]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - STARLIGHT/starlight/src/.svn/text-base/beambeamsystem.cpp.svn-base
STARLIGHT code and interface
[u/mrichter/AliRoot.git] / STARLIGHT / starlight / src / .svn / text-base / beambeamsystem.cpp.svn-base
diff --git a/STARLIGHT/starlight/src/.svn/text-base/beambeamsystem.cpp.svn-base b/STARLIGHT/starlight/src/.svn/text-base/beambeamsystem.cpp.svn-base
new file mode 100644 (file)
index 0000000..d4eb8c1
--- /dev/null
@@ -0,0 +1,669 @@
+///////////////////////////////////////////////////////////////////////////
+//
+//    Copyright 2010
+//
+//    This file is part of starlight.
+//
+//    starlight is free software: you can redistribute it and/or modify
+//    it under the terms of the GNU General Public License as published by
+//    the Free Software Foundation, either version 3 of the License, or
+//    (at your option) any later version.
+//
+//    starlight is distributed in the hope that it will be useful,
+//    but WITHOUT ANY WARRANTY; without even the implied warranty of
+//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+//    GNU General Public License for more details.
+//
+//    You should have received a copy of the GNU General Public License
+//    along with starlight. If not, see <http://www.gnu.org/licenses/>.
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// File and Version Information:
+// $Rev::                             $: revision of last commit
+// $Author::                          $: author of last commit
+// $Date::                            $: date of last commit
+//
+// Description:
+//
+//
+//
+///////////////////////////////////////////////////////////////////////////
+
+
+#include <iostream>
+#include <fstream>
+#include <cmath>
+
+#include "inputParameters.h"
+#include "reportingUtils.h"
+#include "starlightconstants.h"
+#include "bessel.h"
+#include "beambeamsystem.h"
+
+
+using namespace std;
+using namespace starlightConstants;
+
+
+//______________________________________________________________________________
+beamBeamSystem::beamBeamSystem(const beam&            beam1,
+                               const beam&            beam2)
+  : _beamLorentzGamma(inputParametersInstance.beamLorentzGamma()),
+    _beamBreakupMode (inputParametersInstance.beamBreakupMode()),
+    _beam1           (beam1),
+    _beam2           (beam2),
+    _breakupProbabilities(0),
+    _breakupImpactParameterStep(1.007),
+    _breakupCutOff(10e-6)
+{ 
+  init();
+}
+  
+
+
+
+//______________________________________________________________________________
+beamBeamSystem::beamBeamSystem()
+       : _beamLorentzGamma(inputParametersInstance.beamLorentzGamma()),
+         _beamBreakupMode (inputParametersInstance.beamBreakupMode()),
+         _beam1           (inputParametersInstance.beam1Z(),
+                           inputParametersInstance.beam1A(),
+                           inputParametersInstance.deuteronSlopePar(),
+                           inputParametersInstance.coherentProduction()),
+         _beam2           (inputParametersInstance.beam2Z(),
+                           inputParametersInstance.beam2A(),
+                           inputParametersInstance.deuteronSlopePar(),
+                           inputParametersInstance.coherentProduction()),
+         _breakupProbabilities(0),
+         _breakupImpactParameterStep(1.007),
+         _breakupCutOff(10e-10)
+{
+  init();
+}
+
+
+
+//______________________________________________________________________________
+beamBeamSystem::~beamBeamSystem()
+{ }
+
+void beamBeamSystem::init()
+{
+   // Calculate beam gamma in CMS frame
+   double rap1 = acosh(inputParametersInstance.beam1LorentzGamma());
+   double rap2 = -acosh(inputParametersInstance.beam2LorentzGamma());
+   
+   _cmsBoost = (rap1+rap2)/2.;
+
+   _beamLorentzGamma = cosh((rap1-rap2)/2);
+   _beam1.setBeamLorentzGamma(_beamLorentzGamma);
+   _beam2.setBeamLorentzGamma(_beamLorentzGamma);
+   
+   generateBreakupProbabilities();
+}
+//______________________________________________________________________________
+double
+beamBeamSystem::probabilityOfBreakup(const double D) const
+{
+       
+       double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
+       double pOfB = 0.; // PofB = 1 means that there will be a UPC event and PofB = 0 means no UPC
+
+       // Do pp here
+       if ((_beam1.Z() == 1) && (_beam1.A() == 1) && (_beam2.Z() == 1) && (_beam2.A() == 1)) {  
+               double ppslope=19.8;
+               double GammaProfile = exp(-D * D / (2. * hbarc * hbarc * ppslope));
+               pOfB = (1. - GammaProfile) * (1. - GammaProfile);
+               // if (D < 2. * _beam1.nuclearRadius())
+               //      //Should be the total of RNuc1+Rnuc2,used only beam #1
+               //      PofB = 0.0;
+               // else
+               //      PofB = 1.0;
+               return pOfB;
+       }
+       else if ( ( (_beam1.A() == 1) && (_beam2.A() != 1) ) || ((_beam1.A() != 1) && (_beam2.A() == 1)) ) {  
+         // This is pA
+          if( _beam1.A() == 1 ){ 
+            bMin = _beam2.nuclearRadius() + 0.7; 
+          }else if( _beam2.A() == 1 ){ 
+            bMin = _beam1.nuclearRadius() + 0.7; 
+          }else{
+            cout<<"Some logical problem here!"<<endl;
+          }
+          if( D > bMin )pOfB=1.0; 
+          return pOfB;
+       }
+
+       //use the lookup table and return...
+       pOfB = 1.;
+       if (D > 0.0) {             
+               //Now we must determine which step number in d corresponds to this D,
+               // and use appropiate Ptot(D_i)
+               //int i = (int)(log(D / Bmin) / log(1.01));
+               int i = (int)(log(D / bMin) / log(_breakupImpactParameterStep));
+               if (i <= 0)
+                       pOfB = _breakupProbabilities[0];
+               else{
+                       if (i >= int(_breakupProbabilities.size()-1))
+                               pOfB = _breakupProbabilities[_breakupProbabilities.size()-1];
+                       else {
+                               // const double DLow = Bmin * pow((1.01), i);
+                               const double DLow = bMin * pow((_breakupImpactParameterStep), i);
+                               // const double DeltaD = 0.01 * DLow;
+                               const double DeltaD = (_breakupImpactParameterStep-1) * DLow;
+                               const double DeltaP = _breakupProbabilities[i + 1] - _breakupProbabilities[i];
+                               pOfB   = _breakupProbabilities[i] + DeltaP * (D - DLow) / DeltaD;
+                       }
+               }
+       }
+
+       return pOfB;
+}
+
+void
+beamBeamSystem::generateBreakupProbabilities()
+{
+    // Step = 1.007;//.01; //We will multiplicateively increase Biter by 1%
+    
+    
+    double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
+    
+    
+    if ((_beam1.Z() != 1) && (_beam1.A() != 1) && (_beam2.Z() != 1) && _beam2.A() != 1) {
+
+        if (_beamBreakupMode == 1)
+            printInfo << "Hard Sphere Break criteria. b > " << 2. * _beam1.nuclearRadius() << endl;
+        if (_beamBreakupMode == 2)
+            printInfo << "Requiring XnXn [Coulomb] breakup. " << endl;
+        if (_beamBreakupMode == 3)
+            printInfo << "Requiring 1n1n [Coulomb only] breakup. " << endl;
+        if (_beamBreakupMode == 4)
+            printInfo << "Requiring both nuclei to remain intact. " << endl;
+        if (_beamBreakupMode == 5)
+            printInfo << "Requiring no hadronic interactions. " << endl;
+        if (_beamBreakupMode == 6)
+            printInfo << "Requiring breakup of one or both nuclei. " << endl;
+        if (_beamBreakupMode == 7)
+            printInfo << "Requiring breakup of one nucleus (Xn,0n). " << endl;
+
+        //pp may cause segmentation fault in here and it does not use this...
+       double pOfB = 0;
+       double b = bMin;
+        double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
+        
+       while(1)
+       {
+            
+            if(_beamBreakupMode != 5)
+            {
+                if(b > (totRad*1.5))
+                {
+                    if(pOfB<_breakupCutOff)
+                    {
+//                         std::cout << "Break off b: " << b << std::endl;
+//                         std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
+                        break;
+                    }
+                }
+            }
+            else
+            {
+                if((1-pOfB)<_breakupCutOff)
+                {
+ //                         std::cout << "Break off b: " << b << std::endl;
+//                         std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
+                        break;
+                }
+            }
+//             std::cout << 1-pOfBreakup << std::endl;
+//             _pHadronBreakup = 0;
+//             _pPhotonBreakup = 0;
+
+//             double pHadronBreakup = probabilityOfHadronBreakup(b);
+            probabilityOfHadronBreakup(b);
+            //moved gammatarg into photonbreakup
+//             double pPhotonBreakup = probabilityOfPhotonBreakup(b, _beamBreakupMode);
+            probabilityOfPhotonBreakup(b, _beamBreakupMode);
+
+            //What was probability of photonbreakup depending upon mode selection,
+            // is now done in the photonbreakupfunction
+            if (_beamBreakupMode == 1) {
+                if (b >_beam1.nuclearRadius()+_beam2.nuclearRadius())  // symmetry
+                    _pHadronBreakup = 0;
+                else
+                    _pHadronBreakup = 999.;
+            }
+            
+            b *= _breakupImpactParameterStep;
+           pOfB = exp(-1 * _pHadronBreakup) * _pPhotonBreakup;
+            _breakupProbabilities.push_back(pOfB);
+        }
+    }
+    else if (((_beam1.Z() == 1) && (_beam1.A() == 1)) || ((_beam2.Z() == 1) && (_beam2.A() == 1))) {  
+      
+      double pOfB = 0;
+      double b = bMin;
+      double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
+      
+      while(1)
+       {
+            if(_beamBreakupMode != 5)
+            {
+                if(b > (totRad*1.5))
+                {
+                    if(pOfB<_breakupCutOff)
+                    {
+//                         std::cout << "Break off b: " << b << std::endl;
+                        break;
+                    }
+                }
+            }
+            else
+            {
+                if((1-pOfB)<_breakupCutOff)
+                {
+//                         std::cout << "Break off b: " << b << std::endl;
+                        break;
+                }
+            }
+         _beam1.Z() > 1 ? pOfB = exp(-7.35*_beam1.thickness(b)) :
+                          pOfB = exp(-7.35*_beam2.thickness(b));
+         _breakupProbabilities.push_back(pOfB);
+            b *= _breakupImpactParameterStep;
+        }
+    }
+
+    
+}
+
+//______________________________________________________________________________
+double
+beamBeamSystem::probabilityOfHadronBreakup(const double impactparameter)
+{
+       //      double pbreakup =0.; 
+       //probability of hadron breakup, 
+       //this is what is returned when the function is called
+       double gamma = _beamLorentzGamma; 
+       //input for gamma_em
+       //this will need to be StarlightInputParameters::gamma or whatever
+       double b = impactparameter;
+       int ap = _beam1.A();  
+       //Notice this is  taking from nucleus 1.Still assuming symmetric system?
+
+       static int IFIRSTH = 0;
+       static double DELL=0., DELR=0., SIGNN=0., R1=0., A1=0., R2=0., RHO1=0.;
+       static double RHO2=0., NZ1=0., NZ2=0., NR1=0., NR2=0.,RR1=0., NY=0., NX=0.;
+       static double AN1=0., AN2=0.;
+       double delo=0.,RSQ=0.,Z1=0.,Y=0.,X=0.,XB=0.,RPU=0.,IRUP=0.,RTU=0.;
+       double IRUT=0.,T1=0.,T2=0.;
+       static double DEN1[20002], DEN2[20002];
+       if (IFIRSTH != 0) goto L100;
+       //Initialize
+       //Integration delta x, delta z
+       IFIRSTH = 1;
+       DELL   = .05;
+       DELR   = .01;
+
+       //use two sigma_NN's. 52mb at rhic 100gev/beam, 88mb at LHC 2.9tev/beam, gamma is in cm system
+       SIGNN = 5.2;
+       if ( gamma > 500. ) SIGNN = 8.8;
+       //use parameter from Constants
+       R1 = ( _beam1.nuclearRadius());  //remember _beam2? better way to do this generically
+       A1 = 0.535; //This is woodsaxonskindepth?
+       //write(6,12)r1,a1,signn  Here is where we could probably set this up asymmetrically R2=_beam2.nuclearRadius() and RHO2=ap2=_beam2.A()
+       R2 = R1;
+       RHO1 = ap;
+       RHO2 = RHO1;
+       NZ1  = ((R1+5.)/DELR);
+       NR1  = NZ1;
+       NZ2  = ((R2+5.)/DELR);
+       NR2  = NZ2;
+       RR1  = -DELR;
+       NY   = ((R1+5.)/DELL);
+       NX   = 2*NY;
+       for ( int IR1 = 1; IR1 <= NR1; IR1++) {
+               DEN1[IR1] = 0.;
+               RR1       = RR1+DELR;
+               Z1        = -DELR/2;
+
+               for ( int IZ1 = 1; IZ1 <= NZ1; IZ1++) {
+                       Z1  = Z1+DELR;
+                       RSQ = RR1*RR1+Z1*Z1;
+                       DEN1[IR1] = DEN1[IR1]+1./(1.+exp((sqrt(RSQ)-R1)/A1));
+               }//for(IZ)
+
+               DEN1[IR1] = DEN1[IR1]*2.*DELR;
+               DEN2[IR1] = DEN1[IR1];
+       }//for(IR)
+
+       AN1 = 0.;
+       RR1 = 0.;
+    
+       for ( int IR1 =1; IR1 <= NR1; IR1++) {
+               RR1 = RR1+DELR;
+               AN1 = AN1+RR1*DEN1[IR1]*DELR*2.*3.141592654;
+       }//for(IR)
+        
+       AN2 = AN1; //This will also probably need to be changed?
+
+       delo = .05;
+       //.1 to turn mb into fm^2
+       //Calculate breakup probability here
+ L100:
+       _pHadronBreakup = 0.;
+       if ( b > 25. ) return _pHadronBreakup;
+       Y = -.5*DELL;
+       for ( int IY = 1; IY <= NY; IY++) {
+               Y = Y+DELL;
+               X = -DELL*float(NY+1);
+
+               for ( int IX = 1; IX <=NX; IX++) {
+                       X = X+DELL;
+                       XB = b-X;
+                       RPU = sqrt(X*X+Y*Y);
+                       IRUP = (RPU/DELR)+1;
+                       RTU  = sqrt(XB*XB+Y*Y);
+                       IRUT = (RTU/DELR)+1;
+                       T1   = DEN2[(int)IRUT]*RHO2/AN2;
+                       T2   = DEN1[(int)IRUP]*RHO1/AN1;
+                       //Eq.6 BCW, Baltz, Chasman, White, Nucl. Inst. & Methods A 417, 1 (1998)
+                       _pHadronBreakup=_pHadronBreakup+2.*T1*(1.-exp(-SIGNN*T2))*DELL*DELL;
+               }//for(IX)
+       }//for(IY)
+
+       return _pHadronBreakup;
+}
+
+
+//______________________________________________________________________________
+double
+beamBeamSystem::probabilityOfPhotonBreakup(const double impactparameter, const int mode)
+{
+       static double ee[10001], eee[162], se[10001];
+
+       //double gamma_em=108.4;  //This will be an input value.
+       _pPhotonBreakup =0.;   //Might default the probability with a different value?
+       double b = impactparameter;
+       int zp = _beam1.Z();  //What about _beam2? Generic approach?
+       int ap = _beam1.A();
+       
+       //Was initialized at the start of the function originally, been moved inward.
+       double pxn=0.;
+       double p1n=0.;
+
+       //Used to be done prior to entering the function. Done properly for assymetric?
+       double gammatarg = 2.*_beamLorentzGamma*_beamLorentzGamma-1.;   
+       double omaxx =0.;
+       //This was done prior entering the function as well
+       if (_beamLorentzGamma > 500.){
+               omaxx=1.E10;
+       }
+       else{
+               omaxx=1.E7;
+       }
+
+
+       double e1[23]= {0.,103.,106.,112.,119.,127.,132.,145.,171.,199.,230.,235.,
+                       254.,280.,300.,320.,330.,333.,373.,390.,420.,426.,440.};
+       double s1[23]= {0.,12.0,11.5,12.0,12.0,12.0,15.0,17.0,28.0,33.0,
+                       52.0,60.0,70.0,76.0,85.0,86.0,89.0,89.0,75.0,76.0,69.0,59.0,61.0};
+       double e2[12]={0.,2000.,3270.,4100.,4810.,6210.,6600.,
+                      7790.,8400.,9510.,13600.,16400.};
+       double s2[12]={0.,.1266,.1080,.0805,.1017,.0942,.0844,.0841,.0755,.0827,
+                      .0626,.0740};
+       double e3[29]={0.,26.,28.,30.,32.,34.,36.,38.,40.,44.,46.,48.,50.,52.,55.,
+                      57.,62.,64.,66.,69.,72.,74.,76.,79.,82.,86.,92.,98.,103.};
+       double s3[29]={0.,30.,21.5,22.5,18.5,17.5,15.,14.5,19.,17.5,16.,14.,
+                      20.,16.5,17.5,17.,15.5,18.,15.5,15.5,15.,13.5,18.,14.5,15.5,12.5,13.,
+                      13.,12.};
+       static double sa[161]={0.,0.,.004,.008,.013,.017,.021,.025,.029,.034,.038,.042,.046,
+                              .051,.055,.059,.063,.067,.072,.076,.08,.085,.09,.095,.1,.108,.116,
+                              .124,.132,.14,.152,.164,.176,.188,.2,.22,.24,.26,.28,.3,.32,.34,
+                              .36,.38,.4,.417,.433,.450,.467,.483,.5,.51,.516,.52,.523,.5245,
+                              .525,.5242,
+                              .5214,.518,.512,.505,.495,.482,.469,.456,.442,.428,.414,.4,.386,
+                              .370,.355,.34,.325,.310,.295,.280,.265,.25,.236,.222,.208,.194,
+                              .180,.166,
+                              .152,.138,.124,.11,.101,.095,.09,.085,.08,.076,.072,.069,.066,
+                              .063,.06,.0575,.055,.0525,.05,.04875,.0475,.04625,.045,.04375,
+                              .0425,.04125,.04,.03875,.0375,.03625,.035,.03375,.0325,.03125,.03,
+                              .02925,.0285,.02775,.027,.02625,.0255,.02475,.024,.02325,.0225,
+                              .02175,.021,.02025,.0195,.01875,.018,.01725,.0165,.01575,.015,
+                              .01425,.0135,.01275,.012,.01125,.0105,.00975,.009,.00825,.0075,
+                              .00675,.006,.00525,.0045,.00375,.003,.00225,.0015,.00075,0.};
+
+
+
+       double sen[161]={0.,0.,.012,.025,.038,.028,.028,.038,.035,.029,.039,.035,
+                        .038,.032,.038,.041,.041,.049,.055,.061,.072,.076,.070,.067,
+                        .080,.103,.125,.138,.118,.103,.129,.155,.170,.180,.190,.200,
+                        .215,.250,.302,.310,.301,.315,.330,.355,.380,.400,.410,.420,
+                        .438,.456,.474,.492,.510,.533,.556,.578,.6,.62,.63,.638,
+                        .640,.640,.637,.631,.625,.618,.610,.600,.580,.555,.530,.505,
+                        .480,.455,.435,.410,.385,.360,.340,.320,.300,.285,.270,.255,
+                        .240,.225,.210,.180,.165,.150,.140,.132,.124,.116,.108,.100,
+                        .092,.084,.077,.071,.066,.060,.055,.051,.048,.046,.044,.042,
+                        .040,.038,.036,.034,.032,.030,.028,.027,.026,.025,.025,.025,
+                        .024,.024,.024,.024,.024,.023,.023,.023,.023,.023,.022,.022,
+                        .022,.022,.022,.021,.021,.021,.020,.020,
+                        .020,.019,.018,.017,.016,.015,.014,.013,.012,.011,.010,.009,
+                        .008,.007,.006,.005,.004,.003,.002,.001,0.};
+
+       // gammay,p gamma,n of Armstrong begin at 265 incr 25
+
+
+       double sigt[160]={0.,.4245,.4870,.5269,.4778,.4066,.3341,.2444,.2245,.2005,
+                         .1783,.1769,.1869,.1940,.2117,.2226,.2327,.2395,.2646,.2790,.2756,
+                         .2607,.2447,.2211,.2063,.2137,.2088,.2017,.2050,.2015,.2121,.2175,
+                         .2152,.1917,.1911,.1747,.1650,.1587,.1622,.1496,.1486,.1438,.1556,
+                         .1468,.1536,.1544,.1536,.1468,.1535,.1442,.1515,.1559,.1541,.1461,
+                         .1388,.1565,.1502,.1503,.1454,.1389,.1445,.1425,.1415,.1424,.1432,
+                         .1486,.1539,.1354,.1480,.1443,.1435,.1491,.1435,.1380,.1317,.1445,
+                         .1375,.1449,.1359,.1383,.1390,.1361,.1286,.1359,.1395,.1327,.1387,
+                         .1431,.1403,.1404,.1389,.1410,.1304,.1363,.1241,.1284,.1299,.1325,
+                         .1343,.1387,.1328,.1444,.1334,.1362,.1302,.1338,.1339,.1304,.1314,
+                         .1287,.1404,.1383,.1292,.1436,.1280,.1326,.1321,.1268,.1278,.1243,
+                         .1239,.1271,.1213,.1338,.1287,.1343,.1231,.1317,.1214,.1370,.1232,
+                         .1301,.1348,.1294,.1278,.1227,.1218,.1198,.1193,.1342,.1323,.1248,
+                         .1220,.1139,.1271,.1224,.1347,.1249,.1163,.1362,.1236,.1462,.1356,
+                         .1198,.1419,.1324,.1288,.1336,.1335,.1266};
+
+
+       double sigtn[160]={0.,.3125,.3930,.4401,.4582,.3774,.3329,.2996,.2715,.2165,
+                          .2297,.1861,.1551,.2020,.2073,.2064,.2193,.2275,.2384,.2150,.2494,
+                          .2133,.2023,.1969,.1797,.1693,.1642,.1463,.1280,.1555,.1489,.1435,
+                          .1398,.1573,.1479,.1493,.1417,.1403,.1258,.1354,.1394,.1420,.1364,
+                          .1325,.1455,.1326,.1397,.1286,.1260,.1314,.1378,.1353,.1264,.1471,
+                          .1650,.1311,.1261,.1348,.1277,.1518,.1297,.1452,.1453,.1598,.1323,
+                          .1234,.1212,.1333,.1434,.1380,.1330,.12,.12,.12,.12,.12,.12,.12,.12,
+                          .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
+                          .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
+                          .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
+                          .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
+                          .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12};
+       //89*.12};
+
+
+
+       static int IFIRSTP=0;
+
+
+       //  Initialization needed?
+       //double hbar=197.3;
+       //double pi=3.141592654;
+
+       // added
+       double si1=0, g1 =0,   o1=0;
+       int   ne = 0, ij =0;
+       double delo=0, omax =0, gk1m=0;
+       static double scon=0., zcon=0.,o0=0.;
+
+
+       double x=0,y=0,eps=0,eta=0,em=0,exx=0,s=0,ictr=0,pom=0,vec=0,gk1=0;
+
+       //  maximum energy for GDR dissocation (in target frame, in MeV)
+
+       double omax1n=24.01;
+
+       if (IFIRSTP != 0) goto L100;
+
+       IFIRSTP=1;
+
+
+       //This whole thing is dependenant on gold or lead....Might need to expand
+       if (zp == 79)
+               {
+
+
+                       ap=197;
+                       si1=540.;
+                       g1=4.75;
+
+                       // peak and minimum energies for GDR excitation (in MeV)
+                       o1=13.70;
+                       o0=8.1;
+               }
+       else
+               {
+                       zp=82;   //assumed to be lead
+                       ap=208;
+                       si1=640.;
+                       g1=4.05;
+                       o1=13.42;
+                       o0=7.4;
+                       for(int j=1;j<=160;j++)
+                               {
+
+                                       sa[j]=sen[j];
+                               }
+               }
+       //Part II of initialization
+       delo = .05;
+       //.1 to turn mb into fm^2
+       scon = .1*g1*g1*si1;
+       zcon = zp/(gammatarg*( pi)*( 
+                                                       hbarcmev))*zp/(gammatarg*( pi)*
+                            ( hbarcmev))/137.04;
+
+       //single neutron from GDR, Veyssiere et al. Nucl. Phys. A159, 561 (1970)
+       for ( int i = 1; i <= 160; i++) {
+               eee[i] = o0+.1*(i-1);
+               sa[i]  = 100.*sa[i];
+       }
+       //See Baltz, Rhoades-Brown, and Weneser, Phys. Rev. E 54, 4233 (1996) 
+       //for details of the following photo cross-sections
+       eee[161]=24.1;
+       ne=int((25.-o0)/delo)+1;
+       //GDR any number of neutrons, Veyssiere et al., Nucl. Phys. A159, 561 (1970)
+       for ( int i = 1; i <= ne; i++ ) {
+               ee[i] = o0+(i-1)*delo;
+               //cout<<" ee 1 "<<ee[i]<<"  "<<i<<endl;
+
+               se[i] = scon*ee[i]*ee[i]/(((o1*o1-ee[i]*ee[i])*(o1*o1-ee[i]*ee[i]))
+                                         +ee[i]*ee[i]*g1*g1);
+       }
+       ij = ne;   //Risky?
+       //25-103 MeV, Lepretre, et al., Nucl. Phys. A367, 237 (1981)
+       for ( int j = 1; j <= 27; j++ ) {
+               ij = ij+1;
+               ee[ij] = e3[j];
+               //cout<<" ee 2 "<<ee[ij]<<"  "<<ij<<endl;
+
+               se[ij] = .1*ap*s3[j]/208.;
+       }
+       //103-440 MeV, Carlos, et al., Nucl. Phys. A431, 573 (1984)
+       for ( int j = 1; j <= 22; j++ ) {
+               ij = ij+1;
+               ee[ij] = e1[j];
+               //cout<<" ee 3 "<<ee[ij]<<"  "<<ij<<endl;
+               se[ij] = .1*ap*s1[j]/208.;
+       }
+       //440 MeV-2 GeV Armstrong et al.
+       for ( int j = 9; j <= 70; j++) {
+               ij = ij+1;
+               ee[ij] = ee[ij-1]+25.;
+               //cout<<" ee 4 "<<ee[ij]<<"  "<<ij<<endl;
+               se[ij] = .1*(zp*sigt[j]+(ap-zp)*sigtn[j]);
+       }
+       //2-16.4 GeV Michalowski; Caldwell
+       for ( int j = 1; j <= 11; j++) {
+               ij = ij+1;
+               ee[ij] = e2[j];
+               //cout<<" ee 5 "<<ee[ij]<<"   "<<ij<<endl;
+               se[ij] = .1*ap*s2[j];
+       }
+       //Regge paramteres
+       x = .0677;
+       y = .129;
+       eps = .0808;
+       eta = .4525;
+       em = .94;
+       exx = pow(10,.05);
+
+       //Regge model for high energy
+       s = .002*em*ee[ij];
+       //make sure we reach LHC energies
+       ictr = 100;
+       if ( gammatarg > (2.*150.*150.)) ictr = 150;
+       for ( int j = 1; j <= ictr; j++ ) {
+               ij = ij+1;
+               s = s*exx;
+               ee[ij] = 1000.*.5*(s-em*em)/em;
+               //cout<<" ee 6 "<<ee[ij]<<"   "<<ij<<endl;
+               pom = x*pow(s,eps);
+               vec = y*pow(s,(-eta));
+               se[ij] = .1*.65*ap*(pom+vec);
+       }
+       ee[ij+1] = 99999999999.;
+       //done with initaliation
+       //write(6,99)o0;
+       //clear counters for 1N, XN
+ L100:
+
+       p1n = 0.;
+       pxn = 0.;
+       //start XN calculation
+       //what's the b-dependent highest energy of interest?
+
+       omax = min(omaxx,4.*gammatarg*( hbarcmev)/b);
+       if ( omax < o0 ) return _pPhotonBreakup;
+       gk1m = bessel::dbesk1(ee[1]*b/(( hbarcmev)*gammatarg));
+       int k = 2;
+ L212:
+       if (ee[k] < omax ) {
+               gk1 = bessel::dbesk1(ee[k]*b/(( hbarcmev)*gammatarg));
+               //Eq. 3 of BCW--NIM in Physics Research A 417 (1998) pp1-8:
+               pxn=pxn+zcon*(ee[k]-ee[k-1])*.5*(se[k-1]*ee[k-1]*gk1m*gk1m+se[k]*ee[k]*gk1*gk1);
+               k = k + 1;
+               gk1m = gk1;
+               goto L212;
+       }
+       //one neutron dissociation
+       omax = min(omax1n,4.*gammatarg*( hbarcmev)/b);
+       gk1m = bessel::dbesk1(eee[1]*b/(( hbarcmev)*gammatarg));
+       k = 2;
+ L102:
+       if (eee[k] < omax ) {
+               gk1 = bessel::dbesk1(eee[k]*b/(( hbarcmev)*gammatarg));
+               //Like Eq3 but with only the one neutron out GDR photo cross section input
+               p1n = p1n+zcon*(eee[k]-eee[k-1])*.5*(sa[k-1]*eee[k-1]*gk1m*gk1m+sa[k]*eee[k]*gk1*gk1);
+               k = k+1;
+               gk1m = gk1;
+               goto L102;
+       }
+
+
+       //This used to be done externally, now it is done internally.
+       if (( mode) == 1) _pPhotonBreakup = 1.;
+       if (( mode) == 2) _pPhotonBreakup = (1-exp(-1*pxn))*(1-exp(-1*pxn));
+       if (( mode) == 3) _pPhotonBreakup = (p1n*exp(-1*pxn))*(p1n*exp(-1*pxn));
+       if (( mode) == 4) _pPhotonBreakup = exp(-2*pxn);
+       if (( mode) == 5) _pPhotonBreakup = 1.;
+       if (( mode) == 6) _pPhotonBreakup = (1. - exp(-2.*pxn));
+       if (( mode) == 7) _pPhotonBreakup = 2.*exp(-pxn)*(1.-exp(-pxn));
+
+       //cout<<pxn<<" "<<zcon<<" "<<ee[k]<<" "<<se[k-1]<<" "<<gk1m<<"  "<<gk1<<"  "<<k<<"  "<<ee[k+1]<< "  "<<b<< endl;
+
+       return _pPhotonBreakup;
+}