]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PWGJE/EMCALJetTasks/UserTasks/AliAnalysisTaskRhoVnModulation.cxx
from redmer
[u/mrichter/AliRoot.git] / PWGJE / EMCALJetTasks / UserTasks / AliAnalysisTaskRhoVnModulation.cxx
index ed6a15478d793a24beade11883ff58d4a789faa0..e6bd646225f6d6ae100bf12bfa0d1b0e73b3b553 100644 (file)
  *      - pico tracks
  *      aod's and esd's are handled transparently
  * the task will attempt to estimate a phi-dependent background density rho 
- * by fitting vn harmonics
+ * by fitting vn harmonics to the dpt/dphi distribution
  *
  * author: Redmer Alexander Bertens, Utrecht Univeristy, Utrecht, Netherlands
  * rbertens@cern.ch, rbertens@nikhef.nl, r.a.bertens@uu.nl 
  */
 
+// root includes
 #include <TStyle.h>
 #include <TRandom3.h>
 #include <TChain.h>
 #include <TMath.h>
 #include <TF1.h>
+#include <TF2.h>
 #include <TH1F.h>
 #include <TH2F.h>
 #include <TProfile.h>
-
+// aliroot includes
 #include <AliAnalysisTask.h>
 #include <AliAnalysisManager.h>
 #include <AliCentrality.h>
 #include <AliVVertex.h>
 #include <AliESDEvent.h>
 #include <AliAODEvent.h>
-
+#include <AliAODTrack.h>
+// emcal jet framework includes
 #include <AliPicoTrack.h>
 #include <AliEmcalJet.h>
 #include <AliRhoParameter.h>
-
+// local includes
 #include "AliAnalysisTaskRhoVnModulation.h"
 
 
@@ -58,9 +61,10 @@ using namespace std;
 ClassImp(AliAnalysisTaskRhoVnModulation)
 
 AliAnalysisTaskRhoVnModulation::AliAnalysisTaskRhoVnModulation() : AliAnalysisTaskEmcalJet("AliAnalysisTaskRhoVnModulation", kTRUE), 
-    fDebug(0), fInitialized(0), fFillQAHistograms(kTRUE), fCentralityClasses(0), fFitModulationType(kNoFit), fUsePtWeight(kTRUE), fDetectorType(kTPC), fFitModulationOptions("Q"), fRunModeType(kGrid), fDataType(kESD), fRandom(0), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fMinPvalue(0), fNameJetClones(0), fNamePicoTrackClones(0), fNameRho(0), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fMinDisanceRCtoLJ(0), fRandomConeRadius(0.4), fAbsVnHarmonics(kTRUE), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfVn(0), fHistPsi2(0), fHistPsi2Spread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiTPC(0), 
-   fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0) {
+    fDebug(0), fInitialized(0), fFillQAHistograms(kTRUE), fCentralityClasses(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fNAcceptedTracks(0), fFitModulationType(kNoFit), fUsePtWeight(kTRUE), fDetectorType(kTPC), fFitModulationOptions("Q"), fRunModeType(kGrid), fDataType(kESD), fRandom(0), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fMinPvalue(0), fMaxPvalue(1), fNameJetClones(0), fNamePicoTrackClones(0), fNameRho(0), fLocalJetMinEta(-10), fLocalJetMaxEta(-10), fLocalJetMinPhi(-10), fLocalJetMaxPhi(-10), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvaluePDF(0), fHistPvalueCDF(0), fMinDisanceRCtoLJ(0), fRandomConeRadius(-1.), fAbsVnHarmonics(kTRUE), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fUseV0EventPlaneFromHeader(kFALSE), fSetPtSub(kFALSE), fExplicitOutlierCut(-1), fMinLeadingHadronPt(0), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV3(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiTPC(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0) {
     for(Int_t i(0); i < 10; i++) {
+        fProfV2Resolution[i] = 0;
+        fProfV3Resolution[i] = 0;
         fHistPicoTrackPt[i] = 0;
         fHistPicoCat1[i] = 0;
         fHistPicoCat2[i] = 0;
@@ -83,11 +87,11 @@ AliAnalysisTaskRhoVnModulation::AliAnalysisTaskRhoVnModulation() : AliAnalysisTa
         fHistRCPtExLJ[i] = 0;
         fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
         fHistDeltaPtDeltaPhi3ExLJ[i] = 0;
-        fHistRCPhiEtaRand[i] = 0;
-        fHistRhoVsRCPtRand[i] = 0;
-        fHistRCPtRand[i] = 0;
-        fHistDeltaPtDeltaPhi2Rand[i] = 0;
-        fHistDeltaPtDeltaPhi3Rand[i] = 0;
+        /* fHistRCPhiEtaRand[i] = 0; */
+        /* fHistRhoVsRCPtRand[i] = 0; */
+        /* fHistRCPtRand[i] = 0; */
+        /* fHistDeltaPtDeltaPhi2Rand[i] = 0; */
+        /* fHistDeltaPtDeltaPhi3Rand[i] = 0; */
         fHistJetPtRaw[i] = 0;
         fHistJetPt[i] = 0;
         fHistJetEtaPhi[i] = 0;
@@ -108,9 +112,10 @@ AliAnalysisTaskRhoVnModulation::AliAnalysisTaskRhoVnModulation() : AliAnalysisTa
 }
 //_____________________________________________________________________________
 AliAnalysisTaskRhoVnModulation::AliAnalysisTaskRhoVnModulation(const char* name, runModeType type) : AliAnalysisTaskEmcalJet(name, kTRUE),
-  fDebug(0), fInitialized(0), fFillQAHistograms(kTRUE), fCentralityClasses(0), fFitModulationType(kNoFit), fUsePtWeight(kTRUE), fDetectorType(kTPC), fFitModulationOptions("Q"), fRunModeType(type), fDataType(kESD), fRandom(0), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fMinPvalue(0), fNameJetClones(0), fNamePicoTrackClones(0), fNameRho(0), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fMinDisanceRCtoLJ(0), fRandomConeRadius(0.4), fAbsVnHarmonics(kTRUE), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfVn(0), fHistPsi2(0), fHistPsi2Spread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiTPC(0), 
-   fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0) {
+  fDebug(0), fInitialized(0), fFillQAHistograms(kTRUE), fCentralityClasses(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fNAcceptedTracks(0), fFitModulationType(kNoFit), fUsePtWeight(kTRUE), fDetectorType(kTPC), fFitModulationOptions("Q"), fRunModeType(type), fDataType(kESD), fRandom(0), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fMinPvalue(0), fMaxPvalue(1), fNameJetClones(0), fNamePicoTrackClones(0), fNameRho(0), fLocalJetMinEta(-10), fLocalJetMaxEta(-10), fLocalJetMinPhi(-10), fLocalJetMaxPhi(-10), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvaluePDF(0), fHistPvalueCDF(0), fMinDisanceRCtoLJ(0), fRandomConeRadius(-1.), fAbsVnHarmonics(kTRUE), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fUseV0EventPlaneFromHeader(kFALSE), fSetPtSub(kFALSE), fExplicitOutlierCut(-1), fMinLeadingHadronPt(0), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV3(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiTPC(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0) {
     for(Int_t i(0); i < 10; i++) {
+        fProfV2Resolution[i] = 0;
+        fProfV3Resolution[i] = 0;
         fHistPicoTrackPt[i] = 0;
         fHistPicoCat1[i] = 0;
         fHistPicoCat2[i] = 0;
@@ -133,11 +138,11 @@ AliAnalysisTaskRhoVnModulation::AliAnalysisTaskRhoVnModulation(const char* name,
         fHistRCPtExLJ[i] = 0;
         fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
         fHistDeltaPtDeltaPhi3ExLJ[i] = 0;
-        fHistRCPhiEtaRand[i] = 0;
-        fHistRhoVsRCPtRand[i] = 0;
-        fHistRCPtRand[i] = 0;
-        fHistDeltaPtDeltaPhi2Rand[i] = 0;
-        fHistDeltaPtDeltaPhi3Rand[i] = 0;
+        /* fHistRCPhiEtaRand[i] = 0; */
+        /* fHistRhoVsRCPtRand[i] = 0; */
+        /* fHistRCPtRand[i] = 0; */
+        /* fHistDeltaPtDeltaPhi2Rand[i] = 0; */
+        /* fHistDeltaPtDeltaPhi3Rand[i] = 0; */
         fHistJetPtRaw[i] = 0;
         fHistJetPt[i] = 0;
         fHistJetEtaPhi[i] = 0;
@@ -182,6 +187,9 @@ Bool_t AliAnalysisTaskRhoVnModulation::InitializeAnalysis()
 {
     // initialize the anaysis
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
+    if(fRandomConeRadius <= 0) fRandomConeRadius = fJetRadius;
+    if(fLocalJetMinEta > -10 && fLocalJetMaxEta > -10) SetJetEtaLimits(fLocalJetMinEta, fLocalJetMaxEta);
+    if(fLocalJetMinPhi > -10 && fLocalJetMaxPhi > -10) SetJetPhiLimits(fLocalJetMinPhi, fLocalJetMaxPhi);
     if(fMinDisanceRCtoLJ==0) fMinDisanceRCtoLJ = .5*fJetRadius;
     if(dynamic_cast<AliAODEvent*>(InputEvent())) fDataType = kAOD; // determine the datatype
     else if(dynamic_cast<AliESDEvent*>(InputEvent())) fDataType = kESD;
@@ -203,7 +211,7 @@ Bool_t AliAnalysisTaskRhoVnModulation::InitializeAnalysis()
             fFitModulation->FixParameter(1, 1.);        // constant
             fFitModulation->FixParameter(2, 3.);        // constant
         } break;
-        default : { // for the combined fit and the 'direct fourier series' we use v2 and v3 
+        default : { // for the combined fit, the 'direct fourier series' or the user supplied vn values we use v2 and v3
              SetModulationFit(new TF1("fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi()));
              fFitModulation->SetParameter(0, 0.);       // normalization
              fFitModulation->SetParameter(3, 0.2);      // v2
@@ -217,10 +225,11 @@ Bool_t AliAnalysisTaskRhoVnModulation::InitializeAnalysis()
         case kGrid : { fFitModulationOptions += "N0"; } break;
         default : break;
     }
+    FillAnalysisSummaryHistogram();
     return kTRUE;
 }
 //_____________________________________________________________________________
-TH1F* AliAnalysisTaskRhoVnModulation::BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c)
+TH1F* AliAnalysisTaskRhoVnModulation::BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c, Bool_t append)
 {
     // book a TH1F and connect it to the output container
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
@@ -233,11 +242,11 @@ TH1F* AliAnalysisTaskRhoVnModulation::BookTH1F(const char* name, const char* x,
     title += Form(";%s;[counts]", x);
     TH1F* histogram = new TH1F(name, title.Data(), bins, min, max);
     histogram->Sumw2();
-    fOutputList->Add(histogram);
+    if(append) fOutputList->Add(histogram);
     return histogram;   
 }
 //_____________________________________________________________________________
-TH2F* AliAnalysisTaskRhoVnModulation::BookTH2F(const char* name, const char* x, const char*y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c)
+TH2F* AliAnalysisTaskRhoVnModulation::BookTH2F(const char* name, const char* x, const char*y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c, Bool_t append)
 {
     // book a TH2F and connect it to the output container
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
@@ -250,7 +259,7 @@ TH2F* AliAnalysisTaskRhoVnModulation::BookTH2F(const char* name, const char* x,
     title += Form(";%s;%s", x, y);
     TH2F* histogram = new TH2F(name, title.Data(), binsx, minx, maxx, binsy, miny, maxy);
     histogram->Sumw2();
-    fOutputList->Add(histogram);
+    if(append) fOutputList->Add(histogram);
     return histogram;   
 }
 //_____________________________________________________________________________
@@ -288,22 +297,29 @@ void AliAnalysisTaskRhoVnModulation::UserCreateOutputObjects()
     }
 
     // event plane estimates and quality
-    fHistPsi2 =                 new TProfile("fHistPsi2", "fHistPsi2", 3, 0, 3);
-    fHistPsi2->Sumw2();
-    fHistPsi2Spread =           new TProfile("fHistPsi2Spread", "fHistPsi2Spread", 3, 0, 3);
-    fHistPsi2Spread->Sumw2();
-    fHistPsi2->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA}>");
-    fHistPsi2->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC}>");
-    fHistPsi2->GetXaxis()->SetBinLabel(3, "<#Psi_{2, TPC}>");
-    fHistPsi2Spread->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA} - #Psi_{2, VZEROC}>");
-    fHistPsi2Spread->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
-    fHistPsi2Spread->GetXaxis()->SetBinLabel(3, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
-    fOutputList->Add(fHistPsi2);
-    fOutputList->Add(fHistPsi2Spread);
+    fHistPsiControl =           new TProfile("fHistPsiControl", "fHistPsiControl", 10, 0, 10);
+    fHistPsiControl->Sumw2();
+    fHistPsiSpread =            new TProfile("fHistPsiSpread", "fHistPsiSpread", 4, 0, 4);
+    fHistPsiSpread->Sumw2();
+    fHistPsiControl->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(3, "<#Psi_{2, TPC}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(5, "<#Psi_{2, TPC, #eta > 0}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(6, "<#Psi_{3, VZEROA}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(7, "<#Psi_{3, VZEROC}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(8, "<#Psi_{3, TPC}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(9, "<#Psi_{3, TPC, #eta < 0}>");
+    fHistPsiControl->GetXaxis()->SetBinLabel(10, "<#Psi_{3, TPC, #eta > 0}>");
+    fHistPsiSpread->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA} - #Psi_{2, VZEROC}>");
+    fHistPsiSpread->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
+    fHistPsiSpread->GetXaxis()->SetBinLabel(3, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
+    fHistPsiSpread->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0} - #Psi_{2, TPC, #eta > 0}>");
+    fOutputList->Add(fHistPsiControl);
+    fOutputList->Add(fHistPsiSpread);
     fHistPsiVZEROA =            BookTH1F("fHistPsiVZEROA", "#Psi_{VZEROA}", 100, -.5*TMath::Pi(), .5*TMath::Pi());
     fHistPsiVZEROC =            BookTH1F("fHistPsiVZEROC", "#Psi_{VZEROC}", 100, -.5*TMath::Pi(), .5*TMath::Pi());
     fHistPsiTPC =               BookTH1F("fHistPsiTPC", "#Psi_{TPC}", 100, -.5*TMath::Pi(), .5*TMath::Pi());
-
     // background
     for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i ++) {
         fHistRhoPackage[i] =           BookTH1F("fHistRhoPackage",  "#rho [GeV/c]", 100, 0, 150, i);
@@ -320,112 +336,63 @@ void AliAnalysisTaskRhoVnModulation::UserCreateOutputObjects()
         fHistRhoVsRCPt[i] =            BookTH2F("fHistRhoVsRCPt", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
         fHistRCPt[i] =                 BookTH1F("fHistRCPt", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
         fHistRCPhiEtaExLJ[i] =         BookTH2F("fHistRCPhiEtaExLJ", "#phi (RC)", "#eta (RC)", 100, 0, TMath::TwoPi(), 100, -1, 1, i);
-        fHistDeltaPtDeltaPhi2[i] =     BookTH2F("fHistDeltaPtDeltaPhi2", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
-        fHistDeltaPtDeltaPhi3[i] =     BookTH2F("fHistDeltaPtDeltaPhi3", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
+        fHistDeltaPtDeltaPhi2[i] =     BookTH2F("fHistDeltaPtDeltaPhi2", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::Pi(), 100, -50, 100, i);
+        fHistDeltaPtDeltaPhi3[i] =     BookTH2F("fHistDeltaPtDeltaPhi3", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::TwoPi()/3., 100, -50, 100, i);
         fHistRhoVsRCPtExLJ[i] =        BookTH2F("fHistRhoVsRCPtExLJ", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
         fHistRCPtExLJ[i] =             BookTH1F("fHistRCPtExLJ", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
-        fHistRCPhiEtaRand[i] =         BookTH2F("fHistRCPhiEtaRand", "#phi (RC)", "#eta (RC)", 100, 0, TMath::TwoPi(), 100, -1, 1, i);
-        fHistDeltaPtDeltaPhi2ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJ", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
-        fHistDeltaPtDeltaPhi3ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi3ExLJ", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
-        fHistRhoVsRCPtRand[i] =        BookTH2F("fHistRhoVsRCPtRand", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
-        fHistRCPtRand[i] =             BookTH1F("fHistRCPtRand", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
-        fHistDeltaPtDeltaPhi2Rand[i] =  BookTH2F("fHistDeltaPtDeltaPhi2Rand", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
-        fHistDeltaPtDeltaPhi3Rand[i] =  BookTH2F("fHistDeltaPtDeltaPhi3Rand", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 100, 0, TMath::TwoPi(), 100, -50, 100, i);
+        /* fHistRCPhiEtaRand[i] =         BookTH2F("fHistRCPhiEtaRand", "#phi (RC)", "#eta (RC)", 100, 0, TMath::TwoPi(), 100, -1, 1, i); */
+        fHistDeltaPtDeltaPhi2ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJ", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::Pi(), 100, -50, 100, i);
+        fHistDeltaPtDeltaPhi3ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi3ExLJ", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::TwoPi()/3., 100, -50, 100, i);
+        /* fHistRhoVsRCPtRand[i] =        BookTH2F("fHistRhoVsRCPtRand", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i); */
+        /* fHistRCPtRand[i] =             BookTH1F("fHistRCPtRand", "p_{t} (RC) [GeV/c]", 130, -20, 150, i); */
+        /* fHistDeltaPtDeltaPhi2Rand[i] =  BookTH2F("fHistDeltaPtDeltaPhi2Rand", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::Pi(), 100, -50, 100, i); */
+        /* fHistDeltaPtDeltaPhi3Rand[i] =  BookTH2F("fHistDeltaPtDeltaPhi3Rand", "#phi - #Psi_{TPC}", "#delta p_{t} [GeV/c]", 50, 0, TMath::TwoPi()/3., 100, -50, 100, i); */
         // jet histograms (after kinematic cuts)
         fHistJetPtRaw[i] =             BookTH1F("fHistJetPtRaw", "p_{t} RAW [GeV/c]", 200, -50, 150, i);
         fHistJetPt[i] =                BookTH1F("fHistJetPt", "p_{t} [GeV/c]", 350, -100, 250, i);
         fHistJetEtaPhi[i] =            BookTH2F("fHistJetEtaPhi", "#eta", "#phi", 100, -1, 1, 100, 0, TMath::TwoPi(), i);
-        fHistJetPtArea[i] =            BookTH2F("fHistJetPtArea", "p_{t} [GeV/c]", "Area", 350, -100, 250, 60, 0, 0.3, i);
+        fHistJetPtArea[i] =            BookTH2F("fHistJetPtArea", "p_{t} [GeV/c]", "Area", 175, -100, 250, 30, 0, 0.9, i);
         fHistJetPtConstituents[i] =    BookTH2F("fHistJetPtConstituents", "p_{t} [GeV/c]", "Area", 350, -100, 250, 60, 0, 150, i);
         fHistJetEtaRho[i] =            BookTH2F("fHistJetEtaRho", "#eta", "#rho", 100, -1, 1, 100, 0, 300, i);
         // in plane and out of plane spectra
-        fHistJetPsiTPCPt[i] =          BookTH2F("fHistJetPsiTPCPt", "#phi_{jet} - #Psi_{TPC}", "p_{t} [GeV/c]", 100, 0., TMath::TwoPi(), 700, -100, 250, i);
-        fHistJetPsiVZEROAPt[i] =       BookTH2F("fHistJetPsiVZEROAPt", "#phi_{jet} - #Psi_{VZEROA}", "p_{t} [GeV/c]", 100, 0., TMath::TwoPi(), 700, -100, 250, i);
-        fHistJetPsiVZEROCPt[i] =       BookTH2F("fHistJetPsiVZEROCPt", "#phi_{jet} - #Psi_{VZEROC}", "p_{t} [GeV/c]", 100, 0., TMath::TwoPi(), 700, -100, 250, i);
+        fHistJetPsiTPCPt[i] =          BookTH2F("fHistJetPsiTPCPt", "#phi_{jet} - #Psi_{2, TPC}", "p_{t} [GeV/c]", 50, 0., TMath::Pi(), 700, -100, 250, i);
+        fHistJetPsiVZEROAPt[i] =       BookTH2F("fHistJetPsiVZEROAPt", "#phi_{jet} - #Psi_{2, VZEROA}", "p_{t} [GeV/c]", 50, 0., TMath::Pi(), 700, -100, 250, i);
+        fHistJetPsiVZEROCPt[i] =       BookTH2F("fHistJetPsiVZEROCPt", "#phi_{jet} - #Psi_{V2, ZEROC}", "p_{t} [GeV/c]", 50, 0., TMath::Pi(), 700, -100, 250, i);
         // phi minus psi
-        fHistDeltaPhi2VZEROA[i] =       BookTH1F("fHistDeltaPhi2VZEROA", "#phi_{jet} - #Psi_{VZEROA}", 100, 0, TMath::TwoPi(), i);
-        fHistDeltaPhi2VZEROC[i] =       BookTH1F("fHistDeltaPhi2VZEROC", "#phi_{jet} - #Psi_{VZEROC}", 100, 0, TMath::TwoPi(), i);
-        fHistDeltaPhi2TPC[i] =          BookTH1F("fHistDeltaPhi2TPC", "#phi_{jet} - #Psi_{TPC}", 100, 0, TMath::TwoPi(), i);
-        fHistDeltaPhi3VZEROA[i] =       BookTH1F("fHistDeltaPhi3VZEROA", "#phi_{jet} - #Psi_{VZEROA}", 100, 0, TMath::TwoPi(), i);
-        fHistDeltaPhi3VZEROC[i] =       BookTH1F("fHistDeltaPhi3VZEROC", "#phi_{jet} - #Psi_{VZEROC}", 100, 0, TMath::TwoPi(), i);
-        fHistDeltaPhi3TPC[i] =          BookTH1F("fHistDeltaPhi3TPC", "#phi_{jet} - #Psi_{TPC}", 100, 0, TMath::TwoPi(), i);
-    }
+        fHistDeltaPhi2VZEROA[i] =       BookTH1F("fHistDeltaPhi2VZEROA", "#phi_{jet} - #Psi_{2, VZEROA}", 50, 0, TMath::Pi(), i);
+        fHistDeltaPhi2VZEROC[i] =       BookTH1F("fHistDeltaPhi2VZEROC", "#phi_{jet} - #Psi_{2, VZEROC}", 50, 0, TMath::Pi(), i);
+        fHistDeltaPhi2TPC[i] =          BookTH1F("fHistDeltaPhi2TPC", "#phi_{jet} - #Psi_{2, TPC}", 50, 0, TMath::Pi(), i);
+        fHistDeltaPhi3VZEROA[i] =       BookTH1F("fHistDeltaPhi3VZEROA", "#phi_{jet} - #Psi_{2, VZEROA}", 50, 0, TMath::TwoPi()/3., i);
+        fHistDeltaPhi3VZEROC[i] =       BookTH1F("fHistDeltaPhi3VZEROC", "#phi_{jet} - #Psi_{2, VZEROC}", 50, 0, TMath::TwoPi()/3., i);
+        fHistDeltaPhi3TPC[i] =          BookTH1F("fHistDeltaPhi3TPC", "#phi_{jet} - #Psi_{2, TPC}", 50, 0, TMath::TwoPi()/3., i);
 
-    // analysis summary histrogram, saves all relevant analysis settigns
-    fHistAnalysisSummary = BookTH1F("fHistAnalysisSummary", "flag", 37, -0.5, 37.5);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(1, "fJetRadius"); 
-    fHistAnalysisSummary->SetBinContent(1, fJetRadius);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(2, "fPtBiasJetTrack");
-    fHistAnalysisSummary->SetBinContent(2, fPtBiasJetTrack);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(3, "fPtBiasJetClus");
-    fHistAnalysisSummary->SetBinContent(3, fPtBiasJetClus);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(4, "fJetPtCut");
-    fHistAnalysisSummary->SetBinContent(4, fJetPtCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(5, "fJetAreaCut");
-    fHistAnalysisSummary->SetBinContent(5, fJetAreaCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(6, "fPercAreaCut");
-    fHistAnalysisSummary->SetBinContent(6, fPercAreaCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(7, "fAreaEmcCut");
-    fHistAnalysisSummary->SetBinContent(7, fAreaEmcCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(8, "fJetMinEta");
-    fHistAnalysisSummary->SetBinContent(8, fJetMinEta);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(9, "fJetMaxEta");
-    fHistAnalysisSummary->SetBinContent(9, fJetMaxEta);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(10, "fJetMinPhi");
-    fHistAnalysisSummary->SetBinContent(10, fJetMinPhi);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(11, "fJetMaxPhi");
-    fHistAnalysisSummary->SetBinContent(11, fJetMaxPhi);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(12, "fMaxClusterPt");
-    fHistAnalysisSummary->SetBinContent(12, fMaxClusterPt);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(13, "fMaxTrackPt");
-    fHistAnalysisSummary->SetBinContent(13, fMaxTrackPt);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(14, "fLeadingHadronType");
-    fHistAnalysisSummary->SetBinContent(14, fLeadingHadronType);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(15, "fAnaType");
-    fHistAnalysisSummary->SetBinContent(15, fAnaType);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(16, "fForceBeamType");
-    fHistAnalysisSummary->SetBinContent(16, fForceBeamType);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(17, "fMinCent");
-    fHistAnalysisSummary->SetBinContent(17, fMinCent);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(18, "fMaxCent");
-    fHistAnalysisSummary->SetBinContent(18, fMaxCent);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(19, "fMinVz");
-    fHistAnalysisSummary->SetBinContent(19, fMinVz);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(20, "fMaxVz");
-    fHistAnalysisSummary->SetBinContent(20, fMaxVz);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(21, "fOffTrigger");
-    fHistAnalysisSummary->SetBinContent(21, fOffTrigger);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(22, "fClusPtCut");
-    fHistAnalysisSummary->SetBinContent(22, fClusPtCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(23, "fTrackPtCut");
-    fHistAnalysisSummary->SetBinContent(23, fTrackPtCut);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(24, "fTrackMinEta");
-    fHistAnalysisSummary->SetBinContent(24, fTrackMinEta);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(25, "fTrackMaxEta");
-    fHistAnalysisSummary->SetBinContent(25, fTrackMaxEta);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(26, "fTrackMinPhi");
-    fHistAnalysisSummary->SetBinContent(26, fTrackMinPhi);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(27, "fTrackMaxPhi");
-    fHistAnalysisSummary->SetBinContent(27, fTrackMaxPhi);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(28, "fClusTimeCutLow");
-    fHistAnalysisSummary->SetBinContent(28, fClusTimeCutLow);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(29, "fClusTimeCutUp");
-    fHistAnalysisSummary->SetBinContent(29, fClusTimeCutUp);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(30, "fMinPtTrackInEmcal");
-    fHistAnalysisSummary->SetBinContent(30, fMinPtTrackInEmcal);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(31, "fEventPlaneVsEmcal");
-    fHistAnalysisSummary->SetBinContent(31, fEventPlaneVsEmcal);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(32, "fMinEventPlane");
-    fHistAnalysisSummary->SetBinContent(32, fMaxEventPlane);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(33, "fRandomConeRadius");
-    fHistAnalysisSummary->SetBinContent(33, fRandomConeRadius);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(34, "fitModulationType");
-    fHistAnalysisSummary->SetBinContent(34, (int)fFitModulationType);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(35, "runModeType");
-    fHistAnalysisSummary->SetBinContent(35, (int)fRunModeType);
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(36, "data type");
-    fHistAnalysisSummary->GetXaxis()->SetBinLabel(37, "iterator");
-    fHistAnalysisSummary->SetBinContent(37, 1.);
+        fProfV2Resolution[i] = new TProfile(Form("fProfV2Resolution_%i", i), Form("fProfV2Resolution_%i", i), 8, -0.5, 7.5);
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(2(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(2(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(2(#Psi_{VZEROA} - #Psi_{TPC}))>");
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(2(#Psi_{TPC} - #Psi_{VZEROA}))>");
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(2(#Psi_{VZEROC} - #Psi_{TPC}))>");
+        fProfV2Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(2(#Psi_{TPC} - #Psi_{VZEROC}))>");
+        fOutputList->Add(fProfV2Resolution[i]); 
+        fProfV3Resolution[i] = new TProfile(Form("fProfV3Resolution_%i", i), Form("fProfV3Resolution_%i", i), 8, -0.5, 7.5);
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(3(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(3(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(3(#Psi_{VZEROA} - #Psi_{TPC}))>");
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(3(#Psi_{TPC} - #Psi_{VZEROA}))>");
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(3(#Psi_{VZEROC} - #Psi_{TPC}))>");
+        fProfV3Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(3(#Psi_{TPC} - #Psi_{VZEROC}))>");
+        fOutputList->Add(fProfV3Resolution[i]); 
+    }
+    // cdf and pdf of chisquare distribution
+    fHistPvaluePDF = BookTH1F("fHistPvaluePDF", "PDF #chi^{2}", 500, 0, 1);
+    fHistPvalueCDF = BookTH1F("fHistPvalueCDF", "CDF #chi^{2}", 500, 0, 1);
+    // vn profile
+    Float_t temp[fCentralityClasses->GetSize()];
+    for(Int_t i(0); i < fCentralityClasses->GetSize(); i++) temp[i] = fCentralityClasses->At(i);
+    fProfV2 = new TProfile("fProfV2", "fProfV2", fCentralityClasses->GetSize()-1, temp);
+    fProfV3 = new TProfile("fProfV3", "fProfV3", fCentralityClasses->GetSize()-1, temp);
+    fOutputList->Add(fProfV2);
+    fOutputList->Add(fProfV3);
 
     if(fFillQAHistograms) {
         fHistRunnumbersEta = new TH2F("fHistRunnumbersEta", "fHistRunnumbersEta", 100, -.5, 99.5, 100, -1.1, 1.1);
@@ -435,14 +402,16 @@ void AliAnalysisTaskRhoVnModulation::UserCreateOutputObjects()
         fHistRunnumbersPhi->Sumw2();
         fOutputList->Add(fHistRunnumbersPhi);
     }
-
+    fHistAnalysisSummary = BookTH1F("fHistAnalysisSummary", "flag", 48, -0.5, 48.5);
     fHistSwap = new TH1F("fHistSwap", "fHistSwap", 20, 0, TMath::TwoPi());
-    fHistSwap->Sumw2();
-    fProfVn = new TProfile("fProfVn", "fProfVn", 2, -0.5, 1.5);
-    fProfVn->GetXaxis()->SetBinLabel(1, "v_{2}(EBYE)");
-    fProfVn->GetXaxis()->SetBinLabel(2, "v_{2}(EBYE)");
+    if(fUsePtWeight) fHistSwap->Sumw2();
 
-    fOutputList->Add(fProfVn);
+    if(fUserSuppliedV2) fOutputList->Add(fUserSuppliedV2);
+    if(fUserSuppliedV3) fOutputList->Add(fUserSuppliedV3);
+    if(fUserSuppliedR2) fOutputList->Add(fUserSuppliedR2);
+    if(fUserSuppliedR3) fOutputList->Add(fUserSuppliedR3);
+    // increase readability of output list
+    fOutputList->Sort();
     PostData(1, fOutputList);
 
     switch (fRunModeType) {
@@ -472,45 +441,57 @@ Bool_t AliAnalysisTaskRhoVnModulation::Run()
     Double_t vzero[2][2];
     CalculateEventPlaneVZERO(vzero);
     // [0] psi2         [1] psi3
-    // [2] psi2 a       [3] psi2 b
-    // [4] psi3 a       [3] psi3 b
-    Double_t tpc[6];
+    Double_t tpc[2];
     CalculateEventPlaneTPC(tpc);
-    
+    Double_t psi2(-1), psi3(-1);
     // arrays which will hold the fit parameters
-    Double_t fitParameters[] = {0,0,0,0,0,0,0,0,0};
-    Double_t psi2(-1), psi3(-1), psi2b(-1), psi3b(-1);
     switch (fDetectorType) {    // determine the detector type for the rho fit
         case kTPC :     { psi2 = tpc[0];        psi3 = tpc[1]; }        break;
-        case kTPCSUB :  { psi2 = tpc[2];        psi3 = tpc[4];
-                          psi2b = tpc[3];       psi3b = tpc[5]; }       break;
         case kVZEROA :  { psi2 = vzero[0][0];   psi3 = vzero[0][1]; }   break;  
         case kVZEROC :  { psi2 = vzero[1][0];   psi3 = vzero[1][1]; }   break;
         default : break;
     }
-
     switch (fFitModulationType) { // do the fits
         case kNoFit : { fFitModulation->FixParameter(0, RhoVal()); } break;
         case kV2 : {
-            CorrectRho(fitParameters, psi2, psi3, psi2b, psi3b);
-            fProfVn->Fill((double)0, fFitModulation->GetParameter(3));
+            if(CorrectRho(psi2, psi3)) {
+                fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
+                if(fUserSuppliedR2) {
+                    Double_t r(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
+                    if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
+                }
+                CalculateEventPlaneResolution(vzero, tpc);
+            }
         } break;
         case kV3 : {
-            CorrectRho(fitParameters, psi2, psi3, psi2b, psi3b);
-            fProfVn->Fill((double)1, fFitModulation->GetParameter(3));
+            if(CorrectRho(psi2, psi3)) {
+                if(fUserSuppliedR3) {
+                    Double_t r(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
+                    if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
+                }
+                fProfV3->Fill(fCent, fFitModulation->GetParameter(3));
+                CalculateEventPlaneResolution(vzero, tpc);
+            }
         } break;
         case kUser : {
-             CorrectRho(fitParameters, psi2, psi3, psi2b, psi3b);
+             CorrectRho(psi2, psi3);
         } break;
         default : {
-            CorrectRho(fitParameters, psi2, psi3, psi2b, psi3b);
-            fProfVn->Fill((double)0, fFitModulation->GetParameter(3));
-            fProfVn->Fill((double)1, fFitModulation->GetParameter(7));
+            if(CorrectRho(psi2, psi3)) {
+                if(fUserSuppliedR2 && fUserSuppliedR3) {
+                    Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
+                    Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
+                    if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r2);
+                    if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(3)/r3);
+                }
+                fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
+                fProfV3->Fill(fCent, fFitModulation->GetParameter(7));
+                CalculateEventPlaneResolution(vzero, tpc);
+            }
         } break;
     }
     // fill a number of histograms 
     FillHistogramsAfterSubtraction(vzero, tpc);
-
     // send the output to the connected output container
     PostData(1, fOutputList);
     switch (fRunModeType) {
@@ -525,7 +506,16 @@ Bool_t AliAnalysisTaskRhoVnModulation::Run()
 //_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::CalculateEventPlaneVZERO(Double_t vzero[2][2]) const 
 {
-    // grab the UNCALIBRATED vzero event plane
+    // get the vzero event plane
+    if(fUseV0EventPlaneFromHeader) {    // use the vzero from the header
+        Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0), h(0);
+        vzero[0][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 2, a, b);
+        vzero[1][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 2, c, d);
+        vzero[0][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 3, e, f);
+        vzero[1][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 3, g, h);
+        return;
+    }
+    // grab the vzero event plane without recentering
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
     Double_t qxa2(0), qya2(0), qxc2(0), qyc2(0);    // for psi2
     Double_t qxa3(0), qya3(0), qxc3(0), qyc3(0);    // for psi3
@@ -551,44 +541,63 @@ void AliAnalysisTaskRhoVnModulation::CalculateEventPlaneVZERO(Double_t vzero[2][
     vzero[1][1] = (1./3.)*TMath::ATan2(qyc3, qxc3);
 }
 //_____________________________________________________________________________
-void AliAnalysisTaskRhoVnModulation::CalculateEventPlaneTPC(Double_t* tpc) const
+void AliAnalysisTaskRhoVnModulation::CalculateEventPlaneTPC(Double_t* tpc)
 {
    // grab the TPC event plane
    if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
+   fNAcceptedTracks = 0;                // reset the track counter
    Double_t qx2(0), qy2(0);     // for psi2
    Double_t qx3(0), qy3(0);     // for psi3
-   Double_t qx2a(0), qy2a(0), qx2b(0), qy2b(0); // for psi2 a and b
-   Double_t qx3a(0), qy3a(0), qx3b(0), qy3b(0); // for psi3 a and b
    if(fTracks) {
+       Float_t excludeInEta[] = {-999, -999};
+       if(fExcludeLeadingJetsFromFit > 0 ) {    // remove the leading jet from ep estimate
+           AliEmcalJet* leadingJet[] = {0x0, 0x0};
+           static Int_t lJets[9999] = {-1};
+           GetSortedArray(lJets, fJets);
+           for(Int_t i(0); i < fJets->GetEntriesFast(); i++) {     // get the two leading jets
+               if (1 + i > fJets->GetEntriesFast()) break;
+               leadingJet[0] = static_cast<AliEmcalJet*>(fJets->At(lJets[i]));
+               leadingJet[1] = static_cast<AliEmcalJet*>(fJets->At(lJets[i+1]));
+               if(PassesCuts(leadingJet[0]) && PassesCuts(leadingJet[1])) break;
+           }
+           if(leadingJet[0] && leadingJet[1]) {
+               for(Int_t i(0); i < 2; i++) excludeInEta[i] = leadingJet[i]->Eta();
+           }
+       }
        Int_t iTracks(fTracks->GetEntriesFast());
        for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
            AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
-           if(!PassesCuts(track)) continue;
+           if(!PassesCuts(track) || track->Pt() < .15 || track->Pt() > 5.) continue;
+           if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta[0]) < fJetRadius*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - fJetRadius - fJetMaxEta ) > 0 )) continue;
+           fNAcceptedTracks++;
            qx2+= TMath::Cos(2.*track->Phi());
            qy2+= TMath::Sin(2.*track->Phi());
            qx3+= TMath::Cos(3.*track->Phi());
            qy3+= TMath::Sin(3.*track->Phi());
-           if(track->Eta() < 0) {       // A side, negative eta
-               qx2a+= TMath::Cos(2.*track->Phi());
-               qy2a+= TMath::Sin(2.*track->Phi());
-               qx3a+= TMath::Cos(3.*track->Phi());
-               qy3a+= TMath::Sin(3.*track->Phi());
-           } else {                     // B side, positive eta
-               qx2b+= TMath::Cos(2.*track->Phi());
-               qy2b+= TMath::Sin(2.*track->Phi());
-               qx3b+= TMath::Cos(3.*track->Phi());
-               qy3b+= TMath::Sin(3.*track->Phi());
-           }
        }
    }
    tpc[0] = .5*TMath::ATan2(qy2, qx2);
    tpc[1] = (1./3.)*TMath::ATan2(qy3, qx3);
-   tpc[2] = .5*TMath::ATan2(qy2a, qx2a);
-   tpc[3] = .5*TMath::ATan2(qy2b, qx2b);
-   tpc[4] = (1./3.)*TMath::ATan2(qy3a, qx3a);
-   tpc[5] = (1./3.)*TMath::ATan2(qy3b, qx3b);
 } 
 //_____________________________________________________________________________
+void AliAnalysisTaskRhoVnModulation::CalculateEventPlaneResolution(Double_t vzero[2][2], Double_t* tpc) const
+{
+    // fill the profiles for the resolution parameters
+    if(fDebug > 1) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
+    fProfV2Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(2.*(vzero[0][0] - vzero[1][0])));
+    fProfV2Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(2.*(vzero[1][0] - vzero[0][0])));
+    fProfV2Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(2.*(vzero[0][0] - tpc[0])));
+    fProfV2Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(2.*(tpc[0] - vzero[0][0])));
+    fProfV2Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(2.*(vzero[1][0] - tpc[0])));
+    fProfV2Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(2.*(tpc[0] - vzero[1][0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(3.*(vzero[0][0] - vzero[1][0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(3.*(vzero[1][0] - vzero[0][0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(3.*(vzero[0][0] - tpc[0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(3.*(tpc[0] - vzero[0][0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(3.*(vzero[1][0] - tpc[0])));
+    fProfV3Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(3.*(tpc[0] - vzero[1][0])));
+}
+//_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::CalculateRandomCone(Float_t &pt, Float_t &eta, Float_t &phi, 
         AliEmcalJet* jet, Bool_t randomize) const
 {
@@ -638,19 +647,18 @@ void AliAnalysisTaskRhoVnModulation::CalculateRandomCone(Float_t &pt, Float_t &e
     }
 }
 //_____________________________________________________________________________
-void AliAnalysisTaskRhoVnModulation::CorrectRho(Double_t* params, Double_t psi2, Double_t psi3, Double_t psi2b, Double_t psi3b) const
+Bool_t AliAnalysisTaskRhoVnModulation::CorrectRho(Double_t psi2, Double_t psi3) 
 {
     // get rho' -> rho(phi)
     // two routines are available
     //  [1]  fitting a fourier expansion to the de/dphi distribution
     //  [2]  getting vn from a fourier series around dn/dphi (see below for info)
+    //  this function will return kTRUE if the fit passes a set of quality criteria
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
     TString detector("");
     switch (fDetectorType) {
         case kTPC : detector+="TPC";
             break;
-        case kTPCSUB : detector+="kTPCSUB";
-            break;
         case kVZEROA : detector+="VZEROA";
             break;
         case kVZEROC : detector+="VZEROC";
@@ -658,16 +666,43 @@ void AliAnalysisTaskRhoVnModulation::CorrectRho(Double_t* params, Double_t psi2,
         default: break;
     }
     Int_t iTracks(fTracks->GetEntriesFast());
-    if(iTracks <= 0 || RhoVal() <= 0 ) return;   // no use fitting an empty event ...
-    fHistSwap->Reset();         // clear the histogram
+    Double_t excludeInEta[] = {-999, -999};
+    Double_t excludeInPhi[] = {-999, -999};
+    Double_t excludeInPt[]  = {-999, -999};
+    if(iTracks <= 0 || RhoVal() <= 0 ) return kFALSE;   // no use fitting an empty event ...
+    if(fExcludeLeadingJetsFromFit > 0 ) {
+        AliEmcalJet* leadingJet[] = {0x0, 0x0};
+        static Int_t lJets[9999] = {-1};
+        GetSortedArray(lJets, fJets);
+        for(Int_t i(0); i < fJets->GetEntriesFast(); i++) {     // get the two leading jets
+            if (1 + i > fJets->GetEntriesFast()) break;
+            leadingJet[0] = static_cast<AliEmcalJet*>(fJets->At(lJets[i]));
+            leadingJet[1] = static_cast<AliEmcalJet*>(fJets->At(lJets[i+1]));
+            if(PassesCuts(leadingJet[0]) && PassesCuts(leadingJet[1])) break;
+        }
+        if(leadingJet[0] && leadingJet[1]) {
+            for(Int_t i(0); i < 2; i++) {
+                excludeInEta[i] = leadingJet[i]->Eta();
+                excludeInPhi[i] = leadingJet[i]->Phi();
+                excludeInPt[i]  = leadingJet[i]->Pt();
+            }
+        }
+    }
+    fHistSwap->Reset();                 // clear the histogram
+    TH1F _tempSwap;
+    if(fRebinSwapHistoOnTheFly) {
+        if(fNAcceptedTracks < 49) fNAcceptedTracks = 49;       // avoid aliasing effects
+        _tempSwap = TH1F("_tempSwap", "_tempSwap", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), 0, TMath::TwoPi());
+    }
+    else _tempSwap = *fHistSwap;         // now _tempSwap holds the desired histo
     for(Int_t i(0); i < iTracks; i++) {
             AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
+            if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta[0]) < fJetRadius*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - fJetRadius - fJetMaxEta ) > 0 )) continue;
             if(!PassesCuts(track) || track->Pt() > 5 || track->Pt() < 0.15) continue;
-            if(fDetectorType == kTPCSUB && psi2 > -1000 && track->Eta() < 0 ) continue;
-            else if (fDetectorType == kTPCSUB && psi2 < -1000 && track->Eta() > 0 ) continue;
-            if(fUsePtWeight) fHistSwap->Fill(track->Phi(), track->Pt());
-            else fHistSwap->Fill(track->Phi());
+            if(fUsePtWeight) _tempSwap.Fill(track->Phi(), track->Pt());
+            else _tempSwap.Fill(track->Phi());
     }
+//    for(Int_t i(0); i < _tempSwap.GetXaxis()->GetNbins(); i++) _tempSwap.SetBinError(1+i, TMath::Sqrt(_tempSwap.GetBinContent(1+i)));
     fFitModulation->SetParameter(0, RhoVal());
     switch (fFitModulationType) {
         case kNoFit : { fFitModulation->FixParameter(0, RhoVal() ); 
@@ -699,19 +734,70 @@ void AliAnalysisTaskRhoVnModulation::CorrectRho(Double_t* params, Double_t psi2,
             fFitModulation->SetParameter(4, psi2);
             fFitModulation->SetParameter(6, psi3);
             fFitModulation->SetParameter(7, TMath::Sqrt(cos3*cos3+sin3*sin3)/RhoVal());
+        } break;
+        case kIntegratedFlow : {
+            // use v2 and v3 values from an earlier iteration over the data
+            fFitModulation->FixParameter(3, fUserSuppliedV2->GetBinContent(fUserSuppliedV2->GetXaxis()->FindBin(fCent)));
+            fFitModulation->FixParameter(4, psi2);
+            fFitModulation->FixParameter(6, psi3);
+            fFitModulation->FixParameter(7, fUserSuppliedV3->GetBinContent(fUserSuppliedV3->GetXaxis()->FindBin(fCent)));
+            return kTRUE;     // no fit is performed
         }
         default : break;
     }
-    if(fDetectorType == kTPCSUB && psi2 > -1000 ) { // do the magic for the subevent case
-        Double_t v2(fFitModulation->GetParameter(3)), v3(fFitModulation->GetParameter(7));
-        CorrectRho(params, -9999, -9999, psi2b, psi3b);
-        v2 += fFitModulation->GetParameter(3);
-        v3 += fFitModulation->GetParameter(7);
-        fFitModulation->SetParameter(3, v2/2.);
-        fFitModulation->SetParameter(7, v3/3.);
-    }
-    fHistSwap->Fit(fFitModulation, fFitModulationOptions.Data(), "", 0, TMath::TwoPi());
-    if(ChiSquare(fFitModulation->GetNDF(), fFitModulation->GetChisquare()) <= fMinPvalue) { // if we don't trust the fit
+    _tempSwap.Fit(fFitModulation, fFitModulationOptions.Data(), "", 0, TMath::TwoPi());
+    // the quality of the fit is evaluated from 1 - the cdf of the chi square distribution
+    Double_t CDF(1.-ChiSquareCDF(fFitModulation->GetNDF(), fFitModulation->GetChisquare()));
+//    Double_t PDF(ChiSquarePDF(fFitModulation->GetNDF(), fFitModulation->GetChisquare()));
+    fHistPvalueCDF->Fill(CDF);
+//    fHistPvaluePDF->Fill(PDF);
+    if(CDF > fMinPvalue && CDF < fMaxPvalue && ( fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) > 0)) { // fit quality
+        // for LOCAL didactic purposes, save the  best and the worst fits
+        // this routine can produce a lot of output histograms (it's not memory 'safe') and will not work on GRID 
+        // since the output will become unmergeable (i.e. different nodes may produce conflicting output)
+        switch (fRunModeType) {
+            case kLocal : {
+                if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
+                static Int_t didacticCounterBest(0);
+                TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
+                TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
+                didacticProfile->GetListOfFunctions()->Add(didactifFit);
+                fOutputListGood->Add(didacticProfile);
+                didacticCounterBest++;
+                TH2F* didacticSurface = BookTH2F(Form("surface_%s", didacticProfile->GetName()), "#phi", "#eta", 50, 0, TMath::TwoPi(), 50, -1, 1, -1, kFALSE);
+                for(Int_t i(0); i < iTracks; i++) {
+                    AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
+                    if(PassesCuts(track)) {
+                        if(fUsePtWeight) didacticSurface->Fill(track->Phi(), track->Eta(), track->Pt());
+                        else didacticSurface->Fill(track->Phi(), track->Eta());
+                    }
+                }
+                if(fExcludeLeadingJetsFromFit) {       // visualize the excluded region
+                    TF2 *f2 = new TF2(Form("%s_LJ", didacticSurface->GetName()),"[0]*TMath::Gaus(x,[1],[2])*TMath::Gaus(y,[3],[4])", 0, TMath::TwoPi(), -1, 1);
+                    f2->SetParameters(excludeInPt[0]/3.,excludeInPhi[0],.1,excludeInEta[0],.1);
+                    didacticSurface->GetListOfFunctions()->Add(f2);
+                    TF2 *f3 = new TF2(Form("%s_NLJ", didacticSurface->GetName()),"[0]*TMath::Gaus(x,[1],[2])*TMath::Gaus(y,[3],[4])", 0, TMath::TwoPi(), -1, 1);
+                    f3->SetParameters(excludeInPt[1]/3.,excludeInPhi[1],.1,excludeInEta[1],.1);
+                    f3->SetLineColor(kGreen);
+                    didacticSurface->GetListOfFunctions()->Add(f3);
+                }
+                fOutputListGood->Add(didacticSurface);
+            } break;
+            default : break;
+        }
+    } else {    // if the fit is of poor quality revert to the original rho estimate
+        switch (fRunModeType) { // again see if we want to save the fit
+            case kLocal : {
+                static Int_t didacticCounterWorst(0);
+                if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
+                TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data() ));
+                TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data()));
+                didacticProfile->GetListOfFunctions()->Add(didactifFit);
+                fOutputListBad->Add(didacticProfile);
+                didacticCounterWorst++;
+                } break;
+            default : break;
+        }
         switch (fFitModulationType) {
             case kNoFit : break;        // nothing to do
             case kUser : break;         // FIXME not implemented yet
@@ -722,56 +808,9 @@ void AliAnalysisTaskRhoVnModulation::CorrectRho(Double_t* params, Double_t psi2,
                  fFitModulation->SetParameter(0, RhoVal());
             } break;
         }
+        return kFALSE;  // return false if the fit is rejected
     }
-    Bool_t saveMe(kFALSE);
-    if(fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) <= 0) {
-        switch (fFitModulationType) {
-            case kNoFit : break;        // nothing to do
-            case kUser : break;         // FIXME not implemented yet
-            case kV2 : {
-                     fFitModulation->SetParameter(3, 0);        // suppress dangerous v2
-                     fFitModulation->SetParameter(0, RhoVal()); // restore rho
-                     saveMe = kTRUE;
-            } break; 
-            default : {
-                     fFitModulation->SetParameter(7, 0);        // suppress dangerous v3
-                     fFitModulation->SetParameter(3, 0);        // suppress dangerous v2
-                     fFitModulation->SetParameter(0, RhoVal()); // restore rho
-                     saveMe = kTRUE;
-            } break;
-        }
-    }
-    for(Int_t i(0); i < fFitModulation->GetNpar(); i++) params[i] = fFitModulation->GetParameter(i);
-    // for LOCAL didactic purposes, save the  best and the worst fits
-    // this routine can produce a lot of output histograms and will not work on GRID 
-    // since the output will become unmergeable (i.e. different nodes may produce conflicting output)
-    switch (fRunModeType) {
-        case kLocal : {
-            static Int_t didacticCounterBest(0);
-            static Int_t didacticCounterWorst(0);
-            static Double_t bestFitP(.05);      // threshold for significance
-            static Double_t worstFitP(.05);
-            Double_t p(ChiSquare(fFitModulation->GetNDF(), fFitModulation->GetChisquare()));
-            if(p > bestFitP || p > 0.12) {
-                TProfile* didacticProfile = (TProfile*)fHistSwap->Clone(Form("Fit_%i_p_%.3f_cen_%i_%s", didacticCounterBest, p, fInCentralitySelection, detector.Data()));
-                TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterBest, p, fInCentralitySelection, detector.Data()));
-                didacticProfile->GetListOfFunctions()->Add(didactifFit);
-                fOutputListGood->Add(didacticProfile);
-                didacticCounterBest++;
-                bestFitP = p;
-             }
-             else if(p < worstFitP || saveMe) { 
-                if(saveMe) detector += "negative_vn";
-                TProfile* didacticProfile = (TProfile*)fHistSwap->Clone(Form("Fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, p, fInCentralitySelection, detector.Data() ));
-                TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, p, fInCentralitySelection, detector.Data()));
-                didacticProfile->GetListOfFunctions()->Add(didactifFit);
-                fOutputListBad->Add(didacticProfile);
-                didacticCounterWorst++;
-                worstFitP = p;
-             }
-         } break;
-         default : break;
-    }
+    return kTRUE;
 }
 //_____________________________________________________________________________
 Bool_t AliAnalysisTaskRhoVnModulation::PassesCuts(AliVEvent* event)
@@ -793,17 +832,42 @@ Bool_t AliAnalysisTaskRhoVnModulation::PassesCuts(AliVEvent* event)
        default: break;
     }
     fCent = InputEvent()->GetCentrality()->GetCentralityPercentile("V0M");
-    if(fCent <= 0 || fCent >= 100 || TMath::Abs(fCent-InputEvent()->GetCentrality()->GetCentralityPercentile("TRK")) > 5.) return kFALSE;
+    if(fCent <= fCentralityClasses->At(0) || fCent >= fCentralityClasses->At(fCentralityClasses->GetSize()-1) || TMath::Abs(fCent-InputEvent()->GetCentrality()->GetCentralityPercentile("TRK")) > 5.) return kFALSE;
     // determine centrality class
     for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) {
-        if(fCent > fCentralityClasses->At(i) && fCent < fCentralityClasses->At(1+i)) {
+        if(fCent >= fCentralityClasses->At(i) && fCent <= fCentralityClasses->At(1+i)) {
             fInCentralitySelection = i;
             break; }
     } 
+    if(fExplicitOutlierCut == 2010 || fExplicitOutlierCut == 2011) {
+       if(!PassesCuts(fExplicitOutlierCut)) return kFALSE;
+    }
     if(fFillQAHistograms) FillQAHistograms(event);
     return kTRUE;
 }
 //_____________________________________________________________________________
+Bool_t AliAnalysisTaskRhoVnModulation::PassesCuts(Int_t year) 
+{
+    // additional centrality cut based on relation between tpc and global multiplicity
+    if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
+    AliAODEvent* event(dynamic_cast<AliAODEvent*>(InputEvent()));
+    if(!event) return kFALSE;
+    Int_t multTPC(0), multGlob(0), nTracks(InputEvent()->GetNumberOfTracks());
+    for(Int_t iTracks = 0; iTracks < nTracks; iTracks++) { 
+        AliAODTrack* track = event->GetTrack(iTracks);
+        if(!track) continue;
+        if (!track || track->Pt() < .2 || track->Pt() > 5.0 || TMath::Abs(track->Eta()) > .8 || track->GetTPCNcls() < 70 || !track->GetDetPid() || track->GetDetPid()->GetTPCsignal() < 10.0)  continue;  // general quality cut
+        if (track->TestFilterBit(1) && track->Chi2perNDF() > 0.2) multTPC++;
+        if (!track->TestFilterBit(16) || track->Chi2perNDF() < 0.1) continue;
+        Double_t b[2] = {-99., -99.};
+        Double_t bCov[3] = {-99., -99., -99.};
+        if (track->PropagateToDCA(event->GetPrimaryVertex(), event->GetMagneticField(), 100., b, bCov) && TMath::Abs(b[0]) < 0.3 && TMath::Abs(b[1]) < 0.3) multGlob++;
+    }
+    if(year == 2010 && multTPC > (-40.3+1.22*multGlob) && multTPC < (32.1+1.59*multGlob)) return kTRUE;
+    if(year == 2011  && multTPC > (-36.73 + 1.48*multGlob) && multTPC < (62.87 + 1.78*multGlob)) return kTRUE;
+    return kFALSE;
+}
+//_____________________________________________________________________________
 Bool_t AliAnalysisTaskRhoVnModulation::PassesCuts(const AliVCluster* cluster) const
 {
     // cluster cuts
@@ -822,7 +886,12 @@ void AliAnalysisTaskRhoVnModulation::FillHistogramsAfterSubtraction(Double_t vze
     /* FillCorrectedClusterHistograms(); */
     FillEventPlaneHistograms(vzero, tpc);
     FillRhoHistograms();
-    FillDeltaPtHistograms(tpc);
+    switch (fDetectorType) {    // determine the detector type for the rho fit
+        case kTPC :     { FillDeltaPtHistograms(tpc[0], tpc[1]); }              break;
+        case kVZEROA :  { FillDeltaPtHistograms(vzero[0][0], vzero[0][1]); }    break;
+        case kVZEROC :  { FillDeltaPtHistograms(vzero[1][0], vzero[1][1]); }    break;
+        default : break;
+    }
     FillDeltaPhiHistograms(vzero, tpc);
 }
 //_____________________________________________________________________________
@@ -837,7 +906,6 @@ void AliAnalysisTaskRhoVnModulation::FillTrackHistograms() const
         fHistPicoTrackPt[fInCentralitySelection]->Fill(track->Pt());
         if(fFillQAHistograms) FillQAHistograms(track);
     }
-    return;
 }
 //_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::FillClusterHistograms() const
@@ -861,23 +929,24 @@ void AliAnalysisTaskRhoVnModulation::FillCorrectedClusterHistograms() const
 {
     // fill clusters after hadronic correction FIXME implement
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
-    return;
 }
 //_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::FillEventPlaneHistograms(Double_t vzero[2][2], Double_t* tpc) const
 {
     // fill event plane histograms
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
-    fHistPsi2->Fill(0.5, vzero[0][0]);
-    fHistPsi2->Fill(1.5, vzero[1][0]);
-    fHistPsi2->Fill(2.5, tpc[0]);
+    fHistPsiControl->Fill(0.5, vzero[0][0]);    // vzero a psi2
+    fHistPsiControl->Fill(1.5, vzero[1][0]);    // vzero c psi2
+    fHistPsiControl->Fill(2.5, tpc[0]);         // tpc psi 2
+    fHistPsiControl->Fill(5.5, vzero[0][1]);    // vzero a psi3
+    fHistPsiControl->Fill(6.5, vzero[1][1]);    // vzero b psi3
+    fHistPsiControl->Fill(7.5, tpc[1]);         // tpc psi 3
     fHistPsiVZEROA->Fill(vzero[0][0]);
     fHistPsiVZEROC->Fill(vzero[1][0]);
     fHistPsiTPC->Fill(tpc[0]);
-    fHistPsi2Spread->Fill(0.5, vzero[0][0]-vzero[1][0]);
-    fHistPsi2Spread->Fill(1.5, vzero[0][0]-tpc[0]);
-    fHistPsi2Spread->Fill(2.5, vzero[1][0]-tpc[0]);
-    return;
+    fHistPsiSpread->Fill(0.5, TMath::Abs(vzero[0][0]-vzero[1][0]));
+    fHistPsiSpread->Fill(1.5, TMath::Abs(vzero[0][0]-tpc[0]));
+    fHistPsiSpread->Fill(2.5, TMath::Abs(vzero[1][0]-tpc[0]));
 }
 //_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::FillRhoHistograms() const
@@ -898,18 +967,16 @@ void AliAnalysisTaskRhoVnModulation::FillRhoHistograms() const
         fHistRhoAVsMult->Fill(mult, rho * jet->Area());
         fHistRhoAVsCent->Fill(fCent, rho * jet->Area());
     }
-    return;
 }
 //_____________________________________________________________________________
-void AliAnalysisTaskRhoVnModulation::FillDeltaPtHistograms(Double_t* tpc) const
+void AliAnalysisTaskRhoVnModulation::FillDeltaPtHistograms(Double_t psi2, Double_t psi3) const
 {
     // fill delta pt histograms
     if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
-    static Int_t sJets[9999] = {-1};
-    GetSortedArray(sJets, fJets);
-//    if(sJets[0] <= 0) return;
     Int_t i(0), maxCones(20);
     AliEmcalJet* leadingJet(0x0);
+    static Int_t sJets[9999] = {-1};
+    GetSortedArray(sJets, fJets);
     do { // get the leading jet 
         leadingJet = static_cast<AliEmcalJet*>(fJets->At(sJets[i]));
         i++;
@@ -926,8 +993,8 @@ void AliAnalysisTaskRhoVnModulation::FillDeltaPtHistograms(Double_t* tpc) const
            fHistRCPhiEta[fInCentralitySelection]->Fill(phi, eta);
            fHistRhoVsRCPt[fInCentralitySelection]->Fill(pt, RhoVal(phi, fJetRadius, fRho->GetVal())*areaRC);
            fHistRCPt[fInCentralitySelection]->Fill(pt);
-           fHistDeltaPtDeltaPhi2[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[0]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
-           fHistDeltaPtDeltaPhi3[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[1]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+           fHistDeltaPtDeltaPhi2[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+           fHistDeltaPtDeltaPhi3[fInCentralitySelection]->Fill(PhaseShift(phi-psi3, 3.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
        }
        // get a random cone excluding leading jet area
        CalculateRandomCone(pt, eta, phi, leadingJet);
@@ -935,18 +1002,18 @@ void AliAnalysisTaskRhoVnModulation::FillDeltaPtHistograms(Double_t* tpc) const
            fHistRCPhiEtaExLJ[fInCentralitySelection]->Fill(phi, eta);
            fHistRhoVsRCPtExLJ[fInCentralitySelection]->Fill(pt, RhoVal(phi, fJetRadius, fRho->GetVal())*areaRC);
            fHistRCPtExLJ[fInCentralitySelection]->Fill(pt);
-           fHistDeltaPtDeltaPhi2ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[0]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
-           fHistDeltaPtDeltaPhi3ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[1]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+           fHistDeltaPtDeltaPhi2ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+           fHistDeltaPtDeltaPhi3ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-psi3, 3.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
        }
        // get a random cone in an event with randomized phi and eta
-       CalculateRandomCone(pt, eta, phi, 0x0, kTRUE);
+       /* CalculateRandomCone(pt, eta, phi, 0x0, kTRUE);
        if( pt > 0) {
            fHistRCPhiEtaRand[fInCentralitySelection]->Fill(phi, eta);
            fHistRhoVsRCPtRand[fInCentralitySelection]->Fill(pt, RhoVal(phi, fJetRadius, fRho->GetVal())*areaRC);
            fHistRCPtRand[fInCentralitySelection]->Fill(pt);
-           fHistDeltaPtDeltaPhi2Rand[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[0]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
-           fHistDeltaPtDeltaPhi3Rand[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[1]), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
-       }
+           fHistDeltaPtDeltaPhi2Rand[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+           fHistDeltaPtDeltaPhi3Rand[fInCentralitySelection]->Fill(PhaseShift(phi-psi3, 3.), pt - areaRC*RhoVal(phi, fJetRadius, fRho->GetVal()));
+       } */
     } 
 }
 //_____________________________________________________________________________
@@ -957,18 +1024,23 @@ void AliAnalysisTaskRhoVnModulation::FillJetHistograms(Double_t vzero[2][2], Dou
     Int_t iJets(fJets->GetEntriesFast());
     for(Int_t i(0); i < iJets; i++) {
         AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
-        if(!PassesCuts(jet)) continue;
-        Double_t pt(jet->Pt()), area(jet->Area()), eta(jet->Eta()), phi(jet->Phi());
-        Double_t rho(RhoVal(phi, fJetRadius, fRho->GetVal()));
-        fHistJetPtRaw[fInCentralitySelection]->Fill(pt);
-        fHistJetPt[fInCentralitySelection]->Fill(pt-area*rho);
-        fHistJetEtaPhi[fInCentralitySelection]->Fill(eta, phi);
-        fHistJetPtArea[fInCentralitySelection]->Fill(pt-area*rho, area);
-        fHistJetPsiTPCPt[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[0]), pt-area*rho);
-        fHistJetPsiVZEROAPt[fInCentralitySelection]->Fill(PhaseShift(phi-vzero[0][0]), pt-area*rho);
-        fHistJetPsiVZEROCPt[fInCentralitySelection]->Fill(PhaseShift(phi-vzero[1][0]), pt-area*rho);
-        fHistJetPtConstituents[fInCentralitySelection]->Fill(pt-area*rho, jet->Nch());
-        fHistJetEtaRho[fInCentralitySelection]->Fill(eta, pt/area);
+        if(PassesCuts(jet)) {
+            Double_t pt(jet->Pt()), area(jet->Area()), eta(jet->Eta()), phi(jet->Phi());
+            Double_t rho(RhoVal(phi, fJetRadius, fRho->GetVal()));
+            fHistJetPtRaw[fInCentralitySelection]->Fill(pt);
+            fHistJetPt[fInCentralitySelection]->Fill(pt-area*rho);
+            fHistJetEtaPhi[fInCentralitySelection]->Fill(eta, phi);
+            fHistJetPtArea[fInCentralitySelection]->Fill(pt-area*rho, area);
+            fHistJetPsiTPCPt[fInCentralitySelection]->Fill(PhaseShift(phi-tpc[0], 2.), pt-area*rho);
+            fHistJetPsiVZEROAPt[fInCentralitySelection]->Fill(PhaseShift(phi-vzero[0][0], 2.), pt-area*rho);
+            fHistJetPsiVZEROCPt[fInCentralitySelection]->Fill(PhaseShift(phi-vzero[1][0], 2.), pt-area*rho);
+            fHistJetPtConstituents[fInCentralitySelection]->Fill(pt-area*rho, jet->Nch());
+            fHistJetEtaRho[fInCentralitySelection]->Fill(eta, pt/area);
+            if(fSetPtSub) jet->SetPtSub(pt-area*rho);
+        }
+        else { // if the jet is rejected, excluded it for the flow analysis
+            if(fSetPtSub) jet->SetPtSub(-999.);
+        }
     }
 }
 //_____________________________________________________________________________
@@ -981,12 +1053,12 @@ void AliAnalysisTaskRhoVnModulation::FillDeltaPhiHistograms(Double_t vzero[2][2]
        for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
            AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
            if(!PassesCuts(track)) continue;
-           fHistDeltaPhi2VZEROA[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[0][0]));
-           fHistDeltaPhi2VZEROC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[1][0]));
-           fHistDeltaPhi2TPC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-tpc[0]));
-           fHistDeltaPhi3VZEROA[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[0][1]));
-           fHistDeltaPhi3VZEROC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[1][1]));
-           fHistDeltaPhi3TPC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-tpc[1]));
+           fHistDeltaPhi2VZEROA[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[0][0], 2.));
+           fHistDeltaPhi2VZEROC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[1][0], 2.));
+           fHistDeltaPhi2TPC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-tpc[0], 2.));
+           fHistDeltaPhi3VZEROA[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[0][1], 3.));
+           fHistDeltaPhi3VZEROC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-vzero[1][1], 3.));
+           fHistDeltaPhi3TPC[fInCentralitySelection]->Fill(PhaseShift(track->Phi()-tpc[1], 3.));
        }
    }
 }
@@ -1026,6 +1098,108 @@ void AliAnalysisTaskRhoVnModulation::FillQAHistograms(AliVEvent* vevent)
     }
 }
 //_____________________________________________________________________________
+void AliAnalysisTaskRhoVnModulation::FillAnalysisSummaryHistogram() const
+{
+    // fill the analysis summary histrogram, saves all relevant analysis settigns
+    if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(1, "fJetRadius"); 
+    fHistAnalysisSummary->SetBinContent(1, fJetRadius);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(2, "fPtBiasJetTrack");
+    fHistAnalysisSummary->SetBinContent(2, fPtBiasJetTrack);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(3, "fPtBiasJetClus");
+    fHistAnalysisSummary->SetBinContent(3, fPtBiasJetClus);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(4, "fJetPtCut");
+    fHistAnalysisSummary->SetBinContent(4, fJetPtCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(5, "fJetAreaCut");
+    fHistAnalysisSummary->SetBinContent(5, fJetAreaCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(6, "fPercAreaCut");
+    fHistAnalysisSummary->SetBinContent(6, fPercAreaCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(7, "fAreaEmcCut");
+    fHistAnalysisSummary->SetBinContent(7, fAreaEmcCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(8, "fJetMinEta");
+    fHistAnalysisSummary->SetBinContent(8, fJetMinEta);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(9, "fJetMaxEta");
+    fHistAnalysisSummary->SetBinContent(9, fJetMaxEta);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(10, "fJetMinPhi");
+    fHistAnalysisSummary->SetBinContent(10, fJetMinPhi);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(11, "fJetMaxPhi");
+    fHistAnalysisSummary->SetBinContent(11, fJetMaxPhi);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(12, "fMaxClusterPt");
+    fHistAnalysisSummary->SetBinContent(12, fMaxClusterPt);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(13, "fMaxTrackPt");
+    fHistAnalysisSummary->SetBinContent(13, fMaxTrackPt);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(14, "fLeadingHadronType");
+    fHistAnalysisSummary->SetBinContent(14, fLeadingHadronType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(15, "fAnaType");
+    fHistAnalysisSummary->SetBinContent(15, fAnaType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(16, "fForceBeamType");
+    fHistAnalysisSummary->SetBinContent(16, fForceBeamType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(17, "fMinCent");
+    fHistAnalysisSummary->SetBinContent(17, fMinCent);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(18, "fMaxCent");
+    fHistAnalysisSummary->SetBinContent(18, fMaxCent);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(19, "fMinVz");
+    fHistAnalysisSummary->SetBinContent(19, fMinVz);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(20, "fMaxVz");
+    fHistAnalysisSummary->SetBinContent(20, fMaxVz);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(21, "fOffTrigger");
+    fHistAnalysisSummary->SetBinContent(21, fOffTrigger);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(22, "fClusPtCut");
+    fHistAnalysisSummary->SetBinContent(22, fClusPtCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(23, "fTrackPtCut");
+    fHistAnalysisSummary->SetBinContent(23, fTrackPtCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(24, "fTrackMinEta");
+    fHistAnalysisSummary->SetBinContent(24, fTrackMinEta);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(25, "fTrackMaxEta");
+    fHistAnalysisSummary->SetBinContent(25, fTrackMaxEta);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(26, "fTrackMinPhi");
+    fHistAnalysisSummary->SetBinContent(26, fTrackMinPhi);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(27, "fTrackMaxPhi");
+    fHistAnalysisSummary->SetBinContent(27, fTrackMaxPhi);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(28, "fClusTimeCutLow");
+    fHistAnalysisSummary->SetBinContent(28, fClusTimeCutLow);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(29, "fClusTimeCutUp");
+    fHistAnalysisSummary->SetBinContent(29, fClusTimeCutUp);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(30, "fMinPtTrackInEmcal");
+    fHistAnalysisSummary->SetBinContent(30, fMinPtTrackInEmcal);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(31, "fEventPlaneVsEmcal");
+    fHistAnalysisSummary->SetBinContent(31, fEventPlaneVsEmcal);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(32, "fMinEventPlane");
+    fHistAnalysisSummary->SetBinContent(32, fMaxEventPlane);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(33, "fRandomConeRadius");
+    fHistAnalysisSummary->SetBinContent(33, fRandomConeRadius);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(34, "fitModulationType");
+    fHistAnalysisSummary->SetBinContent(34, (int)fFitModulationType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(35, "runModeType");
+    fHistAnalysisSummary->SetBinContent(35, (int)fRunModeType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(36, "data type");
+    fHistAnalysisSummary->SetBinContent(36, (int)fDataType);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(37, "iterator");
+    fHistAnalysisSummary->SetBinContent(37, 1.);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(38, "fMinPvalue");
+    fHistAnalysisSummary->SetBinContent(38, fMinPvalue);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(39, "fMaxPvalue");
+    fHistAnalysisSummary->SetBinContent(39, fMaxPvalue);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(40, "fExcludeLeadingJetsFromFit");
+    fHistAnalysisSummary->SetBinContent(40, fExcludeLeadingJetsFromFit);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(41, "fRebinSwapHistoOnTheFly");
+    fHistAnalysisSummary->SetBinContent(41, (int)fRebinSwapHistoOnTheFly);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(42, "fUsePtWeight");
+    fHistAnalysisSummary->SetBinContent(42, (int)fUsePtWeight);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(43, "fMinLeadingHadronPt");
+    fHistAnalysisSummary->SetBinContent(43, fMinLeadingHadronPt);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(44, "fExplicitOutlierCut");
+    fHistAnalysisSummary->SetBinContent(44, fExplicitOutlierCut);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(45, "fLocalJetMinEta");
+    fHistAnalysisSummary->SetBinContent(45,fLocalJetMinEta );
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(46, "fLocalJetMaxEta");
+    fHistAnalysisSummary->SetBinContent(46, fLocalJetMaxEta);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(47, "fLocalJetMinPhi");
+    fHistAnalysisSummary->SetBinContent(47, fLocalJetMinPhi);
+    fHistAnalysisSummary->GetXaxis()->SetBinLabel(48, "fLocalJetMaxPhi");
+    fHistAnalysisSummary->SetBinContent(48, fLocalJetMaxPhi);
+}
+//_____________________________________________________________________________
 void AliAnalysisTaskRhoVnModulation::Terminate(Option_t *)
 {
     // terminate
@@ -1048,3 +1222,65 @@ void AliAnalysisTaskRhoVnModulation::Terminate(Option_t *)
     }
 }
 //_____________________________________________________________________________
+TH1F* AliAnalysisTaskRhoVnModulation::GetResolutionFromOuptutFile(detectorType det, Int_t h, TArrayD* cen)
+{
+    // INTERFACE METHOD FOR OUTPUTFILE
+    // get the detector resolution, user has ownership of the returned histogram
+    if(!fOutputList) {
+        printf(" > Please add fOutputList first < \n");
+        return 0x0;
+    }
+    TH1F* r(0x0);
+    (cen) ? r = new TH1F("R", "R", cen->GetSize()-1, cen->GetArray()) : r = new TH1F("R", "R", 10, 0, 10);
+    if(!cen) r->GetXaxis()->SetTitle("number of centrality bin");
+    r->GetYaxis()->SetTitle(Form("Resolution #Psi_{%i}", h));
+    for(Int_t i(0); i < 10; i++) {
+        TProfile* temp((TProfile*)fOutputList->FindObject(Form("fProfV%iResolution_%i", h, i)));
+        if(!temp) break;
+        Double_t a(temp->GetBinContent(3)), b(temp->GetBinContent(5)), c(temp->GetBinContent(7));
+        Double_t _a(temp->GetBinError(3)), _b(temp->GetBinError(5)), _c(temp->GetBinError(7));
+        if(a <= 0 || b <= 0 || c <= 0) continue;
+        switch (det) {
+            case kVZEROA : {
+                r->SetBinContent(1+i, TMath::Sqrt((a*b)/c));
+                if(i==0) r->SetNameTitle("VZEROA resolution", "VZEROA resolution");
+            } break;
+            case kVZEROC : {
+                r->SetBinContent(1+i, TMath::Sqrt((a*c)/b));
+                if(i==0) r->SetNameTitle("VZEROC resolution", "VZEROC resolution");
+            } break;
+            case kTPC : {
+                r->SetBinContent(1+i, TMath::Sqrt((b*c)/a));
+                if(i==0) r->SetNameTitle("TPC resolution", "TPC resolution");
+            } break;
+            default : break;
+        }
+        r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
+    }
+    return r;
+}
+//_____________________________________________________________________________
+TH1F* AliAnalysisTaskRhoVnModulation::CorrectForResolutionDiff(TH1F* v, detectorType det, TArrayD* cen, Int_t c, Int_t h)
+{
+    // INTERFACE METHOD FOR OUTPUT FILE
+    // correct the supplied differential vn histogram v for detector resolution
+    TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
+    if(!r) {
+        printf(" > Couldn't find resolution < \n");
+        return 0x0;
+    }
+    Double_t res(1./r->GetBinContent(1+r->FindBin(c)));
+    TF1* line = new TF1("line", "pol0", 0, 200);
+    line->SetParameter(0, res);
+    return (v->Multiply(line)) ? v : 0x0;
+}
+//_____________________________________________________________________________
+TH1F* AliAnalysisTaskRhoVnModulation::CorrectForResolutionInt(TH1F* v, detectorType det, TArrayD* cen, Int_t h)
+{
+    // INTERFACE METHOD FOR OUTPUT FILE
+    // correct the supplied intetrated vn histogram v for detector resolution
+    // integrated vn must have the same centrality binning as the resolotion correction
+    TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
+    return (v->Divide(v, r)) ? v : 0x0;
+}
+//_____________________________________________________________________________