]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - RICH/AliRICHChamber.h
AliCRTModule added
[u/mrichter/AliRoot.git] / RICH / AliRICHChamber.h
index ae5c09be50558e61c7812a580734ebcba37d9497..a32233622a4bee59919eb0d52bb42147acf87f9b 100644 (file)
 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  * See cxx source for full Copyright notice                               */
 
-/* $Id$ */
-
-#include <TRotMatrix.h>
 #include <TVector3.h>
 #include <TMath.h>
 #include <TRotation.h>
-
-#include "AliRICHTresholdMap.h"
+#include <TLorentzVector.h>
+#include "AliRICHParam.h"
 #include "AliSegmentation.h"
-#include "AliRICHGeometry.h"
-#include "AliRICHResponse.h"
+class AliRICHGeometry;
+class AliRICHResponse;
+class TRotMatrix;
 
-class AliRICHClusterFinder;
-
-typedef enum {kMip, kCerenkov} ResponseType;
+typedef enum {kMip, kPhoton} ResponseType;
 class AliRICHParam;
 
 class AliRICHChamber : public TNamed
 {
 public:
-    
-   Int_t                fIndexMap[50];   //indeces of tresholds
-   AliRICHTresholdMap*  fTresh;          //map of tresholds
-
-public:
-           AliRICHChamber();                                        //default ctor
+           AliRICHChamber();
            AliRICHChamber(Int_t iModuleN,AliRICHParam *pParam);
-           AliRICHChamber(const AliRICHChamber &chamber ) {;}//copy ctor 
-  virtual ~AliRICHChamber()                               {;}//dtor
-  AliRICHChamber& operator=(const AliRICHChamber& rhs){return *this;}
+           AliRICHChamber(const AliRICHChamber &chamber):TNamed(chamber) {;}
+  virtual ~AliRICHChamber()                                              {;}
+           AliRICHChamber& operator=(const AliRICHChamber&)              {return *this;}
+  
+  TRotMatrix* RotMatrix()          const{return fpRotMatrix;}
+  const char* RotMatrixName()      const{return "rot"+fName;}
+  TRotation   Rot()                const{return fRot;}
+  Double_t    Rho()                const{return fCenterV3.Mag();} 
+  Double_t    ThetaD()             const{return fCenterV3.Theta()*TMath::RadToDeg();}    
+  Double_t    PhiD()               const{return fCenterV3.Phi()*TMath::RadToDeg();}    
+  Double_t    ThetaXd()            const{return fRot.ThetaX()*TMath::RadToDeg();}    
+  Double_t    PhiXd()              const{return fRot.PhiX()*TMath::RadToDeg();}    
+  Double_t    ThetaYd()            const{return fRot.ThetaY()*TMath::RadToDeg();}    
+  Double_t    PhiYd()              const{return fRot.PhiY()*TMath::RadToDeg();}    
+  Double_t    ThetaZd()            const{return fRot.ThetaZ()*TMath::RadToDeg();}    
+  Double_t    PhiZd()              const{return fRot.PhiZ()*TMath::RadToDeg();}    
+  void        RotateX(Double_t a)       {fRot.RotateX(a);fCenterV3.RotateX(a);fPcX3.RotateX(a);}
+  void        RotateY(Double_t a)       {fRot.RotateY(a);fCenterV3.RotateY(a);fPcX3.RotateY(a);}
+  void        RotateZ(Double_t a)       {fRot.RotateZ(a);fCenterV3.RotateZ(a);fPcX3.RotateZ(a);}
+  Double_t    X()                  const{return fCenterV3.X();}  
+  Double_t    Y()                  const{return fCenterV3.Y();}   
+  Double_t    Z()                  const{return fCenterV3.Z();}
+  TVector3    L2G(TVector3 x3)                       const{x3.Transform(fRot);x3+=fCenterV3;return x3;}
+  TVector3    G2L(TVector3 x3)                       const{x3-=fCenterV3;x3.Transform(fRot.Inverse()); return x3;}
+  inline TVector3  Glob2Loc(TVector3 x3, Bool_t isVector=kFALSE) const;
+  TVector3    Glob2Loc(TLorentzVector x4,Bool_t isVector=kFALSE) const{return Glob2Loc(x4.Vect(),isVector);}
+  TVector3    L2G(Double_t x,Double_t y,Double_t z)  const{return L2G(TVector3(x,y,z));}
+  TVector3    G2L(TLorentzVector x4)                 const{return G2L(x4.Vect());}
+  Float_t     G2Ly(TLorentzVector x4)                const{TVector3 x3=G2L(x4.Vect()); return x3.Z();}
+  TVector3    G2L(Double_t x,Double_t y,Double_t z)  const{return G2L(TVector3(x,y,z));}
+  Float_t     G2Lx(Double_t x,Double_t y,Double_t z) const{TVector3 x3=G2L(x,y,z); return x3.X();}
+  Float_t     G2Ly(Double_t x,Double_t y,Double_t z) const{TVector3 x3=G2L(x,y,z); return x3.Z();}
+  void        Print(Option_t *sOption)const;//virtual      
+   
   void LocaltoGlobal(Float_t pos[3],Float_t Localpos[3]);//Transformation from local to global coordinates, chamber-dependant
   void GlobaltoLocal(Float_t pos[3],Float_t localpos[3]);//Transformation from Global to local coordinates, chamber-dependant 
-  void GenerateTresholds();                              //Generate pad dependent tresholds
   void DisIntegration(Float_t eloss, Float_t xhit, Float_t yhit, Int_t&x, Float_t newclust[6][500], ResponseType res);// Cluster formation method
   void    Init(Int_t id)           {fSegmentation->Init(id);} // Recalculates all the values after some of them have been changed
-  void    SetGid(Int_t id)         {fGid=id;}           // Set and get GEANT id  
-  Int_t   GetGid()            const{return fGid;}       // Get GEANT id  
-  void SetRInner(Float_t rmin)     {frMin=rmin;}        // Set inner radius of sensitive volume   
-  Float_t RInner()            const{return frMin;}      // Return inner radius of sensitive volume 
-  void SetROuter(Float_t rmax)     {frMax=rmax;}        // Set outer radius of sensitive volum  
-  Float_t ROuter()            const{return frMax;}      // Return outer radius of sensitive volum  
-  void    SetZPOS(Float_t p1)      {fzPos=p1;}
-  Float_t ZPosition()         const{return fzPos;}
-  void              SetGeometryModel(AliRICHGeometry* pRICHGeometry)           {fGeometry=pRICHGeometry;}        
-  AliRICHGeometry*  GetGeometryModel()                                    const{return fGeometry;}
+  void              SetGeometryModel(AliRICHGeometry* pRICHGeometry)            {fGeometry=pRICHGeometry;}        
+  AliRICHGeometry*  GetGeometryModel()                                     const{return fGeometry;}
   void              SetResponseModel(AliRICHResponse* pRICHResponse)            {fResponse=pRICHResponse;}
   AliRICHResponse*  GetResponseModel()                                     const{return fResponse;}
-  void              SetSegmentationModel(AliSegmentation* pRICHSegmentation)   {fSegmentation=pRICHSegmentation;}
-  AliSegmentation*  GetSegmentationModel(Int_t i=0)                       const{return fSegmentation;}
-  void                  SetReconstructionModel(AliRICHClusterFinder *pRICHReconstruction)    {fReconstruction=pRICHReconstruction;}
-  AliRICHClusterFinder* &GetReconstructionModel()                                            {return fReconstruction;}
+  void              SetSegmentationModel(AliSegmentation* pRICHSegmentation)    {fSegmentation=pRICHSegmentation;}
+  AliSegmentation*  GetSegmentationModel()                                 const{return fSegmentation;}
   void   SigGenInit(Float_t x, Float_t y, Float_t z)   {fSegmentation->SigGenInit(x, y, z) ;}
-  Int_t  SigGenCond(Float_t x, Float_t y, Float_t z)   {return fSegmentation->SigGenCond(x, y, z);}
+  Int_t  SigGenCond(Float_t x, Float_t y, Float_t z)   {return fSegmentation->SigGenCond(x, y, z);}
   Int_t  Sector(Float_t x, Float_t y)                  {return fSegmentation->Sector((Int_t)x, (Int_t)y);} // Returns number of sector containing (x,y) position    
   void   SetPadSize(Float_t p1, Float_t p2)            {fSegmentation->SetPadSize(p1,p2);}
-  Float_t IntPH(Float_t eloss, Float_t yhit)                        {return fResponse->IntPH(eloss,yhit);}
-  Float_t IntPH(Float_t yhit)                                       {return fResponse->IntPH(yhit);}
-  void  SetSigmaIntegration(Float_t p)                             {fResponse->SetSigmaIntegration(p);}
-  void  SetChargeSlope(Float_t p)                                  {fResponse->SetChargeSlope(p);}
-  void  SetChargeSpread(Float_t p1, Float_t p2)                    {fResponse->SetChargeSpread(p1,p2);}
-  void  SetMaxAdc(Float_t p)                                       {fResponse->SetMaxAdc(p);}
-  void  SetSqrtKx3(Float_t p)                                      {fResponse->SetSqrtKx3(p);}
-  void  SetKx2(Float_t p)                                          {fResponse->SetKx2(p);}
-  void  SetKx4(Float_t p)                                          {fResponse->SetKx4(p);}
-  void  SetSqrtKy3(Float_t p)                                      {fResponse->SetSqrtKy3(p);}
-  void  SetKy2(Float_t p)                                          {fResponse->SetKy2(p);}
-  void  SetKy4(Float_t p)                                          {fResponse->SetKy4(p);}    
-  void  SetPitch(Float_t p)                                        {fResponse->SetPitch(p);}
-  void  SetWireSag(Int_t p)                                        {fResponse->SetWireSag(p);}
-  void  SetVoltage(Int_t p)                                        {fResponse->SetVoltage(p);}       
-  void  SetGapThickness(Float_t thickness)                         {fGeometry->SetGapThickness(thickness);} 
-  void  SetProximityGapThickness(Float_t thickness)                {fGeometry->SetProximityGapThickness(thickness);}
-  void  SetQuartzLength(Float_t length)                            {fGeometry->SetQuartzLength(length);}
-  void  SetQuartzWidth(Float_t width)                              {fGeometry->SetQuartzWidth(width);}
-  void  SetQuartzThickness(Float_t thickness)                      {fGeometry->SetQuartzThickness(thickness);}
-  void  SetOuterFreonLength(Float_t length)                        {fGeometry->SetOuterFreonLength(length);}
-  void  SetOuterFreonWidth(Float_t width)                          {fGeometry->SetOuterFreonWidth(width);}
-  void  SetInnerFreonLength(Float_t length)                        {fGeometry->SetInnerFreonLength(length);}
-  void  SetInnerFreonWidth(Float_t width)                          {fGeometry->SetInnerFreonWidth(width);}
-  void  SetFreonThickness(Float_t thickness)                       {fGeometry->SetFreonThickness(thickness);}
-  TRotMatrix* RotMatrix()          const{return fpRotMatrix;}
-  const char* RotMatrixName()      const{return "rot"+fName;}
-  TRotation   Rot()                const{return fRot;}
-  Double_t    Rho()                const{return fCenterV3.Mag();} 
-  Double_t    Theta()              const{return fCenterV3.Theta();}    
-  Double_t    Phi()                const{return fCenterV3.Phi();}    
-  void        RotateX(Double_t a)       {fRot.RotateX(a);fCenterV3.RotateX(a);}
-  void        RotateY(Double_t a)       {fRot.RotateY(a);fCenterV3.RotateY(a);}
-  void        RotateZ(Double_t a)       {fRot.RotateZ(a);fCenterV3.RotateZ(a);}
-  Double_t    X()                  const{return fCenterV3.X();}  
-  Double_t    Y()                  const{return fCenterV3.Y();}   
-  Double_t    Z()                  const{return fCenterV3.Z();}
   Double_t    GetX()               const{return fX;}
   Double_t    GetY()               const{return fY;}
   Double_t    GetZ()               const{return fZ;}    
-  Double_t    GetOffset()          const{return TMath::Sqrt(fX*fX+fY*fY+fZ*fZ);}    
-  inline void SetCenter(Double_t x,Double_t y,Double_t z);
-  TRotMatrix *GetRotMatrix()       const{return fpRotMatrix;}
-  void        SetChamberTransform(Float_t x,Float_t y,Float_t z,TRotMatrix *pRotMatrix) {fX=x; fY=y; fZ=z; fpRotMatrix=pRotMatrix;}
-  
-  virtual void Print(Option_t *sOption)const;      
+  inline void SetToZenith();
+  TRotMatrix *GetRotMatrix()       const{return fpRotMatrix;}  
 protected:
-  Float_t frMin;                                         // Minimum Chamber size
-  Float_t frMax;                                         // Maximum Chamber size 
-  Int_t   fGid;                                          // Id tag 
-  Float_t fzPos;                                         // z-position of this chamber
-
   Float_t fX,fY,fZ;                                      // Position of the center of the chamber in MRS (cm)
 
-  AliSegmentation               *fSegmentation;          // ??????????Segmentation model for each chamber
-  AliRICHResponse               *fResponse;              // ??????????Response model for each chamber
-  AliRICHGeometry               *fGeometry;              // ??????????Geometry model for each chamber
-  AliRICHClusterFinder          *fReconstruction;        // ??????????Reconstruction model for each chamber
+  AliSegmentation               *fSegmentation;          //???Segmentation model for each chamber
+  AliRICHResponse               *fResponse;              //???Response model for each chamber
+  AliRICHGeometry               *fGeometry;              //???Geometry model for each chamber
    
   TVector3      fCenterV3;        //chamber center position in MRS (cm)
+  TVector3      fPcX3;            //PC center position in MRS (cm)
   TRotation     fRot;             //chamber rotation in MRS
   TRotMatrix   *fpRotMatrix;      //rotation matrix of the chamber with respect to MRS 
   AliRICHParam *fpParam;          //main RICH parameters description  
-  ClassDef(AliRICHChamber,1)      //single RICH chamber description
+  ClassDef(AliRICHChamber,3)      //single RICH chamber description
 };//class AliRICHChamber
-
-void AliRICHChamber::SetCenter(Double_t x,Double_t y,Double_t z)
+//__________________________________________________________________________________________________
+void AliRICHChamber::SetToZenith()
 {
-  fCenterV3.SetXYZ(x,y,z);
-  fX=x;fY=y;fZ=z;
+  fCenterV3.SetXYZ(fX=0,fY=AliRICHParam::Offset()-AliRICHParam::GapThickness()/2,fZ=0); 
+  fPcX3.SetXYZ(0,AliRICHParam::Offset()-AliRICHParam::GapThickness()/2+5.276+0.25,0);   
 }
-  
+//__________________________________________________________________________________________________
+TVector3 AliRICHChamber::Glob2Loc(TVector3 x3,Bool_t isVector)const
+{
+  if(!isVector) x3-=fPcX3;
+  x3.Transform(fRot.Inverse()); 
+  Double_t tmp=x3.Y(); x3.SetY(x3.Z()); x3.SetZ(tmp);
+  return x3;
+}
+//__________________________________________________________________________________________________  
 #endif //AliRICHChamber_h