]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PWG4/PartCorrDep/AliAnaPi0.cxx
Reader: Add option to remove or not event with primary vertex not reconstructed
[u/mrichter/AliRoot.git] / PWG4 / PartCorrDep / AliAnaPi0.cxx
index 6d52040522eca79f5a011b67d460bb9c27b18059..43b90775dc972117018c6a203f8c3e53ec86a94d 100755 (executable)
@@ -16,7 +16,9 @@
 
 //_________________________________________________________________________
 // Class to collect two-photon invariant mass distributions for
-// extractin raw pi0 yield.
+// extracting raw pi0 yield.
+// Input is produced by AliAnaPhoton (or any other analysis producing output AliAODPWG4Particles), 
+// it will do nothing if executed alone
 //
 //-- Author: Dmitri Peressounko (RRC "KI") 
 //-- Adapted to PartCorr frame by Lamia Benhabib (SUBATECH)
@@ -33,6 +35,7 @@
 #include "TROOT.h"
 #include "TClonesArray.h"
 #include "TObjString.h"
+#include "TDatabasePDG.h"
 
 //---- AliRoot system ----
 #include "AliAnaPi0.h"
@@ -47,7 +50,7 @@
 #include "AliAODEvent.h"
 #include "AliNeutralMesonSelection.h"
 #include "AliMixedEvent.h"
-
+#include "AliAODMCParticle.h"
 
 ClassImp(AliAnaPi0)
 
@@ -55,15 +58,34 @@ ClassImp(AliAnaPi0)
 AliAnaPi0::AliAnaPi0() : AliAnaPartCorrBaseClass(),
 fDoOwnMix(kFALSE),fNCentrBin(0),//fNZvertBin(0),fNrpBin(0),
 fNmaxMixEv(0), fCalorimeter(""),
-fNModules(12), fUseAngleCut(kFALSE), fEventsList(0x0), fMultiCutAna(kFALSE), 
-fNPtCuts(0),fNAsymCuts(0), fNCellNCuts(0),fNPIDBits(0), fSameSM(kFALSE),
-fhReMod(0x0),fhReDiffMod(0x0),
-fhRe1(0x0),      fhMi1(0x0),      fhRe2(0x0),      fhMi2(0x0),      fhRe3(0x0),      fhMi3(0x0),
-fhReInvPt1(0x0), fhMiInvPt1(0x0), fhReInvPt2(0x0), fhMiInvPt2(0x0), fhReInvPt3(0x0), fhMiInvPt3(0x0),
-fhRePtNCellAsymCuts(0x0), fhRePIDBits(0x0),fhRePtMult(0x0), fhRePtAsym(0x0), fhRePtAsymPi0(0x0),fhRePtAsymEta(0x0),  
-fhEvents(0x0), fhRealOpeningAngle(0x0),fhRealCosOpeningAngle(0x0),
-fhPrimPt(0x0), fhPrimAccPt(0x0), fhPrimY(0x0), fhPrimAccY(0x0), fhPrimPhi(0x0), fhPrimAccPhi(0x0),
-fhPrimOpeningAngle(0x0),fhPrimCosOpeningAngle(0x0)
+fNModules(12), fUseAngleCut(kFALSE), fUseAngleEDepCut(kFALSE),fAngleCut(0), fAngleMaxCut(7.),fEventsList(0x0), 
+fMultiCutAna(kFALSE), fMultiCutAnaSim(kFALSE),
+fNPtCuts(0),fNAsymCuts(0), fNCellNCuts(0),fNPIDBits(0),  
+fMakeInvPtPlots(kFALSE), fSameSM(kFALSE), fFillSMCombinations(kFALSE), fCheckConversion(kFALSE),
+fUseTrackMultBins(kFALSE),fUsePhotonMultBins(kFALSE),fUseAverCellEBins(kFALSE), fUseAverClusterEBins(kFALSE),
+fUseAverClusterEDenBins(0), //fUseAverClusterPairRBins(0), fUseAverClusterPairRWeightBins(0), fUseEMaxBins(0),
+fFillBadDistHisto(kFALSE),
+fhAverTotECluster(0), fhAverTotECell(0), fhAverTotECellvsCluster(0),
+fhEDensityCluster(0), fhEDensityCell(0), fhEDensityCellvsCluster(0),
+//fhClusterPairDist(0), fhClusterPairDistWeight(0),  fhAverClusterPairDist(0), fhAverClusterPairDistWeight(0),
+//fhAverClusterPairDistvsAverE(0), fhAverClusterPairDistWeightvsAverE(0),fhAverClusterPairDistvsN(0), fhAverClusterPairDistWeightvsN(0),
+//fhMaxEvsClustMult(0), fhMaxEvsClustEDen(0),
+fhReMod(0x0),    fhReSameSideEMCALMod(0x0), fhReSameSectorEMCALMod(0x0), fhReDiffPHOSMod(0x0), 
+fhMiMod(0x0),    fhMiSameSideEMCALMod(0x0), fhMiSameSectorEMCALMod(0x0), fhMiDiffPHOSMod(0x0),
+fhReConv(0x0),   fhMiConv(0x0),    fhReConv2(0x0),  fhMiConv2(0x0),
+fhRe1(0x0),      fhMi1(0x0),       fhRe2(0x0),      fhMi2(0x0),      fhRe3(0x0),      fhMi3(0x0),
+fhReInvPt1(0x0), fhMiInvPt1(0x0),  fhReInvPt2(0x0), fhMiInvPt2(0x0), fhReInvPt3(0x0), fhMiInvPt3(0x0),
+fhRePtNCellAsymCuts(0x0), fhRePtNCellAsymCutsSM0(0x0), fhRePtNCellAsymCutsSM1(0x0), fhRePtNCellAsymCutsSM2(0x0), fhRePtNCellAsymCutsSM3(0x0), fhMiPtNCellAsymCuts(0x0),
+fhRePIDBits(0x0),fhRePtMult(0x0), fhRePtAsym(0x0), fhRePtAsymPi0(0x0),fhRePtAsymEta(0x0),  
+fhEvents(0x0),   fhCentrality(0x0),fhCentralityNoPair(0x0),
+fhRealOpeningAngle(0x0),fhRealCosOpeningAngle(0x0), fhMixedOpeningAngle(0x0),fhMixedCosOpeningAngle(0x0),
+fhPrimPi0Pt(0x0), fhPrimPi0AccPt(0x0), fhPrimPi0Y(0x0), fhPrimPi0AccY(0x0), fhPrimPi0Phi(0x0), fhPrimPi0AccPhi(0x0),
+fhPrimPi0OpeningAngle(0x0), fhPrimPi0CosOpeningAngle(0x0),
+fhPrimEtaPt(0x0), fhPrimEtaAccPt(0x0), fhPrimEtaY(0x0), fhPrimEtaAccY(0x0), fhPrimEtaPhi(0x0), fhPrimEtaAccPhi(0x0),
+fhPrimPi0PtOrigin(0x0),  fhPrimEtaPtOrigin(0x0), 
+fhMCOrgMass(),fhMCOrgAsym(),  fhMCOrgDeltaEta(),fhMCOrgDeltaPhi(),
+fhMCPi0MassPtRec(), fhMCPi0MassPtTrue(), fhMCPi0PtTruePtRec(), fhMCEtaMassPtRec(), fhMCEtaMassPtTrue(), fhMCEtaPtTruePtRec(),
+fhMCPi0PtOrigin(0x0),  fhMCEtaPtOrigin(0x0)
 {
 //Default Ctor
  InitParameters();
@@ -105,22 +127,25 @@ void AliAnaPi0::InitParameters()
  
   fCalorimeter  = "PHOS";
   fUseAngleCut = kFALSE;
-  
+  fUseAngleEDepCut = kFALSE;
+  fAngleCut    = 0.; 
+  fAngleMaxCut = TMath::Pi(); 
+
   fMultiCutAna = kFALSE;
   
-  fNPtCuts = 3;
+  fNPtCuts = 1;
   fPtCuts[0] = 0.; fPtCuts[1] = 0.3;   fPtCuts[2] = 0.5;
   for(Int_t i = fNPtCuts; i < 10; i++)fPtCuts[i] = 0.;
   
-  fNAsymCuts = 4;
-  fAsymCuts[0] = 1.;  fAsymCuts[1] = 0.8; fAsymCuts[2] = 0.6;   fAsymCuts[3] = 0.1;    
+  fNAsymCuts = 2;
+  fAsymCuts[0] = 1.;  fAsymCuts[1] = 0.7; //fAsymCuts[2] = 0.6; //  fAsymCuts[3] = 0.1;    
   for(Int_t i = fNAsymCuts; i < 10; i++)fAsymCuts[i] = 0.;
 
-  fNCellNCuts = 3;
+  fNCellNCuts = 1;
   fCellNCuts[0] = 0; fCellNCuts[1] = 1;   fCellNCuts[2] = 2;   
   for(Int_t i = fNCellNCuts; i < 10; i++)fCellNCuts[i]  = 0;
 
-  fNPIDBits = 2;
+  fNPIDBits = 1;
   fPIDBits[0] = 0;   fPIDBits[1] = 2; //  fPIDBits[2] = 4; fPIDBits[3] = 6;// check, no cut,  dispersion, neutral, dispersion&&neutral
   for(Int_t i = fNPIDBits; i < 10; i++)fPIDBits[i] = 0;
 
@@ -144,7 +169,10 @@ TObjString * AliAnaPi0::GetAnalysisCuts()
   parList+=onePar ;
   snprintf(onePar,buffersize,"Depth of event buffer: %d \n",fNmaxMixEv) ;
   parList+=onePar ;
-  snprintf(onePar,buffersize,"Pair in same Module: %d \n",fSameSM) ;
+  snprintf(onePar,buffersize,"Pair in same Module: %d ; Fill Different SM histos %d; CheckConversions %d; TrackMult as centrality: %d; PhotonMult as centrality: %d; cluster E as centrality: %d; cell as centrality: %d; Fill InvPt histos %d\n",
+           fSameSM, fFillSMCombinations, fCheckConversion, fUseTrackMultBins, fUsePhotonMultBins, fUseAverClusterEBins, fUseAverCellEBins, fMakeInvPtPlots) ;
+  parList+=onePar ;
+  snprintf(onePar,buffersize,"Select pairs with their angle: %d, edep %d, min angle %2.3f, max angle %2.3f,\n",fUseAngleCut, fUseAngleEDepCut,fAngleCut,fAngleMaxCut) ;
   parList+=onePar ;
   snprintf(onePar,buffersize," Asymmetry cuts: n = %d, asymmetry < ",fNAsymCuts) ;
   for(Int_t i = 0; i < fNAsymCuts; i++) snprintf(onePar,buffersize,"%s %2.2f;",onePar,fAsymCuts[i]);
@@ -193,23 +221,40 @@ TList * AliAnaPi0::GetCreateOutputObjects()
   TList * outputContainer = new TList() ; 
   outputContainer->SetName(GetName()); 
        
-  fhReMod     = new TH2D*[fNModules] ;
-  fhReDiffMod = new TH2D*[fNModules+1] ;
+  fhReMod                = new TH2D*[fNModules]   ;
+  fhMiMod                = new TH2D*[fNModules]   ;
+
+  if(fCalorimeter == "PHOS"){
+    fhReDiffPHOSMod        = new TH2D*[fNModules]   ;  
+    fhMiDiffPHOSMod        = new TH2D*[fNModules]   ;
+  }
+  else{
+    fhReSameSectorEMCALMod = new TH2D*[fNModules/2] ;
+    fhReSameSideEMCALMod   = new TH2D*[fNModules-2] ;  
+    fhMiSameSectorEMCALMod = new TH2D*[fNModules/2] ;
+    fhMiSameSideEMCALMod   = new TH2D*[fNModules-2] ;
+  }
+  
   
   fhRe1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhRe2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhRe3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
   fhMi1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhMi2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhMi3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-    
-  fhReInvPt1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhReInvPt2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhReInvPt3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhMiInvPt1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhMiInvPt2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-  fhMiInvPt3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
-    
+  if(fFillBadDistHisto){
+    fhRe2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    fhRe3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    fhMi2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    fhMi3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+  }
+  if(fMakeInvPtPlots) {
+    fhReInvPt1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    fhMiInvPt1 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    if(fFillBadDistHisto){
+      fhReInvPt2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+      fhReInvPt3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+      fhMiInvPt2 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+      fhMiInvPt3 = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
+    }
+  } 
+  
   const Int_t buffersize = 255;
   char key[buffersize] ;
   char title[buffersize] ;
@@ -233,127 +278,234 @@ TList * AliAnaPi0::GetCreateOutputObjects()
   Int_t ntrmbins  = GetHistoTrackMultiplicityBins();
   Int_t ntrmmax   = GetHistoTrackMultiplicityMax();
   Int_t ntrmmin   = GetHistoTrackMultiplicityMin(); 
-
+  
+  if(fNCentrBin > 1 && (fUseAverCellEBins||fUseAverClusterEBins||fUseAverClusterEDenBins)){
+    
+    fhAverTotECluster = new TH1F("hAverTotECluster","hAverTotECluster",200,0,50) ;
+    fhAverTotECluster->SetXTitle("E_{cluster, aver. SM} (GeV)");
+    outputContainer->Add(fhAverTotECluster) ;
+    
+    fhAverTotECell    = new TH1F("hAverTotECell","hAverTotECell",200,0,50) ;
+    fhAverTotECell->SetXTitle("E_{cell, aver. SM} (GeV)");
+    outputContainer->Add(fhAverTotECell) ;
+    
+    fhAverTotECellvsCluster    = new TH2F("hAverTotECellvsCluster","hAverTotECellvsCluster",200,0,50,200,0,50) ;
+    fhAverTotECellvsCluster->SetYTitle("E_{cell, aver. SM} (GeV)");
+    fhAverTotECellvsCluster->SetXTitle("E_{cluster, aver. SM} (GeV)");
+    outputContainer->Add(fhAverTotECellvsCluster) ;
+    
+    fhEDensityCluster = new TH1F("hEDensityCluster","hEDensityCluster",200,0,50) ;
+    fhEDensityCluster->SetXTitle("#Sigma E_{cluster} / N_{cluster} (GeV)");
+    outputContainer->Add(fhEDensityCluster) ;
+    
+    fhEDensityCell    = new TH1F("hEDensityCell","hEDensityCell",200,0,50) ;
+    fhEDensityCell->SetXTitle("#Sigma E_{cell} / N_{cell} (GeV)");
+    outputContainer->Add(fhEDensityCell) ;
+    
+    fhEDensityCellvsCluster    = new TH2F("hEDensityCellvsCluster","hEDensityCellvsCluster",200,0,50,200,0,50) ;
+    fhEDensityCellvsCluster->SetYTitle("#Sigma E_{cell} / N_{cell} (GeV)");
+    fhEDensityCellvsCluster->SetXTitle("#Sigma E_{cluster} / N_{cluster} (GeV)");
+    outputContainer->Add(fhEDensityCellvsCluster) ;
+    
+    //  fhClusterPairDist = new TH1F("hClusterPairDist","Distance between clusters",250,0,750) ;
+    //  fhClusterPairDist->SetXTitle("#sqrt{(x_{1}-x_{2})^2+(z_{1}-z_{2})^2} (cm)");
+    //  outputContainer->Add(fhClusterPairDist) ;
+    //  
+    //  fhClusterPairDistWeight = new TH1F("hClusterPairDistWeighted","Distance between clusters, weighted by pair energy",200,0,400) ;
+    //  fhClusterPairDistWeight->SetXTitle("#sqrt{(x_{1}E_{1}-x_{2}E_{2})^{2}+(z_{1}E_{1}-z_{2}E_{2})^{2}}/ (E_{1}+E_{2}) (cm)");
+    //  outputContainer->Add(fhClusterPairDistWeight) ;
+    //   
+    //  fhAverClusterPairDist = new TH1F("hAverClusterPairDist","Average distance between clusters",250,0,750) ;
+    //  fhAverClusterPairDist->SetXTitle("#Sigma (#sqrt{(x_{1}-x_{2})^{2}+(z_{1}-z_{2})^{2}}) / N_{pairs} (cm)");
+    //  outputContainer->Add(fhAverClusterPairDist) ;
+    //  
+    //  fhAverClusterPairDistWeight = new TH1F("hAverClusterPairDistWeighted","Average distance between clusters, weighted by pair energy",200,0,400) ;
+    //  fhAverClusterPairDistWeight->SetXTitle("#Sigma (#sqrt{(x_{1}E_{1}-x_{2}E_{2})^{2}+(z_{1}E_{1}-z_{2}E_{2})^{2}}/ (E_{1}+E_{2})) / N_{pairs} (cm)");
+    //  outputContainer->Add(fhAverClusterPairDistWeight) ;
+    //  
+    //  fhAverClusterPairDistvsAverE = new TH2F("hAverClusterPairDistvsAverE","Average distance between clusters",250,0,750,200,0,50) ;
+    //  fhAverClusterPairDistvsAverE->SetXTitle("#Sigma (#sqrt{(x_{1}-x_{2})^{2}+(z_{1}-z_{2})^{2}}) / N_{pairs} (cm)");
+    //  fhAverClusterPairDistvsAverE->SetYTitle("#Sigma E_{cluster} / N_{cluster} (GeV)");
+    //  outputContainer->Add(fhAverClusterPairDistvsAverE) ;
+    //  
+    //  fhAverClusterPairDistWeightvsAverE = new TH2F("hAverClusterPairDistWeightedvsAverE","Average distance between clusters, weighted by pair energy",200,0,400,200,0,50) ;
+    //  fhAverClusterPairDistWeightvsAverE->SetXTitle("#Sigma (#sqrt{(x_{1}E_{1}-x_{2}E_{2})^2+(z_{1}E_{1}-z_{2}E_{2})^2}/ (E_{1}+E_{2})) / N_{pairs} (cm/GeV)");
+    //  fhAverClusterPairDistWeightvsAverE->SetYTitle("#Sigma E_{cluster} / N_{cluster} (GeV)");
+    //  outputContainer->Add(fhAverClusterPairDistWeightvsAverE) ;
+    
+    //  fhAverClusterPairDistvsN = new TH2F("hAverClusterPairDistvsN","Average distance between clusters",250,0,750,200,0,50) ;
+    //  fhAverClusterPairDistvsN->SetXTitle("#Sigma (#sqrt{(x_{1}-x_{2})^{2}+(z_{1}-z_{2})^{2}}) / N_{pairs} (cm)");
+    //  fhAverClusterPairDistvsN->SetYTitle("N_{cluster}");
+    //  outputContainer->Add(fhAverClusterPairDistvsN) ;
+    //  
+    //  fhAverClusterPairDistWeightvsN = new TH2F("hAverClusterPairDistWeightedvsN","Average distance between clusters, weighted by pair energy",200,0,400,200,0,50) ;
+    //  fhAverClusterPairDistWeightvsN->SetXTitle("#Sigma (#sqrt{(x_{1}E_{1}-x_{2}E_{2})^{2}+(z_{1}E_{1}-z_{2}E_{2})^{2}}/ (E_{1}+E_{2})) / N_{pairs} (cm)");
+    //  fhAverClusterPairDistWeightvsN->SetYTitle("N_{cluster}");
+    //  outputContainer->Add(fhAverClusterPairDistWeightvsN) ;
+    
+    //  fhMaxEvsClustMult = new TH2F("hMaxEvsClustMult","",nptbins,ptmin,ptmax,50,0,50) ;
+    //  fhMaxEvsClustMult->SetXTitle("E_{max}");
+    //  fhMaxEvsClustMult->SetYTitle("N_{cluster}");
+    //  outputContainer->Add(fhMaxEvsClustMult) ;
+    //  
+    //  fhMaxEvsClustEDen = new TH2F("hMaxEvsClustEDen","",nptbins,ptmin,ptmax,200,0,50) ;
+    //  fhMaxEvsClustEDen->SetXTitle("E_{max}");
+    //  fhMaxEvsClustEDen->SetYTitle("#Sigma E_{cluster} / N_{cluster} (GeV)");
+    //  outputContainer->Add(fhMaxEvsClustEDen) ;
+  }//counting and average histograms
+  
+  if(fCheckConversion){
+    fhReConv = new TH2D("hReConv","Real Pair with one recombined conversion ",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+    fhReConv->SetXTitle("p_{T} (GeV/c)");
+    fhReConv->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+    outputContainer->Add(fhReConv) ;
+    
+    fhReConv2 = new TH2D("hReConv2","Real Pair with 2 recombined conversion ",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+    fhReConv2->SetXTitle("p_{T} (GeV/c)");
+    fhReConv2->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+    outputContainer->Add(fhReConv2) ;
+    
+    if(fDoOwnMix){
+      fhMiConv = new TH2D("hMiConv","Mixed Pair with one recombined conversion ",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhMiConv->SetXTitle("p_{T} (GeV/c)");
+      fhMiConv->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhMiConv) ;
+      
+      fhMiConv2 = new TH2D("hMiConv2","Mixed Pair with 2 recombined conversion ",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhMiConv2->SetXTitle("p_{T} (GeV/c)");
+      fhMiConv2->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhMiConv2) ;
+    }
+  }
+  
   for(Int_t ic=0; ic<fNCentrBin; ic++){
-    for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
-      for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
-        Int_t index = ((ic*fNPIDBits)+ipid)*fNAsymCuts + iasym;
-        //printf("cen %d, pid %d, asy %d, Index %d\n",ic,ipid,iasym,index);
-        //Distance to bad module 1
-        snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhRe1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhRe1[index]->SetXTitle("p_{T} (GeV/c)");
-        fhRe1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        //printf("name: %s\n ",fhRe1[index]->GetName());
-        outputContainer->Add(fhRe1[index]) ;
-        
-        //Distance to bad module 2
-        snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhRe2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhRe2[index]->SetXTitle("p_{T} (GeV/c)");
-        fhRe2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        outputContainer->Add(fhRe2[index]) ;
-        
-        //Distance to bad module 3
-        snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhRe3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhRe3[index]->SetXTitle("p_{T} (GeV/c)");
-        fhRe3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        outputContainer->Add(fhRe3[index]) ;
-        
-        //Inverse pT 
-        //Distance to bad module 1
-        snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhReInvPt1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhReInvPt1[index]->SetXTitle("p_{T} (GeV/c)");
-        fhReInvPt1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        outputContainer->Add(fhReInvPt1[index]) ;
-        
-        //Distance to bad module 2
-        snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhReInvPt2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhReInvPt2[index]->SetXTitle("p_{T} (GeV/c)");
-        fhReInvPt2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        outputContainer->Add(fhReInvPt2[index]) ;
-        
-        //Distance to bad module 3
-        snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
-        snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
-                 ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-        fhReInvPt3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-        fhReInvPt3[index]->SetXTitle("p_{T} (GeV/c)");
-        fhReInvPt3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-        outputContainer->Add(fhReInvPt3[index]) ;
-        
-        if(fDoOwnMix){
-          //Distance to bad module 1
-          snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
-                   ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMi1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMi1[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMi1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMi1[index]) ;
-          
-          //Distance to bad module 2
-          snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
-                   ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMi2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMi2[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMi2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMi2[index]) ;
-          
-          //Distance to bad module 3
-          snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
-                   ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMi3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMi3[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMi3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMi3[index]) ;
-          
-          //Inverse pT
+      for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
+        for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+          Int_t index = ((ic*fNPIDBits)+ipid)*fNAsymCuts + iasym;
+          //printf("cen %d, pid %d, asy %d, Index %d\n",ic,ipid,iasym,index);
           //Distance to bad module 1
-          snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
+          snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
+          snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
                    ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMiInvPt1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMiInvPt1[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMiInvPt1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMiInvPt1[index]) ;
+          fhRe1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhRe1[index]->SetXTitle("p_{T} (GeV/c)");
+          fhRe1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          //printf("name: %s\n ",fhRe1[index]->GetName());
+          outputContainer->Add(fhRe1[index]) ;
           
-          //Distance to bad module 2
-          snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
-                   ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMiInvPt2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMiInvPt2[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMiInvPt2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMiInvPt2[index]) ;
+          if(fFillBadDistHisto){
+            //Distance to bad module 2
+            snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
+            snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
+                     ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+            fhRe2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhRe2[index]->SetXTitle("p_{T} (GeV/c)");
+            fhRe2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhRe2[index]) ;
+            
+            //Distance to bad module 3
+            snprintf(key, buffersize,"hRe_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
+            snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
+                     ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+            fhRe3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhRe3[index]->SetXTitle("p_{T} (GeV/c)");
+            fhRe3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhRe3[index]) ;
+          }
           
-          //Distance to bad module 3
-          snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
-          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f,dist bad 3",
-                   ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
-          fhMiInvPt3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-          fhMiInvPt3[index]->SetXTitle("p_{T} (GeV/c)");
-          fhMiInvPt3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-          outputContainer->Add(fhMiInvPt3[index]) ;
-        } 
+          //Inverse pT 
+          if(fMakeInvPtPlots){
+            //Distance to bad module 1
+            snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
+            snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
+                     ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+            fhReInvPt1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhReInvPt1[index]->SetXTitle("p_{T} (GeV/c)");
+            fhReInvPt1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhReInvPt1[index]) ;
+            
+            if(fFillBadDistHisto){
+              //Distance to bad module 2
+              snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
+              snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
+                       ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+              fhReInvPt2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+              fhReInvPt2[index]->SetXTitle("p_{T} (GeV/c)");
+              fhReInvPt2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+              outputContainer->Add(fhReInvPt2[index]) ;
+              
+              //Distance to bad module 3
+              snprintf(key, buffersize,"hReInvPt_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
+              snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
+                       ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+              fhReInvPt3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+              fhReInvPt3[index]->SetXTitle("p_{T} (GeV/c)");
+              fhReInvPt3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+              outputContainer->Add(fhReInvPt3[index]) ;
+            }
+          }
+          if(fDoOwnMix){
+            //Distance to bad module 1
+            snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
+            snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
+                     ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+            fhMi1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMi1[index]->SetXTitle("p_{T} (GeV/c)");
+            fhMi1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMi1[index]) ;
+            if(fFillBadDistHisto){
+              //Distance to bad module 2
+              snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
+              snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
+                       ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+              fhMi2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+              fhMi2[index]->SetXTitle("p_{T} (GeV/c)");
+              fhMi2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+              outputContainer->Add(fhMi2[index]) ;
+              
+              //Distance to bad module 3
+              snprintf(key, buffersize,"hMi_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
+              snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 3",
+                       ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+              fhMi3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+              fhMi3[index]->SetXTitle("p_{T} (GeV/c)");
+              fhMi3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+              outputContainer->Add(fhMi3[index]) ;
+            }
+            //Inverse pT
+            if(fMakeInvPtPlots){
+              //Distance to bad module 1
+              snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist1",ic,ipid,iasym) ;
+              snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 1",
+                       ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+              fhMiInvPt1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+              fhMiInvPt1[index]->SetXTitle("p_{T} (GeV/c)");
+              fhMiInvPt1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+              outputContainer->Add(fhMiInvPt1[index]) ;
+              if(fFillBadDistHisto){
+                //Distance to bad module 2
+                snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist2",ic,ipid,iasym) ;
+                snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f, dist bad 2",
+                         ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+                fhMiInvPt2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+                fhMiInvPt2[index]->SetXTitle("p_{T} (GeV/c)");
+                fhMiInvPt2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+                outputContainer->Add(fhMiInvPt2[index]) ;
+                
+                //Distance to bad module 3
+                snprintf(key, buffersize,"hMiInvPt_cen%d_pidbit%d_asy%d_dist3",ic,ipid,iasym) ;
+                snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for centrality=%d, PID bit=%d and asymmetry %1.2f,dist bad 3",
+                         ic,fPIDBits[ipid], fAsymCuts[iasym]) ;
+                fhMiInvPt3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+                fhMiInvPt3[index]->SetXTitle("p_{T} (GeV/c)");
+                fhMiInvPt3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+                outputContainer->Add(fhMiInvPt3[index]) ;
+              }
+            }
+          } 
+        }
       }
     }
-  }
   
   fhRePtAsym = new TH2D("hRePtAsym","Asymmetry vs pt, for pairs",nptbins,ptmin,ptmax,nasymbins,asymmin,asymmax) ;
   fhRePtAsym->SetXTitle("p_{T} (GeV/c)");
@@ -382,7 +534,12 @@ TList * AliAnaPi0::GetCreateOutputObjects()
       outputContainer->Add(fhRePIDBits[ipid]) ;
     }// pid bit loop
     
-    fhRePtNCellAsymCuts = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhRePtNCellAsymCuts    = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhRePtNCellAsymCutsSM0 = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhRePtNCellAsymCutsSM1 = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhRePtNCellAsymCutsSM2 = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhRePtNCellAsymCutsSM3 = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+    fhMiPtNCellAsymCuts    = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
     for(Int_t ipt=0; ipt<fNPtCuts; ipt++){
       for(Int_t icell=0; icell<fNCellNCuts; icell++){
         for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
@@ -394,6 +551,42 @@ TList * AliAnaPi0::GetCreateOutputObjects()
           fhRePtNCellAsymCuts[index]->SetXTitle("p_{T} (GeV/c)");
           fhRePtNCellAsymCuts[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
           outputContainer->Add(fhRePtNCellAsymCuts[index]) ;
+                    
+          snprintf(key,   buffersize,"hRe_pt%d_cell%d_asym%d_SM0",ipt,icell,iasym) ;
+          snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for pt >%2.2f, ncell>%d and asym >%1.2f, SM 0 ",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]) ;
+          fhRePtNCellAsymCutsSM0[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhRePtNCellAsymCutsSM0[index]->SetXTitle("p_{T} (GeV/c)");
+          fhRePtNCellAsymCutsSM0[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhRePtNCellAsymCutsSM0[index]) ;
+          
+          snprintf(key,   buffersize,"hRe_pt%d_cell%d_asym%d_SM1",ipt,icell,iasym) ;
+          snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for pt >%2.2f, ncell>%d and asym >%1.2f, SM 1 ",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]) ;
+          fhRePtNCellAsymCutsSM1[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhRePtNCellAsymCutsSM1[index]->SetXTitle("p_{T} (GeV/c)");
+          fhRePtNCellAsymCutsSM1[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhRePtNCellAsymCutsSM1[index]) ;
+          
+          snprintf(key,   buffersize,"hRe_pt%d_cell%d_asym%d_SM2",ipt,icell,iasym) ;
+          snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for pt >%2.2f, ncell>%d and asym >%1.2f, SM 2 ",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]) ;
+          fhRePtNCellAsymCutsSM2[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhRePtNCellAsymCutsSM2[index]->SetXTitle("p_{T} (GeV/c)");
+          fhRePtNCellAsymCutsSM2[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhRePtNCellAsymCutsSM2[index]) ;
+          
+          snprintf(key,   buffersize,"hRe_pt%d_cell%d_asym%d_SM3",ipt,icell,iasym) ;
+          snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for pt >%2.2f, ncell>%d and asym >%1.2f, SM 3 ",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]) ;
+          fhRePtNCellAsymCutsSM3[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhRePtNCellAsymCutsSM3[index]->SetXTitle("p_{T} (GeV/c)");
+          fhRePtNCellAsymCutsSM3[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhRePtNCellAsymCutsSM3[index]) ;
+          
+          snprintf(key,   buffersize,"hMi_pt%d_cell%d_asym%d",ipt,icell,iasym) ;
+          snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]) ;
+          fhMiPtNCellAsymCuts[index] = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhMiPtNCellAsymCuts[index]->SetXTitle("p_{T} (GeV/c)");
+          fhMiPtNCellAsymCuts[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhMiPtNCellAsymCuts[index]) ;
+          
         }
       }
     }
@@ -412,93 +605,362 @@ TList * AliAnaPi0::GetCreateOutputObjects()
   
   fhEvents=new TH3D("hEvents","Number of events",fNCentrBin,0.,1.*fNCentrBin,
                     GetNZvertBin(),0.,1.*GetNZvertBin(),GetNRPBin(),0.,1.*GetNRPBin()) ;
+  
+  fhEvents->SetXTitle("Centrality bin");
+  fhEvents->SetYTitle("Z vertex bin bin");
+  fhEvents->SetZTitle("RP bin");
   outputContainer->Add(fhEvents) ;
        
+  if(fNCentrBin>1){
+    fhCentrality=new TH1D("hCentralityBin","Number of events in centrality bin",fNCentrBin,0.,1.*fNCentrBin) ;
+    fhCentrality->SetXTitle("Centrality bin");
+    outputContainer->Add(fhCentrality) ;
+    
+    fhCentralityNoPair=new TH1D("hCentralityBinNoPair","Number of events in centrality bin, with no cluster pairs",fNCentrBin,0.,1.*fNCentrBin) ;
+    fhCentralityNoPair->SetXTitle("Centrality bin");
+    outputContainer->Add(fhCentralityNoPair) ;
+  }
+  
   fhRealOpeningAngle  = new TH2D
-  ("hRealOpeningAngle","Angle between all #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,200,0,0.5); 
+  ("hRealOpeningAngle","Angle between all #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,300,0,TMath::Pi()); 
   fhRealOpeningAngle->SetYTitle("#theta(rad)");
   fhRealOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
   outputContainer->Add(fhRealOpeningAngle) ;
   
   fhRealCosOpeningAngle  = new TH2D
-  ("hRealCosOpeningAngle","Cosinus of angle between all #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,200,-1,1); 
+  ("hRealCosOpeningAngle","Cosinus of angle between all #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,100,0,1); 
   fhRealCosOpeningAngle->SetYTitle("cos (#theta) ");
   fhRealCosOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
   outputContainer->Add(fhRealCosOpeningAngle) ;
        
+  if(fDoOwnMix){
+    
+    fhMixedOpeningAngle  = new TH2D
+    ("hMixedOpeningAngle","Angle between all #gamma pair vs E_{#pi^{0}}, Mixed pairs",nptbins,ptmin,ptmax,300,0,TMath::Pi()); 
+    fhMixedOpeningAngle->SetYTitle("#theta(rad)");
+    fhMixedOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
+    outputContainer->Add(fhMixedOpeningAngle) ;
+    
+    fhMixedCosOpeningAngle  = new TH2D
+    ("hMixedCosOpeningAngle","Cosinus of angle between all #gamma pair vs E_{#pi^{0}}, Mixed pairs",nptbins,ptmin,ptmax,100,0,1); 
+    fhMixedCosOpeningAngle->SetYTitle("cos (#theta) ");
+    fhMixedCosOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
+    outputContainer->Add(fhMixedCosOpeningAngle) ;
+    
+  }
+  
   //Histograms filled only if MC data is requested     
   if(IsDataMC()){
-
-    fhPrimPt     = new TH1D("hPrimPt","Primary pi0 pt",nptbins,ptmin,ptmax) ;
-    fhPrimAccPt  = new TH1D("hPrimAccPt","Primary pi0 pt with both photons in acceptance",nptbins,ptmin,ptmax) ;
-    outputContainer->Add(fhPrimPt) ;
-    outputContainer->Add(fhPrimAccPt) ;
+    //Pi0
+    fhPrimPi0Pt     = new TH1D("hPrimPi0Pt","Primary pi0 pt",nptbins,ptmin,ptmax) ;
+    fhPrimPi0AccPt  = new TH1D("hPrimPi0AccPt","Primary pi0 pt with both photons in acceptance",nptbins,ptmin,ptmax) ;
+    fhPrimPi0Pt   ->SetXTitle("p_{T} (GeV/c)");
+    fhPrimPi0AccPt->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimPi0Pt) ;
+    outputContainer->Add(fhPrimPi0AccPt) ;
     
-    fhPrimY      = new TH1D("hPrimaryRapidity","Rapidity of primary pi0",netabins,etamin,etamax) ; 
-    outputContainer->Add(fhPrimY) ;
+    fhPrimPi0Y      = new TH2D("hPrimPi0Rapidity","Rapidity of primary pi0",nptbins,ptmin,ptmax, netabins,etamin,etamax) ;
+    fhPrimPi0Y   ->SetYTitle("Rapidity");
+    fhPrimPi0Y   ->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimPi0Y) ;
     
-    fhPrimAccY   = new TH1D("hPrimAccRapidity","Rapidity of primary pi0",netabins,etamin,etamax) ; 
-    outputContainer->Add(fhPrimAccY) ;
+    fhPrimPi0AccY   = new TH2D("hPrimPi0AccRapidity","Rapidity of primary pi0",nptbins,ptmin,ptmax, netabins,etamin,etamax) ; 
+    fhPrimPi0AccY->SetYTitle("Rapidity");
+    fhPrimPi0AccY->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimPi0AccY) ;
     
-    fhPrimPhi    = new TH1D("hPrimaryPhi","Azimithal of primary pi0",nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
-    outputContainer->Add(fhPrimPhi) ;
+    fhPrimPi0Phi    = new TH2D("hPrimPi0Phi","Azimuthal of primary pi0",nptbins,ptmin,ptmax, nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
+    fhPrimPi0Phi->SetYTitle("#phi (deg)");
+    fhPrimPi0Phi->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimPi0Phi) ;
     
-    fhPrimAccPhi = new TH1D("hPrimAccPhi","Azimithal of primary pi0 with accepted daughters",nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
-    outputContainer->Add(fhPrimAccPhi) ;
+    fhPrimPi0AccPhi = new TH2D("hPrimPi0AccPhi","Azimuthal of primary pi0 with accepted daughters",nptbins,ptmin,ptmax, nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
+    fhPrimPi0AccPhi->SetYTitle("#phi (deg)");
+    fhPrimPi0AccPhi->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimPi0AccPhi) ;
     
+    //Eta
+    fhPrimEtaPt     = new TH1D("hPrimEtaPt","Primary eta pt",nptbins,ptmin,ptmax) ;
+    fhPrimEtaAccPt  = new TH1D("hPrimEtaAccPt","Primary eta pt with both photons in acceptance",nptbins,ptmin,ptmax) ;
+    fhPrimEtaPt   ->SetXTitle("p_{T} (GeV/c)");
+    fhPrimEtaAccPt->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimEtaPt) ;
+    outputContainer->Add(fhPrimEtaAccPt) ;
     
-    fhPrimOpeningAngle  = new TH2D
-    ("hPrimOpeningAngle","Angle between all primary #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,100,0,0.5); 
-    fhPrimOpeningAngle->SetYTitle("#theta(rad)");
-    fhPrimOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
-    outputContainer->Add(fhPrimOpeningAngle) ;
+    fhPrimEtaY      = new TH2D("hPrimEtaRapidity","Rapidity of primary eta",nptbins,ptmin,ptmax,netabins,etamin,etamax) ; 
+    fhPrimEtaY->SetYTitle("Rapidity");
+    fhPrimEtaY->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimEtaY) ;
     
-    fhPrimCosOpeningAngle  = new TH2D
-    ("hPrimCosOpeningAngle","Cosinus of angle between all primary #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,100,-1,1); 
-    fhPrimCosOpeningAngle->SetYTitle("cos (#theta) ");
-    fhPrimCosOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
-    outputContainer->Add(fhPrimCosOpeningAngle) ;
+    fhPrimEtaAccY   = new TH2D("hPrimEtaAccRapidity","Rapidity of primary eta",nptbins,ptmin,ptmax, netabins,etamin,etamax) ; 
+    fhPrimEtaAccY->SetYTitle("Rapidity");
+    fhPrimEtaAccY->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimEtaAccY) ;
     
-  }
-  
-  TString * pairname = new TString[fNModules];
-  if(fCalorimeter=="EMCAL"){
-    pairname[0]="A side (0-2)"; 
-    pairname[1]="C side (1-3)";
-    pairname[2]="Sector 0 (0-1)"; 
-    pairname[3]="Sector 1 (2-3)";
-    for(Int_t i = 4 ; i < fNModules ; i++) pairname[i]="";}
-  if(fCalorimeter=="PHOS") {
-    pairname[0]="(0-1)"; 
-    pairname[1]="(0-2)";
-    pairname[2]="(1-2)";
-    for(Int_t i = 3 ; i < fNModules ; i++) pairname[i]="";}
+    fhPrimEtaPhi    = new TH2D("hPrimEtaPhi","Azimuthal of primary eta",nptbins,ptmin,ptmax, nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
+    fhPrimEtaPhi->SetYTitle("#phi (deg)");
+    fhPrimEtaPhi->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimEtaPhi) ;
+    
+    fhPrimEtaAccPhi = new TH2D("hPrimEtaAccPhi","Azimuthal of primary eta with accepted daughters",nptbins,ptmin,ptmax, nphibins,phimin*TMath::RadToDeg(),phimax*TMath::RadToDeg()) ; 
+    fhPrimEtaAccPhi->SetYTitle("#phi (deg)");
+    fhPrimEtaAccPhi->SetXTitle("p_{T} (GeV/c)");
+    outputContainer->Add(fhPrimEtaAccPhi) ;
+        
+    
+    //Prim origin
+    //Pi0
+    fhPrimPi0PtOrigin     = new TH2D("hPrimPi0PtOrigin","Primary pi0 pt vs origin",nptbins,ptmin,ptmax,11,0,11) ;
+    fhPrimPi0PtOrigin->SetXTitle("p_{T} (GeV/c)");
+    fhPrimPi0PtOrigin->SetYTitle("Origin");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(1 ,"Status 21");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(2 ,"Quark");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(3 ,"qq Resonances ");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(4 ,"Resonances");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(5 ,"#rho");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(6 ,"#omega");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(7 ,"K");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(8 ,"Other");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(9 ,"#eta");
+    fhPrimPi0PtOrigin->GetYaxis()->SetBinLabel(10 ,"#eta prime");
+    outputContainer->Add(fhPrimPi0PtOrigin) ;
+    
+    fhMCPi0PtOrigin     = new TH2D("hMCPi0PtOrigin","Reconstructed pair from generated pi0 pt vs origin",nptbins,ptmin,ptmax,11,0,11) ;
+    fhMCPi0PtOrigin->SetXTitle("p_{T} (GeV/c)");
+    fhMCPi0PtOrigin->SetYTitle("Origin");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(1 ,"Status 21");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(2 ,"Quark");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(3 ,"qq Resonances");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(4 ,"Resonances");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(5 ,"#rho");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(6 ,"#omega");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(7 ,"K");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(8 ,"Other");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(9 ,"#eta");
+    fhMCPi0PtOrigin->GetYaxis()->SetBinLabel(10 ,"#eta prime");
+    outputContainer->Add(fhMCPi0PtOrigin) ;    
+    
+    //Eta
+    fhPrimEtaPtOrigin     = new TH2D("hPrimEtaPtOrigin","Primary pi0 pt vs origin",nptbins,ptmin,ptmax,7,0,7) ;
+    fhPrimEtaPtOrigin->SetXTitle("p_{T} (GeV/c)");
+    fhPrimEtaPtOrigin->SetYTitle("Origin");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(1 ,"Status 21");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(2 ,"Quark");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(3 ,"qq Resonances");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(4 ,"Resonances");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(5 ,"Other");
+    fhPrimEtaPtOrigin->GetYaxis()->SetBinLabel(6 ,"#eta prime ");
 
-  for(Int_t imod=0; imod<fNModules; imod++){
-    //Module dependent invariant mass
-    snprintf(key, buffersize,"hReMod_%d",imod) ;
-    snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for Module %d",imod) ;
-    fhReMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-    fhReMod[imod]->SetXTitle("p_{T} (GeV/c)");
-    fhReMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-    outputContainer->Add(fhReMod[imod]) ;
+    outputContainer->Add(fhPrimEtaPtOrigin) ;
+    
+    fhMCEtaPtOrigin     = new TH2D("hMCEtaPtOrigin","Reconstructed pair from generated pi0 pt vs origin",nptbins,ptmin,ptmax,7,0,7) ;
+    fhMCEtaPtOrigin->SetXTitle("p_{T} (GeV/c)");
+    fhMCEtaPtOrigin->SetYTitle("Origin");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(1 ,"Status 21");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(2 ,"Quark");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(3 ,"qq Resonances");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(4 ,"Resonances");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(5 ,"Other");
+    fhMCEtaPtOrigin->GetYaxis()->SetBinLabel(6 ,"#eta prime");
 
-    snprintf(key, buffersize,"hReDiffMod_%d",imod) ;
-    snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for Different Modules: %s",(pairname[imod]).Data()) ;
-    fhReDiffMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-    fhReDiffMod[imod]->SetXTitle("p_{T} (GeV/c)");
-    fhReDiffMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
-    outputContainer->Add(fhReDiffMod[imod]) ;
+    outputContainer->Add(fhMCEtaPtOrigin) ;
+     
+    
+    fhPrimPi0OpeningAngle  = new TH2D
+    ("hPrimPi0OpeningAngle","Angle between all primary #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,100,0,0.5); 
+    fhPrimPi0OpeningAngle->SetYTitle("#theta(rad)");
+    fhPrimPi0OpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
+    outputContainer->Add(fhPrimPi0OpeningAngle) ;
+    
+    fhPrimPi0CosOpeningAngle  = new TH2D
+    ("hPrimPi0CosOpeningAngle","Cosinus of angle between all primary #gamma pair vs E_{#pi^{0}}",nptbins,ptmin,ptmax,100,-1,1); 
+    fhPrimPi0CosOpeningAngle->SetYTitle("cos (#theta) ");
+    fhPrimPi0CosOpeningAngle->SetXTitle("E_{ #pi^{0}} (GeV)");
+    outputContainer->Add(fhPrimPi0CosOpeningAngle) ;
+    
+    for(Int_t i = 0; i<13; i++){
+      fhMCOrgMass[i] = new TH2D(Form("hMCOrgMass_%d",i),Form("mass vs pt, origin %d",i),nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhMCOrgMass[i]->SetXTitle("p_{T} (GeV/c)");
+      fhMCOrgMass[i]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhMCOrgMass[i]) ;
+      
+      fhMCOrgAsym[i]= new TH2D(Form("hMCOrgAsym_%d",i),Form("asymmetry vs pt, origin %d",i),nptbins,ptmin,ptmax,nasymbins,asymmin,asymmax) ;
+      fhMCOrgAsym[i]->SetXTitle("p_{T} (GeV/c)");
+      fhMCOrgAsym[i]->SetYTitle("A");
+      outputContainer->Add(fhMCOrgAsym[i]) ;
+      
+      fhMCOrgDeltaEta[i] = new TH2D(Form("hMCOrgDeltaEta_%d",i),Form("#Delta #eta of pair vs pt, origin %d",i),nptbins,ptmin,ptmax,netabins,-1.4,1.4) ;
+      fhMCOrgDeltaEta[i]->SetXTitle("p_{T} (GeV/c)");
+      fhMCOrgDeltaEta[i]->SetYTitle("#Delta #eta");
+      outputContainer->Add(fhMCOrgDeltaEta[i]) ;
+      
+      fhMCOrgDeltaPhi[i]= new TH2D(Form("hMCOrgDeltaPhi_%d",i),Form("#Delta #phi of pair vs p_{T}, origin %d",i),nptbins,ptmin,ptmax,nphibins,-0.7,0.7) ;
+      fhMCOrgDeltaPhi[i]->SetXTitle("p_{T} (GeV/c)");
+      fhMCOrgDeltaPhi[i]->SetYTitle("#Delta #phi (rad)");
+      outputContainer->Add(fhMCOrgDeltaPhi[i]) ;
+      
+    }
+    
+    if(fMultiCutAnaSim){
+      fhMCPi0MassPtTrue  = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCPi0MassPtRec   = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCPi0PtTruePtRec = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaMassPtRec   = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaMassPtTrue  = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaPtTruePtRec = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      for(Int_t ipt=0; ipt<fNPtCuts; ipt++){
+        for(Int_t icell=0; icell<fNCellNCuts; icell++){
+          for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+            Int_t index = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
+            
+            fhMCPi0MassPtRec[index] = new TH2D(Form("hMCPi0MassPtRec_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                               Form("Reconstructed Mass vs reconstructed p_T of true #pi^{0} cluster pairs for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                               nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMCPi0MassPtRec[index]->SetXTitle("p_{T, reconstructed} (GeV/c)");
+            fhMCPi0MassPtRec[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMCPi0MassPtRec[index]) ;    
+            
+            fhMCPi0MassPtTrue[index] = new TH2D(Form("hMCPi0MassPtTrue_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                                Form("Reconstructed Mass vs generated p_T of true #pi^{0} cluster pairs for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                                nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMCPi0MassPtTrue[index]->SetXTitle("p_{T, generated} (GeV/c)");
+            fhMCPi0MassPtTrue[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMCPi0MassPtTrue[index]) ;
+            
+            fhMCPi0PtTruePtRec[index] = new TH2D(Form("hMCPi0PtTruePtRec_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                                 Form("Generated vs reconstructed p_T of true #pi^{0} cluster pairs, 0.01 < rec. mass < 0.17 MeV/c^{2} for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                                 nptbins,ptmin,ptmax,nptbins,ptmin,ptmax) ;
+            fhMCPi0PtTruePtRec[index]->SetXTitle("p_{T, generated} (GeV/c)");
+            fhMCPi0PtTruePtRec[index]->SetYTitle("p_{T, reconstructed} (GeV/c)");
+            outputContainer->Add(fhMCPi0PtTruePtRec[index]) ;
+            
+            fhMCEtaMassPtRec[index] = new TH2D(Form("hMCEtaMassPtRec_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                               Form("Reconstructed Mass vs reconstructed p_T of true #eta cluster pairs for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                               nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMCEtaMassPtRec[index]->SetXTitle("p_{T, generated} (GeV/c)");
+            fhMCEtaMassPtRec[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMCEtaMassPtRec[index]) ;
+            
+            fhMCEtaMassPtTrue[index] = new TH2D(Form("hMCEtaMassPtTrue_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                                Form("Reconstructed Mass vs generated p_T of true #eta cluster pairs for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                                nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMCEtaMassPtTrue[index]->SetXTitle("p_{T, generated} (GeV/c)");
+            fhMCEtaMassPtTrue[index]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMCEtaMassPtTrue[index]) ;
+            
+            fhMCEtaPtTruePtRec[index] = new TH2D(Form("hMCEtaPtTruePtRec_pt%d_cell%d_asym%d",ipt,icell,iasym),
+                                                 Form("Generated vs reconstructed p_T of true #eta cluster pairs, 0.01 < rec. mass < 0.17 MeV/c^{2} for pt >%2.2f, ncell>%d and asym >%1.2f",fPtCuts[ipt],fCellNCuts[icell], fAsymCuts[iasym]),
+                                                 nptbins,ptmin,ptmax,nptbins,ptmin,ptmax) ;
+            fhMCEtaPtTruePtRec[index]->SetXTitle("p_{T, generated} (GeV/c)");
+            fhMCEtaPtTruePtRec[index]->SetYTitle("p_{T, reconstructed} (GeV/c)");
+            outputContainer->Add(fhMCEtaPtTruePtRec[index]) ;
+          }
+        }
+      }  
+    }//multi cut ana
+    else {
+      fhMCPi0MassPtTrue  = new TH2D*[1];
+      fhMCPi0PtTruePtRec = new TH2D*[1];
+      fhMCEtaMassPtTrue  = new TH2D*[1];
+      fhMCEtaPtTruePtRec = new TH2D*[1];
+      
+      fhMCPi0MassPtTrue[0] = new TH2D("hMCPi0MassPtTrue","Reconstructed Mass vs generated p_T of true #pi^{0} cluster pairs",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhMCPi0MassPtTrue[0]->SetXTitle("p_{T, generated} (GeV/c)");
+      fhMCPi0MassPtTrue[0]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhMCPi0MassPtTrue[0]) ;
+      
+      fhMCPi0PtTruePtRec[0]= new TH2D("hMCPi0PtTruePtRec","Generated vs reconstructed p_T of true #pi^{0} cluster pairs, 0.01 < rec. mass < 0.17 MeV/c^{2}",nptbins,ptmin,ptmax,nptbins,ptmin,ptmax) ;
+      fhMCPi0PtTruePtRec[0]->SetXTitle("p_{T, generated} (GeV/c)");
+      fhMCPi0PtTruePtRec[0]->SetYTitle("p_{T, reconstructed} (GeV/c)");
+      outputContainer->Add(fhMCPi0PtTruePtRec[0]) ;
+      
+      fhMCEtaMassPtTrue[0] = new TH2D("hMCEtaMassPtTrue","Reconstructed Mass vs generated p_T of true #eta cluster pairs",nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhMCEtaMassPtTrue[0]->SetXTitle("p_{T, generated} (GeV/c)");
+      fhMCEtaMassPtTrue[0]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhMCEtaMassPtTrue[0]) ;
+      
+      fhMCEtaPtTruePtRec[0]= new TH2D("hMCEtaPtTruePtRec","Generated vs reconstructed p_T of true #eta cluster pairs, 0.01 < rec. mass < 0.17 MeV/c^{2}",nptbins,ptmin,ptmax,nptbins,ptmin,ptmax) ;
+      fhMCEtaPtTruePtRec[0]->SetXTitle("p_{T, generated} (GeV/c)");
+      fhMCEtaPtTruePtRec[0]->SetYTitle("p_{T, reconstructed} (GeV/c)");
+      outputContainer->Add(fhMCEtaPtTruePtRec[0]) ;
+    }
   }
   
-  delete [] pairname;
-  
-  snprintf(key, buffersize,"hReDiffMod_%d",fNModules) ;
-  snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for all Modules Combination") ;
-  fhReDiffMod[fNModules]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
-  outputContainer->Add(fhReDiffMod[fNModules]) ;
-  
-  
+  if(fFillSMCombinations){
+    TString pairnamePHOS[] = {"(0-1)","(0-2)","(1-2)","(0-3)","(0-4)","(1-3)","(1-4)","(2-3)","(2-4)","(3-4)"};
+    for(Int_t imod=0; imod<fNModules; imod++){
+      //Module dependent invariant mass
+      snprintf(key, buffersize,"hReMod_%d",imod) ;
+      snprintf(title, buffersize,"Real m_{#gamma#gamma} distr. for Module %d",imod) ;
+      fhReMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+      fhReMod[imod]->SetXTitle("p_{T} (GeV/c)");
+      fhReMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+      outputContainer->Add(fhReMod[imod]) ;
+      if(fCalorimeter=="PHOS"){
+        snprintf(key, buffersize,"hReDiffPHOSMod_%d",imod) ;
+        snprintf(title, buffersize,"Real pairs PHOS, clusters in different Modules: %s",(pairnamePHOS[imod]).Data()) ;
+        fhReDiffPHOSMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+        fhReDiffPHOSMod[imod]->SetXTitle("p_{T} (GeV/c)");
+        fhReDiffPHOSMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+        outputContainer->Add(fhReDiffPHOSMod[imod]) ;
+      }
+      else{//EMCAL
+        if(imod<fNModules/2){
+          snprintf(key, buffersize,"hReSameSectorEMCAL_%d",imod) ;
+          snprintf(title, buffersize,"Real pairs EMCAL, clusters in same sector, SM(%d,%d)",imod*2,imod*2+1) ;
+          fhReSameSectorEMCALMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhReSameSectorEMCALMod[imod]->SetXTitle("p_{T} (GeV/c)");
+          fhReSameSectorEMCALMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhReSameSectorEMCALMod[imod]) ;
+        }
+        if(imod<fNModules-2){
+          snprintf(key, buffersize,"hReSameSideEMCAL_%d",imod) ;
+          snprintf(title, buffersize,"Real pairs EMCAL, clusters in same side SM(%d,%d)",imod, imod+2) ;
+          fhReSameSideEMCALMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhReSameSideEMCALMod[imod]->SetXTitle("p_{T} (GeV/c)");
+          fhReSameSideEMCALMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhReSameSideEMCALMod[imod]) ;
+        }
+      }//EMCAL
+      
+      if(fDoOwnMix){ 
+        snprintf(key, buffersize,"hMiMod_%d",imod) ;
+        snprintf(title, buffersize,"Mixed m_{#gamma#gamma} distr. for Module %d",imod) ;
+        fhMiMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+        fhMiMod[imod]->SetXTitle("p_{T} (GeV/c)");
+        fhMiMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+        outputContainer->Add(fhMiMod[imod]) ;
+        
+        if(fCalorimeter=="PHOS"){
+          snprintf(key, buffersize,"hMiDiffPHOSMod_%d",imod) ;
+          snprintf(title, buffersize,"Mixed pairs PHOS, clusters in different Modules: %s",(pairnamePHOS[imod]).Data()) ;
+          fhMiDiffPHOSMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+          fhMiDiffPHOSMod[imod]->SetXTitle("p_{T} (GeV/c)");
+          fhMiDiffPHOSMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+          outputContainer->Add(fhMiDiffPHOSMod[imod]) ;
+        }//PHOS
+        else{//EMCAL
+          if(imod<fNModules/2){
+            snprintf(key, buffersize,"hMiSameSectorEMCALMod_%d",imod) ;
+            snprintf(title, buffersize,"Mixed pairs EMCAL, clusters in same sector, SM(%d,%d)",imod*2,imod*2+1) ;
+            fhMiSameSectorEMCALMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMiSameSectorEMCALMod[imod]->SetXTitle("p_{T} (GeV/c)");
+            fhMiSameSectorEMCALMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMiSameSectorEMCALMod[imod]) ;
+          }
+          if(imod<fNModules-2){
+            snprintf(key, buffersize,"hMiSameSideEMCALMod_%d",imod) ;
+            snprintf(title, buffersize,"Mixed pairs EMCAL, clusters in same side SM(%d,%d)",imod, imod+2) ;
+            fhMiSameSideEMCALMod[imod]  = new TH2D(key,title,nptbins,ptmin,ptmax,nmassbins,massmin,massmax) ;
+            fhMiSameSideEMCALMod[imod]->SetXTitle("p_{T} (GeV/c)");
+            fhMiSameSideEMCALMod[imod]->SetYTitle("m_{#gamma,#gamma} (GeV/c^{2})");
+            outputContainer->Add(fhMiSameSideEMCALMod[imod]) ;
+          }
+        }//EMCAL      
+      }// own mix
+    }//loop combinations
+  } // SM combinations
+      
 //  for(Int_t i = 0; i < outputContainer->GetEntries() ; i++){
 //  
 //    printf("Histogram %d, name: %s\n ",i, outputContainer->At(i)->GetName());
@@ -521,9 +983,9 @@ void AliAnaPi0::Print(const Option_t * /*opt*/) const
   printf("Depth of event buffer: %d \n",fNmaxMixEv) ;
   printf("Pair in same Module: %d \n",fSameSM) ;
   printf("Cuts: \n") ;
-  printf("Z vertex position: -%2.3f < z < %2.3f \n",GetZvertexCut(),GetZvertexCut()) ;
+// printf("Z vertex position: -%2.3f < z < %2.3f \n",GetZvertexCut(),GetZvertexCut()) ; //It crashes here, why?
   printf("Number of modules:             %d \n",fNModules) ;
-  printf("Select pairs with their angle: %d \n",fUseAngleCut) ;
+  printf("Select pairs with their angle: %d, edep %d, min angle %2.3f, max angle %2.3f \n",fUseAngleCut, fUseAngleEDepCut, fAngleCut, fAngleMaxCut) ;
   printf("Asymmetry cuts: n = %d, \n",fNAsymCuts) ;
   printf("\tasymmetry < ");
   for(Int_t i = 0; i < fNAsymCuts; i++) printf("%2.2f ",fAsymCuts[i]);
@@ -553,24 +1015,65 @@ void AliAnaPi0::Print(const Option_t * /*opt*/) const
 void AliAnaPi0::FillAcceptanceHistograms(){
   //Fill acceptance histograms if MC data is available
   
-  if(IsDataMC() && GetReader()->ReadStack()){  
+  if(GetReader()->ReadStack()){        
     AliStack * stack = GetMCStack();
-    if(stack && (IsDataMC() || (GetReader()->GetDataType() == AliCaloTrackReader::kMC)) ){
+    if(stack){
       for(Int_t i=0 ; i<stack->GetNprimary(); i++){
         TParticle * prim = stack->Particle(i) ;
-        if(prim->GetPdgCode() == 111){
+        Int_t pdg = prim->GetPdgCode();
+        if( pdg == 111 || pdg == 221){
           Double_t pi0Pt = prim->Pt() ;
           //printf("pi0, pt %2.2f\n",pi0Pt);
           if(prim->Energy() == TMath::Abs(prim->Pz()))  continue ; //Protection against floating point exception         
           Double_t pi0Y  = 0.5*TMath::Log((prim->Energy()-prim->Pz())/(prim->Energy()+prim->Pz())) ;
           Double_t phi   = TMath::RadToDeg()*prim->Phi() ;
-          if(TMath::Abs(pi0Y) < 0.5){
-            fhPrimPt->Fill(pi0Pt) ;
+          if(pdg == 111){
+            if(TMath::Abs(pi0Y) < 1.0){
+              fhPrimPi0Pt->Fill(pi0Pt) ;
+            }
+            fhPrimPi0Y  ->Fill(pi0Pt, pi0Y) ;
+            fhPrimPi0Phi->Fill(pi0Pt, phi) ;
+          }
+          else if(pdg == 221){
+            if(TMath::Abs(pi0Y) < 1.0){
+              fhPrimEtaPt->Fill(pi0Pt) ;
+            }
+            fhPrimEtaY  ->Fill(pi0Pt, pi0Y) ;
+            fhPrimEtaPhi->Fill(pi0Pt, phi) ;
+          }
+          
+          //Origin of meson
+          Int_t momindex  = prim->GetFirstMother();
+          if(momindex < 0) continue;
+          TParticle* mother = stack->Particle(momindex);
+          Int_t mompdg    = TMath::Abs(mother->GetPdgCode());
+          Int_t momstatus = mother->GetStatusCode();
+          if(pdg == 111){
+            if     (momstatus  == 21)fhPrimPi0PtOrigin->Fill(pi0Pt,0.5);//parton
+            else if(mompdg     < 22 ) fhPrimPi0PtOrigin->Fill(pi0Pt,1.5);//quark
+            else if(mompdg     > 2100  && mompdg   < 2210) fhPrimPi0PtOrigin->Fill(pi0Pt,2.5);// resonances
+            else if(mompdg    == 221) fhPrimPi0PtOrigin->Fill(pi0Pt,8.5);//eta
+            else if(mompdg    == 331) fhPrimPi0PtOrigin->Fill(pi0Pt,9.5);//eta prime
+            else if(mompdg    == 213) fhPrimPi0PtOrigin->Fill(pi0Pt,4.5);//rho
+            else if(mompdg    == 223) fhPrimPi0PtOrigin->Fill(pi0Pt,5.5);//omega
+            else if(mompdg    >= 310   && mompdg    <= 323) fhPrimPi0PtOrigin->Fill(pi0Pt,6.5);//k0S, k+-,k*
+            else if(mompdg    == 130) fhPrimPi0PtOrigin->Fill(pi0Pt,6.5);//k0L
+            else if(momstatus == 11 || momstatus  == 12 ) fhPrimPi0PtOrigin->Fill(pi0Pt,3.5);//resonances   
+            else                      fhPrimPi0PtOrigin->Fill(pi0Pt,7.5);//other?
+          }//pi0
+          else {
+            if     (momstatus == 21 ) fhPrimEtaPtOrigin->Fill(pi0Pt,0.5);//parton
+            else if(mompdg    < 22  ) fhPrimEtaPtOrigin->Fill(pi0Pt,1.5);//quark
+            else if(mompdg    > 2100  && mompdg   < 2210) fhPrimEtaPtOrigin->Fill(pi0Pt,2.5);//qq resonances
+            else if(mompdg    == 331) fhPrimEtaPtOrigin->Fill(pi0Pt,5.5);//eta prime
+            else if(momstatus == 11 || momstatus  == 12 ) fhPrimEtaPtOrigin->Fill(pi0Pt,3.5);//resonances
+            else fhPrimEtaPtOrigin->Fill(pi0Pt,4.5);//stable, conversions?
+            //printf("Other Meson pdg %d, Mother %s, pdg %d, status %d\n",pdg, TDatabasePDG::Instance()->GetParticle(mompdg)->GetName(),mompdg, momstatus );          
           }
-          fhPrimY  ->Fill(pi0Y) ;
-          fhPrimPhi->Fill(phi) ;
+          
           
           //Check if both photons hit Calorimeter
+          if(prim->GetNDaughters()!=2) return; //Only interested in 2 gamma decay
           Int_t iphot1=prim->GetFirstDaughter() ;
           Int_t iphot2=prim->GetLastDaughter() ;
           if(iphot1>-1 && iphot1<stack->GetNtrack() && iphot2>-1 && iphot2<stack->GetNtrack()){
@@ -603,8 +1106,18 @@ void AliAnaPi0::FillAcceptanceHistograms(){
               }           
               else if(fCalorimeter == "EMCAL" && GetCaloUtils()->IsEMCALGeoMatrixSet()){
                 if(GetEMCALGeometry()){
-                  if(GetEMCALGeometry()->Impact(phot1) && GetEMCALGeometry()->Impact(phot2)) 
+                  
+                  Int_t absID1=0;
+                  Int_t absID2=0;
+                  
+                  GetEMCALGeometry()->GetAbsCellIdFromEtaPhi(phot1->Eta(),phot1->Phi(),absID1);
+                  GetEMCALGeometry()->GetAbsCellIdFromEtaPhi(phot2->Eta(),phot2->Phi(),absID2);
+
+                  if( absID1 >= 0 && absID2 >= 0) 
                     inacceptance = kTRUE;
+                  
+//                  if(GetEMCALGeometry()->Impact(phot1) && GetEMCALGeometry()->Impact(phot2)) 
+//                    inacceptance = kTRUE;
                   if(GetDebug() > 2) printf("In %s Real acceptance? %d\n",fCalorimeter.Data(),inacceptance);
                 }
                 else{
@@ -615,24 +1128,496 @@ void AliAnaPi0::FillAcceptanceHistograms(){
               }          
               
               if(inacceptance){
-                
-                fhPrimAccPt->Fill(pi0Pt) ;
-                fhPrimAccPhi->Fill(phi) ;
-                fhPrimAccY->Fill(pi0Y) ;
-                Double_t angle  = lv1.Angle(lv2.Vect());
-                fhPrimOpeningAngle   ->Fill(pi0Pt,angle);
-                fhPrimCosOpeningAngle->Fill(pi0Pt,TMath::Cos(angle));
-                
+                if(pdg==111){
+                  fhPrimPi0AccPt ->Fill(pi0Pt) ;
+                  fhPrimPi0AccPhi->Fill(pi0Pt, phi) ;
+                  fhPrimPi0AccY  ->Fill(pi0Pt, pi0Y) ;
+                  Double_t angle  = lv1.Angle(lv2.Vect());
+                  fhPrimPi0OpeningAngle   ->Fill(pi0Pt,angle);
+                  fhPrimPi0CosOpeningAngle->Fill(pi0Pt,TMath::Cos(angle));
+                }
+                else if(pdg==221){
+                  fhPrimEtaAccPt ->Fill(pi0Pt) ;
+                  fhPrimEtaAccPhi->Fill(pi0Pt, phi) ;
+                  fhPrimEtaAccY  ->Fill(pi0Pt, pi0Y) ;
+                }
               }//Accepted
             }// 2 photons      
           }//Check daughters exist
-        }// Primary pi0
+        }// Primary pi0 or eta
       }//loop on primaries     
     }//stack exists and data is MC
   }//read stack
   else if(GetReader()->ReadAODMCParticles()){
-    if(GetDebug() >= 0)  printf("AliAnaPi0::FillAcceptanceHistograms() - Acceptance calculation with MCParticles not implemented yet\n");
-  }    
+    
+    TClonesArray * mcparticles = GetReader()->GetAODMCParticles(0);
+    if(mcparticles){
+      Int_t nprim = mcparticles->GetEntriesFast();
+      for(Int_t i=0; i < nprim; i++)
+      {
+        AliAODMCParticle * prim = (AliAODMCParticle *) mcparticles->At(i);   
+        // Only generator particles
+        if( prim->GetStatus() == 0) break;
+
+        Int_t pdg = prim->GetPdgCode();
+        if( pdg == 111 || pdg == 221){
+          Double_t pi0Pt = prim->Pt() ;
+          //printf("pi0, pt %2.2f\n",pi0Pt);
+          if(prim->E() == TMath::Abs(prim->Pz()))  continue ; //Protection against floating point exception      
+          Double_t pi0Y  = 0.5*TMath::Log((prim->E()-prim->Pz())/(prim->E()+prim->Pz())) ;
+          Double_t phi   = TMath::RadToDeg()*prim->Phi() ;
+          if(pdg == 111){
+            if(TMath::Abs(pi0Y) < 0.5){
+              fhPrimPi0Pt->Fill(pi0Pt) ;
+            }
+            fhPrimPi0Y  ->Fill(pi0Pt, pi0Y) ;
+            fhPrimPi0Phi->Fill(pi0Pt, phi) ;
+          }
+          else if(pdg == 221){
+            if(TMath::Abs(pi0Y) < 0.5){
+              fhPrimEtaPt->Fill(pi0Pt) ;
+            }
+            fhPrimEtaY  ->Fill(pi0Pt, pi0Y) ;
+            fhPrimEtaPhi->Fill(pi0Pt, phi) ;
+          }
+          
+          //Origin of meson
+          Int_t momindex  = prim->GetMother();
+          if(momindex < 0) continue;
+          AliAODMCParticle* mother = (AliAODMCParticle *) mcparticles->At(momindex);
+          Int_t mompdg    = TMath::Abs(mother->GetPdgCode());
+          Int_t momstatus = mother->GetStatus();
+            if(pdg == 111){
+              if     (momstatus  == 21) fhPrimPi0PtOrigin->Fill(pi0Pt,0.5);//parton
+              else if(mompdg     < 22 ) fhPrimPi0PtOrigin->Fill(pi0Pt,1.5);//quark
+              else if(mompdg     > 2100  && mompdg   < 2210) fhPrimPi0PtOrigin->Fill(pi0Pt,2.5);// resonances
+              else if(mompdg    == 221) fhPrimPi0PtOrigin->Fill(pi0Pt,8.5);//eta
+              else if(mompdg    == 331) fhPrimPi0PtOrigin->Fill(pi0Pt,9.5);//eta prime
+              else if(mompdg    == 213) fhPrimPi0PtOrigin->Fill(pi0Pt,4.5);//rho
+              else if(mompdg    == 223) fhPrimPi0PtOrigin->Fill(pi0Pt,5.5);//omega
+              else if(mompdg    >= 310   && mompdg    <= 323) fhPrimPi0PtOrigin->Fill(pi0Pt,6.5);//k0S, k+-,k*
+              else if(mompdg    == 130) fhPrimPi0PtOrigin->Fill(pi0Pt,6.5);//k0L
+              else if(momstatus == 11 || momstatus  == 12 ) fhPrimPi0PtOrigin->Fill(pi0Pt,3.5);//resonances   
+              else                      fhPrimPi0PtOrigin->Fill(pi0Pt,7.5);//other?
+            }//pi0
+            else {
+              if     (momstatus == 21 ) fhPrimEtaPtOrigin->Fill(pi0Pt,0.5);//parton
+              else if(mompdg    < 22  ) fhPrimEtaPtOrigin->Fill(pi0Pt,1.5);//quark
+              else if(mompdg    > 2100  && mompdg   < 2210) fhPrimEtaPtOrigin->Fill(pi0Pt,2.5);//qq resonances
+              else if(mompdg    == 331) fhPrimEtaPtOrigin->Fill(pi0Pt,5.5);//eta prime
+              else if(momstatus == 11 || momstatus  == 12 ) fhPrimEtaPtOrigin->Fill(pi0Pt,3.5);//resonances
+              else fhPrimEtaPtOrigin->Fill(pi0Pt,4.5);//stable, conversions?
+              //printf("Other Meson pdg %d, Mother %s, pdg %d, status %d\n",pdg, TDatabasePDG::Instance()->GetParticle(mompdg)->GetName(),mompdg, momstatus );          
+            }
+          
+          //Check if both photons hit Calorimeter
+          if(prim->GetNDaughters()!=2) return; //Only interested in 2 gamma decay
+          Int_t iphot1=prim->GetDaughter(0) ;
+          Int_t iphot2=prim->GetDaughter(1) ;
+          if(iphot1>-1 && iphot1<nprim && iphot2>-1 && iphot2<nprim){
+            AliAODMCParticle * phot1 = (AliAODMCParticle *) mcparticles->At(iphot1);   
+            AliAODMCParticle * phot2 = (AliAODMCParticle *) mcparticles->At(iphot2);   
+            if(phot1 && phot2 && phot1->GetPdgCode()==22 && phot2->GetPdgCode()==22){
+              TLorentzVector lv1, lv2;
+              lv1.SetPxPyPzE(phot1->Px(),phot1->Py(),phot1->Pz(),phot1->E());
+              lv2.SetPxPyPzE(phot2->Px(),phot2->Py(),phot2->Pz(),phot2->E());
+
+              Bool_t inacceptance = kFALSE;
+              if(fCalorimeter == "PHOS"){
+                if(GetPHOSGeometry() && GetCaloUtils()->IsPHOSGeoMatrixSet()){
+                  Int_t mod ;
+                  Double_t x,z ;
+                  Double_t vtx []={phot1->Xv(),phot1->Yv(),phot1->Zv()};
+                  Double_t vtx2[]={phot2->Xv(),phot2->Yv(),phot2->Zv()};
+                  if(GetPHOSGeometry()->ImpactOnEmc(vtx, phot1->Theta(),phot1->Phi(),mod,z,x) && 
+                     GetPHOSGeometry()->ImpactOnEmc(vtx2,phot2->Theta(),phot2->Phi(),mod,z,x)) 
+                    inacceptance = kTRUE;
+                  if(GetDebug() > 2) printf("In %s Real acceptance? %d\n",fCalorimeter.Data(),inacceptance);
+                }
+                else{
+                  
+                  if(GetFiducialCut()->IsInFiducialCut(lv1,fCalorimeter) && GetFiducialCut()->IsInFiducialCut(lv2,fCalorimeter)) 
+                    inacceptance = kTRUE ;
+                  if(GetDebug() > 2) printf("In %s fiducial cut acceptance? %d\n",fCalorimeter.Data(),inacceptance);
+                }
+                
+              }           
+              else if(fCalorimeter == "EMCAL" && GetCaloUtils()->IsEMCALGeoMatrixSet()){
+                if(GetEMCALGeometry()){
+
+                  Int_t absID1=0;
+                  Int_t absID2=0;
+
+                  //TVector3 vtx(phot1->Xv(),phot1->Yv(),phot1->Zv());
+                  //TVector3 vimpact(0,0,0);
+                  
+                  //GetEMCALGeometry()->ImpactOnEmcal(vtx,phot1->Theta(),phot1->Phi(),absID1,vimpact);
+                  //TVector3 vtx2(phot2->Xv(),phot2->Yv(),phot2->Zv());
+                  //TVector3 vimpact2(0,0,0);
+                  //GetEMCALGeometry()->ImpactOnEmcal(vtx2,phot2->Theta(),phot2->Phi(),absID2,vimpact2);
+                 
+                  GetEMCALGeometry()->GetAbsCellIdFromEtaPhi(phot1->Eta(),phot1->Phi(),absID1);
+                  GetEMCALGeometry()->GetAbsCellIdFromEtaPhi(phot2->Eta(),phot2->Phi(),absID2);
+
+//                  if(TMath::Abs(phot1->Eta()) < 0.7 && phot1->Phi() > 80*TMath::DegToRad() && phot1->Phi() < 120*TMath::DegToRad() ) 
+//                    printf("Phot1 ccepted? %d\n",absID1);
+//                  if(TMath::Abs(phot2->Eta()) < 0.7 && phot2->Phi() > 80*TMath::DegToRad() && phot2->Phi() < 120*TMath::DegToRad() ) 
+//                    printf("Phot2 accepted? %d\n",absID2);
+
+                  if( absID1 >= 0 && absID2 >= 0) 
+                    inacceptance = kTRUE;
+                  
+//                  if(pdg==111 && inacceptance) printf("2 photons: photon 1: absId %d, pt %2.2f, phi %3.2f, eta %1.2f; photon 2: absId %d, pt %2.2f, phi %3.2f, eta %1.2f\n",
+//                                                       absID1,phot1->Pt(), phot1->Phi()*TMath::RadToDeg(), phot1->Eta(),  
+//                                                       absID2,phot2->Pt(), phot2->Phi()*TMath::RadToDeg(), phot2->Eta());
+                  
+                  
+                  
+                  if(GetDebug() > 2) printf("In %s Real acceptance? %d\n",fCalorimeter.Data(),inacceptance);
+                }
+                else{
+                  if(GetFiducialCut()->IsInFiducialCut(lv1,fCalorimeter) && GetFiducialCut()->IsInFiducialCut(lv2,fCalorimeter)) 
+                    inacceptance = kTRUE ;
+                  if(GetDebug() > 2) printf("In %s fiducial cut acceptance? %d\n",fCalorimeter.Data(),inacceptance);
+                }
+              }          
+              
+              if(inacceptance){
+                if(pdg==111){
+  //                printf("ACCEPTED pi0: pt %2.2f, phi %3.2f, eta %1.2f\n",pi0Pt,phi,pi0Y);
+                  fhPrimPi0AccPt ->Fill(pi0Pt) ;
+                  fhPrimPi0AccPhi->Fill(pi0Pt, phi) ;
+                  fhPrimPi0AccY  ->Fill(pi0Pt, pi0Y) ;
+                  Double_t angle  = lv1.Angle(lv2.Vect());
+                  fhPrimPi0OpeningAngle   ->Fill(pi0Pt,angle);
+                  fhPrimPi0CosOpeningAngle->Fill(pi0Pt,TMath::Cos(angle));
+                }
+                else if(pdg==221){
+                  fhPrimEtaAccPt ->Fill(pi0Pt) ;
+                  fhPrimEtaAccPhi->Fill(pi0Pt, phi) ;
+                  fhPrimEtaAccY  ->Fill(pi0Pt, pi0Y) ;
+                }
+              }//Accepted
+            }// 2 photons      
+          }//Check daughters exist
+        }// Primary pi0 or eta
+      }//loop on primaries     
+    }//stack exists and data is MC
+    
+    
+  }    // read AOD MC
+}
+
+//_____________________________________________________________
+void AliAnaPi0::FillMCVersusRecDataHistograms(const Int_t index1,  const Int_t index2, 
+                                              const Float_t pt1,   const Float_t pt2, 
+                                              const Int_t ncell1,  const Int_t ncell2,
+                                              const Double_t mass, const Double_t pt, const Double_t asym, 
+                                              const Double_t deta, const Double_t dphi){
+  //Do some MC checks on the origin of the pair, is there any common ancestor and if there is one, who?
+  //Adjusted for Pythia, need to see what to do for other generators.
+  //Array of histograms ordered as follows: 0-Photon, 1-electron, 2-pi0, 3-eta, 4-a-proton, 5-a-neutron, 6-stable particles, 
+  // 7-other decays, 8-string, 9-final parton, 10-initial parton, intermediate, 11-colliding proton, 12-unrelated
+  
+  Int_t ancPDG    = 0;
+  Int_t ancStatus = 0;
+  TLorentzVector ancMomentum;
+  Int_t ancLabel  = GetMCAnalysisUtils()->CheckCommonAncestor(index1, index2, 
+                                                              GetReader(), ancPDG, ancStatus,ancMomentum);
+  
+  Int_t momindex  = -1;
+  Int_t mompdg    = -1;
+  Int_t momstatus = -1;
+  if(GetDebug() > 1) printf("AliAnaPi0::FillMCVersusRecDataHistograms() - Common ancestor label %d, pdg %d, name %s, status %d; \n",
+                            ancLabel,ancPDG,TDatabasePDG::Instance()->GetParticle(ancPDG)->GetName(),ancStatus);
+    
+    if(ancLabel > -1){
+      if(ancPDG==22){//gamma
+        fhMCOrgMass[0]->Fill(pt,mass);
+        fhMCOrgAsym[0]->Fill(pt,asym);
+        fhMCOrgDeltaEta[0]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[0]->Fill(pt,dphi);
+      }              
+      else if(TMath::Abs(ancPDG)==11){//e
+        fhMCOrgMass[1]->Fill(pt,mass);
+        fhMCOrgAsym[1]->Fill(pt,asym);
+        fhMCOrgDeltaEta[1]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[1]->Fill(pt,dphi);
+      }          
+      else if(ancPDG==111){//Pi0
+        fhMCOrgMass[2]->Fill(pt,mass);
+        fhMCOrgAsym[2]->Fill(pt,asym);
+        fhMCOrgDeltaEta[2]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[2]->Fill(pt,dphi);
+        if(fMultiCutAnaSim){
+          for(Int_t ipt=0; ipt<fNPtCuts; ipt++){          
+            for(Int_t icell=0; icell<fNCellNCuts; icell++){
+              for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+                Int_t index = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
+                if(pt1    >  fPtCuts[ipt]      && pt2    >  fPtCuts[ipt]        && 
+                   asym   <  fAsymCuts[iasym]                                   && 
+                   ncell1 >= fCellNCuts[icell] && ncell2 >= fCellNCuts[icell]){ 
+                  fhMCPi0MassPtRec [index]->Fill(pt,mass);
+                  fhMCPi0MassPtTrue[index]->Fill(ancMomentum.Pt(),mass);
+                  if(mass < 0.17 && mass > 0.1) fhMCPi0PtTruePtRec[index]->Fill(ancMomentum.Pt(),pt);
+                }//pass the different cuts
+              }// pid bit cut loop
+            }// icell loop
+          }// pt cut loop
+        }//Multi cut ana sim
+        else {
+          fhMCPi0MassPtTrue[0]->Fill(ancMomentum.Pt(),mass);
+          if(mass < 0.17 && mass > 0.1) {
+            fhMCPi0PtTruePtRec[0]->Fill(ancMomentum.Pt(),pt); 
+   
+            if(GetReader()->ReadStack()){      
+              TParticle* ancestor = GetMCStack()->Particle(ancLabel);
+              momindex  = ancestor->GetFirstMother();
+              if(momindex < 0) return;
+              TParticle* mother = GetMCStack()->Particle(momindex);
+              mompdg    = TMath::Abs(mother->GetPdgCode());
+              momstatus = mother->GetStatusCode();         
+            }
+            else {
+              TClonesArray * mcparticles = GetReader()->GetAODMCParticles(0);
+              AliAODMCParticle* ancestor = (AliAODMCParticle *) mcparticles->At(ancLabel);
+              momindex  = ancestor->GetMother();
+              if(momindex < 0) return;
+              AliAODMCParticle* mother = (AliAODMCParticle *) mcparticles->At(momindex);
+              mompdg    = TMath::Abs(mother->GetPdgCode());
+              momstatus = mother->GetStatus();  
+            }            
+            
+            if     (momstatus  == 21) fhMCPi0PtOrigin->Fill(pt,0.5);//parton
+            else if(mompdg     < 22 ) fhMCPi0PtOrigin->Fill(pt,1.5);//quark
+            else if(mompdg     > 2100  && mompdg   < 2210) fhMCPi0PtOrigin->Fill(pt,2.5);// resonances
+            else if(mompdg    == 221) fhMCPi0PtOrigin->Fill(pt,8.5);//eta
+            else if(mompdg    == 331) fhMCPi0PtOrigin->Fill(pt,9.5);//eta prime
+            else if(mompdg    == 213) fhMCPi0PtOrigin->Fill(pt,4.5);//rho
+            else if(mompdg    == 223) fhMCPi0PtOrigin->Fill(pt,5.5);//omega
+            else if(mompdg    >= 310   && mompdg    <= 323) fhMCPi0PtOrigin->Fill(pt,6.5);//k0S, k+-,k*
+            else if(mompdg    == 130) fhMCPi0PtOrigin->Fill(pt,6.5);//k0L
+            else if(momstatus == 11 || momstatus  == 12 ) fhMCPi0PtOrigin->Fill(pt,3.5);//resonances   
+            else                      fhMCPi0PtOrigin->Fill(pt,7.5);//other?
+            
+          }//pi0 mass region
+          
+        }
+      }
+      else if(ancPDG==221){//Eta
+        fhMCOrgMass[3]->Fill(pt,mass);
+        fhMCOrgAsym[3]->Fill(pt,asym);
+        fhMCOrgDeltaEta[3]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[3]->Fill(pt,dphi);
+        if(fMultiCutAnaSim){
+          for(Int_t ipt=0; ipt<fNPtCuts; ipt++){          
+            for(Int_t icell=0; icell<fNCellNCuts; icell++){
+              for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+                Int_t index = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
+                if(pt1    >  fPtCuts[ipt]      && pt2    >  fPtCuts[ipt]        && 
+                   asym   <  fAsymCuts[iasym]                                   && 
+                   ncell1 >= fCellNCuts[icell] && ncell2 >= fCellNCuts[icell]){ 
+                  fhMCEtaMassPtRec [index]->Fill(pt,mass);
+                  fhMCEtaMassPtTrue[index]->Fill(ancMomentum.Pt(),mass);
+                  if(mass < 0.65 && mass > 0.45) fhMCEtaPtTruePtRec[index]->Fill(ancMomentum.Pt(),pt);
+                }//pass the different cuts
+              }// pid bit cut loop
+            }// icell loop
+          }// pt cut loop
+        } //Multi cut ana sim
+        else {
+          fhMCEtaMassPtTrue[0]->Fill(ancMomentum.Pt(),mass);
+          if(mass < 0.65 && mass > 0.45) fhMCEtaPtTruePtRec[0]->Fill(ancMomentum.Pt(),pt); 
+          
+          if(GetReader()->ReadStack()){        
+            TParticle* ancestor = GetMCStack()->Particle(ancLabel);
+            momindex  = ancestor->GetFirstMother();
+            if(momindex < 0) return;
+            TParticle* mother = GetMCStack()->Particle(momindex);
+            mompdg    = TMath::Abs(mother->GetPdgCode());
+            momstatus = mother->GetStatusCode();         
+          }
+          else {
+            TClonesArray * mcparticles = GetReader()->GetAODMCParticles(0);
+            AliAODMCParticle* ancestor = (AliAODMCParticle *) mcparticles->At(ancLabel);
+            momindex  = ancestor->GetMother();
+            if(momindex < 0) return;
+            AliAODMCParticle* mother = (AliAODMCParticle *) mcparticles->At(momindex);
+            mompdg    = TMath::Abs(mother->GetPdgCode());
+            momstatus = mother->GetStatus();  
+          }          
+          
+          if     (momstatus == 21 ) fhMCEtaPtOrigin->Fill(pt,0.5);//parton
+          else if(mompdg    < 22  ) fhMCEtaPtOrigin->Fill(pt,1.5);//quark
+          else if(mompdg    > 2100  && mompdg   < 2210) fhMCEtaPtOrigin->Fill(pt,2.5);//qq resonances
+          else if(mompdg    == 331) fhMCEtaPtOrigin->Fill(pt,5.5);//eta prime
+          else if(momstatus == 11 || momstatus  == 12 ) fhMCEtaPtOrigin->Fill(pt,3.5);//resonances
+          else fhMCEtaPtOrigin->Fill(pt,4.5);//stable, conversions?
+          //printf("Other Meson pdg %d, Mother %s, pdg %d, status %d\n",pdg, TDatabasePDG::Instance()->GetParticle(mompdg)->GetName(),mompdg, momstatus );  
+        }// eta mass region
+      }
+      else if(ancPDG==-2212){//AProton
+        fhMCOrgMass[4]->Fill(pt,mass);
+        fhMCOrgAsym[4]->Fill(pt,asym);
+        fhMCOrgDeltaEta[4]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[4]->Fill(pt,dphi);
+      }   
+      else if(ancPDG==-2112){//ANeutron
+        fhMCOrgMass[5]->Fill(pt,mass);
+        fhMCOrgAsym[5]->Fill(pt,asym);
+        fhMCOrgDeltaEta[5]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[5]->Fill(pt,dphi);
+      }       
+      else if(TMath::Abs(ancPDG)==13){//muons
+        fhMCOrgMass[6]->Fill(pt,mass);
+        fhMCOrgAsym[6]->Fill(pt,asym);
+        fhMCOrgDeltaEta[6]->Fill(pt,deta);
+        fhMCOrgDeltaPhi[6]->Fill(pt,dphi);
+      }                   
+      else if (TMath::Abs(ancPDG) > 100 && ancLabel > 7) {
+        if(ancStatus==1){//Stable particles, converted? not decayed resonances
+          fhMCOrgMass[6]->Fill(pt,mass);
+          fhMCOrgAsym[6]->Fill(pt,asym);
+          fhMCOrgDeltaEta[6]->Fill(pt,deta);
+          fhMCOrgDeltaPhi[6]->Fill(pt,dphi);  
+        }
+        else{//resonances and other decays, more hadron conversions?
+          fhMCOrgMass[7]->Fill(pt,mass);
+          fhMCOrgAsym[7]->Fill(pt,asym);
+          fhMCOrgDeltaEta[7]->Fill(pt,deta);
+          fhMCOrgDeltaPhi[7]->Fill(pt,dphi);
+        }
+      }
+      else {//Partons, colliding protons, strings, intermediate corrections
+        if(ancStatus==11 || ancStatus==12){//String fragmentation
+          fhMCOrgMass[8]->Fill(pt,mass);
+          fhMCOrgAsym[8]->Fill(pt,asym);
+          fhMCOrgDeltaEta[8]->Fill(pt,deta);
+          fhMCOrgDeltaPhi[8]->Fill(pt,dphi);
+        }
+        else if (ancStatus==21){
+          if(ancLabel < 2) {//Colliding protons
+            fhMCOrgMass[11]->Fill(pt,mass);
+            fhMCOrgAsym[11]->Fill(pt,asym);
+            fhMCOrgDeltaEta[11]->Fill(pt,deta);
+            fhMCOrgDeltaPhi[11]->Fill(pt,dphi);
+          }//colliding protons  
+          else if(ancLabel < 6){//partonic initial states interactions
+            fhMCOrgMass[9]->Fill(pt,mass);
+            fhMCOrgAsym[9]->Fill(pt,asym);
+            fhMCOrgDeltaEta[9]->Fill(pt,deta);
+            fhMCOrgDeltaPhi[9]->Fill(pt,dphi);
+          }
+          else if(ancLabel < 8){//Final state partons radiations?
+            fhMCOrgMass[10]->Fill(pt,mass);
+            fhMCOrgAsym[10]->Fill(pt,asym);
+            fhMCOrgDeltaEta[10]->Fill(pt,deta);
+            fhMCOrgDeltaPhi[10]->Fill(pt,dphi);
+          }
+          else {
+            printf("AliAnaPi0::FillMCVersusRecDataHistograms() - Check ** Common ancestor label %d, pdg %d, name %s, status %d; \n",
+                   ancLabel,ancPDG,TDatabasePDG::Instance()->GetParticle(ancPDG)->GetName(),ancStatus);
+          }
+        }//status 21
+        else {
+          printf("AliAnaPi0::FillMCVersusRecDataHistograms() - Check *** Common ancestor label %d, pdg %d, name %s, status %d; \n",
+                 ancLabel,ancPDG,TDatabasePDG::Instance()->GetParticle(ancPDG)->GetName(),ancStatus);
+        }
+      }////Partons, colliding protons, strings, intermediate corrections
+    }//ancLabel > -1 
+    else { //ancLabel <= -1
+      //printf("Not related at all label = %d\n",ancLabel);
+      fhMCOrgMass[12]->Fill(pt,mass);
+      fhMCOrgAsym[12]->Fill(pt,asym);
+      fhMCOrgDeltaEta[12]->Fill(pt,deta);
+      fhMCOrgDeltaPhi[12]->Fill(pt,dphi);
+    }
+}  
+
+//____________________________________________________________________________________________________________________________________________________
+void AliAnaPi0::CountAndGetAverages(Int_t &nClus,Int_t &nCell, Float_t &eClusTot,Float_t &eCellTot, Float_t &eDenClus,Float_t &eDenCell) {
+// Count the number of clusters and cells, deposited energy, and do some averages in case multiplicity bins dependent on such numbers
+// are requested
+  if(fCalorimeter=="EMCAL"){ 
+    nClus = GetEMCALClusters()  ->GetEntriesFast();
+    nCell = GetEMCALCells()->GetNumberOfCells();
+    for(Int_t icl=0; icl < nClus; icl++) {
+      Float_t e1 = ((AliVCluster*)GetEMCALClusters()->At(icl))->E();
+      eClusTot +=  e1;
+      //      if(e1 > emax) emax = e1;
+      //      ((AliVCluster*)GetEMCALClusters()->At(icl))->GetPosition(pos1);
+      //      for(Int_t icl2=icl+1; icl2 < nClus; icl2++) {
+      //        Float_t e2 = ((AliVCluster*)GetEMCALClusters()->At(icl2))->E();
+      //        ((AliVCluster*)GetEMCALClusters()->At(icl2))->GetPosition(pos2);
+      //        rtmp  =  TMath::Sqrt((pos1[0]-pos2[0])*(pos1[0]-pos2[0]) + (pos1[2]-pos2[2])*(pos1[2]-pos2[2]));
+      //        rtmpw =  TMath::Sqrt((pos1[0]*e1-pos2[0]*e2)*(pos1[0]*e1-pos2[0]*e2) + (pos1[2]*e1-pos2[2]*e2)*(pos1[2]*e1-pos2[2]*e2))/(e1+e2);
+      //        rxz  += rtmp;  
+      //        rxzw += rtmpw;
+      //        ncomb++;
+      //        fhClusterPairDist      ->Fill(rtmp);
+      //        fhClusterPairDistWeight->Fill(rtmpw);
+      //        //printf("Distance: %f; weighted  %f\n ",rtmp,rtmp/(e1+((AliVCluster*)GetEMCALClusters()->At(icl2))->E()));
+      //
+      //      }// second cluster loop
+    }// first cluster
+    
+    for(Int_t jce=0; jce < nCell; jce++) eCellTot +=  GetEMCALCells()->GetAmplitude(jce);
+      }
+  else {                     
+    nClus = GetPHOSClusters()->GetEntriesFast();
+    nCell = GetPHOSCells()   ->GetNumberOfCells();
+    for(Int_t icl=0; icl < nClus; icl++) {
+      Float_t e1 = ((AliVCluster*)GetPHOSClusters()->At(icl))->E();
+      eClusTot +=  e1;
+      //      ((AliVCluster*)GetPHOSClusters()->At(icl))->GetPosition(pos1);
+      //      for(Int_t icl2=icl+1; icl2 < nClus; icl2++) {
+      //        Float_t e2 = ((AliVCluster*)GetPHOSClusters()->At(icl2))->E();
+      //        ((AliVCluster*)GetPHOSClusters()->At(icl2))->GetPosition(pos2);
+      //        rtmp  = TMath::Sqrt((pos1[0]-pos2[0])*(pos1[0]-pos2[0]) + (pos1[2]-pos2[2])*(pos1[2]-pos2[2]));
+      //        rtmpw =  TMath::Sqrt((pos1[0]*e1-pos2[0]*e2)*(pos1[0]*e1-pos2[0]*e2) + (pos1[2]*e1-pos2[2]*e2)*(pos1[2]*e1-pos2[2]*e2))/(e1+e2);
+      //        rxz  += rtmp;  
+      //        rxzw += rtmpw;
+      //        ncomb++;
+      //        fhClusterPairDist      ->Fill(rtmp);
+      //        fhClusterPairDistWeight->Fill(rtmpw);
+      //      }// second cluster loop
+    }// first cluster
+    for(Int_t jce=0; jce < nCell; jce++) eCellTot +=  GetPHOSCells()->GetAmplitude(jce);
+      }
+  if(GetDebug() > 1) 
+    printf("AliAnaPi0::MakeAnalysisFillHistograms() - # Clusters %d, sum cluster E per SM %f,# Cells %d, sum cell E per SM %f\n", nClus,eClusTot,nCell,eCellTot);
+    
+    //Fill histograms with "energy density", ncell and nclust will be > 0 since there are at least 2 "photons"
+    eDenClus = eClusTot/nClus;
+    eDenCell = eCellTot/nCell;
+    fhEDensityCluster      ->Fill(eDenClus);
+    fhEDensityCell         ->Fill(eDenCell);
+    fhEDensityCellvsCluster->Fill(eDenClus, eDenCell);
+    //Fill the average number of cells or clusters per SM
+    eClusTot /=fNModules;
+    eCellTot /=fNModules;
+    fhAverTotECluster      ->Fill(eClusTot);
+    fhAverTotECell         ->Fill(eCellTot);
+    fhAverTotECellvsCluster->Fill(eClusTot, eCellTot);
+    //printf("Average Cluster: E %f, density %f;  Average Cell E %f, density  %f\n ",eClusTot,eDenClus,eCellTot,eDenCell);
+    
+    //  //Average weighted pair distance
+    //  rxz  /= ncomb;                             
+    //  rxzw /= ncomb;                             
+    //
+    //  fhAverClusterPairDist             ->Fill(rxz );
+    //  fhAverClusterPairDistWeight       ->Fill(rxzw);
+    //  fhAverClusterPairDistvsAverE      ->Fill(rxz ,eDenClus);
+    //  fhAverClusterPairDistWeightvsAverE->Fill(rxzw,eDenClus);
+    //  fhAverClusterPairDistvsN          ->Fill(rxz ,nClus);
+    //  fhAverClusterPairDistWeightvsN    ->Fill(rxzw,nClus);
+    //  
+    //  //emax
+    //  fhMaxEvsClustEDen->Fill(emax,eDenClus);
+    //  fhMaxEvsClustMult->Fill(emax,nPhot);
+    
+    //printf("Average Distance: %f; weighted  %f\n ",rxz,rxzw);
+    
 }
 
 //____________________________________________________________________________________________________________________________________________________
@@ -641,29 +1626,65 @@ void AliAnaPi0::MakeAnalysisFillHistograms()
   //Process one event and extract photons from AOD branch 
   // filled with AliAnaPhoton and fill histos with invariant mass
   
-  //In case of MC data, fill acceptance histograms
-  FillAcceptanceHistograms();
+  //In case of simulated data, fill acceptance histograms
+  if(IsDataMC())FillAcceptanceHistograms();
+  
+  //if (GetReader()->GetEventNumber()%10000 == 0) 
+  // printf("--- Event %d ---\n",GetReader()->GetEventNumber());
   
-  //Apply some cuts on event: vertex position and centrality range  
-  Int_t iRun=(GetReader()->GetInputEvent())->GetRunNumber() ;
-  if(IsBadRun(iRun)) return ;  
+  //Init some variables
+//Int_t   iRun     = (GetReader()->GetInputEvent())->GetRunNumber() ;
+  Int_t   nPhot    = GetInputAODBranch()->GetEntriesFast() ;
+  Int_t   nClus    = 0;
+  Int_t   nCell    = 0;
+  Float_t eClusTot = 0;
+  Float_t eCellTot = 0;
+  Float_t eDenClus = 0;
+  Float_t eDenCell = 0;
+//  Int_t   ncomb    = 0;
+//  Float_t rtmp     = 0;
+//  Float_t rtmpw    = 0;
+//  Float_t rxz      = 0;
+//  Float_t rxzw     = 0;
+//  Float_t pos1[3];
+//  Float_t pos2[3];
+//  Float_t emax     = 0;
+  
+  if(fNCentrBin > 1 && (fUseAverCellEBins||fUseAverClusterEBins||fUseAverClusterEDenBins))
+    CountAndGetAverages(nClus,nCell,eClusTot,eCellTot,eDenClus,eDenCell);
+
   
-  Int_t nPhot = GetInputAODBranch()->GetEntriesFast() ;
   if(GetDebug() > 1) 
     printf("AliAnaPi0::MakeAnalysisFillHistograms() - Photon entries %d\n", nPhot);
-  if(nPhot < 2 )
-    return ; 
-  Int_t module1 = -1;
-  Int_t module2 = -1;
-  Double_t vert[] = {0.0, 0.0, 0.0} ; //vertex 
-  Int_t evtIndex1 = 0 ; 
-  Int_t currentEvtIndex = -1 ; 
-  Int_t curCentrBin = 0 ; 
-  Int_t curRPBin    = 0 ; 
-  Int_t curZvertBin = 0 ;
+
+  //If less than photon 2 entries in the list, skip this event
+  if(nPhot < 2 ) {
+    
+    if(GetDebug() > 2)
+      printf("AliAnaPi0::MakeAnalysisFillHistograms() - nPhotons %d, cent bin %d continue to next event\n",nPhot, GetEventCentrality());
+    
+    if(fNCentrBin > 1) fhCentralityNoPair->Fill(GetEventCentrality() * fNCentrBin / GetReader()->GetCentralityOpt());
+    
+    return ;
+  }
+  
+  //Init variables
+  Int_t module1         = -1;
+  Int_t module2         = -1;
+  Double_t vert[]       = {0.0, 0.0, 0.0} ; //vertex 
+  Int_t evtIndex1       = 0 ; 
+  Int_t currentEvtIndex = -1; 
+  Int_t curCentrBin     = 0 ; 
+  Int_t curRPBin        = 0 ; 
+  Int_t curZvertBin     = 0 ;
   
+  //---------------------------------
+  //First loop on photons/clusters
+  //---------------------------------
   for(Int_t i1=0; i1<nPhot-1; i1++){
     AliAODPWG4Particle * p1 = (AliAODPWG4Particle*) (GetInputAODBranch()->At(i1)) ;
+    //printf("AliAnaPi0::MakeAnalysisFillHistograms() : cluster1 id %d\n",p1->GetCaloLabel(0));
+
     // get the event index in the mixed buffer where the photon comes from 
     // in case of mixing with analysis frame, not own mixing
     evtIndex1 = GetEventIndex(p1, vert) ; 
@@ -672,24 +1693,108 @@ void AliAnaPi0::MakeAnalysisFillHistograms()
       return ; 
     if ( evtIndex1 == -2 )
       continue ; 
+    
+    //printf("z vertex %f < %f\n",vert[2],GetZvertexCut());
     if(TMath::Abs(vert[2]) > GetZvertexCut()) continue ;   //vertex cut
+  
+    
+    //----------------------------------------------------------------------------
+    // Get the multiplicity bin. Different cases: centrality (PbPb), 
+    // average cluster multiplicity, average cell multiplicity, track multiplicity 
+    // default is centrality bins
+    //----------------------------------------------------------------------------
     if (evtIndex1 != currentEvtIndex) {
-      curCentrBin = GetEventCentrality();
+      if(fUseTrackMultBins){ // Track multiplicity bins
+        //printf("track  mult %d\n",GetTrackMultiplicity());
+        curCentrBin = (GetTrackMultiplicity()-1)/5; 
+        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+        //printf("track mult bin %d\n",curCentrBin);
+      }
+      else if(fUsePhotonMultBins){ // Photon multiplicity bins
+        //printf("photon  mult %d cluster mult %d\n",nPhot, nClus);
+        curRPBin = nPhot-2; 
+        if(curRPBin > GetNRPBin() -1) curRPBin=GetNRPBin()-1;
+        //printf("photon mult bin %d\n",curRPBin);        
+      }
+      else if(fUseAverClusterEBins){ // Cluster average energy bins
+        //Bins for pp, if needed can be done in a more general way
+        curCentrBin = (Int_t) eClusTot/10 * fNCentrBin; 
+        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+        //printf("cluster E average %f, bin %d \n",eClusTot,curCentrBin);
+      }
+      else if(fUseAverCellEBins){ // Cell average energy bins
+        //Bins for pp, if needed can be done in a more general way
+        curCentrBin = (Int_t) eCellTot/10*fNCentrBin; 
+        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+        //printf("cell E average %f, bin %d \n",eCellTot,curCentrBin);
+      }
+      else if(fUseAverClusterEDenBins){ // Energy density bins
+        //Bins for pp, if needed can be done in a more general way
+        curCentrBin = (Int_t) eDenClus/10*fNCentrBin; 
+        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+        //printf("cluster Eden average %f, bin %d \n",eDenClus,curCentrBin);
+      } 
+//      else if(fUseAverClusterPairRBins){ // Cluster average distance bins
+//        //Bins for pp, if needed can be done in a more general way
+//        curCentrBin = rxz/650*fNCentrBin; 
+//        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+//        //printf("cluster pair R average %f, bin %d \n",rxz,curCentrBin);
+//      }
+//      else if(fUseAverClusterPairRWeightBins){ // Cluster average distance bins
+//        //Bins for pp, if needed can be done in a more general way
+//        curCentrBin = rxzw/350*fNCentrBin; 
+//        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+//        //printf("cluster pair rW average %f, bin %d \n",rxzw,curCentrBin);
+//      }    
+//      else if(fUseEMaxBins){ // Cluster average distance bins
+//        //Bins for pp, if needed can be done in a more general way
+//        curCentrBin = emax/20*fNCentrBin; 
+//        if(curCentrBin > fNCentrBin-1) curCentrBin=fNCentrBin-1;
+//        //printf("cluster pair rW average %f, bin %d \n",rxzw,curCentrBin);
+//      }     
+      else { //Event centrality
+          // Centrality task returns at maximum 10, 20 or 100, depending on option chosen and 
+          // number of bins, the bin has to be corrected
+          curCentrBin = GetEventCentrality() * fNCentrBin / GetReader()->GetCentralityOpt(); 
+          if(GetDebug() > 0 )printf("AliAnaPi0::MakeAnalysisFillHistograms() - curCentrBin %d, centrality %d, n bins %d, max bin from centrality %d\n",
+                                    curCentrBin, GetEventCentrality(), fNCentrBin, GetReader()->GetCentralityOpt());
+      }
+      
+      if (curCentrBin < 0 || curCentrBin >= fNCentrBin){ 
+        if(GetDebug() > 0) 
+          printf("AliAnaPi0::MakeAnalysisFillHistograms() - Centrality bin <%d> not expected, n bins <%d> , return\n",curCentrBin,fNCentrBin);
+        return;
+      }
+        
+      //Reaction plane bin
       curRPBin    = 0 ;
+       
+      //Get vertex z bin
       curZvertBin = (Int_t)(0.5*GetNZvertBin()*(vert[2]+GetZvertexCut())/GetZvertexCut()) ;
-      fhEvents->Fill(curCentrBin+0.5,curZvertBin+0.5,curRPBin+0.5) ;
+      
+      //Fill event bin info
+      fhEvents    ->Fill(curCentrBin+0.5,curZvertBin+0.5,curRPBin+0.5) ;
+      if(fNCentrBin > 1) fhCentrality->Fill(curCentrBin);
       currentEvtIndex = evtIndex1 ; 
       if(GetDebug() > 1) 
-        printf("AliAnaPi0::MakeAnalysisFillHistograms() - Centrality %d, Vertex Bin %d, RP bin %d\n",curCentrBin,curRPBin,curZvertBin);
+        printf("AliAnaPi0::MakeAnalysisFillHistograms() - Centrality %d, Vertex Bin %d, RP bin %d \n",curCentrBin,curRPBin,curZvertBin);
     }
     
     //printf("AliAnaPi0::MakeAnalysisFillHistograms(): Photon 1 Evt %d  Vertex : %f,%f,%f\n",evtIndex1, GetVertex(evtIndex1)[0] ,GetVertex(evtIndex1)[1],GetVertex(evtIndex1)[2]);
     
+    //Get the momentum of this cluster
     TLorentzVector photon1(p1->Px(),p1->Py(),p1->Pz(),p1->E());
-    //Get Module number
+    
+    //Get (Super)Module number of this cluster
     module1 = GetModuleNumber(p1);
+    
+    //---------------------------------
+    //Second loop on photons/clusters
+    //---------------------------------
     for(Int_t i2=i1+1; i2<nPhot; i2++){
       AliAODPWG4Particle * p2 = (AliAODPWG4Particle*) (GetInputAODBranch()->At(i2)) ;
+      
+      //In case of mixing frame, check we are not in the same event as the first cluster
       Int_t evtIndex2 = GetEventIndex(p2, vert) ; 
       if ( evtIndex2 == -1 )
         return ; 
@@ -697,66 +1802,101 @@ void AliAnaPi0::MakeAnalysisFillHistograms()
         continue ;    
       if (GetMixedEvent() && (evtIndex1 == evtIndex2))
         continue ;
+      
       //printf("AliAnaPi0::MakeAnalysisFillHistograms(): Photon 2 Evt %d  Vertex : %f,%f,%f\n",evtIndex2, GetVertex(evtIndex2)[0] ,GetVertex(evtIndex2)[1],GetVertex(evtIndex2)[2]);
+      //Get the momentum of this cluster
       TLorentzVector photon2(p2->Px(),p2->Py(),p2->Pz(),p2->E());
       //Get module number
-      module2 = GetModuleNumber(p2);
-      Double_t m  = (photon1 + photon2).M() ;
-      Double_t pt = (photon1 + photon2).Pt();
-      Double_t a  = TMath::Abs(p1->E()-p2->E())/(p1->E()+p2->E()) ;
+      module2       = GetModuleNumber(p2);
+      
+      //---------------------------------
+      // Get pair kinematics
+      //---------------------------------
+      Double_t m    = (photon1 + photon2).M() ;
+      Double_t pt   = (photon1 + photon2).Pt();
+      Double_t deta = photon1.Eta() - photon2.Eta();
+      Double_t dphi = photon1.Phi() - photon2.Phi();
+      Double_t a    = TMath::Abs(p1->E()-p2->E())/(p1->E()+p2->E()) ;
+      
       if(GetDebug() > 2)
-        printf("AliAnaPi0::MakeAnalysisFillHistograms() - Current Event: pT: photon1 %2.2f, photon2 %2.2f; Pair: pT %2.2f, mass %2.3f, a %f2.3\n",
-               p1->Pt(), p2->Pt(), pt,m,a);
+        printf(" E: photon1 %f, photon2 %f; Pair: pT %f, mass %f, a %f\n", p1->E(), p2->E(), (photon1 + photon2).E(),m,a);
+      
+      //--------------------------------
+      // Opening angle selection
+      //--------------------------------
       //Check if opening angle is too large or too small compared to what is expected  
       Double_t angle   = photon1.Angle(photon2.Vect());
-      //if(fUseAngleCut && !GetNeutralMesonSelection()->IsAngleInWindow((photon1+photon2).E(),angle)) continue;
-      //printf("angle %f\n",angle);
-      if(fUseAngleCut && angle < 0.1) 
+      if(fUseAngleEDepCut && !GetNeutralMesonSelection()->IsAngleInWindow((photon1+photon2).E(),angle+0.05)) {
+        if(GetDebug() > 2)
+          printf("AliAnaPi0::MakeAnalysisFillHistograms() -Real pair angle %f not in E %f window\n",angle, (photon1+photon2).E());
+        continue;
+      }
+
+      if(fUseAngleCut && (angle < fAngleCut || angle > fAngleMaxCut)) {
+        if(GetDebug() > 2)
+          printf("AliAnaPi0::MakeAnalysisFillHistograms() - Real pair cut %f < angle %f < cut %f\n",fAngleCut, angle, fAngleMaxCut);
         continue;
+      }
 
+      //-------------------------------------------------------------------------------------------------
       //Fill module dependent histograms, put a cut on assymmetry on the first available cut in the array
-      if(a < fAsymCuts[0]){
+      //-------------------------------------------------------------------------------------------------
+      if(a < fAsymCuts[0] && fFillSMCombinations){
         if(module1==module2 && module1 >=0 && module1<fNModules)
           fhReMod[module1]->Fill(pt,m) ;
-        else  
-          fhReDiffMod[fNModules]->Fill(pt,m) ;
-        
+
         if(fCalorimeter=="EMCAL"){
-          if((module1==0 && module2==2) || (module1==2 && module2==0)) fhReDiffMod[0]->Fill(pt,m) ; 
-          if((module1==1 && module2==3) || (module1==3 && module2==1)) fhReDiffMod[1]->Fill(pt,m) ; 
-          if((module1==0 && module2==1) || (module1==1 && module2==0)) fhReDiffMod[2]->Fill(pt,m) ;
-          if((module1==2 && module2==3) || (module1==3 && module2==2)) fhReDiffMod[3]->Fill(pt,m) ; 
-        }
-        else {
-          if((module1==0 && module2==1) || (module1==1 && module2==0)) fhReDiffMod[0]->Fill(pt,m) ; 
-          if((module1==0 && module2==2) || (module1==2 && module2==0)) fhReDiffMod[1]->Fill(pt,m) ; 
-          if((module1==1 && module2==2) || (module1==2 && module2==1)) fhReDiffMod[2]->Fill(pt,m) ;
-        }
+          
+          // Same sector
+          Int_t j=0;
+          for(Int_t i = 0; i < fNModules/2; i++){
+            j=2*i;
+            if((module1==j && module2==j+1) || (module1==j+1 && module2==j)) fhReSameSectorEMCALMod[i]->Fill(pt,m) ;
+          }
+          
+          // Same side
+          for(Int_t i = 0; i < fNModules-2; i++){
+            if((module1==i && module2==i+2) || (module1==i+2 && module2==i)) fhReSameSideEMCALMod[i]->Fill(pt,m); 
+          }
+        }//EMCAL
+        else {//PHOS
+          if((module1==0 && module2==1) || (module1==1 && module2==0)) fhReDiffPHOSMod[0]->Fill(pt,m) ; 
+          if((module1==0 && module2==2) || (module1==2 && module2==0)) fhReDiffPHOSMod[1]->Fill(pt,m) ; 
+          if((module1==1 && module2==2) || (module1==2 && module2==1)) fhReDiffPHOSMod[2]->Fill(pt,m) ;
+        }//PHOS
       }
       
       //In case we want only pairs in same (super) module, check their origin.
       Bool_t ok = kTRUE;
       if(fSameSM && module1!=module2) ok=kFALSE;
       if(ok){
+        
+        //Check if one of the clusters comes from a conversion 
+        if     (p1->IsTagged() && p2->IsTagged()) fhReConv2->Fill(pt,m);
+        else if(p1->IsTagged() || p2->IsTagged()) fhReConv ->Fill(pt,m);
+        
         //Fill histograms for different bad channel distance, centrality, assymmetry cut and pid bit
         for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
           if((p1->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton)) && (p2->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton))){ 
             for(Int_t iasym=0; iasym < fNAsymCuts; iasym++){
               if(a < fAsymCuts[iasym]){
                 Int_t index = ((curCentrBin*fNPIDBits)+ipid)*fNAsymCuts + iasym;
-                //printf("cen %d, pid %d, asy %d, Index %d\n",curCentrBin,ipid,iasym,index);
+                //printf("index %d :(cen %d * nPID %d + ipid %d)*nasym %d + iasym %d\n",index,curCentrBin,fNPIDBits,ipid,fNAsymCuts,iasym);
                 fhRe1     [index]->Fill(pt,m);
-                fhReInvPt1[index]->Fill(pt,m,1./pt) ;
-                if(p1->DistToBad()>0 && p2->DistToBad()>0){
-                  fhRe2     [index]->Fill(pt,m) ;
-                  fhReInvPt2[index]->Fill(pt,m,1./pt) ;
-                  if(p1->DistToBad()>1 && p2->DistToBad()>1){
-                    fhRe3     [index]->Fill(pt,m) ;
-                    fhReInvPt3[index]->Fill(pt,m,1./pt) ;
-                  }//assymetry cut
-                }// asymmetry cut loop
-              }// bad 3
-            }// bad2
+                if(fMakeInvPtPlots)fhReInvPt1[index]->Fill(pt,m,1./pt) ;
+                if(fFillBadDistHisto){
+                  if(p1->DistToBad()>0 && p2->DistToBad()>0){
+                    fhRe2     [index]->Fill(pt,m) ;
+                    if(fMakeInvPtPlots)fhReInvPt2[index]->Fill(pt,m,1./pt) ;
+                    if(p1->DistToBad()>1 && p2->DistToBad()>1){
+                      fhRe3     [index]->Fill(pt,m) ;
+                      if(fMakeInvPtPlots)fhReInvPt3[index]->Fill(pt,m,1./pt) ;
+                    }// bad 3
+                  }// bad2
+                }// Fill bad dist histos
+              }//assymetry cut
+            }// asymmetry cut loop
           }// bad 1
         }// pid bit loop
         
@@ -766,24 +1906,16 @@ void AliAnaPi0::MakeAnalysisFillHistograms()
         
         //Fill histograms with pair assymmetry
         fhRePtAsym->Fill(pt,a);
-        if(m > 0.10 && m < 0.16) fhRePtAsymPi0->Fill(pt,a);
+        if(m > 0.10 && m < 0.17) fhRePtAsymPi0->Fill(pt,a);
         if(m > 0.45 && m < 0.65) fhRePtAsymEta->Fill(pt,a);
         
-        //Multi cuts analysis 
-        if(fMultiCutAna){
-          //Histograms for different PID bits selection
-          for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
-            
-            if(p1->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton)    && 
-               p2->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton))   fhRePIDBits[ipid]->Fill(pt,m) ;
-            
-            //printf("ipt %d, ipid%d, name %s\n",ipt, ipid, fhRePtPIDCuts[ipt*fNPIDBitsBits+ipid]->GetName());
-          } // pid bit cut loop
-          
-          //Several pt,ncell and asymmetry cuts
-          //Get the number of cells
-          Int_t ncell1 = 0;
-          Int_t ncell2 = 0;
+        //-------------------------------------------------------
+        //Get the number of cells needed for multi cut analysis.
+        //-------------------------------------------------------        
+        Int_t ncell1 = 0;
+        Int_t ncell2 = 0;
+        if(fMultiCutAna || (IsDataMC() && fMultiCutAnaSim)){
+
           AliVEvent * event = GetReader()->GetInputEvent();
           if(event){
             for(Int_t iclus = 0; iclus < event->GetNumberOfCaloClusters(); iclus++){
@@ -803,86 +1935,207 @@ void AliAnaPi0::MakeAnalysisFillHistograms()
             }
             //printf("e 1: %2.2f, e 2: %2.2f, ncells: n1 %d, n2 %d\n", p1->E(), p2->E(),ncell1,ncell2);
           }
+        }
+        
+        //---------
+        // MC data
+        //---------
+        //Do some MC checks on the origin of the pair, is there any common ancestor and if there is one, who?
+        if(IsDataMC()) FillMCVersusRecDataHistograms(p1->GetLabel(), p2->GetLabel(),p1->Pt(), p2->Pt(),ncell1, ncell2, m, pt, a,deta, dphi);    
+        
+        //-----------------------
+        //Multi cuts analysis 
+        //-----------------------
+        if(fMultiCutAna){
+          //Histograms for different PID bits selection
+          for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
+            
+            if(p1->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton)    && 
+               p2->IsPIDOK(fPIDBits[ipid],AliCaloPID::kPhoton))   fhRePIDBits[ipid]->Fill(pt,m) ;
+            
+            //printf("ipt %d, ipid%d, name %s\n",ipt, ipid, fhRePtPIDCuts[ipt*fNPIDBitsBits+ipid]->GetName());
+          } // pid bit cut loop
+          
+          //Several pt,ncell and asymmetry cuts
           for(Int_t ipt=0; ipt<fNPtCuts; ipt++){          
             for(Int_t icell=0; icell<fNCellNCuts; icell++){
               for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
                 Int_t index = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
-                if(p1->Pt() >   fPtCuts[ipt]      && p2->Pt() > fPtCuts[ipt]        && 
+                if(p1->E() >   fPtCuts[ipt]      && p2->E() > fPtCuts[ipt]        && 
                    a        <   fAsymCuts[iasym]                                    && 
-                   ncell1   >=  fCellNCuts[icell] && ncell2   >= fCellNCuts[icell]) fhRePtNCellAsymCuts[index]->Fill(pt,m) ;
-                
-                //printf("ipt %d, icell%d, iasym %d, name %s\n",ipt, icell, iasym,  fhRePtNCellAsymCuts[((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym]->GetName());
+                   ncell1   >=  fCellNCuts[icell] && ncell2   >= fCellNCuts[icell]){
+                    fhRePtNCellAsymCuts[index]->Fill(pt,m) ;
+                  //printf("ipt %d, icell%d, iasym %d, name %s\n",ipt, icell, iasym,  fhRePtNCellAsymCuts[((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym]->GetName());
+                  if(module1==module2){
+                    if     (module1==0)  fhRePtNCellAsymCutsSM0[index]->Fill(pt,m) ;
+                    else if(module1==1)  fhRePtNCellAsymCutsSM1[index]->Fill(pt,m) ;
+                    else if(module1==2)  fhRePtNCellAsymCutsSM2[index]->Fill(pt,m) ;
+                    else if(module1==3)  fhRePtNCellAsymCutsSM3[index]->Fill(pt,m) ;
+                    //else printf("AliAnaPi0::FillHistograms() - WRONG SM NUMBER\n");
+                  }
+                }
               }// pid bit cut loop
             }// icell loop
           }// pt cut loop
           for(Int_t iasym = 0; iasym < fNAsymCuts; iasym++){
             if(a < fAsymCuts[iasym])fhRePtMult[iasym]->Fill(pt,GetTrackMultiplicity(),m) ;
           }
-          
         }// multiple cuts analysis
       }// ok if same sm
     }// second same event particle
   }// first cluster
-  
+        
+  //-------------------------------------------------------------
+  // Mixing
+  //-------------------------------------------------------------
   if(fDoOwnMix){
-    //Fill mixed
+    //printf("Cen bin %d, RP bin %d, e aver %f, mult %d\n",curCentrBin,curRPBin, eClusTot, nPhot);
+    //Recover events in with same characteristics as the current event
     TList * evMixList=fEventsList[curCentrBin*GetNZvertBin()*GetNRPBin()+curZvertBin*GetNRPBin()+curRPBin] ;
     Int_t nMixed = evMixList->GetSize() ;
     for(Int_t ii=0; ii<nMixed; ii++){  
       TClonesArray* ev2= (TClonesArray*) (evMixList->At(ii));
       Int_t nPhot2=ev2->GetEntriesFast() ;
       Double_t m = -999;
-      if(GetDebug() > 1) printf("AliAnaPi0::MakeAnalysisFillHistograms() - Mixed event %d photon entries %d\n", ii, nPhot);
+      if(GetDebug() > 1) 
+        printf("AliAnaPi0::MakeAnalysisFillHistograms() - Mixed event %d photon entries %d, centrality bin %d\n", ii, nPhot2, curCentrBin);
       
+      //---------------------------------
+      //First loop on photons/clusters
+      //---------------------------------      
       for(Int_t i1=0; i1<nPhot; i1++){
         AliAODPWG4Particle * p1 = (AliAODPWG4Particle*) (GetInputAODBranch()->At(i1)) ;
+        if(fSameSM && GetModuleNumber(p1)!=module1) continue;
+        
+        //Get kinematics of cluster and (super) module of this cluster
         TLorentzVector photon1(p1->Px(),p1->Py(),p1->Pz(),p1->E());
         module1 = GetModuleNumber(p1);
+        
+        //---------------------------------
+        //First loop on photons/clusters
+        //---------------------------------        
         for(Int_t i2=0; i2<nPhot2; i2++){
           AliAODPWG4Particle * p2 = (AliAODPWG4Particle*) (ev2->At(i2)) ;
           
+          //Get kinematics of second cluster and calculate those of the pair
           TLorentzVector photon2(p2->Px(),p2->Py(),p2->Pz(),p2->E());
-          m =           (photon1+photon2).M() ; 
+          m           = (photon1+photon2).M() ; 
           Double_t pt = (photon1 + photon2).Pt();
           Double_t a  = TMath::Abs(p1->E()-p2->E())/(p1->E()+p2->E()) ;
           
           //Check if opening angle is too large or too small compared to what is expected
           Double_t angle   = photon1.Angle(photon2.Vect());
-          //if(fUseAngleCut && !GetNeutralMesonSelection()->IsAngleInWindow((photon1+photon2).E(),angle)) continue;
-          if(fUseAngleCut && angle < 0.1) continue;  
+          if(fUseAngleEDepCut && !GetNeutralMesonSelection()->IsAngleInWindow((photon1+photon2).E(),angle+0.05)){ 
+            if(GetDebug() > 2)
+              printf("AliAnaPi0::MakeAnalysisFillHistograms() -Mix pair angle %f not in E %f window\n",angle, (photon1+photon2).E());
+            continue;
+          }
+          if(fUseAngleCut && (angle < fAngleCut || angle > fAngleMaxCut)) {
+            if(GetDebug() > 2)
+              printf("AliAnaPi0::MakeAnalysisFillHistograms() -Mix pair angle %f < cut %f\n",angle,fAngleCut);
+            continue; 
+          
+          } 
           
           if(GetDebug() > 2)
             printf("AliAnaPi0::MakeAnalysisFillHistograms() - Mixed Event: pT: photon1 %2.2f, photon2 %2.2f; Pair: pT %2.2f, mass %2.3f, a %f2.3\n",
                    p1->Pt(), p2->Pt(), pt,m,a);        
+          
           //In case we want only pairs in same (super) module, check their origin.
           module2 = GetModuleNumber(p2);
+          
+          //-------------------------------------------------------------------------------------------------
+          //Fill module dependent histograms, put a cut on assymmetry on the first available cut in the array
+          //-------------------------------------------------------------------------------------------------          
+          if(a < fAsymCuts[0] && fFillSMCombinations){
+            if(module1==module2 && module1 >=0 && module1<fNModules)
+              fhMiMod[module1]->Fill(pt,m) ;
+
+            if(fCalorimeter=="EMCAL"){
+              
+              // Same sector
+              Int_t j=0;
+              for(Int_t i = 0; i < fNModules/2; i++){
+                j=2*i;
+                if((module1==j && module2==j+1) || (module1==j+1 && module2==j)) fhMiSameSectorEMCALMod[i]->Fill(pt,m) ;
+              }
+              
+              // Same side
+              for(Int_t i = 0; i < fNModules-2; i++){
+                if((module1==i && module2==i+2) || (module1==i+2 && module2==i)) fhMiSameSideEMCALMod[i]->Fill(pt,m); 
+              }
+            }//EMCAL
+            else {//PHOS
+              if((module1==0 && module2==1) || (module1==1 && module2==0)) fhMiDiffPHOSMod[0]->Fill(pt,m) ; 
+              if((module1==0 && module2==2) || (module1==2 && module2==0)) fhMiDiffPHOSMod[1]->Fill(pt,m) ; 
+              if((module1==1 && module2==2) || (module1==2 && module2==1)) fhMiDiffPHOSMod[2]->Fill(pt,m) ;
+            }//PHOS
+            
+            
+          }
+          
           Bool_t ok = kTRUE;
           if(fSameSM && module1!=module2) ok=kFALSE;
           if(ok){
+            
+            //Check if one of the clusters comes from a conversion 
+            if     (p1->IsTagged() && p2->IsTagged()) fhMiConv2->Fill(pt,m);
+            else if(p1->IsTagged() || p2->IsTagged()) fhMiConv ->Fill(pt,m);
+
+            //Fill histograms for different bad channel distance, centrality, assymmetry cut and pid bit
             for(Int_t ipid=0; ipid<fNPIDBits; ipid++){ 
               if((p1->IsPIDOK(ipid,AliCaloPID::kPhoton)) && (p2->IsPIDOK(ipid,AliCaloPID::kPhoton))){ 
                 for(Int_t iasym=0; iasym < fNAsymCuts; iasym++){
                   if(a < fAsymCuts[iasym]){
                     Int_t index = ((curCentrBin*fNPIDBits)+ipid)*fNAsymCuts + iasym;
                     fhMi1     [index]->Fill(pt,m) ;
-                    fhMiInvPt1[index]->Fill(pt,m,1./pt) ;
-                    if(p1->DistToBad()>0 && p2->DistToBad()>0){
-                      fhMi2     [index]->Fill(pt,m) ;
-                      fhMiInvPt2[index]->Fill(pt,m,1./pt) ;
-                      if(p1->DistToBad()>1 && p2->DistToBad()>1){
-                        fhMi3     [index]->Fill(pt,m) ;
-                        fhMiInvPt3[index]->Fill(pt,m,1./pt) ;
+                    if(fMakeInvPtPlots)fhMiInvPt1[index]->Fill(pt,m,1./pt) ;
+                    if(fFillBadDistHisto){
+                      if(p1->DistToBad()>0 && p2->DistToBad()>0){
+                        fhMi2     [index]->Fill(pt,m) ;
+                        if(fMakeInvPtPlots)fhMiInvPt2[index]->Fill(pt,m,1./pt) ;
+                        if(p1->DistToBad()>1 && p2->DistToBad()>1){
+                          fhMi3     [index]->Fill(pt,m) ;
+                          if(fMakeInvPtPlots)fhMiInvPt3[index]->Fill(pt,m,1./pt) ;
+                        }
                       }
-                    }
+                    }// Fill bad dist histo
                   }//Asymmetry cut
                 }// Asymmetry loop
               }//PID cut
             }//loop for histograms
+            
+            //-----------------------
+            //Multi cuts analysis 
+            //-----------------------            
+            if(fMultiCutAna){
+              //Several pt,ncell and asymmetry cuts
+              for(Int_t ipt=0; ipt<fNPtCuts; ipt++){          
+                for(Int_t icell=0; icell<fNCellNCuts; icell++){
+                  for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+                    Int_t index = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
+                    if(p1->Pt() >   fPtCuts[ipt]      && p2->Pt() > fPtCuts[ipt]        && 
+                       a        <   fAsymCuts[iasym]                                    && 
+                       p1->GetBtag() >=  fCellNCuts[icell] && p2->GetBtag() >= fCellNCuts[icell]){
+                      fhMiPtNCellAsymCuts[index]->Fill(pt,m) ;
+                      //printf("ipt %d, icell%d, iasym %d, name %s\n",ipt, icell, iasym,  fhRePtNCellAsymCuts[((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym]->GetName());
+                    }
+                  }// pid bit cut loop
+                }// icell loop
+              }// pt cut loop
+            } // Multi cut ana
+            
+            //Fill histograms with opening angle
+            fhMixedOpeningAngle   ->Fill(pt,angle);
+            fhMixedCosOpeningAngle->Fill(pt,TMath::Cos(angle));          
           }//ok
         }// second cluster loop
       }//first cluster loop
     }//loop on mixed events
     
+    //--------------------------------------------------------
+    //Add the current event to the list of events for mixing
+    //--------------------------------------------------------
     TClonesArray *currentEvent = new TClonesArray(*GetInputAODBranch());
     //Add current event to buffer and Remove redundant events 
     if(currentEvent->GetEntriesFast()>0){
@@ -925,9 +2178,25 @@ void AliAnaPi0::ReadHistograms(TList* outputList)
   if(!fhMiInvPt1) fhMiInvPt1  = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
   if(!fhMiInvPt2) fhMiInvPt2  = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;
   if(!fhMiInvPt3) fhMiInvPt3  = new TH2D*[fNCentrBin*fNPIDBits*fNAsymCuts] ;   
-  if(!fhReMod)    fhReMod     = new TH2D*[fNModules]   ;       
-  if(!fhReDiffMod)fhReDiffMod = new TH2D*[fNModules+1] ;       
-
+  
+  if(fFillSMCombinations){
+    if(!fhReMod)    fhReMod     = new TH2D*[fNModules]   ;     
+    if(!fhReDiffPHOSMod)       fhReDiffPHOSMod        = new TH2D*[fNModules] ; 
+    if(!fhReSameSectorEMCALMod)fhReSameSectorEMCALMod = new TH2D*[fNModules/2] ;       
+    if(!fhReSameSideEMCALMod)  fhReSameSideEMCALMod   = new TH2D*[fNModules-2] ;       
+    if(!fhMiMod)    fhMiMod     = new TH2D*[fNModules]   ;     
+    if(!fhMiDiffPHOSMod)       fhMiDiffPHOSMod        = new TH2D*[fNModules] ; 
+    if(!fhMiSameSectorEMCALMod)fhMiSameSectorEMCALMod = new TH2D*[fNModules/2] ;       
+    if(!fhMiSameSideEMCALMod)  fhMiSameSideEMCALMod   = new TH2D*[fNModules-2] ;       
+  }
+  
+  if(fCheckConversion){
+    fhReConv  = (TH2D*) outputList->At(index++);
+    fhMiConv  = (TH2D*) outputList->At(index++);
+    fhReConv2 = (TH2D*) outputList->At(index++);
+    fhMiConv2 = (TH2D*) outputList->At(index++);
+  }
+  
   for(Int_t ic=0; ic<fNCentrBin; ic++){
     for(Int_t ipid=0; ipid<fNPIDBits; ipid++){
       for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
@@ -980,24 +2249,87 @@ void AliAnaPi0::ReadHistograms(TList* outputList)
       fhRePtMult[iasym] = (TH3D*) outputList->At(index++);
   }// multi cut analysis 
   
-  fhEvents = (TH3D *) outputList->At(index++); 
-  
+  fhEvents     = (TH3D *) outputList->At(index++); 
+  if(fNCentrBin)fhCentrality       = (TH1D *) outputList->At(index++); 
+  if(fNCentrBin)fhCentralityNoPair = (TH1D *) outputList->At(index++); 
+
   fhRealOpeningAngle     = (TH2D*)  outputList->At(index++);
   fhRealCosOpeningAngle  = (TH2D*)  outputList->At(index++);
+  if(fDoOwnMix){
+    fhMixedOpeningAngle     = (TH2D*)  outputList->At(index++);
+    fhMixedCosOpeningAngle  = (TH2D*)  outputList->At(index++);
+  }
   
   //Histograms filled only if MC data is requested     
   if(IsDataMC() || (GetReader()->GetDataType() == AliCaloTrackReader::kMC) ){
-    fhPrimPt     = (TH1D*)  outputList->At(index++);
-    fhPrimAccPt  = (TH1D*)  outputList->At(index++);
-    fhPrimY      = (TH1D*)  outputList->At(index++);
-    fhPrimAccY   = (TH1D*)  outputList->At(index++);
-    fhPrimPhi    = (TH1D*)  outputList->At(index++);
-    fhPrimAccPhi = (TH1D*)  outputList->At(index++);
+    fhPrimPi0Pt     = (TH1D*)  outputList->At(index++);
+    fhPrimPi0AccPt  = (TH1D*)  outputList->At(index++);
+    fhPrimPi0Y      = (TH2D*)  outputList->At(index++);
+    fhPrimPi0AccY   = (TH2D*)  outputList->At(index++);
+    fhPrimPi0Phi    = (TH2D*)  outputList->At(index++);
+    fhPrimPi0AccPhi = (TH2D*)  outputList->At(index++);
+    fhPrimEtaPt     = (TH1D*)  outputList->At(index++);
+    fhPrimEtaAccPt  = (TH1D*)  outputList->At(index++);
+    fhPrimEtaY      = (TH2D*)  outputList->At(index++);
+    fhPrimEtaAccY   = (TH2D*)  outputList->At(index++);
+    fhPrimEtaPhi    = (TH2D*)  outputList->At(index++);
+    fhPrimEtaAccPhi = (TH2D*)  outputList->At(index++);
+    for(Int_t i = 0; i<13; i++){
+      fhMCOrgMass[i]     = (TH2D*)  outputList->At(index++);
+      fhMCOrgAsym[i]     = (TH2D*)  outputList->At(index++);
+      fhMCOrgDeltaEta[i] = (TH2D*)  outputList->At(index++);
+      fhMCOrgDeltaPhi[i] = (TH2D*)  outputList->At(index++);
+    }
+    
+    if(fMultiCutAnaSim){
+      fhMCPi0MassPtTrue  = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCPi0MassPtRec   = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCPi0PtTruePtRec = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaMassPtTrue  = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaMassPtRec   = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      fhMCEtaPtTruePtRec = new TH2D*[fNPtCuts*fNAsymCuts*fNCellNCuts];
+      for(Int_t ipt=0; ipt<fNPtCuts; ipt++){
+        for(Int_t icell=0; icell<fNCellNCuts; icell++){
+          for(Int_t iasym=0; iasym<fNAsymCuts; iasym++){
+            Int_t in = ((ipt*fNCellNCuts)+icell)*fNAsymCuts + iasym;
+            fhMCPi0MassPtTrue[in]  = (TH2D*)  outputList->At(index++);
+            fhMCPi0PtTruePtRec[in] = (TH2D*)  outputList->At(index++);
+            fhMCEtaMassPtTrue[in]  = (TH2D*)  outputList->At(index++);
+            fhMCEtaPtTruePtRec[in] = (TH2D*)  outputList->At(index++);
+          }
+        }
+      }
+    }
+    else{
+      fhMCPi0MassPtTrue  = new TH2D*[1];
+      fhMCPi0PtTruePtRec = new TH2D*[1];
+      fhMCEtaMassPtTrue  = new TH2D*[1];
+      fhMCEtaPtTruePtRec = new TH2D*[1];
+      
+      fhMCPi0MassPtTrue[0]  = (TH2D*)  outputList->At(index++);
+      fhMCPi0PtTruePtRec[0] = (TH2D*)  outputList->At(index++);
+      fhMCEtaMassPtTrue[0]  = (TH2D*)  outputList->At(index++);
+      fhMCEtaPtTruePtRec[0] = (TH2D*)  outputList->At(index++);
+    }
   }
   
-  for(Int_t imod=0; imod < fNModules; imod++)
-    fhReMod[imod] = (TH2D*) outputList->At(index++);
-  
+  for(Int_t imod=0; imod < fNModules; imod++){
+    fhReMod[imod]                = (TH2D*) outputList->At(index++);
+    if(fCalorimeter=="EMCAL"){
+      if(imod < fNModules/2) fhReSameSectorEMCALMod[imod] = (TH2D*) outputList->At(index++);
+      if(imod < fNModules-2) fhReSameSideEMCALMod[imod]   = (TH2D*) outputList->At(index++);
+    }
+    else     fhReDiffPHOSMod[imod]        = (TH2D*) outputList->At(index++);
+
+    if(fDoOwnMix){
+      fhMiMod[imod]         = (TH2D*) outputList->At(index++);
+      if(fCalorimeter=="EMCAL"){
+        if(imod < fNModules/2) fhMiSameSectorEMCALMod[imod] = (TH2D*) outputList->At(index++);
+        if(imod < fNModules-2) fhMiSameSideEMCALMod[imod]   = (TH2D*) outputList->At(index++);
+      }
+      else     fhMiDiffPHOSMod[imod]        = (TH2D*) outputList->At(index++);
+    }
+  }
   
 }