px",fhChHadECharged->GetName()),-1,-1);
+      hPi0ECharged->SetLineColor(1);
+      hGamECharged->SetLineColor(4);
+      hNeHadECharged->SetLineColor(2);
+      hChHadECharged->SetLineColor(7);
+      hEleECharged->SetLineColor(6);   
+      gPad->SetLogy();
+      fhECharged->SetLineColor(3);
+      fhECharged->SetMinimum(0.5);
+      fhECharged->Draw();
+      hPi0ECharged->Draw("same");
+      hGamECharged->Draw("same");
+      hNeHadECharged->Draw("same");
+      hChHadECharged->Draw("same");
+      hEleECharged->Draw("same");
+      TLegend pLegend22(0.75,0.45,0.9,0.8);
+      pLegend22.SetTextSize(0.06);
+      pLegend22.AddEntry(fhECharged,"all","L");
+      pLegend22.AddEntry(hPi0ECharged,"#pi^{0}","L");
+      pLegend22.AddEntry(hGamECharged,"#gamma","L");
+      pLegend22.AddEntry(hEleECharged,"e^{#pm}","L");
+      pLegend22.AddEntry(hChHadECharged,"h^{#pm}","L");
+      pLegend22.AddEntry(hNeHadECharged,"h^{0}","L");
+      pLegend22.SetFillColor(10);
+      pLegend22.SetBorderSize(1);
+      pLegend22.Draw();
+      
+      c22ch->cd(2) ; 
+      
+      TH1F * hGamPtCharged   = (TH1F*) fhGamPtCharged->ProjectionX(Form("%s_px",fhGamPtCharged->GetName()),-1,-1);
+      TH1F * hPi0PtCharged   = (TH1F*) fhPi0PtCharged->ProjectionX(Form("%s_px",fhPi0PtCharged->GetName()),-1,-1);
+      TH1F * hElePtCharged   = (TH1F*) fhElePtCharged->ProjectionX(Form("%s_px",fhElePtCharged->GetName()),-1,-1);
+      TH1F * hNeHadPtCharged = (TH1F*) fhNeHadPtCharged->ProjectionX(Form("%s_px",fhNeHadPtCharged->GetName()),-1,-1);
+      TH1F * hChHadPtCharged = (TH1F*) fhChHadPtCharged->ProjectionX(Form("%s_px",fhChHadPtCharged->GetName()),-1,-1);
+      hPi0PtCharged->SetLineColor(1);
+      hGamPtCharged->SetLineColor(4);
+      hNeHadPtCharged->SetLineColor(2);
+      hChHadPtCharged->SetLineColor(7);
+      hElePtCharged->SetLineColor(6);  
+      gPad->SetLogy();
+      fhPtCharged->SetLineColor(3);
+      fhPtCharged->SetMinimum(0.5);
+      fhPtCharged->Draw();
+      hPi0PtCharged->Draw("same");
+      hGamPtCharged->Draw("same");
+      hNeHadPtCharged->Draw("same");
+      hChHadPtCharged->Draw("same");
+      hElePtCharged->Draw("same");     
+      
+      c22ch->cd(4) ; 
+      
+      TH1F * hGamEtaCharged   = (TH1F*) fhGamEtaCharged->ProjectionX(Form("%s_px",fhGamEtaCharged->GetName()),-1,-1);
+      TH1F * hPi0EtaCharged   = (TH1F*) fhPi0EtaCharged->ProjectionX(Form("%s_px",fhPi0EtaCharged->GetName()),-1,-1);
+      TH1F * hEleEtaCharged   = (TH1F*) fhEleEtaCharged->ProjectionX(Form("%s_px",fhEleEtaCharged->GetName()),-1,-1);
+      TH1F * hNeHadEtaCharged = (TH1F*) fhNeHadEtaCharged->ProjectionX(Form("%s_px",fhNeHadEtaCharged->GetName()),-1,-1);
+      TH1F * hChHadEtaCharged = (TH1F*) fhChHadEtaCharged->ProjectionX(Form("%s_px",fhChHadEtaCharged->GetName()),-1,-1);
+      hPi0EtaCharged->SetLineColor(1);
+      hGamEtaCharged->SetLineColor(4);
+      hNeHadEtaCharged->SetLineColor(2);
+      hChHadEtaCharged->SetLineColor(7);
+      hEleEtaCharged->SetLineColor(6); 
+      gPad->SetLogy();
+      fhEtaCharged->SetLineColor(3);
+      fhEtaCharged->SetMinimum(0.5);
+      fhEtaCharged->Draw();
+      hPi0EtaCharged->Draw("same");
+      hGamEtaCharged->Draw("same");
+      hNeHadEtaCharged->Draw("same");
+      hChHadEtaCharged->Draw("same");
+      hEleEtaCharged->Draw("same");
+      
+      c22ch->cd(3) ; 
+      
+      TH1F * hGamPhiCharged   = (TH1F*) fhGamPhiCharged->ProjectionX(Form("%s_px",fhGamPhiCharged->GetName()),-1,-1);
+      TH1F * hPi0PhiCharged   = (TH1F*) fhPi0PhiCharged->ProjectionX(Form("%s_px",fhPi0PhiCharged->GetName()),-1,-1);
+      TH1F * hElePhiCharged   = (TH1F*) fhElePhiCharged->ProjectionX(Form("%s_px",fhElePhiCharged->GetName()),-1,-1);
+      TH1F * hNeHadPhiCharged = (TH1F*) fhNeHadPhiCharged->ProjectionX(Form("%s_px",fhNeHadPhiCharged->GetName()),-1,-1);
+      TH1F * hChHadPhiCharged = (TH1F*) fhChHadPhiCharged->ProjectionX(Form("%s_px",fhChHadPhiCharged->GetName()),-1,-1);
+      hPi0PhiCharged->SetLineColor(1);
+      hGamPhiCharged->SetLineColor(4);
+      hNeHadPhiCharged->SetLineColor(2);
+      hChHadPhiCharged->SetLineColor(7);
+      hElePhiCharged->SetLineColor(6); 
+      gPad->SetLogy();
+      fhPhiCharged->SetLineColor(3);
+      fhPhiCharged->SetMinimum(0.5);
+      fhPhiCharged->Draw();
+      hPi0PhiCharged->Draw("same");
+      hGamPhiCharged->Draw("same");
+      hNeHadPhiCharged->Draw("same");
+      hChHadPhiCharged->Draw("same");
+      hElePhiCharged->Draw("same");
+      
+      
+      snprintf(name,buffersize,"QA_%s_ReconstructedDistributions_TrackMatchedGenID.eps",fCalorimeter.Data());
+      c22ch->Print(name); printf("Plot: %s\n",name);
+      
+      TH1F *   hGamEChargedClone   = (TH1F*)   hGamECharged->Clone(Form("%s_Clone",fhGamECharged->GetName()));
+      TH1F *   hGamPtChargedClone  = (TH1F*)   hGamPtCharged->Clone(Form("%s_Clone",fhGamPtCharged->GetName()));
+      TH1F *   hGamEtaChargedClone = (TH1F*)   hGamEtaCharged->Clone(Form("%s_Clone",fhGamEtaCharged->GetName()));
+      TH1F *   hGamPhiChargedClone = (TH1F*)   hGamPhiCharged->Clone(Form("%s_Clone",fhGamPhiCharged->GetName()));
+      
+      TH1F *   hPi0EChargedClone   = (TH1F*)   hPi0ECharged->Clone(Form("%s_Clone",fhPi0ECharged->GetName()));
+      TH1F *   hPi0PtChargedClone  = (TH1F*)   hPi0PtCharged->Clone(Form("%s_Clone",fhPi0PtCharged->GetName()));
+      TH1F *   hPi0EtaChargedClone = (TH1F*)   hPi0EtaCharged->Clone(Form("%s_Clone",fhPi0EtaCharged->GetName()));
+      TH1F *   hPi0PhiChargedClone = (TH1F*)   hPi0PhiCharged->Clone(Form("%s_Clone",fhPi0PhiCharged->GetName()));
+      
+      TH1F *   hEleEChargedClone   = (TH1F*)   hEleECharged->Clone(Form("%s_Clone",fhEleECharged->GetName()));
+      TH1F *   hElePtChargedClone  = (TH1F*)   hElePtCharged->Clone(Form("%s_Clone",fhElePtCharged->GetName()));
+      TH1F *   hEleEtaChargedClone = (TH1F*)   hEleEtaCharged->Clone(Form("%s_Clone",fhEleEtaCharged->GetName()));
+      TH1F *   hElePhiChargedClone = (TH1F*)   hElePhiCharged->Clone(Form("%s_Clone",fhElePhiCharged->GetName()));     
+      
+      TH1F *   hNeHadEChargedClone   = (TH1F*)   hNeHadECharged->Clone(Form("%s_Clone",fhNeHadECharged->GetName()));
+      TH1F *   hNeHadPtChargedClone  = (TH1F*)   hNeHadPtCharged->Clone(Form("%s_Clone",fhNeHadPtCharged->GetName()));
+      TH1F *   hNeHadEtaChargedClone = (TH1F*)   hNeHadEtaCharged->Clone(Form("%s_Clone",fhNeHadEtaCharged->GetName()));
+      TH1F *   hNeHadPhiChargedClone = (TH1F*)   hNeHadPhiCharged->Clone(Form("%s_Clone",fhNeHadPhiCharged->GetName()));
+      
+      TH1F *   hChHadEChargedClone   = (TH1F*)   hChHadECharged->Clone(Form("%s_Clone",fhChHadECharged->GetName()));
+      TH1F *   hChHadPtChargedClone  = (TH1F*)   hChHadPtCharged->Clone(Form("%s_Clone",fhChHadPtCharged->GetName()));
+      TH1F *   hChHadEtaChargedClone = (TH1F*)   hChHadEtaCharged->Clone(Form("%s_Clone",fhChHadEtaCharged->GetName()));
+      TH1F *   hChHadPhiChargedClone = (TH1F*)   hChHadPhiCharged->Clone(Form("%s_Clone",fhChHadPhiCharged->GetName()));       
+      
+      //Ratio: reconstructed track matched/ all reconstructed
+      //printf("c3\n");
+      snprintf(cname,buffersize,"QA_%s_rectrackmatchratGenID",fCalorimeter.Data());
+      TCanvas  * c3ch = new TCanvas(cname, "Ratio: reconstructed track matched/ all reconstructed, for different particle ID", 400, 400) ;
+      c3ch->Divide(2, 2);
+      
+      c3ch->cd(1) ;
+      hEChargedClone->SetMaximum(1.2);
+      hEChargedClone->SetMinimum(0.001);       
+      hEChargedClone->SetLineColor(3);
+      hEChargedClone->SetYTitle("track matched / all");
+      hPi0EChargedClone->Divide(hPi0E);
+      hGamEChargedClone->Divide(hGamE);
+      hEleEChargedClone->Divide(hEleE);
+      hNeHadEChargedClone->Divide(hNeHadE);
+      hChHadEChargedClone->Divide(hChHadE);
+      hEChargedClone->Draw();
+      hPi0EChargedClone->Draw("same");
+      hGamEChargedClone->Draw("same");
+      hEleEChargedClone->Draw("same");
+      hNeHadEChargedClone->Draw("same");
+      hChHadEChargedClone->Draw("same");
+      
+      TLegend pLegend3ch(0.75,0.45,0.9,0.8);
+      pLegend3ch.SetTextSize(0.06);
+      pLegend3ch.AddEntry(hEChargedClone,"all","L");
+      pLegend3ch.AddEntry(hPi0EChargedClone,"#pi^{0}","L");
+      pLegend3ch.AddEntry(hGamEChargedClone,"#gamma","L");
+      pLegend3ch.AddEntry(hEleEChargedClone,"e^{#pm}","L");
+      pLegend3ch.AddEntry(hChHadEChargedClone,"h^{#pm}","L");
+      pLegend3ch.AddEntry(hNeHadEChargedClone,"h^{0}","L");
+      pLegend3ch.SetFillColor(10);
+      pLegend3ch.SetBorderSize(1);
+      pLegend3ch.Draw();
+      
+      c3ch->cd(2) ;
+      hPtChargedClone->SetMaximum(1.2);
+      hPtChargedClone->SetMinimum(0.001);      
+      hPtChargedClone->SetLineColor(3);
+      hPtChargedClone->SetYTitle("track matched / all");
+      hPi0PtChargedClone->Divide(hPi0Pt);
+      hGamPtChargedClone->Divide(hGamPt);
+      hElePtChargedClone->Divide(hElePt);
+      hNeHadPtChargedClone->Divide(hNeHadPt);
+      hChHadPtChargedClone->Divide(hChHadPt);
+      hPtChargedClone->Draw();
+      hPi0PtChargedClone->Draw("same");
+      hGamPtChargedClone->Draw("same");
+      hElePtChargedClone->Draw("same");
+      hNeHadPtChargedClone->Draw("same");
+      hChHadPtChargedClone->Draw("same");
+      
+      c3ch->cd(4) ;
+      hEtaChargedClone->SetMaximum(1.2);
+      hEtaChargedClone->SetMinimum(0.001);     
+      hEtaChargedClone->SetLineColor(3);
+      hEtaChargedClone->SetYTitle("track matched / all");
+      hPi0EtaChargedClone->Divide(hPi0Eta);
+      hGamEtaChargedClone->Divide(hGamEta);
+      hEleEtaChargedClone->Divide(hEleEta);
+      hNeHadEtaChargedClone->Divide(hNeHadEta);
+      hChHadEtaChargedClone->Divide(hChHadEta);
+      hEtaChargedClone->Draw();
+      hPi0EtaChargedClone->Draw("same");
+      hGamEtaChargedClone->Draw("same");
+      hEleEtaChargedClone->Draw("same");
+      hNeHadEtaChargedClone->Draw("same");
+      hChHadEtaChargedClone->Draw("same");
+      
+      c3ch->cd(3) ;
+      hPhiChargedClone->SetMaximum(1.2);
+      hPhiChargedClone->SetMinimum(0.001);
+      hPhiChargedClone->SetLineColor(3);
+      hPhiChargedClone->SetYTitle("track matched / all");
+      hPi0PhiChargedClone->Divide(hPi0Phi);
+      hGamPhiChargedClone->Divide(hGamPhi);
+      hElePhiChargedClone->Divide(hElePhi);
+      hNeHadPhiChargedClone->Divide(hNeHadPhi);
+      hChHadPhiChargedClone->Divide(hChHadPhi);
+      hPhiChargedClone->Draw();
+      hPi0PhiChargedClone->Draw("same");
+      hGamPhiChargedClone->Draw("same");
+      hElePhiChargedClone->Draw("same");
+      hNeHadPhiChargedClone->Draw("same");
+      hChHadPhiChargedClone->Draw("same");
+      
+      snprintf(name,buffersize,"QA_%s_RatioReconstructedMatchedDistributionsGenID.eps",fCalorimeter.Data());
+      c3ch->Print(name); printf("Plot: %s\n",name);
+      
+    }  
+  }
+  //Track-matching distributions
+  
+  snprintf(cname,buffersize,"QA_%s_trkmatch",fCalorimeter.Data());
+  TCanvas *cme = new TCanvas(cname,"Track-matching distributions", 400, 400);
+  cme->Divide(2,2);
+  
+  TLegend pLegendpE0(0.6,0.55,0.9,0.8);
+  pLegendpE0.SetTextSize(0.04);
+  pLegendpE0.AddEntry(fh1pOverE,"all","L");
+  pLegendpE0.AddEntry(fh1pOverER02,"dR < 0.02","L");           
+  pLegendpE0.SetFillColor(10);
+  pLegendpE0.SetBorderSize(1);
+  //pLegendpE0.Draw();
+  
+  cme->cd(1);
+  if(fh1pOverE->GetEntries() > 0) gPad->SetLogy();
+  fh1pOverE->SetTitle("Track matches p/E");
+  fh1pOverE->Draw();
+  fh1pOverER02->SetLineColor(4);
+  fh1pOverER02->Draw("same");
+  pLegendpE0.Draw();
+  
+  cme->cd(2);
+  if(fh1dR->GetEntries() > 0) gPad->SetLogy();
+  fh1dR->Draw();
+  
+  cme->cd(3);
+  fh2MatchdEdx->Draw();
+  
+  cme->cd(4);
+  fh2EledEdx->Draw();
+  
+  snprintf(name,buffersize,"QA_%s_TrackMatchingEleDist.eps",fCalorimeter.Data());
+  cme->Print(name); printf("Plot: %s\n",name);       
+  
+  if(IsDataMC()){
+    snprintf(cname,buffersize,"QA_%s_trkmatchMCEle",fCalorimeter.Data());
+    TCanvas *cmemc = new TCanvas(cname,"Track-matching distributions from MC electrons", 600, 200);
+    cmemc->Divide(3,1);
+    
+    cmemc->cd(1);
+    gPad->SetLogy();
+    fhMCEle1pOverE->Draw();
+    fhMCEle1pOverER02->SetLineColor(4);
+    fhMCEle1pOverE->SetLineColor(1);
+    fhMCEle1pOverER02->Draw("same");
+    pLegendpE0.Draw();
                
-               cme->cd(2);
-               fh1dR->Draw();
+    cmemc->cd(2);
+    gPad->SetLogy();
+    fhMCEle1dR->Draw();
                
-               cme->cd(3);
-               fh2MatchdEdx->Draw();
+    cmemc->cd(3);
+    fhMCEle2MatchdEdx->Draw();
                
-               cme->cd(4);
-               fh2EledEdx->Draw();
+    snprintf(name,buffersize,"QA_%s_TrackMatchingDistMCEle.eps",fCalorimeter.Data());
+    cmemc->Print(name); printf("Plot: %s\n",name);  
+    
                
-               sprintf(name,"QA_%s_TrackMatchingEleDist.eps",fCalorimeter.Data());
-               cme->Print(name);       
-       }
-       char line[1024] ; 
-       sprintf(line, ".!tar -zcf QA_%s_%s.tar.gz *%s*.eps", fCalorimeter.Data(), GetName(),fCalorimeter.Data()) ; 
-       gROOT->ProcessLine(line);
-       sprintf(line, ".!rm -fR *.eps"); 
-       gROOT->ProcessLine(line);
-       
-       printf("AliAnaCalorimeterQA::Terminate() - !! All the eps files are in QA_%s_%s.tar.gz !!!\n",  fCalorimeter.Data(), GetName());
-       
+    snprintf(cname,buffersize,"QA_%s_trkmatchMCChHad",fCalorimeter.Data());
+    TCanvas *cmemchad = new TCanvas(cname,"Track-matching distributions from MC charged hadrons", 600, 200);
+    cmemchad->Divide(3,1);
+               
+    cmemchad->cd(1);
+    gPad->SetLogy();
+    fhMCChHad1pOverE->Draw();
+    fhMCChHad1pOverER02->SetLineColor(4);
+    fhMCChHad1pOverE->SetLineColor(1);
+    fhMCChHad1pOverER02->Draw("same");
+    pLegendpE0.Draw();
+               
+    cmemchad->cd(2);
+    gPad->SetLogy();
+    fhMCChHad1dR->Draw();
+    
+    cmemchad->cd(3);
+    fhMCChHad2MatchdEdx->Draw();
+               
+    snprintf(name,buffersize,"QA_%s_TrackMatchingDistMCChHad.eps",fCalorimeter.Data());
+    cmemchad->Print(name); printf("Plot: %s\n",name);       
+    
+    snprintf(cname,buffersize,"QA_%s_trkmatchMCNeutral",fCalorimeter.Data());
+    TCanvas *cmemcn = new TCanvas(cname,"Track-matching distributions from MC neutrals", 600, 200);
+    cmemcn->Divide(3,1);
+               
+    cmemcn->cd(1);
+    gPad->SetLogy();
+    fhMCNeutral1pOverE->Draw();
+    fhMCNeutral1pOverE->SetLineColor(1);
+    fhMCNeutral1pOverER02->SetLineColor(4);
+    fhMCNeutral1pOverER02->Draw("same");
+    pLegendpE0.Draw();
+               
+    cmemcn->cd(2);
+    gPad->SetLogy();
+    fhMCNeutral1dR->Draw();
+               
+    cmemcn->cd(3);
+    fhMCNeutral2MatchdEdx->Draw();
+               
+    snprintf(name,buffersize,"QA_%s_TrackMatchingDistMCNeutral.eps",fCalorimeter.Data());
+    cmemcn->Print(name); printf("Plot: %s\n",name);       
+    
+    snprintf(cname,buffersize,"QA_%s_trkmatchpE",fCalorimeter.Data());
+    TCanvas *cmpoe = new TCanvas(cname,"Track-matching distributions, p/E", 400, 200);
+    cmpoe->Divide(2,1);
+               
+    cmpoe->cd(1);
+    gPad->SetLogy();
+    fh1pOverE->SetLineColor(1);
+    fhMCEle1pOverE->SetLineColor(4);
+    fhMCChHad1pOverE->SetLineColor(2);
+    fhMCNeutral1pOverE->SetLineColor(7);
+    fh1pOverER02->SetMinimum(0.5);
+    fh1pOverE->Draw();
+    fhMCEle1pOverE->Draw("same");
+    fhMCChHad1pOverE->Draw("same");
+    fhMCNeutral1pOverE->Draw("same");
+    TLegend pLegendpE(0.65,0.55,0.9,0.8);
+    pLegendpE.SetTextSize(0.06);
+    pLegendpE.AddEntry(fh1pOverE,"all","L");
+    pLegendpE.AddEntry(fhMCEle1pOverE,"e^{#pm}","L");
+    pLegendpE.AddEntry(fhMCChHad1pOverE,"h^{#pm}","L");
+    pLegendpE.AddEntry(fhMCNeutral1pOverE,"neutrals","L");
+    pLegendpE.SetFillColor(10);
+    pLegendpE.SetBorderSize(1);
+    pLegendpE.Draw();
+    
+    cmpoe->cd(2);
+    gPad->SetLogy();
+    fh1pOverER02->SetTitle("Track matches p/E, dR<0.2");
+    fh1pOverER02->SetLineColor(1);
+    fhMCEle1pOverER02->SetLineColor(4);
+    fhMCChHad1pOverER02->SetLineColor(2);
+    fhMCNeutral1pOverER02->SetLineColor(7);
+    fh1pOverER02->SetMaximum(fh1pOverE->GetMaximum());
+    fh1pOverER02->SetMinimum(0.5);
+    fh1pOverER02->Draw();
+    fhMCEle1pOverER02->Draw("same");
+    fhMCChHad1pOverER02->Draw("same");
+    fhMCNeutral1pOverER02->Draw("same");
+    
+    //         TLegend pLegendpE2(0.65,0.55,0.9,0.8);
+    //         pLegendpE2.SetTextSize(0.06);
+    //         pLegendpE2.SetHeader("dR < 0.02");
+    //         pLegendpE2.SetFillColor(10);
+    //         pLegendpE2.SetBorderSize(1);
+    //         pLegendpE2.Draw();
+    
+    snprintf(name,buffersize,"QA_%s_TrackMatchingPOverE.eps",fCalorimeter.Data());
+    cmpoe->Print(name); printf("Plot: %s\n",name);                             
+  }
+  
+  char line[buffersize] ; 
+  snprintf(line, buffersize,".!tar -zcf QA_%s_%s.tar.gz *%s*.eps", fCalorimeter.Data(), GetName(),fCalorimeter.Data()) ; 
+  gROOT->ProcessLine(line);
+  snprintf(line, buffersize,".!rm -fR *.eps"); 
+  gROOT->ProcessLine(line);
+  
+  printf("AliAnaCalorimeterQA::Terminate() - !! All the eps files are in QA_%s_%s.tar.gz !!!\n",  fCalorimeter.Data(), GetName());
+  
 }