]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PYTHIA8/pythia8170/phpdoc/BeamRemnants.php
PYTHIA8: removing legacy pythia8170
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8170 / phpdoc / BeamRemnants.php
diff --git a/PYTHIA8/pythia8170/phpdoc/BeamRemnants.php b/PYTHIA8/pythia8170/phpdoc/BeamRemnants.php
deleted file mode 100644 (file)
index a803117..0000000
+++ /dev/null
@@ -1,440 +0,0 @@
-<html>
-<head>
-<title>Beam Remnants</title>
-<link rel="stylesheet" type="text/css" href="pythia.css"/>
-<link rel="shortcut icon" href="pythia32.gif"/>
-</head>
-<body>
-
-<script language=javascript type=text/javascript>
-function stopRKey(evt) {
-var evt = (evt) ? evt : ((event) ? event : null);
-var node = (evt.target) ? evt.target :((evt.srcElement) ? evt.srcElement : null);
-if ((evt.keyCode == 13) && (node.type=="text"))
-{return false;}
-}
-
-document.onkeypress = stopRKey;
-</script>
-<?php
-if($_POST['saved'] == 1) {
-if($_POST['filepath'] != "files/") {
-echo "<font color='red'>SETTINGS SAVED TO FILE</font><br/><br/>"; }
-else {
-echo "<font color='red'>NO FILE SELECTED YET.. PLEASE DO SO </font><a href='SaveSettings.php'>HERE</a><br/><br/>"; }
-}
-?>
-
-<form method='post' action='BeamRemnants.php'>
-
-<h2>Beam Remnants</h2>
-
-<h3>Introduction</h3>
-
-The <code>BeamParticle</code> class contains information on all partons 
-extracted from a beam (so far). As each consecutive multiparton interaction 
-defines its respective incoming parton to the hard scattering a 
-new slot is added to the list. This information is modified when 
-the backwards evolution of the spacelike shower defines a new 
-initiator parton. It is used, both for the multiparton interactions
-and the spacelike showers, to define rescaled parton densities based
-on the <i>x</i> and flavours already extracted, and to distinguish 
-between valence, sea and companion quarks. Once the perturbative 
-evolution is finished, further beam remnants are added to obtain a 
-consistent set of flavours. The current physics framework is further 
-described in [<a href="Bibliography.php" target="page">Sjo04</a>]. 
-
-<p/>
-The introduction of <?php $filepath = $_GET["filepath"];
-echo "<a href='MultipartonInteractions.php?filepath=".$filepath."' target='page'>";?>rescattering</a> 
-in the multiparton interactions framework further complicates the 
-processing of events. Specifically, when combined with showers,
-the momentum of an individual parton is no longer uniquely associated
-with one single subcollision. Nevertheless the parton is classified
-with one system, owing to the technical and administrative complications
-of more complete classifications. Therefore the addition of primordial
-<i>kT</i> to the subsystem initiator partons does not automatically
-guarantee overall <i>pT</i> conservation. Various tricks are used to
-minimize the mismatch, with a brute force shift of all parton 
-<i>pT</i>'s as a final step. 
-
-<p/>
-Much of the above information is stored in a vector of 
-<code>ResolvedParton</code> objects, which each contains flavour and 
-momentum information, as well as valence/companion information and more. 
-The <code>BeamParticle</code> method <code>list()</code> shows the 
-contents of this vector, mainly for debug purposes.
-
-<p/>
-The <code>BeamRemnants</code> class takes over for the final step 
-of adding primordial <i>kT</i> to the initiators and remnants, 
-assigning the relative longitudinal momentum sharing among the 
-remnants, and constructing the overall kinematics and colour flow. 
-This step couples the two sides of an event, and could therefore 
-not be covered in the <code>BeamParticle</code> class, which only 
-considers one beam at a time. 
-
-<p/>
-The methods of these classes are not intended for general use,
-and so are not described here. 
-
-<p/>
-In addition to the parameters described on this page, note that the 
-choice of <?php $filepath = $_GET["filepath"];
-echo "<a href='PDFSelection.php?filepath=".$filepath."' target='page'>";?>parton densities</a> is made 
-in the <code>Pythia</code> class. Then pointers to the pdf's are handed 
-on to <code>BeamParticle</code> at initialization, for all subsequent 
-usage.
-
-<h3>Primordial <i>kT</i></h3>
-
-The primordial <i>kT</i> of initiators of hard-scattering subsystems 
-are selected according to Gaussian distributions in <i>p_x</i> and 
-<i>p_y</i> separately. The widths of these distributions are chosen
-to be dependent on the hard scale of the central process and on the mass 
-of the whole subsystem defined by the two initiators:
-<br/><i>
-sigma = (sigma_soft * Q_half + sigma_hard * Q) / (Q_half + Q) 
-  * m / (m_half + m)  
-</i><br/>
-Here <i>Q</i> is the hard-process renormalization scale for the 
-hardest process and the <i>pT</i> scale for subsequent multiparton
-interactions, <i>m</i> the mass of the system, and 
-<i>sigma_soft</i>, <i>sigma_hard</i>, <i>Q_half</i> and
-<i>m_half</i> parameters defined below. Furthermore each separately
-defined beam remnant has a distribution of width <i>sigma_remn</i>, 
-independently of kinematical variables.
-
-<br/><br/><strong>BeamRemnants:primordialKT</strong>  <input type="radio" name="1" value="on" checked="checked"><strong>On</strong>
-<input type="radio" name="1" value="off"><strong>Off</strong>
- &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
-Allow or not selection of primordial <i>kT</i> according to the
-parameter values below.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:primordialKTsoft </td><td></td><td> <input type="text" name="2" value="0.5" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The width <i>sigma_soft</i> in the above equation, assigned as a 
-primordial <i>kT</i> to initiators in the soft-interaction limit.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:primordialKThard </td><td></td><td> <input type="text" name="3" value="2.0" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>2.0</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The width <i>sigma_hard</i> in the above equation, assigned as a 
-primordial <i>kT</i> to initiators in the hard-interaction limit.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:halfScaleForKT </td><td></td><td> <input type="text" name="4" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The scale <i>Q_half</i> in the equation above, defining the 
-half-way point between hard and soft interactions. 
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:halfMassForKT </td><td></td><td> <input type="text" name="5" value="1." size="20"/>  &nbsp;&nbsp;(<code>default = <strong>1.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The scale <i>m_half</i> in the equation above, defining the 
-half-way point between low-mass and high-mass subsystems.
-(Kinematics construction can easily fail if a system is assigned 
-a primordial <i>kT</i> value higher than its mass, so the 
-mass-dampening is intended to reduce some troubles later on.)
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:primordialKTremnant </td><td></td><td> <input type="text" name="6" value="0.4" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.4</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The width <i>sigma_remn</i>, assigned as a primordial <i>kT</i> 
-to beam-remnant partons.
-  
-
-<p/>
-A net <i>kT</i> imbalance is obtained from the vector sum of the
-primordial <i>kT</i> values of all initiators and all beam remnants.
-This quantity is compensated by a shift shared equally between 
-all partons, except that the dampening factor <i>m / (m_half + m)</i> 
-is again used to suppress the role of small-mass systems. 
-
-<p/>
-Note that the current <i>sigma</i> definition implies that
-<i>&lt;pT^2&gt; = &lt;p_x^2&gt;+ &lt;p_y^2&gt; = 2 sigma^2</i>. 
-It thus cannot be compared directly with the <i>sigma</i>
-of nonperturbative hadronization, where each quark-antiquark
-breakup corresponds to <i>&lt;pT^2&gt; = sigma^2</i> and only
-for hadrons it holds that <i>&lt;pT^2&gt; = 2 sigma^2</i>. 
-The comparison is further complicated by the reduction of 
-primordial <i>kT</i> values by the overall compensation mechanism. 
-
-<br/><br/><strong>BeamRemnants:rescatterRestoreY</strong>  <input type="radio" name="7" value="on"><strong>On</strong>
-<input type="radio" name="7" value="off" checked="checked"><strong>Off</strong>
- &nbsp;&nbsp;(<code>default = <strong>off</strong></code>)<br/>
-Is only relevant when <?php $filepath = $_GET["filepath"];
-echo "<a href='MultipartonInteractions.php?filepath=".$filepath."' target='page'>";?>rescattering</a> 
-is switched on in the multiparton interactions scenario. For a normal 
-interaction the rapidity and mass of a system is preserved when
-primordial <i>kT</i> is introduced, by appropriate modification of the
-incoming parton momenta. Kinematics construction is more complicated for 
-a rescattering, and two options are offered. Differences between these 
-can be used to explore systematic uncertainties in the rescattering 
-framework.<br/>
-The default behaviour is to keep the incoming rescattered parton as is, 
-but to modify the unrescattered incoming parton so as to preserve the 
-invariant mass of the system. Thereby the rapidity of the rescattering 
-is modified.<br/> 
-The alternative is to retain the rapidity (and mass) of the rescattered 
-system when primordial <i>kT</i> is introduced. This is made at the 
-expense of a modified longitudinal momentum of the incoming rescattered 
-parton, so that it does not agree with the momentum it ought to have had 
-by the kinematics of the previous interaction.<br/> 
-For a double rescattering, when both incoming partons have already scattered, 
-there is no obvious way to retain the invariant mass of the system in the
-first approach, so the second is always used. 
-  
-
-<h3>Colour flow</h3>
-
-The colour flows in the separate subprocesses defined in the 
-multiparton-interactions scenario are tied together via the assignment
-of colour flow in the beam remnant. This is not an unambiguous 
-procedure, but currently no parameters are directly associated with it.
-However, a simple "minimal" procedure of colour flow only via the beam 
-remnants does not result in a scenario in
-agreement with data, notably not a sufficiently steep rise of  
-<i>&lt;pT&gt;(n_ch)</i>. The true origin of this behaviour and the
-correct mechanism to reproduce it remains one of the big unsolved issues 
-at the borderline between perturbative and nonperturbative QCD. 
-As a simple attempt, an additional step is introduced, wherein the gluons 
-of a lower-<i>pT</i> system are merged with the ones in a higher-pT one. 
-
-<br/><br/><strong>BeamRemnants:reconnectColours</strong>  <input type="radio" name="8" value="on" checked="checked"><strong>On</strong>
-<input type="radio" name="8" value="off"><strong>Off</strong>
- &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
-Allow or not a system to be merged with another one.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:reconnectRange </td><td></td><td> <input type="text" name="9" value="10.0" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>10.0</strong></code>; <code>minimum = 0.</code>; <code>maximum = 10.</code>)</td></tr></table>
-A system with a hard scale <i>pT</i> can be merged with one of a 
-harder scale with a probability that is 
-<i>pT0_Rec^2 / (pT0_Rec^2 + pT^2)</i>, where
-<i>pT0_Rec</i> is <code>reconnectRange</code> times <i>pT0</i>, 
-the latter being the same energy-dependent dampening parameter as 
-used for multiparton interactions. 
-Thus it is easy to merge a low-<i>pT</i> system with any other,
-but difficult to merge two high-<i>pT</i> ones with each other. 
-  
-
-<p/>
-The procedure is used iteratively. Thus first the reconnection probability
-<i>P = pT0_Rec^2 / (pT0_Rec^2 + pT^2)</i> of the lowest-<i>pT</i> 
-system is found, and gives the probability for merger with the 
-second-lowest one. If not merged, it is tested with the third-lowest one, 
-and so on. For the <i>m</i>'th higher system the reconnection
-probability thus becomes <i>(1 - P)^(m-1) P</i>. That is, there is 
-no explicit dependence on the higher <i>pT</i> scale, but implicitly 
-there is via the survival probability of not already having been merged
-with a lower-<i>pT</i> system. Also note that the total reconnection
-probability for the lowest-<i>pT</i> system in an event with <i>n</i> 
-systems becomes <i>1 - (1 - P)^(n-1)</i>. Once the fate of the 
-lowest-<i>pT</i> system has been decided, the second-lowest is considered
-with respect to the ones above it, then the third-lowest, and so on.  
-
-<p/>
-Once it has been decided which systems should be joined, the actual merging
-is carried out in the opposite direction. That is, first the hardest
-system is studied, and all colour dipoles in it are found (including to 
-the beam remnants, as defined by the holes of the incoming partons).
-Next each softer system to be merged is studied in turn. Its gluons are,
-in decreasing <i>pT</i> order, inserted on the colour dipole <i>i,j</i>
-that gives the smallest <i>(p_g p_i)(p_g p_j)/(p_i p_j)</i>, i.e. 
-minimizes the "disturbance" on the existing dipole, in terms of 
-<i>pT^2</i> or <i>Lambda</i> measure (string length). The insertion
-of the gluon means that the old dipole is replaced by two new ones. 
-Also the (rather few) quark-antiquark pairs that can be traced back to 
-a gluon splitting are treated in close analogy with the gluon case. 
-Quark lines that attach directly to the beam remnants cannot be merged 
-but are left behind. 
-
-<p/>
-The joining procedure can be viewed as a more sophisticated variant of 
-the one introduced already in [<a href="Bibliography.php" target="page">Sjo87</a>]. Clearly it is ad hoc. 
-It hopefully captures some elements of truth. The lower <i>pT</i> scale 
-a system has the larger its spatial extent and therefore the larger its 
-overlap with other systems. It could be argued that one should classify 
-individual initial-state partons by <i>pT</i> rather than the system 
-as a whole. However, for final-state radiation, a soft gluon radiated off 
-a hard parton is actually produced at late times and therefore probably 
-less likely to reconnect. In the balance, a classification by system 
-<i>pT</i> scale appears sensible as a first try. 
-
-<p/>
-Note that the reconnection is carried out before resonance decays are
-considered. Colour inside a resonance therefore is not reconnected.
-This is a deliberate choice, but certainly open to discussion and 
-extensions at a later stage, as is the rest of this procedure.
-
-<h3>Further variables</h3>
-
-<br/><br/><table><tr><td><strong>BeamRemnants:maxValQuark  </td><td></td><td> <input type="text" name="10" value="3" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>3</strong></code>; <code>minimum = 0</code>; <code>maximum = 5</code>)</td></tr></table>
-The maximum valence quark kind allowed in acceptable incoming beams,
-for which multiparton interactions are simulated. Default is that hadrons
-may contain <i>u</i>, <i>d</i> and <i>s</i> quarks, 
-but not <i>c</i> and <i>b</i> ones, since sensible
-kinematics has not really been worked out for the latter.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:companionPower  </td><td></td><td> <input type="text" name="11" value="4" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>4</strong></code>; <code>minimum = 0</code>; <code>maximum = 4</code>)</td></tr></table>
-When a sea quark has been found, a companion antisea quark ought to be
-nearby in <i>x</i>. The shape of this distribution can be derived 
-from the gluon mother distribution convoluted with the 
-<i>g -> q qbar</i> splitting kernel. In practice, simple solutions 
-are only feasible if the gluon shape is assumed to be of the form 
-<i>g(x) ~ (1 - x)^p / x</i>, where <i>p</i> is an integer power, 
-the parameter above. Allowed values correspond to the cases programmed.
-<br/> 
-Since the whole framework is approximate anyway, this should be good 
-enough. Note that companions typically are found at small <i>Q^2</i>, 
-if at all, so the form is supposed to represent <i>g(x)</i> at small 
-<i>Q^2</i> scales, close to the lower cutoff for multiparton interactions. 
-  
-
-<p/>
-When assigning relative momentum fractions to beam-remnant partons,
-valence quarks are chosen according to a distribution like
-<i>(1 - x)^power / sqrt(x)</i>. This <i>power</i> is given below 
-for quarks in mesons, and separately for <i>u</i> and <i>d</i> 
-quarks in the proton, based on the approximate shape of low-<i>Q^2</i> 
-parton densities. The power for other baryons is derived from the 
-proton ones, by an appropriate mixing. The <i>x</i> of a diquark 
-is chosen as the sum of its two constituent <i>x</i> values, and can 
-thus be above unity. (A common rescaling of all remnant partons and 
-particles will fix that.) An additional enhancement of the diquark 
-momentum is obtained by its <i>x</i> value being rescaled by the 
-<code>valenceDiqEnhance</code> factor. 
-
-<br/><br/><table><tr><td><strong>BeamRemnants:valencePowerMeson </td><td></td><td> <input type="text" name="12" value="0.8" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>0.8</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The abovementioned power for valence quarks in mesons.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:valencePowerUinP </td><td></td><td> <input type="text" name="13" value="3.5" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>3.5</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The abovementioned power for valence <i>u</i> quarks in protons.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:valencePowerDinP </td><td></td><td> <input type="text" name="14" value="2.0" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>2.0</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
-The abovementioned power for valence <i>d</i> quarks in protons.
-  
-
-<br/><br/><table><tr><td><strong>BeamRemnants:valenceDiqEnhance </td><td></td><td> <input type="text" name="15" value="2.0" size="20"/>  &nbsp;&nbsp;(<code>default = <strong>2.0</strong></code>; <code>minimum = 0.5</code>; <code>maximum = 10.</code>)</td></tr></table>
-Enhancement factor for valence diqaurks in baryons, relative to the 
-simple sum of the two constituent quarks.
-  
-
-<br/><br/><strong>BeamRemnants:allowJunction</strong>  <input type="radio" name="16" value="on" checked="checked"><strong>On</strong>
-<input type="radio" name="16" value="off"><strong>Off</strong>
- &nbsp;&nbsp;(<code>default = <strong>on</strong></code>)<br/>
-The <code>off</code> option is intended for debug purposes only, as 
-follows. When more than one valence quark is kicked out of a baryon 
-beam, as part of the multiparton interactions scenario, the subsequent
-hadronization is described in terms of a junction string topology.
-This description involves a number of technical complications that
-may make the program more unstable. As an alternative, by switching
-this option off, junction configurations are rejected (which gives 
-an error message that the remnant flavour setup failed), and the
-multiparton interactions and showers are redone until a 
-junction-free topology is found. 
-   
-
-<input type="hidden" name="saved" value="1"/>
-
-<?php
-echo "<input type='hidden' name='filepath' value='".$_GET["filepath"]."'/>"?>
-
-<table width="100%"><tr><td align="right"><input type="submit" value="Save Settings" /></td></tr></table>
-</form>
-
-<?php
-
-if($_POST["saved"] == 1)
-{
-$filepath = $_POST["filepath"];
-$handle = fopen($filepath, 'a');
-
-if($_POST["1"] != "on")
-{
-$data = "BeamRemnants:primordialKT = ".$_POST["1"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["2"] != "0.5")
-{
-$data = "BeamRemnants:primordialKTsoft = ".$_POST["2"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["3"] != "2.0")
-{
-$data = "BeamRemnants:primordialKThard = ".$_POST["3"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["4"] != "1.")
-{
-$data = "BeamRemnants:halfScaleForKT = ".$_POST["4"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["5"] != "1.")
-{
-$data = "BeamRemnants:halfMassForKT = ".$_POST["5"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["6"] != "0.4")
-{
-$data = "BeamRemnants:primordialKTremnant = ".$_POST["6"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["7"] != "off")
-{
-$data = "BeamRemnants:rescatterRestoreY = ".$_POST["7"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["8"] != "on")
-{
-$data = "BeamRemnants:reconnectColours = ".$_POST["8"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["9"] != "10.0")
-{
-$data = "BeamRemnants:reconnectRange = ".$_POST["9"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["10"] != "3")
-{
-$data = "BeamRemnants:maxValQuark = ".$_POST["10"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["11"] != "4")
-{
-$data = "BeamRemnants:companionPower = ".$_POST["11"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["12"] != "0.8")
-{
-$data = "BeamRemnants:valencePowerMeson = ".$_POST["12"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["13"] != "3.5")
-{
-$data = "BeamRemnants:valencePowerUinP = ".$_POST["13"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["14"] != "2.0")
-{
-$data = "BeamRemnants:valencePowerDinP = ".$_POST["14"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["15"] != "2.0")
-{
-$data = "BeamRemnants:valenceDiqEnhance = ".$_POST["15"]."\n";
-fwrite($handle,$data);
-}
-if($_POST["16"] != "on")
-{
-$data = "BeamRemnants:allowJunction = ".$_POST["16"]."\n";
-fwrite($handle,$data);
-}
-fclose($handle);
-}
-
-?>
-</body>
-</html>
-
-<!-- Copyright (C) 2012 Torbjorn Sjostrand -->