]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TOF/AliTOFv0.cxx
Updated Strip Structure (Double Stack)
[u/mrichter/AliRoot.git] / TOF / AliTOFv0.cxx
index 9ab99e8c9fe2556c960c4d84e09ce8fc9184d08b..af2986157664bca2b846c9d339a817fdacc6394f 100644 (file)
 
 /*
 $Log$
-Revision 1.10  1999/10/15 15:35:20  fca
+Revision 1.21  2001/08/28 08:45:59  vicinanz
+TTask and TFolder structures implemented
+
+Revision 1.9  2001/05/04 10:09:48  vicinanz
+Major upgrades to the strip structure
+
+Revision 1.8  2000/12/04 08:48:20  alibrary
+Fixing problems in the HEAD
+
+Revision 1.7  2000/10/02 21:28:17  fca
+Removal of useless dependecies via forward declarations
+
+Revision 1.6  2000/05/10 16:52:18  vicinanz
+New TOF version with holes for PHOS/RICH
+
+Revision 1.4.2.1  2000/05/10 09:37:16  vicinanz
+New version with Holes for PHOS/RICH
+
+Revision 1.14  1999/11/05 22:39:06  fca
+New hits structure
+
+Revision 1.13  1999/11/02 11:26:39  fca
+added stdlib.h for exit
+
+Revision 1.12  1999/11/01 20:41:57  fca
+Added protections against using the wrong version of FRAME
+
+Revision 1.11  1999/10/22 08:04:14  fca
+Correct improper use of negative parameters
+
+Revision 1.10  1999/10/16 19:30:06  fca
+Corrected Rotation Matrix and CVS log
+
+Revision 1.9  1999/10/15 15:35:20  fca
 New version for frame1099 with and without holes
 
-Revision 1.9  1999/09/29 09:24:33  fca
+Revision 1.8  1999/09/29 09:24:33  fca
 Introduction of the Copyright and cvs Log
 
 */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
-//  Time Of Flight: design of C.Williams                FCA                  //
-//  This class contains the functions for version 1 of the Time Of Flight    //
+//  Time Of Flight: design of C.Williams                                     //
+//                                                                          //
+//  This class contains the functions for version 0 of the Time Of Flight    //
 //  detector.                                                                //
 //
 //  VERSION WITH 5 MODULES AND TILTED STRIPS 
-//  
-//   WITH HOLES FOR PHOS AND HMPID inside the 
-//   SPACE FRAME WITH HOLES
-//
+//  NO HITS DEFINED BY DEFAULT FOR THIS VERSION
+//   FULL COVERAGE VERSION
 //
 //   Authors:
-//  
+//
 //   Alessio Seganti
 //   Domenico Vicinanza
 //
 //   University of Salerno - Italy
 //
+//   Fabrizio Pierella
+//   University of Bologna - Italy
+//
 //
 //Begin_Html
 /*
@@ -51,9 +86,19 @@ Introduction of the Copyright and cvs Log
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
+#include <iostream.h>
+#include <stdlib.h>
+
 #include "AliTOFv0.h"
+#include "TBRIK.h"
+#include "TGeometry.h"
+#include "TNode.h"
+#include <TLorentzVector.h>
+#include "TObject.h"
 #include "AliRun.h"
+#include "AliMC.h"
 #include "AliConst.h"
+
  
 ClassImp(AliTOFv0)
  
@@ -67,12 +112,133 @@ AliTOFv0::AliTOFv0()
  
 //_____________________________________________________________________________
 AliTOFv0::AliTOFv0(const char *name, const char *title)
-       : AliTOF(name,title)
+        : AliTOF(name,title)
 {
   //
   // Standard constructor
   //
+  //
+  // Check that FRAME is there otherwise we have no place where to
+  // put TOF
+  AliModule* frame=gAlice->GetModule("FRAME");
+  if(!frame) {
+    Error("Ctor","TOF needs FRAME to be present\n");
+    exit(1);
+  } else
+    if(frame->IsVersion()!=1) {
+      Error("Ctor","FRAME version 1 needed with this version of TOF\n");
+      exit(1);
+    }
+}
+
+//____________________________________________________________________________
+AliTOFv0::~AliTOFv0()
+{
+  // destructor
+
+  if ( fHits) {
+    fHits->Delete() ; 
+    delete fHits ;
+    fHits = 0 ; 
+  }
+
+  if ( fSDigits) {
+    fSDigits->Delete() ; 
+    delete fSDigits ;
+    fSDigits = 0 ; 
+  }
+
+  if ( fDigits) {
+    fDigits->Delete() ; 
+    delete fDigits ;
+    fDigits = 0 ; 
+  }
+  
+}
+
+//_____________________________________________________________________________
+void AliTOFv0::BuildGeometry()
+{
+  //
+  // Build TOF ROOT geometry for the ALICE event display
+  //
+  TNode *node, *top;
+  const int kColorTOF  = 27;
+
+  // Find top TNODE
+  top = gAlice->GetGeometry()->GetNode("alice");
+
+  // Position the different copies
+  const Float_t krTof  =(fRmax+fRmin)/2;
+  const Float_t khTof  = fRmax-fRmin;
+  const Int_t   kNTof = fNTof;
+  const Float_t kPi   = TMath::Pi();
+  const Float_t kangle = 2*kPi/kNTof;
+  Float_t ang;
+
+  // Define TOF basic volume
+  
+  char nodeName0[7], nodeName1[7], nodeName2[7]; 
+  char nodeName3[7], nodeName4[7], rotMatNum[7];
+
+  new TBRIK("S_TOF_C","TOF box","void",
+            120*0.5,khTof*0.5,fZlenC*0.5);
+  new TBRIK("S_TOF_B","TOF box","void",
+            120*0.5,khTof*0.5,fZlenB*0.5);
+  new TBRIK("S_TOF_A","TOF box","void",
+            120*0.5,khTof*0.5,fZlenA*0.5);
+
+  for (Int_t nodeNum=1;nodeNum<19;nodeNum++){
+     
+      if (nodeNum<10) {
+           sprintf(rotMatNum,"rot50%i",nodeNum);
+           sprintf(nodeName0,"FTO00%i",nodeNum);
+           sprintf(nodeName1,"FTO10%i",nodeNum);
+           sprintf(nodeName2,"FTO20%i",nodeNum);
+           sprintf(nodeName3,"FTO30%i",nodeNum);
+           sprintf(nodeName4,"FTO40%i",nodeNum);
+      }
+      if (nodeNum>9) {
+           sprintf(rotMatNum,"rot5%i",nodeNum);
+           sprintf(nodeName0,"FTO0%i",nodeNum);
+           sprintf(nodeName1,"FTO1%i",nodeNum);
+           sprintf(nodeName2,"FTO2%i",nodeNum);
+           sprintf(nodeName3,"FTO3%i",nodeNum);
+           sprintf(nodeName4,"FTO4%i",nodeNum);
+      }
+      new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
+      ang = (4.5-nodeNum) * kangle;
+
+      top->cd();
+      node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum);
+      node->SetLineColor(kColorTOF);
+      fNodes->Add(node); 
+
+      top->cd(); 
+      node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum);
+      node->SetLineColor(kColorTOF);
+      fNodes->Add(node); 
+
+      top->cd();
+      node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum);
+      node->SetLineColor(kColorTOF);
+      fNodes->Add(node); 
+
+      top->cd();
+      node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum);
+      node->SetLineColor(kColorTOF);
+      fNodes->Add(node); 
+
+      top->cd();
+      node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum);
+      node->SetLineColor(kColorTOF);
+      fNodes->Add(node); 
+  } // end loop on nodeNum
 }
+
+
  
 //_____________________________________________________________________________
 void AliTOFv0::CreateGeometry()
@@ -92,315 +258,479 @@ void AliTOFv0::CreateGeometry()
 }
  
 //_____________________________________________________________________________
-void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
-                    Float_t zlen2, Float_t zlen3, Float_t ztof0)
+void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
+                    Float_t zlenB, Float_t zlenA, Float_t ztof0)
 {
   //
   // Definition of the Time Of Fligh Resistive Plate Chambers
   // xFLT, yFLT, zFLT - sizes of TOF modules (large)
   
-  Float_t  ycoor;
-  Float_t par[10];
-  Int_t idrotm[100];
-  Int_t nrot = 0;
+  Float_t  ycoor, zcoor;
+  Float_t  par[3];
+  Int_t    *idtmed = fIdtmed->GetArray()-499;
+  Int_t    idrotm[100];
+  Int_t    nrot = 0;
+  Float_t  hTof = fRmax-fRmin;
   
-  Int_t *idtmed = fIdtmed->GetArray()-499;
-
+  Float_t radius = fRmin+2.;//cm
 
-  par[0] =  xtof / 2.;
-  par[1] =  ytof / 2.;
-  par[2] = zlen1 / 2.;
-  gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
-  par[2] = zlen2 / 2.;
-  gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
-  par[2] = zlen3 / 2.;
-  gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
+  par[0] =  xtof * 0.5;
+  par[1] =  ytof * 0.5;
+  par[2] = zlenC * 0.5;
+  gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
+  par[2] = zlenB * 0.5;
+  gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
+  par[2] = zlenA * 0.5;
+  gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
 
 
 // Positioning of modules
 
-   Float_t zcoor;
-
-   Float_t zcor1 = ztof0 - zlen1/2;
-   Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
+   Float_t zcor1 = ztof0 - zlenC*0.5;
+   Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
    Float_t zcor3 = 0.;
 
-   AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
-   AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
-   gMC->Gspos("FTO1", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
-   gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
-   zcoor = (zlen1/2.);
-   gMC->Gspos("FTO1", 1, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
-   zcoor = 0.;
-   gMC->Gspos("FTO1", 1, "BTO3", 0,  zcoor, 0, idrotm[0], "ONLY");
-   
-   gMC->Gspos("FTO2", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
-   gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
-   zcoor = -zlen2/2.;
-   gMC->Gspos("FTO2", 0, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
-
-   gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
-
-// Subtraction the distance to TOF module boundaries 
+   AliMatrix(idrotm[0], 90.,  0., 0., 0., 90,-90.);
+   AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
+   gMC->Gspos("FTOC", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOC", 1, "BTO2", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOC", 1, "BTO3", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
+
+   gMC->Gspos("FTOB", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOB", 1, "BTO2", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOB", 1, "BTO3", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY");
+
+   gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3,  0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3,  0, idrotm[0], "ONLY");
+
+  Float_t db = 0.5;//cm
+  Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
+
+  xFLT = fStripLn;
+  yFLT = ytof;
+  zFLTA = zlenA;
+  zFLTB = zlenB;
+  zFLTC = zlenC;
 
-  Float_t db = 7.;
-  Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
+  xFST = xFLT-fDeadBndX*2;//cm
 
-  xFLT = xtof -(.5 +.5)*2;
-  yFLT = ytof;
-  zFLT1 = zlen1 - db;
-  zFLT2 = zlen2 - db;
-  zFLT3 = zlen3 - db;
-    
 // Sizes of MRPC pads
 
-  Float_t yPad = 0.505; 
+  Float_t yPad = 0.505;//cm 
+  
+// Large not sensitive volumes with Insensitive Freon
+  par[0] = xFLT*0.5;
+  par[1] = yFLT*0.5;
   
-// Large not sensitive volumes with CO2 
-  par[0] = xFLT/2;
-  par[1] = yFLT/2;
-
   cout <<"************************* TOF geometry **************************"<<endl;
+  par[2] = (zFLTA *0.5);
+  gMC->Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon
+  gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
 
-  par[2] = (zFLT1 / 2.);
-  gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
-
-  par[2] = (zFLT2 / 2.);
-  gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
-
-  par[2] = (zFLT3 / 2.); 
-  gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
-
-////////// Layers before detector ////////////////////
+  par[2] = (zFLTB * 0.5);
+  gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon
+  gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
 
-// Alluminium layer in front 1.0 mm thick at the beginning
-  par[0] = -1;
-  par[1] = 0.1;
-  par[2] = -1;
+  par[2] = (zFLTC * 0.5);
+  gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon
+  gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
+////////// Layers of Aluminum before and after detector //////////
+////////// Aluminum Box for Modules (2.0 mm thickness)  /////////
+////////// lateral walls not simulated
+  par[0] = xFLT*0.5;
+  par[1] = 0.1;//cm
   ycoor = -yFLT/2 + par[1];
-  gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
-  gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
-  gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium 
-  gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-// Honeycomb layer (1cm of special polyethilene)
-  ycoor = ycoor + par[1];
-  par[0] = -1;
-  par[1] = 0.5;
-  par[2] = -1;
-  ycoor = ycoor + par[1];
-  gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
+  par[2] = (zFLTA *0.5);
+  gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium
+  gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTB *0.5);
+  gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium 
+  gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTC *0.5);
+  gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium
+  gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY");
+  
 ///////////////// Detector itself //////////////////////
-
-  const Float_t StripWidth = 7.81;//cm
-  const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip
-  const Int_t nx = 40; // number of pads along x
-  const Int_t nz = 2;  // number of pads along z
-  const Float_t Gap=4.; //cm  distance between the strip axis
-  const Float_t Space = 5.5; //cm distance from the front plate of the box
-
-  Float_t zSenStrip;
-  zSenStrip = StripWidth-2*DeadBound;//cm
-
-  par[0] = -1;
-  par[1] = yPad/2; 
-  par[2] = StripWidth/2.;
+  const Float_t  kdeadBound  =  fDeadBndZ; //cm non-sensitive between the pad edge 
+                                          //and the boundary of the strip
+  const Int_t    knx    = fNpadX;          // number of pads along x
+  const Int_t    knz    = fNpadZ;          // number of pads along z
+  const Float_t  kspace = fSpace;            //cm distance from the front plate of the box
+
+  Float_t zSenStrip  = fZpad*fNpadZ;//cm
+  Float_t stripWidth = zSenStrip + 2*kdeadBound;
+  par[0] = xFLT*0.5;
+  par[1] = yPad*0.5; 
+  par[2] = stripWidth*0.5;
   
-  // Glass Layer of detector
-  gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
+// new description for strip volume -double stack strip-
+// -- all constants are expressed in cm
+// heigth of different layers
+  const Float_t khhony = 1.      ;   // heigth of HONY  Layer
+  const Float_t khpcby = 0.15    ;   // heigth of PCB   Layer
+  const Float_t khmyly = 0.035   ;   // heigth of MYLAR Layer
+  const Float_t khgraphy = 0.02  ;   // heigth of GRAPHITE Layer
+  const Float_t khglasseiy = 0.17;   // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm)
+  const Float_t khsensmy = 0.11  ;   // heigth of Sensitive Freon Mixture
+  const Float_t kwsensmz = 2*3.5 ;   // cm
+  const Float_t klsensmx = 48*2.5;   // cm
+  const Float_t kwpadz = 3.5;   // cm z dimension of the FPAD volume
+  const Float_t klpadx = 2.5;   // cm x dimension of the FPAD volume
+  
+  // heigth of the FSTR Volume (the strip volume)
+  const Float_t khstripy = 2*khhony+3*khpcby+4*(khmyly+khgraphy+khglasseiy)+2*khsensmy;
+  // width  of the FSTR Volume (the strip volume)
+  const Float_t kwstripz = 10.;
+  // length of the FSTR Volume (the strip volume)
+  const Float_t klstripx = 122.;
+  
+  Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5};
+// coordinates of the strip center in the strip reference frame; used for positioning
+// internal strip volumes
+  Float_t posfp[3]={0.,0.,0.};   
 
-  // Freon for non-sesitive boundaries
-  par[0] = -1;
-  par[1] = 0.110/2;
-  par[2] = -1;
-  gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
-  gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
-  // Mylar for non-sesitive boundaries
-  par[1] = 0.025;
-  gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); 
-  gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY");
-
-  // Mylar for outer layers
-  par[1] = 0.035/2;
-  ycoor = -yPad/2.+par[1];
-  gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
-  gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
-  gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
-  ycoor += par[1];
+  
+  // FSTR volume definition and filling this volume with non sensitive Gas Mixture
+  gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3);
+  //-- HONY Layer definition
+//  parfp[0] = -1;
+  parfp[1] = khhony*0.5;
+//  parfp[2] = -1;
+  gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3);
+  // positioning 2 HONY Layers on FSTR volume
+
+  posfp[1]=-khstripy*0.5+parfp[1];
+  gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+
+  //-- PCB Layer definition 
+  parfp[1] = khpcby*0.5;
+  gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3);
+  // positioning 2 PCB Layers on FSTR volume
+  posfp[1]=-khstripy*0.5+khhony+parfp[1];
+  gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+  // positioning the central PCB layer
+  gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY");
+
+
+
+  //-- MYLAR Layer definition
+  parfp[1] = khmyly*0.5;
+  gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3);
+  // positioning 2 MYLAR Layers on FSTR volume
+  posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; 
+  gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+  // adding further 2 MYLAR Layers on FSTR volume
+  posfp[1] = khpcby*0.5+parfp[1];
+  gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+
+
+  //-- Graphite Layer definition
+  parfp[1] = khgraphy*0.5;
+  gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3);
+  // positioning 2 Graphite Layers on FSTR volume
+  posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1];
+  gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+  // adding further 2 Graphite Layers on FSTR volume
+  posfp[1] = khpcby*0.5+khmyly+parfp[1];
+  gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
  
-  // Graphyte layers
-  par[1] = 0.003/2;
-  ycoor += par[1];
-  gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
-  gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
-  gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
 
-  // Freon sensitive layer
-  par[0] = -1;
-  par[1] = 0.110/2.;
-  par[2] = zSenStrip/2.;
-  gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
-  gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
-  
-  // Pad definition x & z
-  gMC->Gsdvn("FLZ","FCFC", nz, 3); 
-  gMC->Gsdvn("FLX","FLZ" , nx, 1); 
+  //-- Glass (EXT. +Semi INT.) Layer definition
+  parfp[1] = khglasseiy*0.5;
+  gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3);
+  // positioning 2 Glass Layers on FSTR volume
+  posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1];
+  gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
+  // adding further 2 Glass Layers on FSTR volume
+  posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1];
+  gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
 
+  
+  //-- Sensitive Mixture Layer definition
+  parfp[0] = klsensmx*0.5;
+  parfp[1] = khsensmy*0.5;
+  parfp[2] = kwsensmz*0.5;
+  gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3);
+  gMC->Gsvolu("FNSE","BOX",idtmed[512],parfp,3);
+  // positioning 2 gas Layers on FSTR volume
+  // the upper is insensitive freon
+  // while the remaining is sensitive
+  posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1];
+  gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY");
+  gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY");
+
+  // dividing FSEN along z in knz=2 and along x in knx=48
+  gMC->Gsdvn("FSEZ","FSEN",knz,3);
+  gMC->Gsdvn("FSEX","FSEZ",knx,1);
+  
+  // FPAD volume definition
+  parfp[0] = klpadx*0.5;    
+  parfp[1] = khsensmy*0.5;
+  parfp[2] = kwpadz*0.5;
+  gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3);
+  // positioning the FPAD volumes on previous divisions
+  gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY");
+  
 ////  Positioning the Strips  (FSTR) in the FLT volumes  /////
 
-  // 3 (Central) Plate 
-  Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel
+  // Plate A (Central) 
+  
+  Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
+
+  Float_t gap  = fGapA; //cm  distance between the strip axis
   Float_t zpos = 0;
-  Float_t ang;
-  Float_t Offset;  
-  Float_t last;
-  nrot = 0;
+  Float_t ang  = 0;
   Int_t i=1,j=1;
-  zcoor=0;
-  Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip
+  nrot  = 0;
+  zcoor = 0;
+  ycoor = -14.5 + kspace ; //2 cm over front plate
+
+  AliMatrix (idrotm[0],  90.,  0.,90.,90.,0., 90.);   
+  gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
+
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  zcoor -= zSenStrip;
+  j++;
+  Int_t upDown = -1; // upDown=-1 -> Upper strip
+                     // upDown=+1 -> Lower strip
   do{
-     ang = atan(zcoor/t);
-     ang = ang*kRaddeg;
-     AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang,90.);
-     AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang,90.);
-     ycoor = -14.5+ Space; //2 cm over front plate
-     ycoor += (1-(UpDown+1)/2)*Gap;
-     gMC->Gspos("FSTR",j  ,"FLT3",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
-     gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
-     ang  = ang/kRaddeg;
-     
-     zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
-     UpDown*= -1; // Alternate strips 
-     i++;
-     j+=2;
-  } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5);
+     ang = atan(zcoor/radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang, 90.);   
+     AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
+     ang /= kRaddeg;
+     ycoor = -14.5+ kspace; //2 cm over front plate
+     ycoor += (1-(upDown+1)/2)*gap;
+     gMC->Gspos("FSTR",j  ,"FLTA",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
+     gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
+
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+     j += 2;
+     upDown*= -1; // Alternate strips 
+     zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
+             upDown*gap*TMath::Tan(ang)-
+            (zSenStrip/2)/TMath::Cos(ang);
+  } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
   
-  ycoor = -29./2.+ Space; //2 cm over front plate
+  zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
+          upDown*gap*TMath::Tan(ang)+
+          (zSenStrip/2)/TMath::Cos(ang);
+
+  gap = fGapB;
+  zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
+          upDown*gap*TMath::Tan(ang)-
+          (zSenStrip/2)/TMath::Cos(ang);
+
+  ang = atan(zcoor/radius);
+  ang *= kRaddeg;
+  AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang, 90.);   
+  AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
+  ang /= kRaddeg;
+         
+  ycoor = -14.5+ kspace; //2 cm over front plate
+  ycoor += (1-(upDown+1)/2)*gap;
+  gMC->Gspos("FSTR",j  ,"FLTA",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
+  gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  ycoor = -hTof/2.+ kspace;//2 cm over front plate
+
+  // Plate  B
 
-  // Plate  2
-  zpos = -zFLT3/2-7.;
-  ang  = atan(zpos/sqrt(2*t*t-zpos*zpos));
-  Offset = StripWidth*TMath::Cos(ang)/2;
-  zpos -= Offset;
   nrot = 0;
   i=1;
-  // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently
+  upDown = 1;
+  Float_t deadRegion = 1.0;//cm
+  
+  zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
+         upDown*gap*TMath::Tan(ang)-
+        (zSenStrip/2)/TMath::Cos(ang)-
+        deadRegion/TMath::Cos(ang);
+
+  ang = atan(zpos/radius);
+  ang *= kRaddeg;
+  AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+  ang /= kRaddeg;
+  ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
+  ycoor += (1-(upDown+1)/2)*gap;
+  zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
+  gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  i++;
+  upDown*=-1;
 
   do {
-     ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
-     ang = ang*kRaddeg;
-     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
-     ycoor = -29./2.+ Space ; //2 cm over front plate
-     ycoor += (1-(UpDown+1)/2)*Gap;
-     zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2
-     gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
-     ang  = ang/kRaddeg;
-     zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
-     last = StripWidth*TMath::Cos(ang)/2;
-     UpDown*=-1;
-     i++; 
-  } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7);
-
-  // Plate  1
-  zpos = -t+zFLT1+3.5;
-  ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
-  Offset = StripWidth*TMath::Cos(ang)/2.;
-  zpos -= Offset;
+     zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
+            upDown*gap*TMath::Tan(ang)-
+           (zSenStrip/2)/TMath::Cos(ang);
+     ang = atan(zpos/radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
+     ycoor += (1-(upDown+1)/2)*gap;
+     zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
+     gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+     upDown*=-1;
+     i++;
+  } while (TMath::Abs(ang*kRaddeg)<22.5);
+  //till we reach a tilting angle of 22.5 degrees
+
+  ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
+  zpos = zpos - zSenStrip/TMath::Cos(ang);
+
+  do {
+     ang = atan(zpos/radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     zcoor = zpos+(zFLTB/2+zFLTA/2+db);
+     gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+     zpos = zpos - zSenStrip/TMath::Cos(ang);
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+     i++;
+  }  while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
+
+  // Plate  C
+  
+  zpos = zpos + zSenStrip/TMath::Cos(ang);
+
+  zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
+         gap*TMath::Tan(ang)-
+        (zSenStrip/2)/TMath::Cos(ang);
+
   nrot = 0;
   i=0;
-  ycoor= -29./2.+Space+Gap/2;
+  ycoor= -hTof*0.5+kspace+gap;
 
- do {
-     ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
-     ang = ang*kRaddeg;
-     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
+  do {
      i++;
-     zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.);
-     gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
-     ang  = ang /kRaddeg;
-     zpos = zpos - zSenStrip/TMath::Cos(ang);
-     last = StripWidth*TMath::Cos(ang)/2.;
-  }  while (zpos>-t+7.+last);
+     ang = atan(zpos/radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
+     gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.5 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
 
-printf("#######################################################\n");
-printf("     Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
-     ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
      zpos = zpos - zSenStrip/TMath::Cos(ang);
-printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
-printf("#######################################################\n");
+  }  while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t);
 
-////////// Layers after detector /////////////////
 
-// Honeycomb layer after (3cm)
+////////// Layers after strips /////////////////
+// honeycomb (Polyethilene) Layer after (1.2cm)
 
-  Float_t OverSpace = Space + 7.3;
-///  StripWidth*TMath::Sin(ang) + 1.3;
+  Float_t overSpace = fOverSpc;//cm
 
-  par[0] = -1;
+  par[0] = xFLT*0.5;
   par[1] = 0.6;
-  par[2] = -1;
-  ycoor = -yFLT/2 + OverSpace + par[1];
-  gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTA *0.5);
+  ycoor = -yFLT/2 + overSpace + par[1];
+  gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTB *0.5);
+  gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTC *0.5);
+  gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
 
 // Electronics (Cu) after
   ycoor += par[1];
-  par[0] = -1;
-  par[1] = 1.43*0.05 / 2.; // 5% of X0
-  par[2] = -1;
+  par[0] = xFLT*0.5;
+  par[1] = 1.43*0.05*0.5; // 5% of X0
+  par[2] = (zFLTA *0.5);
   ycoor += par[1];
-  gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-// Cooling water after
+  gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTB *0.5);
+  gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTC *0.5);
+  gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+
+// cooling WAter after
   ycoor += par[1];
-  par[0] = -1;
-  par[1] = 36.1*0.02 / 2.; // 2% of X0
-  par[2] = -1;
+  par[0] = xFLT*0.5;
+  par[1] = 36.1*0.02*0.5; // 2% of X0
+  par[2] = (zFLTA *0.5);
+  ycoor += par[1];
+  gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTB *0.5);
+  gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTC *0.5);
+  gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+
+// frame of Air
+  ycoor += par[1];
+  par[0] = xFLT*0.5;
+  par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm)
+  par[2] = (zFLTA *0.5);
   ycoor += par[1];
-  gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-//back plate honycomb (2cm)
+  gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
+  gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTB *0.5);
+  gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
+  gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  par[2] = (zFLTC *0.5);
+  gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air
+  gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+/* fp
+//Back Plate honycomb (2cm)
   par[0] = -1;
-  par[1] = 2 / 2.;
+  par[1] = 2 *0.5;
   par[2] = -1;
   ycoor = yFLT/2 - par[1];
-  gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+fp */
 }
 
 //_____________________________________________________________________________
-void AliTOFv0::DrawModule()
+void AliTOFv0::DrawModule() const
 {
   //
   // Draw a shaded view of the Time Of Flight version 1
@@ -413,33 +743,29 @@ void AliTOFv0::DrawModule()
   //
   // Set the volumes visible
   gMC->Gsatt("ALIC","SEEN",0);
-  gMC->Gsatt("FBAR","SEEN",1);
-  gMC->Gsatt("FTO1","SEEN",1);
-  gMC->Gsatt("FTO2","SEEN",1);
-  gMC->Gsatt("FTO3","SEEN",1);
-  gMC->Gsatt("FBT1","SEEN",1);
-  gMC->Gsatt("FBT2","SEEN",1);
-  gMC->Gsatt("FBT3","SEEN",1);
-  gMC->Gsatt("FDT1","SEEN",1);
-  gMC->Gsatt("FDT2","SEEN",1);
-  gMC->Gsatt("FDT3","SEEN",1);
-  gMC->Gsatt("FLT1","SEEN",1);
-  gMC->Gsatt("FLT2","SEEN",1);
-  gMC->Gsatt("FLT3","SEEN",1);
-  gMC->Gsatt("FPL1","SEEN",1);
-  gMC->Gsatt("FPL2","SEEN",1);
-  gMC->Gsatt("FPL3","SEEN",1);
-  gMC->Gsatt("FLD1","SEEN",1);
-  gMC->Gsatt("FLD2","SEEN",1);
-  gMC->Gsatt("FLD3","SEEN",1);
-  gMC->Gsatt("FLZ1","SEEN",1);
-  gMC->Gsatt("FLZ2","SEEN",1);
-  gMC->Gsatt("FLZ3","SEEN",1);
-  gMC->Gsatt("FLX1","SEEN",1);
-  gMC->Gsatt("FLX2","SEEN",1);
-  gMC->Gsatt("FLX3","SEEN",1);
-  gMC->Gsatt("FPA0","SEEN",1);
-  //
+
+  gMC->Gsatt("FTOA","SEEN",1);
+  gMC->Gsatt("FTOB","SEEN",1);
+  gMC->Gsatt("FTOC","SEEN",1);
+  gMC->Gsatt("FLTA","SEEN",1);
+  gMC->Gsatt("FLTB","SEEN",1);
+  gMC->Gsatt("FLTC","SEEN",1);
+  gMC->Gsatt("FPLA","SEEN",1);
+  gMC->Gsatt("FPLB","SEEN",1);
+  gMC->Gsatt("FPLC","SEEN",1);
+  gMC->Gsatt("FSTR","SEEN",1);
+  gMC->Gsatt("FPEA","SEEN",1);
+  gMC->Gsatt("FPEB","SEEN",1);
+  gMC->Gsatt("FPEC","SEEN",1);
+  
+  gMC->Gsatt("FLZ1","SEEN",0);
+  gMC->Gsatt("FLZ2","SEEN",0);
+  gMC->Gsatt("FLZ3","SEEN",0);
+  gMC->Gsatt("FLX1","SEEN",0);
+  gMC->Gsatt("FLX2","SEEN",0);
+  gMC->Gsatt("FLX3","SEEN",0);
+  gMC->Gsatt("FPAD","SEEN",0);
+
   gMC->Gdopt("hide", "on");
   gMC->Gdopt("shad", "on");
   gMC->Gsatt("*", "fill", 7);
@@ -467,12 +793,26 @@ void AliTOFv0::Init()
   //
   // Initialise the detector after the geometry has been defined
   //
+  printf("**************************************"
+        "  TOF  "
+        "**************************************\n");
+  printf("\n   Version 0 of TOF initialing, "
+             "symmetric TOF - Full Coverage version\n");
+
   AliTOF::Init();
-  fIdFTO2=gMC->VolId("FTO2");
-  fIdFTO3=gMC->VolId("FTO3");
-  fIdFLT1=gMC->VolId("FLT1");
-  fIdFLT2=gMC->VolId("FLT2");
-  fIdFLT3=gMC->VolId("FLT3");
+
+  fIdFTOA = gMC->VolId("FTOA");
+  fIdFTOB = gMC->VolId("FTOB");
+  fIdFTOC = gMC->VolId("FTOC");
+  fIdFLTA = gMC->VolId("FLTA");
+  fIdFLTB = gMC->VolId("FLTB");
+  fIdFLTC = gMC->VolId("FLTC");
+
+  if(fDebug) {
+    printf("%s: **************************************"
+          "  TOF  "
+          "**************************************\n",ClassName());
+  }
 }
  
 //_____________________________________________________________________________
@@ -482,46 +822,90 @@ void AliTOFv0::StepManager()
   // Procedure called at each step in the Time Of Flight
   //
   TLorentzVector mom, pos;
-  Float_t hits[8];
-  Int_t vol[3];
-  Int_t copy, id, i;
-  Int_t *idtmed = fIdtmed->GetArray()-499;
-  if(gMC->GetMedium()==idtmed[514-1] && 
+  Float_t xm[3],pm[3],xpad[3],ppad[3];
+  Float_t hits[13],phi,phid,z;
+  Int_t   vol[5];
+  Int_t   sector, plate, padx, padz, strip;
+  Int_t   copy, padzid, padxid, stripid, i;
+  Int_t   *idtmed = fIdtmed->GetArray()-499;
+  Float_t incidenceAngle;
+  
+  if(gMC->GetMedium()==idtmed[513] && 
      gMC->IsTrackEntering() && gMC->TrackCharge()
-     && gMC->CurrentVolID(copy)==fIdSens) {
-    TClonesArray &lhits = *fHits;
-    //
-    // Record only charged tracks at entrance
-    gMC->CurrentVolOffID(1,copy);
-    vol[2]=copy;
-    gMC->CurrentVolOffID(3,copy);
-    vol[1]=copy;
-    id=gMC->CurrentVolOffID(8,copy);
-    vol[0]=copy;
-    if(id==fIdFTO3) {
-      vol[0]+=22;
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT3) vol[1]+=6;
-    } else if (id==fIdFTO2) {
-      vol[0]+=20;
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT2) vol[1]+=8;
-    } else {
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT1) vol[1]+=14;
-    }
+     && gMC->CurrentVolID(copy)==fIdSens) 
+  {    
+    // getting information about hit volumes
+    
+    padzid=gMC->CurrentVolOffID(2,copy);
+    padz=copy;  
+    
+    padxid=gMC->CurrentVolOffID(1,copy);
+    padx=copy;  
+    
+    stripid=gMC->CurrentVolOffID(4,copy);
+    strip=copy;  
+
     gMC->TrackPosition(pos);
     gMC->TrackMomentum(mom);
-    //
-    Double_t ptot=mom.Rho();
-    Double_t norm=1/ptot;
+
+//    Double_t NormPos=1./pos.Rho();
+    Double_t normMom=1./mom.Rho();
+
+//  getting the cohordinates in pad ref system
+    xm[0] = (Float_t)pos.X();
+    xm[1] = (Float_t)pos.Y();
+    xm[2] = (Float_t)pos.Z();
+
+    pm[0] = (Float_t)mom.X()*normMom;
+    pm[1] = (Float_t)mom.Y()*normMom;
+    pm[2] = (Float_t)mom.Z()*normMom;
+    gMC->Gmtod(xm,xpad,1);
+    gMC->Gmtod(pm,ppad,2);
+
+    incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
+
+    z = pos[2];
+
+    plate = 0;   
+    if (TMath::Abs(z) <=  fZlenA*0.5)  plate = 3;
+    if (z < (fZlenA*0.5+fZlenB) && 
+        z >  fZlenA*0.5)               plate = 4;
+    if (z >-(fZlenA*0.5+fZlenB) &&
+        z < -fZlenA*0.5)               plate = 2;
+    if (z > (fZlenA*0.5+fZlenB))       plate = 5;
+    if (z <-(fZlenA*0.5+fZlenB))       plate = 1;
+
+    phi = pos.Phi();
+    phid = phi*kRaddeg+180.;
+    sector = Int_t (phid/20.);
+    sector++;
+
     for(i=0;i<3;++i) {
-      hits[i]=pos[i];
-      hits[i+3]=mom[i]*norm;
+      hits[i]   = pos[i];
+      hits[i+3] = pm[i];
     }
-    hits[6]=ptot;
-    hits[7]=pos[3];
-    new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
+
+    hits[6] = mom.Rho();
+    hits[7] = pos[3];
+    hits[8] = xpad[0];
+    hits[9] = xpad[1];
+    hits[10]= xpad[2];
+    hits[11]= incidenceAngle;
+    hits[12]= gMC->Edep();
+    
+    vol[0]= sector;
+    vol[1]= plate;
+    vol[2]= strip;
+    vol[3]= padx;
+    vol[4]= padz;
+
+    AddHit(gAlice->CurrentTrack(),vol, hits);
   }
 }
 
+
+
+
+
+