]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - RICH/AliRICHParam.h
TOF can't be created without FRAME error corrected
[u/mrichter/AliRoot.git] / RICH / AliRICHParam.h
index 09ca4fc928a7986d546813474d00f9e09f8988e4..9d0ac822eacc9160c222e9f25ff668bedc72c9c7 100644 (file)
 #define AliRICHParam_h
 
 #include <TObject.h>
-#include "AliRICHConst.h"
+#include <TMath.h>
+#include <TVector2.h>
+#include <TRandom.h>
+#include <TError.h>
+
+
+static const int kNCH=7;           //number of RICH chambers 
+static const int kNpadsX = 144;    //number of pads along X in single chamber
+static const int kNpadsY = 160;    //number of pads along Y in single chamber
+static const int kBad=-101;        //useful static const to mark initial (uninitalised) values
+static const int kNsectors=6;      // nb. of sectors per chamber
+
+static const int kadc_satm  = 4096;  //dynamic range (10 bits)
+static const int kCerenkov=50000050;  //??? go to something more general like TPDGCode
+static const int kFeedback=50000051;  //??? go to something more general like TPDGCode
+
 
 class AliRICHParam :public TObject  
 {
 public:
-                 AliRICHParam();  
-  void    Recalc();//Recalculate dependent parameters after changes 
-  void    Segmentation(Int_t Nx, Int_t Ny)   {fNx=Nx;fNy=Ny;Recalc();}
-  Int_t   Nx()                          const{return fNx;}
-  Int_t   Ny()                          const{return fNy;}   
-  void    DeadZone(Float_t a)                {       fDeadZone=a;Recalc();}
-  Float_t DeadZone()                    const{return fDeadZone;}
-  void    PadSize(Float_t x,Float_t y)       {       fPadX=x;fPadY=y;Recalc();} 
-  Float_t PadX()                        const{return fPadX;}
-  Float_t PadY()                        const{return fPadY;}
-  Float_t PadPlaneWidth()               const{return fPadPlaneWidth;}
-  Float_t PadPlaneLength()              const{return fPadPlaneLength;}  
-  void    Size(Float_t x,Float_t y,Float_t z){fSizeX=x;fSizeY=y;fSizeZ=z;}
-  void    GeantSize(Float_t *pParam)    const{pParam[0]=fSizeX/2;pParam[1]=fSizeY/2;pParam[2]=fSizeZ/2;}  
-  Float_t SizeX()                       const{return fSizeX;}
-  Float_t SizeY()                       const{return fSizeY;}
-  Float_t SizeZ()                       const{return fSizeZ;}   
-  void    Offset(Float_t offset)             {       fOffset=offset;}  
-  Float_t Offset()                      const{return fOffset;}  
-  void    AnglesDeg(Float_t xy,Float_t yz)   {       fAngleXY=xy;fAngleYZ=yz;} 
-  Float_t AngleYZ()                     const{return fAngleYZ*d2r;} 
-  Float_t AngleXY()                     const{return fAngleXY*d2r;} 
-  void    AngleRot(Float_t angle)            {       fAngleRot=angle;}
-  Float_t AngleRot()                    const{return fAngleRot*d2r;}                
-  void    GapThickness(Float_t a)            {       fGapThickness=a;}    
-  Float_t GapThickness()                const{return fGapThickness;}      
-  void    ProximityGapThickness(Float_t a)   {       fProximityGapThickness=a;}
-  Float_t ProximityGapThickness()       const{return fProximityGapThickness;}    
-  void    QuartzLength(Float_t a)            {       fQuartzLength=a;}
-  Float_t QuartzLength()                const{return fQuartzLength;}   
-  void    QuartzWidth(Float_t a)             {       fQuartzWidth=a;}
-  Float_t QuartzWidth()                 const{return fQuartzWidth;}
-  void    QuartzThickness(Float_t a)         {       fQuartzThickness=a;}
-  Float_t QuartzThickness()             const{return fQuartzThickness;}   
-  void    OuterFreonLength(Float_t a)        {       fOuterFreonLength=a;}
-  Float_t OuterFreonLength()            const{return fOuterFreonLength;}   
-  void    OuterFreonWidth(Float_t a)         {       fOuterFreonWidth=a;}
-  Float_t OuterFreonWidth()             const{return fOuterFreonWidth;}   
-  void    InnerFreonLength(Float_t a)        {       fInnerFreonLength=a;}
-  Float_t InnerFreonLength()            const{return fInnerFreonLength;}   
-  void    InnerFreonWidth(Float_t a)         {       fInnerFreonWidth=a;}
-  Float_t InnerFreonWidth()             const{return fInnerFreonWidth;}   
-  void    FreonThickness(Float_t a)          {       fFreonThickness=a;}
-  Float_t FreonThickness()              const{return fFreonThickness;}   
-  void    RadiatorToPads(Float_t a)          {       fRadiatorToPads=a;}
-  Float_t RadiatorToPads()              const{return fRadiatorToPads;}   
-        
-  void    SigmaIntegration(Float_t a)        {       fSigmaIntegration=a;}    
-  Float_t SigmaIntegration()            const{return fSigmaIntegration;}    
-  void    ChargeSpreadX(Float_t a)           {       fChargeSpreadX=a;}
-  Float_t ChargeSpreadX()               const{return fChargeSpreadX;}    
-  void    ChargeSpreadY(Float_t a)           {       fChargeSpreadY=a;}
-  Float_t ChargeSpreadY()               const{return fChargeSpreadY;}   
-  void    ChargeSlope(Float_t a)             {       fChargeSlope=a;}
-  Float_t ChargeSlope()                      {return fChargeSlope;}
-  void    MaxAdc(Float_t a)                  {       fMaxAdc=a;}
-  Float_t MaxAdc()                      const{return fMaxAdc;}
-  void    Pitch(Float_t a)                   {       fPitch=a;};
-  Float_t Pitch()                       const{return fPitch;}
-  void    AlphaFeedback(Float_t a)           {       fAlphaFeedback=a;}
-  Float_t AlphaFeedback()               const{return fAlphaFeedback;}
-  void    EIonisation(Float_t a)             {       fEIonisation=a;}
-  Float_t EIonisation()                 const{return fEIonisation;}                            
-  void    SqrtKx3(Float_t a)                 {       fSqrtKx3=a;};
-  void    Kx2(Float_t a)                     {       fKx2=a;};
-  void    Kx4(Float_t a)                     {       fKx4=a;};
-  void    SqrtKy3(Float_t a)                 {       fSqrtKy3=a;};
-  void    Ky2(Float_t a)                     {       fKy2=a;};
-  void    Ky4(Float_t a)                     {       fKy4=a;};
-  void    WireSag(Int_t a)                   {       fWireSag=a;};
-  void    Voltage(Int_t a)                   {       fVoltage=a;};       
+           AliRICHParam()                    {;}
+  virtual ~AliRICHParam()                    {;}
+  static const Int_t   NpadsX()              {return kNpadsX;}                           //pads along X in chamber
+  static const Int_t   NpadsY()              {return kNpadsY;}                           //pads along Y in chamber
+  static Int_t    NpadsXsec()                {return NpadsX()/3;}                        //pads along X in sector
+  static Int_t    NpadsYsec()                {return NpadsY()/2;}                        //pads along Y in sector
+  static Double_t DeadZone()                 {return 2.6;}                               //dead zone size in cm  
+  static Double_t PadSizeX()                 {return 0.84;}                              //pad size x in cm 
+  static Double_t PadSizeY()                 {return 0.8;}                               //pad size y in cm   
+  static Double_t SectorSizeX()              {return NpadsX()*PadSizeX()/3;}             //sector size x in cm
+  static Double_t SectorSizeY()              {return NpadsY()*PadSizeY()/2;}             //sector size y in cm 
+  static Double_t PcSizeX()                  {return NpadsX()*PadSizeX()+2*DeadZone();}  //photocathode size x in cm
+  static Double_t PcSizeY()                  {return NpadsY()*PadSizeY()+DeadZone();}    //photocathode size y in cm 
+  static Double_t WirePitch()                {return PadSizeX()/2;}                      //distance between anode wires
+  static Double_t SizeX()                    {return 132.6;}
+  static Double_t SizeY()                    {return 26;}
+  static Double_t SizeZ()                    {return 136.7;}                             
+  static Double_t Offset()                   {return 490+1.267;}                         //distance from IP to center of chamber in cm 
+  static Double_t AngleYZ()                  {return 19.5*TMath::DegToRad();}            //angle between chambers in YZ plane, rad
+  static Double_t AngleXY()                  {return 20*TMath::DegToRad();}              //angle between chambers in XY plane, rad
+  static Double_t AngleRot()                 {return fgAngleRot*TMath::DegToRad();}      //RICH rotation around Z, rad
+  static Double_t FreonThickness()           {return 1.5;}   
+  static Double_t QuartzThickness()          {return 0.5;}   
+  static Double_t GapThickness()             {return 8.0;}      
+  static Double_t RadiatorToPads()           {return FreonThickness()+QuartzThickness()+GapThickness();}   
+  static Double_t ProximityGap()             {return 0.445;}    
+  static Double_t AnodeCathodeGap()          {return 0.2;}
+  static Double_t QuartzLength()             {return 133;}   
+  static Double_t QuartzWidth()              {return 127.9;}
+  static Double_t OuterFreonLength()         {return 133;}   
+  static Double_t OuterFreonWidth()          {return 41.3;}   
+  static Double_t InnerFreonLength()         {return 133;}   
+  static Double_t InnerFreonWidth()          {return 41.3;}   
+  static Double_t IonisationPotential()      {return 26.0e-9;}                            
+  static TVector2 MathiesonDelta()           {return TVector2(5*0.18,5*0.18);}    
+  static Int_t    MaxQdc()                   {return 4095;}          
+  static Double_t AlphaFeedback(Int_t sec)   {HV(sec);return 0.036;}
+  
+  static Bool_t   IsResolveClusters()         {return fgIsResolveClusters;}  //go after resolved clusters?
+  static Bool_t   IsWireSag()                 {return fgIsWireSag;}          //take wire sagita in account?
+  static Int_t    HV(Int_t sector)            {
+    if (sector>=1 && sector <=6)
+      return fgHV[sector-1];
+    else {
+      ::Error("HV","Wrong sector %d",sector);
+      return kBad;
+    } 
+  }       //high voltage for this sector
+  static void     IsResolveClusters(Bool_t a) {fgIsResolveClusters=a;}  
+  static void     SetWireSag(Bool_t status)   {fgIsWireSag=status;}  
+  static void     SetHV(Int_t sector,Int_t hv){fgHV[sector-1]=hv;}  
+  static void     SetAngleRot(Double_t rot)   {fgAngleRot =rot;}
+
+  inline static void     Loc2Area(TVector2 x2,Int_t &padxMin,Int_t &padyMin,Int_t &padxMax,Int_t &padyMax); //
+  inline static Int_t    Loc2Pad(TVector2 x2,Int_t &padx,Int_t &pady);                             //return sector and pad
+  inline static TVector2 Pad2Loc(Int_t padx,Int_t pady);                                           //return center of the pad
+         static Int_t    Sector(Int_t padx,Int_t pady)          {return Pad2Sec(padx,pady);}       //sector of this pad
+         static Int_t    Sector(TVector2 x2)                    {int x,y;return Loc2Pad(x2,x,y);}  //sector of this point
+  inline static Int_t    PadNeighbours(Int_t iPadX,Int_t iPadY,Int_t aListX[4],Int_t aListY[4]);   //number of neighbours for this pad
+  inline static TVector2 ShiftToWirePos(TVector2 x2);                                              //shift to the nearest wire
+  
+  inline static Double_t Mathieson(Double_t lx1,Double_t lx2,Double_t ly1,Double_t ly2);           //Mathienson integral over these limits
+  inline static Double_t GainSag(Double_t y,Int_t sector);                                         //gain variations in %
+  inline static Double_t QdcSlope(Int_t sec);                                                      //weight of electon in QDC channels
+  inline static Double_t Gain(TVector2 x2);                                                        //gain for point in ChRS 
+  inline static Double_t FracQdc(TVector2 x2,Int_t padx,Int_t pady);                               //charge fraction to pad from hit
+  inline static Int_t    TotQdc(TVector2 x2,Double_t eloss);                                       //total charge for hit eloss=0 for photons
+  inline        Bool_t   IsOverTh(Int_t iChamber, Int_t x, Int_t y, Double_t q);                   //  
+         static Int_t   NsigmaTh()                    {return fgNsigmaTh;}                         //
+         static Float_t SigmaThMean()                 {return fgSigmaThMean;}      //
+         static Float_t SigmaThSpread()               {return fgSigmaThSpread;}    //
+                void    GenSigmaThMap();                                           //generate pedestal map
+         static void    Print();                
 protected:
-  Int_t   fNx;                //number of pads along X
-  Int_t   fNy;                //number of pads along Y
-  Float_t fDeadZone;          //spacer between PC planes, cm     
-  Float_t fPadX;              //pad width, cm
-  Float_t fPadY;              //pad lenght, cm
-  Float_t fPadPlaneWidth;     //pad plane width, cm
-  Float_t fPadPlaneLength;    //pad plane length, cm
+  inline static Int_t    Loc2Sec(TVector2 &x2);             //return sector, x2->Sector RS
+  inline static Int_t    Pad2Sec(Int_t &padx,Int_t &pady);  //return sector, (padx,pady)->Sector RS
+  static Bool_t  fgIsWireSag;                               //is wire sagitta taken into account
+  static Bool_t  fgIsResolveClusters;                       //performs declustering or not
+  static Int_t   fgHV[6];                                   //HV applied to anod wires
+  static Double_t fgAngleRot;                               //rotation of RICH from up postion (0,0,490)cm
+  static Float_t fSigmaThMap[kNCH][kNpadsX][kNpadsY];       //sigma of the pedestal distributions for all pads
+  static Int_t fgNsigmaTh;                                  //n. of sigmas to cut for zero suppression
+  static Float_t fgSigmaThMean;                             //sigma threshold value
+  static Float_t fgSigmaThSpread;                           //spread of sigma
+  ClassDef(AliRICHParam,4)    //RICH main parameters
+};
+//__________________________________________________________________________________________________
+Int_t AliRICHParam::PadNeighbours(Int_t iPadX,Int_t iPadY,Int_t listX[4],Int_t listY[4])
+{
+// Determines all the neighbouring pads for the given one. Returns total amount of these pads.
+// Dead zones are taken into account.    
+  Int_t nPads=0;
+  if(iPadY!=NpadsY()&&iPadY!=NpadsYsec())                      {listX[nPads]=iPadX;   listY[nPads]=iPadY+1; nPads++;}       
+  if(iPadX!=NpadsXsec()&&iPadX!=2*NpadsXsec()&&iPadX!=NpadsX()){listX[nPads]=iPadX+1; listY[nPads]=iPadY;   nPads++;}       
+  if(iPadY!=1&&iPadY!=NpadsYsec()+1)                           {listX[nPads]=iPadX;   listY[nPads]=iPadY-1; nPads++;}      
+  if(iPadX!=1&&iPadX!=NpadsXsec()+1&&iPadX!=2*NpadsXsec()+1)   {listX[nPads]=iPadX-1; listY[nPads]=iPadY;   nPads++;}
+
+  return nPads;
+}//Pad2ClosePads()
+//__________________________________________________________________________________________________
+Int_t AliRICHParam::Loc2Sec(TVector2 &x2)
+{
+// Determines sector containing the given point and trasform this point to the local system of that sector.
+// Returns sector code: 1 2 3
+//                      4 5 6
+  Int_t sector=kBad;  
+  Double_t p1=-0.5*PcSizeX();      Double_t p2=-0.5*SectorSizeX()-DeadZone();  Double_t p3=-0.5*SectorSizeX();
+  Double_t p4= 0.5*SectorSizeX();  Double_t p5= 0.5*SectorSizeX()+DeadZone();  Double_t p6= 0.5*PcSizeX();
+  Double_t x,y;  
+  if     (x2.X()>=p1&&x2.X()<=p2)    {sector=1;x=x2.X()+0.5*PcSizeX();}
+  else if(x2.X()>=p3&&x2.X()<=p4)    {sector=2;x=x2.X()+0.5*SectorSizeX();}
+  else if(x2.X()>=p5&&x2.X()<=p6)    {sector=3;x=x2.X()-0.5*SectorSizeX()-DeadZone();}
+  else                               {return kBad;} //in dead zone or out of chamber
+  
+  if     (x2.Y()>=-0.5*PcSizeY() &&x2.Y()<=-0.5*DeadZone())  {y=x2.Y()+0.5*PcSizeY();sector+=3;} //sectors 4,5,6 
+  else if(x2.Y()> -0.5*DeadZone()&&x2.Y()<  0.5*DeadZone())  {return kBad;}                      //in dead zone
+  else if(x2.Y()>= 0.5*DeadZone()&&x2.Y()<= 0.5*PcSizeY())   {y=x2.Y()-0.5*DeadZone();}          //sectors 1,2,3
+  else                                                       {return kBad;}                      //out of chamber    
+  x2.Set(x,y);
+  return sector;
+}//Loc2Sec(Double_t x, Double_t y)
+//__________________________________________________________________________________________________
+Int_t AliRICHParam::Loc2Pad(TVector2 x2,Int_t &padx,Int_t &pady)
+{
+// Determines pad number (padx,pady) containing the given point x2 defined the chamber RS.
+// Pad count starts in lower left corner from 1,1 to 144,160 in upper right corner of a chamber.
+// Returns sector number of the determined pad.      
+  Int_t sector=Loc2Sec(x2);//trasforms x2 to sector reference system
+  if(sector==kBad) {padx=pady=kBad; return sector;}
   
-  Float_t fSizeX;             //chamber length, cm
-  Float_t fSizeY;             //chamber thickness, cm
-  Float_t fSizeZ;             //chamber width, cm
-  Float_t fAngleRot;          //azimuthal rotation angle in X-Y plane, grad  
-  Float_t fAngleYZ;           //angle between RICH chambers in YZ plane, grad
-  Float_t fAngleXY;           //angle between RICH chambers in XY plane, grad
-  Float_t fOffset;            //chambers offset from IP, cm   
-  Float_t fGapThickness;            //gap thickness, cm
-  Float_t fProximityGapThickness;   //proximity gap thickness, cm
-  Float_t fQuartzLength;            //quartz length
-  Float_t fQuartzWidth;             //quartz width
-  Float_t fQuartzThickness;         //quartz thickness
-  Float_t fOuterFreonLength;        //outer freon length
-  Float_t fOuterFreonWidth;         //outer freon width
-  Float_t fInnerFreonLength;        //inner freon length
-  Float_t fInnerFreonWidth;         //inner freon width
-  Float_t fFreonThickness;          //freon thickness
-  Float_t fRadiatorToPads;          //distance from radiator to pads
+  padx=Int_t(x2.X()/PadSizeX())+1; if(padx>NpadsXsec()) padx= NpadsXsec();       
+  if(sector==2||sector==5)   padx+=  NpadsXsec();     // 1 2 3
+  if(sector==3||sector==6)   padx+=2*NpadsXsec();     // 4 5 6
 
-  Float_t fChargeSlope;              //Slope of the charge distribution
-  Float_t fChargeSpreadX;            //Width of the charge distribution in x
-  Float_t fChargeSpreadY;            //Width of the charge distribution in y
-  Float_t fSigmaIntegration;         //Number of sigma's used for charge distribution
-  Float_t fAlphaFeedback;            //Feedback photons coefficient
-  Float_t fEIonisation;              //Mean ionisation energy
-  Float_t fMaxAdc;                   //Maximum ADC channel
-  Float_t fSqrtKx3;                  //Mathieson parameters for x
-  Float_t fKx2;                      //Mathieson parameters for x
-  Float_t fKx4;                      //Mathieson parameters for x
-  Float_t fSqrtKy3;                  //Mathieson parameters for y
-  Float_t fKy2;                      //Mathieson parameters for y 
-  Float_t fKy4;                      //Mathieson parameters for y
-  Float_t fPitch;                    //Anode-cathode pitch
-  Int_t   fWireSag;                  //Flag to turn on/off (0/1) wire sag
-  Int_t   fVoltage;                  //Working voltage (2000, 2050, 2100, 2150)
+  pady=Int_t(x2.Y()/PadSizeY())+1; if(pady>NpadsYsec()) pady= NpadsYsec();
+  if(sector<4)               pady+=NpadsYsec();    
+  return sector;
+}
+//__________________________________________________________________________________________________
+Int_t AliRICHParam::Pad2Sec(Int_t &padx, Int_t &pady)
+{
+// Determines sector containing the given pad (padx,pady) and trasform it to the local RS of that sector.
+  Int_t sector=kBad;      
+  if     (padx>=1            &&padx<=NpadsXsec())      {sector=1;}
+  else if(padx> NpadsXsec()  &&padx<=NpadsXsec()*2)    {sector=2;padx-=NpadsXsec();}
+  else if(padx> NpadsXsec()*2&&padx<=NpadsX())         {sector=3;padx-=NpadsXsec()*2;}
+  else                                                 {return kBad;}
 
-  ClassDef(AliRICHParam,1)    //RICH main parameters
-};
+  if     (pady>=1            &&pady<=NpadsYsec())      {return sector+3;}
+  else if(pady>NpadsYsec()   &&pady<=NpadsY())         {pady-=NpadsYsec();return sector;} 
+  else                                                 {return kBad;}
+}//Pad2Sec()
+//__________________________________________________________________________________________________
+TVector2 AliRICHParam::Pad2Loc(Int_t padx,Int_t pady)
+{
+// Returns position of the center of the given pad (padx,pady) in local RS of the chamber    
+  Int_t sector=Pad2Sec(padx,pady);//shifts to sector RS
+  if(sector==kBad) return TVector2(-101,-101);  
+  Double_t x,y;
+  if(sector<=3)
+    y=0.5*DeadZone()+pady*PadSizeY()-0.5*PadSizeY();   // 1 2 3
+  else{                                                // 4 5 6
+    y=-0.5*PcSizeY()+pady*PadSizeY()-0.5*PadSizeY();
+  }
+  if(sector==1||sector==4)
+    x=-0.5*PcSizeX()+padx*PadSizeX()-0.5*PadSizeX();
+  else if(sector==2||sector==5)
+    x=-0.5*SectorSizeX()+padx*PadSizeX()-0.5*PadSizeX();
+  else
+    x= 0.5*SectorSizeX()+DeadZone()+padx*PadSizeX()-0.5*PadSizeX();
+  return TVector2(x,y);
+}
+//__________________________________________________________________________________________________
+Double_t AliRICHParam::GainSag(Double_t y,Int_t sector)
+{
+// Returns % of gain variation due to wire sagita.
+// All cureves are parametrized per sector basis, so y must be scaled to the Sector RS.    
+  if(y>0) y-=SectorSizeY()/2; else  y+=SectorSizeY()/2; 
+  switch(HV(sector)){
+    case 2150: return 9e-6*TMath::Power(y,4)+2e-7*TMath::Power(y,3)-0.0316*TMath::Power(y,2)-3e-4*y+25.367;//%
+    case 2100: return 8e-6*TMath::Power(y,4)+2e-7*TMath::Power(y,3)-0.0283*TMath::Power(y,2)-2e-4*y+23.015;
+    case 2050: return 7e-6*TMath::Power(y,4)+1e-7*TMath::Power(y,3)-0.0254*TMath::Power(y,2)-2e-4*y+20.888;
+    case 2000: return 6e-6*TMath::Power(y,4)+8e-8*TMath::Power(y,3)-0.0227*TMath::Power(y,2)-1e-4*y+18.961;
+    default:   return 0;
+  }
+}
+//__________________________________________________________________________________________________
+Double_t AliRICHParam::QdcSlope(Int_t sec)
+{
+// Returns number of QDC channels per single electron at the unknown yet ???? point for a given sector 
+  switch(sec){
+    case kBad: return 0;
+    default:   return 27;
+  }
+}
+//__________________________________________________________________________________________________
+Double_t AliRICHParam::Gain(TVector2 x2)
+{ 
+//   
+  if(IsWireSag()) 
+    return QdcSlope(Sector(x2))*(1+GainSag(x2.Y(),Sector(x2))/100);
+  else
+    return QdcSlope(Sector(x2));
+}
+//__________________________________________________________________________________________________
+Int_t AliRICHParam::TotQdc(TVector2 x2,Double_t eloss)
+{
+// Calculates the total charge produced by the eloss in point x2 (Chamber RS).
+// Returns this change parametrised in QDC channels.
+// eloss=0 means photons which provided for only 1 electron
+// eloss > 0 for Mip
+  if(Sector(x2)==kBad) return 0; //hit in the dead zone     
+  Int_t iNelectrons=Int_t(eloss/IonisationPotential()); if(iNelectrons==0) iNelectrons=1;
+  Double_t qdc=0;
+  for(Int_t i=1;i<=iNelectrons;i++) qdc+=-Gain(x2)*TMath::Log(gRandom->Rndm());
+  return Int_t(qdc);
+}
+//__________________________________________________________________________________________________
+Double_t AliRICHParam::FracQdc(TVector2 x2,Int_t padx,Int_t pady)
+{
+// Calculates the charge fraction for a given pad (padx,pady) from the given hit point.
+// Mathieson distribution integrated is used.  
+  TVector2 center2=Pad2Loc(padx,pady);//gives center of requested pad
+  Double_t normXmin=(x2.X()-center2.X()-PadSizeX()/2)  /AnodeCathodeGap();
+  Double_t normXmax=(x2.X()-center2.X()+PadSizeX()/2)  /AnodeCathodeGap();
+  Double_t normYmin=(x2.Y()-center2.Y()-PadSizeY()/2)  /AnodeCathodeGap();
+  Double_t normYmax=(x2.Y()-center2.Y()+PadSizeY()/2)  /AnodeCathodeGap();
+  
+  if(Sector(x2)!=Sector(padx,pady)) return 0;//requested pad does not belong to the sector of given point  
+  else                              return Mathieson(normXmin, normYmin, normXmax, normYmax);
+}
+//__________________________________________________________________________________________________
+Double_t AliRICHParam::Mathieson(Double_t xMin,Double_t yMin,Double_t xMax,Double_t yMax)
+{
+// All arguments are parametrised according to NIM A370(1988)602-603
+// Returns a charge fraction.   
+  const Double_t kSqrtKx3=0.77459667;const Double_t kX2=0.962;const Double_t kX4=0.379;
+  const Double_t kSqrtKy3=0.77459667;const Double_t kY2=0.962;const Double_t kY4=0.379;
 
+  Double_t ux1=kSqrtKx3*TMath::TanH(kX2*xMin);
+  Double_t ux2=kSqrtKx3*TMath::TanH(kX2*xMax);    
+  Double_t uy1=kSqrtKy3*TMath::TanH(kY2*yMin);
+  Double_t uy2=kSqrtKy3*TMath::TanH(kY2*yMax);
+  return 4*kX4*(TMath::ATan(ux2)-TMath::ATan(ux1))*kY4*(TMath::ATan(uy2)-TMath::ATan(uy1));
+}  
+//__________________________________________________________________________________________________
+void AliRICHParam::Loc2Area(TVector2 x2,Int_t &iPadXmin,Int_t &iPadYmin,Int_t &iPadXmax,Int_t &iPadYmax)
+{
+// Calculates the area of disintegration for a given point. It's assumed here that this points lays on anode wire.
+// Area is a rectangulare set of pads defined by its left-down and right-up coners.
+  Loc2Pad(x2-MathiesonDelta(),iPadXmin,iPadYmin);
+  Loc2Pad(x2+MathiesonDelta(),iPadXmax,iPadYmax);    
+}
+//__________________________________________________________________________________________________
+Bool_t AliRICHParam::IsOverTh(Int_t c,Int_t x,Int_t y,Double_t q)
+{
+// Calculate the new charge subtracting pedestal and if the current digit is over threshold
+  if (c>0 && x>0 && y>0 && c<kNCH && x<kNpadsX && y<kNpadsY)
+    if(q>NsigmaTh()*fSigmaThMap[c-1][x-1][y-1]) return kTRUE;
+  return kFALSE;
+}
+//__________________________________________________________________________________________________
+TVector2 AliRICHParam::ShiftToWirePos(TVector2 x2)
+{
+// Calculate the position of the wire nearest to the hit
+  Int_t padx,pady;
+  Loc2Pad(x2,padx,pady);
+  Double_t x;
+  TVector2 center2=Pad2Loc(padx,pady);
+  if(x2.X()>center2.X()) x=center2.X()+0.5*WirePitch();
+  else                   x=center2.X()-0.5*WirePitch();
+  x2.Set(x,x2.Y());
+  return x2;
+}
 #endif //AliRICHParam_h