]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TOF/AliTOFSDigitizer.cxx
Using TMath::Abs instead of fabs
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.cxx
index 94a8a6b38c4ad96ae62701ec08ebb44ad58847df..79845a73f1e7d36a5c6ac2334fddf03ce3fd16fe 100644 (file)
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
+/* $Id$ */
+
 //_________________________________________________________________________
 // This is a TTask that constructs SDigits out of Hits
-// A Summable Digits is the sum of all hits in a pad
-// 
+// A Summable Digits is the "sum" of all hits in a pad
+// Detector response has been simulated via the method
+// SimulateDetectorResponse
 //
-//-- Author: F. Pierella
+//-- Authors: F. Pierella, A. De Caro
+// Use case: see AliTOFhits2sdigits.C macro in the CVS
 //////////////////////////////////////////////////////////////////////////////
 
 
-#include "TTask.h"
-#include "TTree.h"
-#include "TSystem.h"
-#include "TFile.h"
+#include <Riostream.h>
+#include <stdlib.h>
+
+#include <TBenchmark.h>
+#include <TF1.h>
+#include <TFile.h>
+#include <TFolder.h>
+#include <TH1.h>
+#include <TParticle.h>
+#include <TROOT.h>
+#include <TSystem.h>
+#include <TTask.h>
+#include <TTree.h>
 
-#include "AliTOFdigit.h"
-#include "AliTOFhit.h"
+#include "AliDetector.h"
+#include "AliLoader.h"
+#include "AliRun.h"
+#include "AliRunLoader.h"
 #include "AliTOF.h"
+#include "AliTOFConstants.h"
+#include "AliTOFHitMap.h"
+#include "AliTOFSDigit.h"
+#include "AliTOFSDigitizer.h"
+#include "AliTOFhit.h"
+#include "AliTOFhitT0.h"
 #include "AliTOFv1.h"
 #include "AliTOFv2.h"
 #include "AliTOFv3.h"
 #include "AliTOFv4.h"
-#include "AliTOFSDigitizer.h"
-#include "AliRun.h"
-#include "AliDetector.h"
-#include "AliMC.h"
-
-#include "TFile.h"
-#include "TTask.h"
-#include "TTree.h"
-#include "TSystem.h"
-#include "TROOT.h"
-#include "TFolder.h"
-#include <stdlib.h>
-#include <iostream.h>
-#include <fstream.h>
 
 ClassImp(AliTOFSDigitizer)
 
@@ -55,19 +62,52 @@ ClassImp(AliTOFSDigitizer)
   AliTOFSDigitizer::AliTOFSDigitizer():TTask("AliTOFSDigitizer","") 
 {
   // ctor
-  fNevents = 0 ;     
-  fSDigits = 0 ;
-  fHits = 0 ;
 
+  fRunLoader     = 0 ;
+
+  fEvent1=0;
+  fEvent2=0;
+  ftail    = 0;
+  fSelectedSector=0;
+  fSelectedPlate =0;
 }
            
 //____________________________________________________________________________ 
-  AliTOFSDigitizer::AliTOFSDigitizer(char* HeaderFile,char *SdigitsFile ):TTask("AliTOFSDigitizer","") 
+  AliTOFSDigitizer::AliTOFSDigitizer(char* HeaderFile, Int_t evNumber1, Int_t nEvents):TTask("AliTOFSDigitizer","") 
 {
-  fNevents = 0 ;     // Number of events to digitize, 0 means all evens in current file
+  fEvent1=evNumber1;
+  fEvent2=fEvent1+nEvents;
+  ftail    = 0;
+  fSelectedSector=0; // by default we sdigitize all sectors
+  fSelectedPlate =0; // by default we sdigitize all plates in all sectors
+
+  fHeadersFile = HeaderFile ; // input filename (with hits)
+  TFile * file = (TFile*) gROOT->GetFile(fHeadersFile.Data() ) ;
+
+  //File was not opened yet
+  // open file and get alirun object
+  if(file == 0){
+      file =    TFile::Open(fHeadersFile.Data(),"update") ;
+      gAlice = (AliRun *) file->Get("gAlice") ;
+  }
+
+  // init parameters for sdigitization
+  InitParameters();
+
   // add Task to //root/Tasks folder
-  TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ; 
-  roottasks->Add(this) ; 
+  fRunLoader = AliRunLoader::Open(HeaderFile);//open session and mount on default event folder
+  if (fRunLoader == 0x0)
+   {
+     Fatal("AliTOFSDigitizer","Event is not loaded. Exiting");
+     return;
+   }
+  AliLoader* gime = fRunLoader->GetLoader("TOFLoader");
+  if (gime == 0x0)
+   {
+     Fatal("AliTOFSDigitizer","Can not find TOF loader in event. Exiting.");
+     return;
+   }
+  gime->PostSDigitizer(this);
 }
 
 //____________________________________________________________________________ 
@@ -76,178 +116,690 @@ ClassImp(AliTOFSDigitizer)
   // dtor
 }
 
-//____________________________________________________________________________
-void AliTOFSDigitizer::Exec(Option_t *option) { 
-
-
-  // Initialise Hit array
-  fHits = new TClonesArray ("AliTOFhit", 1000);
-  fSDigits = new TClonesArray ("AliTOFdigit", 1000);
-
-  AliTOF *TOF = (AliTOF *) gAlice->GetDetector ("TOF");
-
-  if (fNevents == 0)
-    fNevents = (Int_t) gAlice->TreeE ()->GetEntries ();
-
-  for (Int_t ievent = 0; ievent < fNevents; ievent++)
-    {
-      gAlice->GetEvent (ievent);
-      if (gAlice->TreeH () == 0)
-       return;
-      if (gAlice->TreeS () == 0)
-       gAlice->MakeTree ("S");
-
-      
-            //Make branches
-      char branchname[20];
-       sprintf (branchname, "%s", TOF->GetName ());
-      //Make branch for digits
-        TOF->MakeBranch ("S");
-    
-       //Now made SDigits from hits
-
-      Int_t    tracks[3];    // track info
-      Int_t    vol[5];       // location for a digit
-      Float_t  digit[2];     // TOF digit variables
-      Int_t hit, nbytes;
-      TParticle *particle;
-      AliTOFhit *tofHit;
-      TClonesArray *TOFhits = TOF->Hits();
-
-
-      // Event ------------------------- LOOP  
-
-
-      if (TOF)
-       {
-         TOFhits = TOF->Hits ();
-         TTree *TH = gAlice->TreeH ();
-         Stat_t ntracks = TH->GetEntries ();
-         for (Int_t track = 0; track < ntracks; track++)
-           {
-             gAlice->ResetHits ();
-             nbytes += TH->GetEvent (track);
-             particle = gAlice->Particle (track);
-             Int_t nhits = TOFhits->GetEntriesFast ();
-
-             for (hit = 0; hit < nhits; hit++)
-               {
-                 tofHit = (AliTOFhit *) TOFhits->UncheckedAt(hit);
-               vol[0] = tofHit->GetSector();
-               vol[1] = tofHit->GetPlate();
-               vol[2] = tofHit->GetPadx();
-               vol[3] = tofHit->GetPadz();
-               vol[4] = tofHit->GetStrip();
-
-               // 95% of efficiency to be inserted here
-               // edge effect to be inserted here
-               // cross talk  to be inserted here
-
-               Float_t idealtime = tofHit->GetTof(); // unit s
-               idealtime *= 1.E+12;  // conversion from s to ps
-                              // fTimeRes is given usually in ps
-//             Float_t tdctime   = gRandom->Gaus(idealtime, fTimeRes); 
-               Float_t tdctime   = gRandom->Gaus(idealtime, TOF->GetTimeRes());        
-               digit[0] = tdctime;
-
-               // typical Landau Distribution to be inserted here
-               // instead of Gaussian Distribution
-               Float_t idealcharge = tofHit->GetEdep();
-//             Float_t adccharge = gRandom->Gaus(idealcharge, fChrgRes);
-               Float_t adccharge = gRandom->Gaus(idealcharge, TOF->GetChrgRes());
-               digit[1] = adccharge;
-               Int_t tracknum = tofHit->GetTrack();
-               tracks[0] = tracknum;
-               tracks[1] = 0;
-               tracks[2] = 0;
-
-               // check if two digit are on the same pad; in that case we sum
-               // the two or more digits
-//             Bool_t overlap = AliTOF::CheckOverlap(vol, digit, tracknum);
-               Bool_t overlap = TOF->CheckOverlap(vol, digit, tracknum);
-               if(!overlap) 
-                 //                    new ((*fSDigits)[nSdigits++]) AliTOFdigit(tracks, vol, digit);
-                 TOF->AddSDigit(tracks, vol, digit);
-               cout << "nSdigits" << endl; 
-               } // end loop on hits for the current track
-
-            } // end loop on ntracks
-
-         } // close if TOF switched ON
-      
-      gAlice->TreeS()->Reset();
-      gAlice->TreeS()->Fill();
-      gAlice->TreeS()->Write(0,TObject::kOverwrite) ;
-    }                          //event loop
-
-
-}
-//__________________________________________________________________
-void AliTOFSDigitizer::SetSDigitsFile(char * file ){
-  if(!fSDigitsFile.IsNull())
-    cout << "Changing SDigits file from " <<(char *)fSDigitsFile.Data() << " to " << file << endl ;
-  fSDigitsFile=file ;
+//____________________________________________________________________________ 
+void AliTOFSDigitizer::InitParameters()
+{
+  // set parameters for detector simulation
+
+  fTimeResolution =0.120;
+  fpadefficiency  =0.99 ;
+  fEdgeEffect     = 2   ;
+  fEdgeTails      = 0   ;
+  fHparameter     = 0.4 ;
+  fH2parameter    = 0.15;
+  fKparameter     = 0.5 ;
+  fK2parameter    = 0.35;
+  fEffCenter      = fpadefficiency;
+  fEffBoundary    = 0.65;
+  fEff2Boundary   = 0.90;
+  fEff3Boundary   = 0.08;
+  fResCenter      = 50. ;
+  fResBoundary    = 70. ;
+  fResSlope       = 40. ;
+  fTimeWalkCenter = 0.  ;
+  fTimeWalkBoundary=0.  ;
+  fTimeWalkSlope  = 0.  ;
+  fTimeDelayFlag  = 1   ;
+  fPulseHeightSlope=2.0 ;
+  fTimeDelaySlope =0.060;
+  // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
+  fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
+  fChargeSmearing=0.0   ;
+  fLogChargeSmearing=0.13;
+  fTimeSmearing   =0.022;
+  fAverageTimeFlag=0    ;
+  fTdcBin   = 50.;      // 1 TDC bin = 50 ps
+  fAdcBin   = 0.25;     // 1 ADC bin = 0.25 pC (or 0.03 pC)
+  fAdcMean  = 50.;     // ADC distribution mpv value for Landau (in bins)
+                       // it corresponds to a mean value of ~100 bins
+  fAdcRms   = 25.;     // ADC distribution rms value (in bins)
+                       // it corresponds to distribution rms ~50 bins
 }
+
 //__________________________________________________________________
-void AliTOFSDigitizer::Print(Option_t* option)const
+Double_t TimeWithTail(Double_t* x, Double_t* par)
 {
-  cout << "------------------- "<< GetName() << " -------------" << endl ;
-  if(fSDigitsFile.IsNull())
-    cout << " Writing SDigitis to file galice.root "<< endl ;
-  else
-    cout << "    Writing SDigitis to file  " << (char*) fSDigitsFile.Data() << endl ;
-
+  // sigma - par[0], alpha - par[1], part - par[2]
+  //  at x<part*sigma - gauss
+  //  at x>part*sigma - TMath::Exp(-x/alpha)
+  Float_t xx =x[0];
+  Double_t f;
+  if(xx<par[0]*par[2]) {
+    f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
+  } else {
+    f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
+  }
+  return f;
 }
 
 
+//____________________________________________________________________________
+void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) { 
+
+  fRunLoader->LoadgAlice();
+  fRunLoader->LoadHeader();
+  gAlice = fRunLoader->GetAliRun();
+  
+  AliLoader* gime = fRunLoader->GetLoader("TOFLoader");
+  gime->LoadHits("read");
+  gime->LoadSDigits("recreate");
+  if(strstr(verboseOption,"tim") || strstr(verboseOption,"all"))
+    gBenchmark->Start("TOFSDigitizer");
+
+  AliTOF *TOF = (AliTOF *) gAlice->GetDetector("TOF");
+
+  if (!TOF) {
+    Error("AliTOFSDigitizer","TOF not found");
+    return;
+  }
+
+  // is pointer to fSDigits non zero after changes?
+  cout<<"TOF fSDigits pointer:"<<TOF->SDigits()<<endl;
+
+  // recreate TClonesArray fSDigits - for backward compatibility
+  if (TOF->SDigits() == 0) {
+    TOF->CreateSDigitsArray();
+  } else {
+    TOF->RecreateSDigitsArray();
+  }
+
+  Int_t version=TOF->IsVersion();
+
+  if (fEdgeTails) ftail = new TF1("tail",TimeWithTail,-2,2,3);
+
+  Int_t nselectedHits=0;
+  Int_t ntotalsdigits=0;
+  Int_t ntotalupdates=0;
+  Int_t nnoisesdigits=0;
+  Int_t nsignalsdigits=0;
+  Int_t nHitsFromPrim=0;
+  Int_t nHitsFromSec=0;
+  Int_t nlargeTofDiff=0;
+
+  if (strstr(allEvents,"all")){
+    fEvent1=0;
+    fEvent2= (Int_t) gAlice->TreeE()->GetEntries();
+  }
+
+  Bool_t thereIsNotASelection=(fSelectedSector==0) && (fSelectedPlate==0);
+
+  for (Int_t ievent = fEvent1; ievent < fEvent2; ievent++) {
+    cout << "------------------- "<< GetName() << " -------------" << endl ;
+    cout << "Sdigitizing event " << ievent << endl;
+
+    Int_t nselectedHitsinEv=0;
+    Int_t ntotalsdigitsinEv=0;
+    Int_t ntotalupdatesinEv=0;
+    Int_t nnoisesdigitsinEv=0;
+    Int_t nsignalsdigitsinEv=0;
+
+    fRunLoader->GetEvent(ievent);
+    TOF->SetTreeAddress();
+    TTree *TH = gime->TreeH ();
+    if (!TH)
+      return;
+    if (gime->TreeS () == 0)
+      gime->MakeTree ("S");
 
+      
+    //Make branches
+    char branchname[20];
+    sprintf (branchname, "%s", TOF->GetName ());
+    //Make branch for digits
+    TOF->MakeBranch("S");
+    
+    //Now made SDigits from hits
 
 
+    TParticle *particle;
+    //AliTOFhit *tofHit;
+    TClonesArray *TOFhits = TOF->Hits();
 
+    // create hit map
+    AliTOFHitMap *hitMap = new AliTOFHitMap(TOF->SDigits());
 
+    // increase performances in terms of CPU time
+    //PH     TH->SetBranchStatus("*",0); // switch off all branches
+    //PH     TH->SetBranchStatus("TOF*",1); // switch on only TOF
 
+    TBranch * tofHitsBranch = TH->GetBranch("TOF");
 
+    Int_t ntracks = static_cast<Int_t>(TH->GetEntries());
+    for (Int_t track = 0; track < ntracks; track++)
+    {
+      gAlice->ResetHits();
+      //PH      TH->GetEvent(track);
+      tofHitsBranch->GetEvent(track);
+      particle = gAlice->Particle(track);
+      Int_t nhits = TOFhits->GetEntriesFast();
+      // cleaning all hits of the same track in the same pad volume
+      // it is a rare event, however it happens
+
+      Int_t previousTrack =0;
+      Int_t previousSector=0;
+      Int_t previousPlate =0;
+      Int_t previousStrip =0;
+      Int_t previousPadX  =0;
+      Int_t previousPadZ  =0;
+
+      for (Int_t hit = 0; hit < nhits; hit++)
+      {
+       Int_t    vol[5];       // location for a digit
+       Float_t  digit[2];     // TOF digit variables
+       Int_t tracknum;
+       Float_t Xpad;
+       Float_t Zpad;
+       Float_t geantTime;
+
+       // fp: really sorry for this, it is a temporary trick to have
+       // track length too
+       if(version!=6){
+         AliTOFhit *tofHit = (AliTOFhit *) TOFhits->UncheckedAt(hit);
+         tracknum = tofHit->GetTrack();
+         vol[0] = tofHit->GetSector();
+         vol[1] = tofHit->GetPlate();
+         vol[2] = tofHit->GetStrip();
+         vol[3] = tofHit->GetPadx();
+         vol[4] = tofHit->GetPadz();
+         Xpad = tofHit->GetDx();
+         Zpad = tofHit->GetDz();
+         geantTime = tofHit->GetTof(); // unit [s]
+       } else {
+         AliTOFhitT0 *tofHit = (AliTOFhitT0 *) TOFhits->UncheckedAt(hit);
+         tracknum = tofHit->GetTrack();
+         vol[0] = tofHit->GetSector();
+         vol[1] = tofHit->GetPlate();
+         vol[2] = tofHit->GetStrip();
+         vol[3] = tofHit->GetPadx();
+         vol[4] = tofHit->GetPadz();
+         Xpad = tofHit->GetDx();
+         Zpad = tofHit->GetDz();
+         geantTime = tofHit->GetTof(); // unit [s]
+       }
+
+       geantTime *= 1.e+09;  // conversion from [s] to [ns]
+           
+       // selection case for sdigitizing only hits in a given plate of a given sector
+       if(thereIsNotASelection || (vol[0]==fSelectedSector && vol[1]==fSelectedPlate)){
+         
+         Bool_t dummy=((tracknum==previousTrack) && (vol[0]==previousSector) && (vol[1]==previousPlate) && (vol[2]==previousStrip));
+         
+         Bool_t isCloneOfThePrevious=dummy && ((vol[3]==previousPadX) && (vol[4]==previousPadZ));
+         
+         Bool_t isNeighOfThePrevious=dummy && ((((vol[3]==previousPadX-1) || (vol[3]==previousPadX+1)) && (vol[4]==previousPadZ)) || ((vol[3]==previousPadX) && ((vol[4]==previousPadZ+1) || (vol[4]==previousPadZ-1))));
+         
+         if(!isCloneOfThePrevious && !isNeighOfThePrevious){
+           // update "previous" values
+           // in fact, we are yet in the future, so the present is past
+           previousTrack=tracknum;
+           previousSector=vol[0];
+           previousPlate=vol[1];
+           previousStrip=vol[2];
+           previousPadX=vol[3];
+           previousPadZ=vol[4];
+           
+           nselectedHits++;
+           nselectedHitsinEv++;
+           if (particle->GetFirstMother() < 0){
+             nHitsFromPrim++;
+           } // counts hits due to primary particles
+           
+           Float_t xStrip=AliTOFConstants::fgkXPad*(vol[3]-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
+           Float_t zStrip=AliTOFConstants::fgkZPad*(vol[4]-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
+
+           //cout << "geantTime " << geantTime << " [ns]" << endl;
+           Int_t nActivatedPads = 0, nFiredPads = 0;
+           Bool_t isFired[4] = {kFALSE, kFALSE, kFALSE, kFALSE};
+           Float_t tofAfterSimul[4] = {0., 0., 0., 0.};
+           Float_t qInduced[4] = {0.,0.,0.,0.};
+           Int_t nPlace[4] = {0, 0, 0, 0};
+           Float_t averageTime = 0.;
+           SimulateDetectorResponse(zStrip,xStrip,geantTime,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime);
+           if(nFiredPads) {
+             for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
+               if(isFired[indexOfPad]){ // the pad has fired
+                 Float_t timediff=geantTime-tofAfterSimul[indexOfPad];
+                 
+                 if(timediff>=0.2) nlargeTofDiff++;
+                 
+                 digit[0] = (Int_t) ((tofAfterSimul[indexOfPad]*1.e+03)/fTdcBin); // TDC bin number (each bin -> 50. ps)
+                 
+                 Float_t landauFactor = gRandom->Landau(fAdcMean, fAdcRms); 
+                 digit[1] = (Int_t) (qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
+                 
+                 // recalculate the volume only for neighbouring pads
+                 if(indexOfPad){
+                   (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[4] = 1 : vol[4] = 2;
+                   (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[3] = nPlace[indexOfPad] : vol[3] = nPlace[indexOfPad] - AliTOFConstants::fgkNpadX;
+                 }
+                 
+                 // check if two sdigit are on the same pad; in that case we sum
+                 // the two or more sdigits
+                 if (hitMap->TestHit(vol) != kEmpty) {
+                   AliTOFSDigit *sdig = static_cast<AliTOFSDigit*>(hitMap->GetHit(vol));
+                   Int_t tdctime = (Int_t) digit[0];
+                   Int_t adccharge = (Int_t) digit[1];
+                   sdig->Update(fTdcBin,tdctime,adccharge,tracknum);
+                   ntotalupdatesinEv++;
+                   ntotalupdates++;
+                 } else {
+                   
+                   TOF->AddSDigit(tracknum, vol, digit);
+                   
+                   if(indexOfPad){
+                     nnoisesdigits++;
+                     nnoisesdigitsinEv++;
+                   } else {
+                     nsignalsdigits++;
+                     nsignalsdigitsinEv++;
+                   }
+                   ntotalsdigitsinEv++;  
+                   ntotalsdigits++;
+                   hitMap->SetHit(vol);
+                 } // if (hitMap->TestHit(vol) != kEmpty)
+               } // if(isFired[indexOfPad])
+             } // end loop on nActivatedPads
+           } // if(nFiredPads) i.e. if some pads has fired
+         } // close if(!isCloneOfThePrevious)
+       } // close the selection on sector and plate
+      } // end loop on hits for the current track
+    } // end loop on ntracks
+    
+    delete hitMap;
+      
+    gime->TreeS()->Reset();
+    gime->TreeS()->Fill();
+    //gAlice->TreeS()->Write(0,TObject::kOverwrite) ;
+    gime->WriteSDigits("OVERWRITE");
+
+    if(strstr(verboseOption,"all")){
+      cout << "----------------------------------------" << endl;
+      cout << "       <AliTOFSDigitizer>     " << endl;
+      cout << "After sdigitizing " << nselectedHitsinEv << " hits" << " in event " << ievent << endl;
+      //" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, " 
+      cout << ntotalsdigitsinEv << " digits have been created " << endl;
+      cout << "(" << nsignalsdigitsinEv << " due to signals and " <<  nnoisesdigitsinEv << " due to border effect)" << endl;
+      cout << ntotalupdatesinEv << " total updates of the hit map have been performed in current event" << endl;
+      cout << "----------------------------------------" << endl;
+    }
+
+  } //event loop on events
+
+  // free used memory
+  if (ftail){
+    delete ftail;
+    ftail = 0;
+  }
+  
+  nHitsFromSec=nselectedHits-nHitsFromPrim;
+  if(strstr(verboseOption,"all")){
+    cout << "----------------------------------------" << endl;
+    cout << "----------------------------------------" << endl;
+    cout << "-----------SDigitization Summary--------" << endl;
+    cout << "       <AliTOFSDigitizer>     " << endl;
+    cout << "After sdigitizing " << nselectedHits << " hits" << endl;
+    cout << "in " << (fEvent2-fEvent1) << " events" << endl;
+//" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, " 
+    cout << ntotalsdigits << " sdigits have been created " << endl;
+    cout << "(" << nsignalsdigits << " due to signals and " <<  nnoisesdigits << " due to border effect)" << endl;
+    cout << ntotalupdates << " total updates of the hit map have been performed" << endl;
+    cout << "in " << nlargeTofDiff << " cases the time of flight difference is greater than 200 ps" << endl;
+  }
+
+
+  if(strstr(verboseOption,"tim") || strstr(verboseOption,"all")){
+    gBenchmark->Stop("TOFSDigitizer");
+    cout << "AliTOFSDigitizer:" << endl ;
+    cout << "   took " << gBenchmark->GetCpuTime("TOFSDigitizer") << " seconds in order to make sdigits " 
+        <<  gBenchmark->GetCpuTime("TOFSDigitizer")/(fEvent2-fEvent1) << " seconds per event " << endl ;
+    cout << endl ;
+  }
+
+  Print("");
+}
 
+//__________________________________________________________________
+void AliTOFSDigitizer::Print(Option_t* opt)const
+{
+  cout << "------------------- "<< GetName() << " -------------" << endl ;
 
+}
 
+//__________________________________________________________________
+void AliTOFSDigitizer::SelectSectorAndPlate(Int_t sector, Int_t plate)
+{
+  Bool_t isaWrongSelection=(sector < 1) || (sector > AliTOFConstants::fgkNSectors) || (plate < 1) || (plate > AliTOFConstants::fgkNPlates);
+  if(isaWrongSelection){
+    cout << "You have selected an invalid value for sector or plate " << endl;
+    cout << "The correct range for sector is [1,"<< AliTOFConstants::fgkNSectors <<"]" << endl;
+    cout << "The correct range for plate  is [1,"<< AliTOFConstants::fgkNPlates  <<"]" << endl;
+    cout << "By default we continue sdigitizing all hits in all plates of all sectors" << endl;
+  } else {
+    fSelectedSector=sector;
+    fSelectedPlate =plate;
+    cout << "SDigitizing only hits in plate " << fSelectedPlate << " of the sector " << fSelectedSector << endl;
+  }
+}
 
+//__________________________________________________________________
+void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
+{
+  // Description:
+  // Input:  z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
+  //         geantTime - time generated by Geant, ns
+  // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
+  //         nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
+  //         qInduced[iPad]- charge induced on pad, arb. units
+  //                         this array is initialized at zero by the caller
+  //         tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
+  //                                   this array is initialized at zero by the caller
+  //         averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
+  //                       The weight is given by the qInduced[iPad]/qCenterPad
+  //                                   this variable is initialized at zero by the caller
+  //         nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
+  //                                   this variable is initialized at zero by the caller
+  //
+  // Description of used variables:
+  //         eff[iPad] - efficiency of the pad
+  //         res[iPad] - resolution of the pad, ns
+  //         timeWalk[iPad] - time walk of the pad, ns
+  //         timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
+  //         PadId[iPad] - Pad Identifier
+  //                    E | F    -->   PadId[iPad] = 5 | 6
+  //                    A | B    -->   PadId[iPad] = 1 | 2
+  //                    C | D    -->   PadId[iPad] = 3 | 4
+  //         nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
+  //         qCenterPad - charge extimated for each pad, arb. units
+  //         weightsSum - sum of weights extimated for each pad fired, arb. units
+  
+  const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail                                                   
+  Int_t iz = 0, ix = 0;
+  Float_t dX = 0., dZ = 0., x = 0., z = 0.;
+  Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
+  Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
+  Float_t logOfqInd = 0.;
+  Float_t weightsSum = 0.;
+  Int_t nTail[4]  = {0,0,0,0};
+  Int_t padId[4]  = {0,0,0,0};
+  Float_t eff[4]  = {0.,0.,0.,0.};
+  Float_t res[4]  = {0.,0.,0.,0.};
+  //  Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
+  Float_t qCenterPad = 1.;
+  Float_t timeWalk[4]  = {0.,0.,0.,0.};
+  Float_t timeDelay[4] = {0.,0.,0.,0.};
+  
+  nActivatedPads = 0;
+  nFiredPads = 0;
+  
+  (z0 <= 0) ? iz = 0 : iz = 1;
+  dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
+  z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ);                               // variable for eff., res. and timeWalk. functions
+  iz++;                                                                              // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
+  ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
+  dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
+  x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX);                               // variable for eff., res. and timeWalk. functions;
+  ix++;                                                                              // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
+  
+  ////// Pad A:
+  nActivatedPads++;
+  nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
+  qInduced[nActivatedPads-1] = qCenterPad;
+  padId[nActivatedPads-1] = 1;
+  
+  if (fEdgeEffect == 0) {
+    eff[nActivatedPads-1] = fEffCenter;
+    if (gRandom->Rndm() < eff[nActivatedPads-1]) {
+      nFiredPads = 1;
+      res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2  ns;
+      isFired[nActivatedPads-1] = kTRUE;
+      tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
+      averageTime = tofTime[nActivatedPads-1];
+    }
+  } else {
+     
+    if(z < h) {
+      if(z < h2) {
+       effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
+      } else {
+       effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
+      }
+      resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
+      timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effZ = fEffCenter;
+      resZ = fResCenter;
+      timeWalkZ = fTimeWalkCenter;
+    }
+    
+    if(x < h) {
+      if(x < h2) {
+       effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
+      } else {
+       effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
+      }
+      resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
+      timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effX = fEffCenter;
+      resX = fResCenter;
+      timeWalkX = fTimeWalkCenter;
+    }
+    
+    (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
+    (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2  ns
+    (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 *  timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+
+
+    ////// Pad B:
+    if(z < k2) {
+      effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
+    } else {
+      effZ = fEff3Boundary * (k - z) / (k - k2);
+    }
+    resZ = fResBoundary + fResSlope * z / k;
+    timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
+    
+    if(z < k && z > 0) {
+      if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
+       eff[nActivatedPads-1] = effZ;
+       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 2;
+      }
+    }
 
+    
+    ////// Pad C, D, E, F:
+    if(x < k2) {
+      effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
+    } else {
+      effX = fEff3Boundary * (k - x) / (k - k2);
+    }
+    resX = fResBoundary + fResSlope*x/k;
+    timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
+    
+    if(x < k && x > 0) {
+      //   C:
+      if(ix > 1 && dX < 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] - 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 3;
+
+       //     D:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
+           eff[nActivatedPads-1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+           
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 4;
+         }
+       }  // end D
+      }  // end C
+      
+      //   E:
+      if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 5;
+
+
+       //     F:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
+           eff[nActivatedPads - 1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 6;
+         }
+       }  // end F
+      }  // end E
+    } // end if(x < k)
+
+
+    for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
+      if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
+      if(gRandom->Rndm() < eff[iPad]) {
+       isFired[iPad] = kTRUE;
+       nFiredPads++;
+       if(fEdgeTails) {
+         if(nTail[iPad] == 0) {
+           tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+         } else {
+           ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
+           Double_t timeAB = ftail->GetRandom();
+           tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
+         }
+       } else {
+         tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+       }
+       if (fAverageTimeFlag) {
+         averageTime += tofTime[iPad] * qInduced[iPad];
+         weightsSum += qInduced[iPad];
+       } else {
+         averageTime += tofTime[iPad];
+         weightsSum += 1.;
+       }
+      }
+    }
+    if (weightsSum!=0) averageTime /= weightsSum;
+  } // end else (fEdgeEffect != 0)
+}
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+//__________________________________________________________________
+void AliTOFSDigitizer::PrintParameters()const
+{
+  //
+  // Print parameters used for sdigitization
+  //
+  cout << " ------------------- "<< GetName() << " -------------" << endl ;
+  cout << " Parameters used for TOF SDigitization " << endl ;
+  //  Printing the parameters
+  
+  cout << " Number of events:                        " << (fEvent2-fEvent1) << endl; 
+  cout << " from event " << fEvent1 << " to event " << (fEvent2-1) << endl; 
+  cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
+  cout << " Edge Effect option:  "<<  fEdgeEffect<< endl;
+
+  cout << " Boundary Effect Simulation Parameters " << endl;
+  cout << " Hparameter: "<< fHparameter<<"  H2parameter:"<< fH2parameter <<"  Kparameter:"<< fKparameter<<"  K2parameter: "<< fK2parameter << endl;
+  cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
+  cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
+  cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
+  cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
+  cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
+  cout << " Resolution (ps) at the boundary of the pad      : "<< fResBoundary << endl;
+  cout << " Slope (ps/K) for neighbouring pad               : "<< fResSlope <<endl;
+  cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
+  cout << " Time walk (ps) at the boundary of the pad       : "<< fTimeWalkBoundary<< endl;
+  cout << " Slope (ps/K) for neighbouring pad               : "<< fTimeWalkSlope<<endl;
+  cout << " Pulse Heigth Simulation Parameters " << endl;
+  cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
+  cout << " Pulse Height Slope                           : "<< fPulseHeightSlope<<endl;
+  cout << " Time Delay Slope                             : "<< fTimeDelaySlope<<endl;
+  cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
+  cout << " Smearing in charge in (q1/q2) vs x plot      : "<< fChargeSmearing<<endl;
+  cout << " Smearing in log of charge ratio              : "<< fLogChargeSmearing<<endl;
+  cout << " Smearing in time in time vs log(q1/q2) plot  : "<< fTimeSmearing<<endl;
+  cout << " Flag for average time                        : "<< fAverageTimeFlag<<endl;
+  cout << " Edge tails option                            : "<< fEdgeTails << endl;
+  
+}