]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TOF/AliTOFv4.cxx
Add ResetDecayTable() and SsetDecayTable() methods.
[u/mrichter/AliRoot.git] / TOF / AliTOFv4.cxx
index b7e312a3cd03bae1f58b953ddd06cbda3bda7bb0..17eb7199f8a16379f50043d05c05290f561b72ec 100644 (file)
 
 /*
 $Log$
-Revision 1.9  1999/09/29 09:24:33  fca
+Revision 1.7  2000/10/02 21:28:17  fca
+Removal of useless dependecies via forward declarations
+
+Revision 1.6  2000/05/10 16:52:18  vicinanz
+New TOF version with holes for PHOS/RICH
+
+Revision 1.4.2.1  2000/05/10 09:37:16  vicinanz
+New version with Holes for PHOS/RICH
+
+Revision 1.14  1999/11/05 22:39:06  fca
+New hits structure
+
+Revision 1.13  1999/11/02 11:26:39  fca
+added stdlib.h for exit
+
+Revision 1.12  1999/11/01 20:41:57  fca
+Added protections against using the wrong version of FRAME
+
+Revision 1.11  1999/10/22 08:04:14  fca
+Correct improper use of negative parameters
+
+Revision 1.10  1999/10/16 19:30:06  fca
+Corrected Rotation Matrix and CVS log
+
+Revision 1.9  1999/10/15 15:35:20  fca
+New version for frame1099 with and without holes
+
+Revision 1.8  1999/09/29 09:24:33  fca
 Introduction of the Copyright and cvs Log
 
 */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
-//  Time Of Flight: design of C.Williams                FCA                  //
+//  Time Of Flight: design of C.Williams                  
+//
 //  This class contains the functions for version 1 of the Time Of Flight    //
 //  detector.                                                                //
 //
-//  VERSION WITH 5 MODULES AND FLAT PLATE
+//  VERSION WITH 5 MODULES AND TILTED STRIP
 //  
-//   WITH HOLES FOR PHOS AND HMPID inside the 
-//   SPACE FRAME WITH HOLES
+//   FULL COVERAGE VERSION
 //
 //   Authors:
 //
 //   Alessio Seganti
-//   Domenico Vicinanza 
+//   Domenico Vicinanza
 //
 //   University of Salerno - Italy
 //
@@ -47,9 +74,19 @@ Introduction of the Copyright and cvs Log
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
+#include <iostream.h>
+#include <stdlib.h>
+
 #include "AliTOFv4.h"
+#include "TBRIK.h"
+#include "TGeometry.h"
+#include "TNode.h"
+#include <TLorentzVector.h>
+#include "TObject.h"
 #include "AliRun.h"
+#include "AliMC.h"
 #include "AliConst.h"
+
  
 ClassImp(AliTOFv4)
  
@@ -63,12 +100,108 @@ AliTOFv4::AliTOFv4()
  
 //_____________________________________________________________________________
 AliTOFv4::AliTOFv4(const char *name, const char *title)
-       : AliTOF(name,title)
+        : AliTOF(name,title)
 {
   //
   // Standard constructor
   //
+  //
+  // Check that FRAME is there otherwise we have no place where to
+  // put TOF
+  AliModule* FRAME=gAlice->GetModule("FRAME");
+  if(!FRAME) {
+    Error("Ctor","TOF needs FRAME to be present\n");
+    exit(1);
+  } else
+    if(FRAME->IsVersion()!=1) {
+      Error("Ctor","FRAME version 1 needed with this version of TOF\n");
+      exit(1);
+    }
+}
+
+//_____________________________________________________________________________
+void AliTOFv4::BuildGeometry()
+{
+  //
+  // Build TOF ROOT geometry for the ALICE event display
+  //
+  TNode *Node, *Top;
+  const int kColorTOF  = 27;
+
+  // Find top TNODE
+  Top = gAlice->GetGeometry()->GetNode("alice");
+
+  // Position the different copies
+  const Float_t rTof  =(fRmax+fRmin)/2;
+  const Float_t hTof  = fRmax-fRmin;
+  const Int_t   fNTof = 18;
+  const Float_t kPi   = TMath::Pi();
+  const Float_t angle = 2*kPi/fNTof;
+  Float_t ang;
+
+  // Define TOF basic volume
+  
+  char NodeName0[6], NodeName1[6], NodeName2[6]; 
+  char NodeName3[6], NodeName4[6], RotMatNum[6];
+
+  new TBRIK("S_TOF_C","TOF box","void",
+            120*0.5,hTof*0.5,fZlenC*0.5);
+  new TBRIK("S_TOF_B","TOF box","void",
+            120*0.5,hTof*0.5,fZlenB*0.5);
+  new TBRIK("S_TOF_A","TOF box","void",
+            120*0.5,hTof*0.5,fZlenA*0.5);
+
+  for (Int_t NodeNum=1;NodeNum<19;NodeNum++){
+     
+      if (NodeNum<10) {
+           sprintf(RotMatNum,"rot50%i",NodeNum);
+           sprintf(NodeName0,"FTO00%i",NodeNum);
+           sprintf(NodeName1,"FTO10%i",NodeNum);
+           sprintf(NodeName2,"FTO20%i",NodeNum);
+           sprintf(NodeName3,"FTO30%i",NodeNum);
+           sprintf(NodeName4,"FTO40%i",NodeNum);
+      }
+      if (NodeNum>9) {
+           sprintf(RotMatNum,"rot5%i",NodeNum);
+           sprintf(NodeName0,"FTO0%i",NodeNum);
+           sprintf(NodeName1,"FTO1%i",NodeNum);
+           sprintf(NodeName2,"FTO2%i",NodeNum);
+           sprintf(NodeName3,"FTO3%i",NodeNum);
+           sprintf(NodeName4,"FTO4%i",NodeNum);
+      }
+      new TRotMatrix(RotMatNum,RotMatNum,90,-20*NodeNum,90,90-20*NodeNum,0,0);
+      ang = (4.5-NodeNum) * angle;
+
+      Top->cd();
+      Node = new TNode(NodeName0,NodeName0,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),299.15,RotMatNum);
+      Node->SetLineColor(kColorTOF);
+      fNodes->Add(Node); 
+
+      Top->cd(); 
+      Node = new TNode(NodeName1,NodeName1,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-299.15,RotMatNum);
+      Node->SetLineColor(kColorTOF);
+      fNodes->Add(Node); 
+
+      Top->cd();
+      Node = new TNode(NodeName2,NodeName2,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),146.45,RotMatNum);
+      Node->SetLineColor(kColorTOF);
+      fNodes->Add(Node); 
+
+      Top->cd();
+      Node = new TNode(NodeName3,NodeName3,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-146.45,RotMatNum);
+      Node->SetLineColor(kColorTOF);
+      fNodes->Add(Node); 
+
+      Top->cd();
+      Node = new TNode(NodeName4,NodeName4,"S_TOF_A",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),0.,RotMatNum);
+      Node->SetLineColor(kColorTOF);
+      fNodes->Add(Node); 
+  }
 }
+
+
  
 //_____________________________________________________________________________
 void AliTOFv4::CreateGeometry()
@@ -88,220 +221,398 @@ void AliTOFv4::CreateGeometry()
 }
  
 //_____________________________________________________________________________
-void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
-                    Float_t zlen2, Float_t zlen3, Float_t ztof0)
+void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
+                    Float_t zlenB, Float_t zlenA, Float_t ztof0)
 {
   //
   // Definition of the Time Of Fligh Resistive Plate Chambers
   // xFLT, yFLT, zFLT - sizes of TOF modules (large)
   
-  Int_t idrotm[100];
   Float_t  ycoor, zcoor;
-  Float_t par[10];
-  Float_t yFREON, xp, yp, zp;
+  Float_t  par[10];
+  Int_t    *idtmed = fIdtmed->GetArray()-499;
+  Int_t    idrotm[100];
+  Int_t    nrot = 0;
+  Float_t  hTof = fRmax-fRmin;
   
-  Int_t *idtmed = fIdtmed->GetArray()-499;
+  Float_t Radius = fRmin+2.;//cm
 
-  par[0] =  xtof / 2.;
-  par[1] =  ytof / 2.;
-  par[2] = zlen1 / 2.;
-  gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
-  par[2] = zlen2 / 2.;
-  gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
-  par[2] = zlen3 / 2.;
-  gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
+  par[0] =  xtof * 0.5;
+  par[1] =  ytof * 0.5;
+  par[2] = zlenC * 0.5;
+  gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
+  par[2] = zlenB * 0.5;
+  gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
+  par[2] = zlenA * 0.5;
+  gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
 
 
 // Positioning of modules
 
-   Float_t zcor1 = ztof0 - zlen1/2;
-   Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
+   Float_t zcor1 = ztof0 - zlenC*0.5;
+   Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
    Float_t zcor3 = 0.;
 
-   AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
-   AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
-   gMC->Gspos("FTO1", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
-   gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
-   zcoor = (zlen1/2.);
-   gMC->Gspos("FTO1", 1, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
-   zcoor = 0.;
-   gMC->Gspos("FTO1", 1, "BTO3", 0,  zcoor, 0, idrotm[0], "ONLY");
-   
-   gMC->Gspos("FTO2", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
-   gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
-   zcoor = -zlen2/2.;
-   gMC->Gspos("FTO2", 0, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
-
-   gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
-
-// Subtraction the distance to TOF module boundaries 
-
-  Float_t db = 7.;
-  Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
-
-  xFLT = xtof -(.5 +.5)*2;
+   AliMatrix(idrotm[0], 90.,  0., 0., 0., 90,-90.);
+   AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
+   gMC->Gspos("FTOC", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOC", 1, "BTO2", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOC", 1, "BTO3", 0,  zcor1, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
+
+   gMC->Gspos("FTOB", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOB", 1, "BTO2", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
+   gMC->Gspos("FTOB", 1, "BTO3", 0,  zcor2, 0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY");
+
+   gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3,  0, idrotm[0], "ONLY");
+   gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3,  0, idrotm[0], "ONLY");
+
+  Float_t db = 0.5;//cm
+  Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
+
+  xFLT = fStripLn;
   yFLT = ytof;
-  zFLT1 = zlen1 - db;
-  zFLT2 = zlen2 - db;
-  zFLT3 = zlen3 - db;
-  
+  zFLTA = zlenA;
+  zFLTB = zlenB;
+  zFLTC = zlenC;
 
-  
-// freon gaps in MRPC chamber 
-  yFREON = .11; //cm
+  xFST = xFLT-fDeadBndX*2;//cm
 
 // Sizes of MRPC pads
 
-  xp = 3.0; 
-  yp = 12.3*0.05; // 5% X0 of glass 
-  zp = 3.0;
-
-//  Subtraction of dead boundaries in X=2 cm and Z=7/2 cm 
-
-cout <<"************************* TOF geometry **************************"<<endl;
-
-  Int_t nz1, nz2, nz3, nx; //- numbers of pixels
-  nx = Int_t (xFLT/xp);
+  Float_t yPad = 0.505;//cm 
+  
+// Large not sensitive volumes with CO2 
+  par[0] = xFLT*0.5;
+  par[1] = yFLT*0.5;
 
-  printf("Number of pixel along x axis = %i",nx);
+  cout <<"************************* TOF geometry **************************"<<endl;
 
-  par[0] = xFLT/2;
-  par[1] = yFLT/2;
-  par[2] = (zFLT1 / 2.);
-  nz1 = Int_t (par[2]*2/zp);
-  gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
-  printf("Number of pixel along z axis (module 1) = %i",nz1);
+  par[2] = (zFLTA *0.5);
+  gMC->Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // CO2
+  gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
 
-  par[2] = (zFLT2 / 2.);
-  nz2 = Int_t (par[2]*2/zp);
-  gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
-  printf("Number of pixel along z axis (module 2) = %i",nz2);
+  par[2] = (zFLTB * 0.5);
+  gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // CO2
+  gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
 
-  par[2] = (zFLT3 / 2.); 
-  nz3 = Int_t (par[2]*2/zp);
-  gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
-  gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
-  printf("Number of pixel along z axis (module 3) = %i",nz3);
+  par[2] = (zFLTC * 0.5); 
+  gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // CO2
+  gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
 
 ////////// Layers before detector ////////////////////
 
-// Alluminium layer in front 1.0 mm thick at the beginning
+// MYlar layer in front 1.0 mm thick at the beginning
   par[0] = -1;
-  par[1] = 0.1;
+  par[1] = 0.1;//cm
   par[2] = -1;
   ycoor = -yFLT/2 + par[1];
-  gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
-  gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
-  gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium 
-  gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-// Honeycomb layer (1cm of special polyethilene)
+  gMC->Gsvolu("FMYA", "BOX ", idtmed[508], par, 3); // Alluminium
+  gMC->Gspos ("FMYA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FMYB", "BOX ", idtmed[508], par, 3); // Alluminium
+  gMC->Gspos ("FMYB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FMYC", "BOX ", idtmed[508], par, 3); // Alluminium 
+  gMC->Gspos ("FMYC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+
+// honeycomb (special Polyethilene Layer of 1cm)
   ycoor = ycoor + par[1];
   par[0] = -1;
-  par[1] = 0.5;
+  par[1] = 0.5;//cm
   par[2] = -1;
   ycoor = ycoor + par[1];
-  gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FPLA", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPLA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FPLB", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPLB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FPLC", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPLC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
 
 ///////////////// Detector itself //////////////////////
 
-  const Float_t SpaceBefore=2.; // Space Beetween detector &  Front Panel
+  const Float_t  DeadBound  =  fDeadBndZ; //cm non-sensitive between the pad edge 
+                                          //and the boundary of the strip
+  const Int_t    nx    = fNpadX;          // number of pads along x
+  const Int_t    nz    = fNpadZ;          // number of pads along z
+  const Float_t  Space = fSpace;            //cm distance from the front plate of the box
 
-  par[0] = -1;
-  par[1] = yp/2; // 5 %X0 thick of glass  
+  Float_t zSenStrip  = fZpad*fNpadZ;//cm
+  Float_t StripWidth = zSenStrip + 2*DeadBound;
+
+  par[0] = xFLT*0.5;
+  par[1] = yPad*0.5; 
+  par[2] = StripWidth*0.5;
+  
+  // glass layer of detector STRip
+  gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
+
+  // Non-Sesitive Freon boundaries
+  par[0] =  xFLT*0.5;
+  par[1] =  0.110*0.5;//cm
   par[2] = -1;
-  ycoor = -yFLT/2 + SpaceBefore;
-  gMC->Gsvolu("FLD1", "BOX ", idtmed[514], par, 3); // Glass
-  gMC->Gspos("FLD1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FLD2", "BOX ", idtmed[514], par, 3); // Glass
-  gMC->Gspos("FLD2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FLD3", "BOX ", idtmed[514], par, 3); // Glass
-  gMC->Gspos("FLD3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-  gMC->Gsdvn("FLZ1", "FLD1", nz1, 3); //pixel size xp=zp=3
-  gMC->Gsdvn("FLZ2", "FLD2", nz2, 3); 
-  gMC->Gsdvn("FLZ3", "FLD3", nz3, 3); 
-  gMC->Gsdvn("FLX1", "FLZ1", nx, 1);
-  gMC->Gsdvn("FLX2", "FLZ2", nx, 1); 
-  gMC->Gsdvn("FLX3", "FLZ3", nx, 1); 
-
-// MRPC pixel itself 
-  par[0] = -1;//xp/2;
-  par[1] = -1;//yp/2; // 5 %X0 thick of glass  
-  par[2] = -1;//zp/2;
-  gMC->Gsvolu("FPA0", "BOX ", idtmed[514], par, 3);// Glass
-  gMC->Gspos("FPA0", 1, "FLX1", 0., 0., 0., 0, "ONLY");
-  gMC->Gspos("FPA0", 2, "FLX2", 0., 0., 0., 0, "ONLY");
-  gMC->Gspos("FPA0", 3, "FLX3", 0., 0., 0., 0, "ONLY");
-
-// Freon gas sencitive vol.ume
+  gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
+  gMC->Gspos ("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
+
+  // MYlar for Internal non-sesitive boundaries
+//  par[1] = 0.025;//cm
+//  gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); 
+//  gMC->Gspos ("FMYI",0,"FNSF",0.,0.,0.,0,"MANY");
+
+  // MYlar eXternal layers
+  par[1] = 0.035*0.5;//cm
+  ycoor = -yPad*0.5+par[1];
+  gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
+  gMC->Gspos ("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
+  gMC->Gspos ("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
+  ycoor += par[1];
+  // GRaphyte Layers
+  par[1] = 0.003*0.5;
+  ycoor += par[1];
+  gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
+  gMC->Gspos ("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
+  gMC->Gspos ("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
+
+  // freon sensitive layer (Chlorine-Fluorine-Carbon)
+  par[0] = xFST*0.5;
+  par[1] =  0.110*0.5;
+  par[2] = zSenStrip*0.5;
+  gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
+  gMC->Gspos ("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
+  
+  // Pad definition x & z
+  gMC->Gsdvn("FLZ","FCFC", nz, 3); 
+  gMC->Gsdvn("FLX","FLZ" , nx, 1); 
+
+  // MRPC PAD itself 
   par[0] = -1;
-  par[1] = yFREON/2;
+  par[1] = -1; 
   par[2] = -1;
-  gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);// Freon 
-  gMC->Gspos("FPAD", 0, "FPA0", 0., 0., 0., 0, "ONLY");
+  gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);
+  gMC->Gspos ("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY");
 
-////////// Layers after detector ////////////////////
+////  Positioning the Strips  (FSTR) in the FLT volumes  /////
 
-  const Float_t SpaceAfter = 6.; //Space beetween detector & Back Panel
+  // Plate A (Central) 
+  
+  Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
+
+  Float_t Gap  = fGapA; //cm  distance between the strip axis
+  Float_t zpos = 0;
+  Float_t ang  = 0;
+  Int_t i=1,j=1;
+  nrot  = 0;
+  zcoor = 0;
+  ycoor = -14.5 + Space ; //2 cm over front plate
+
+  AliMatrix (idrotm[0],  90.,  0.,90.,90.,0., 90.);   
+  gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
+
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  zcoor -= zSenStrip;
+  j++;
+  Int_t UpDown = -1; // UpDown=-1 -> Upper strip
+                     // UpDown=+1 -> Lower strip
+  do{
+     ang = atan(zcoor/Radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang, 90.);   
+     AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
+     ang /= kRaddeg;
+     ycoor = -14.5+ Space; //2 cm over front plate
+     ycoor += (1-(UpDown+1)/2)*Gap;
+     gMC->Gspos("FSTR",j  ,"FLTA",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
+     gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
+
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+     j += 2;
+     UpDown*= -1; // Alternate strips 
+     zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
+             UpDown*Gap*TMath::Tan(ang)-
+            (zSenStrip/2)/TMath::Cos(ang);
+  } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
+  
+  zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
+          UpDown*Gap*TMath::Tan(ang)+
+          (zSenStrip/2)/TMath::Cos(ang);
+
+  Gap = fGapB;
+  zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
+          UpDown*Gap*TMath::Tan(ang)-
+          (zSenStrip/2)/TMath::Cos(ang);
+
+  ang = atan(zcoor/Radius);
+  ang *= kRaddeg;
+  AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang, 90.);   
+  AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
+  ang /= kRaddeg;
+         
+  ycoor = -14.5+ Space; //2 cm over front plate
+  ycoor += (1-(UpDown+1)/2)*Gap;
+  gMC->Gspos("FSTR",j  ,"FLTA",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
+  gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
+
+     printf("%f,  St. %2i, Pl.3 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  ycoor = -hTof/2.+ Space;//2 cm over front plate
+
+  // Plate  B
+
+  nrot = 0;
+  i=1;
+  UpDown = 1;
+  Float_t DeadRegion = 1.0;//cm
   
-// Honeycomb layer after (3cm)
+  zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
+         UpDown*Gap*TMath::Tan(ang)-
+        (zSenStrip/2)/TMath::Cos(ang)-
+        DeadRegion/TMath::Cos(ang);
+
+  ang = atan(zpos/Radius);
+  ang *= kRaddeg;
+  AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+  ang /= kRaddeg;
+  ycoor = -hTof*0.5+ Space ; //2 cm over front plate
+  ycoor += (1-(UpDown+1)/2)*Gap;
+  zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
+  gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+  i++;
+  UpDown*=-1;
+
+  do {
+     zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
+            UpDown*Gap*TMath::Tan(ang)-
+           (zSenStrip/2)/TMath::Cos(ang);
+     ang = atan(zpos/Radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     ycoor = -hTof*0.5+ Space ; //2 cm over front plate
+     ycoor += (1-(UpDown+1)/2)*Gap;
+     zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
+     gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+     UpDown*=-1;
+     i++;
+  } while (TMath::Abs(ang*kRaddeg)<22.5);
+  //till we reach a tilting angle of 22.5 degrees
+
+  ycoor = -hTof*0.5+ Space ; //2 cm over front plate
+  zpos = zpos - zSenStrip/TMath::Cos(ang);
+
+  do {
+     ang = atan(zpos/Radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     zcoor = zpos+(zFLTB/2+zFLTA/2+db);
+     gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+     zpos = zpos - zSenStrip/TMath::Cos(ang);
+     printf("%f,  St. %2i, Pl.4 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+     i++;
+
+  }  while (zpos-StripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
+
+  // Plate  C
+  
+  zpos = zpos + zSenStrip/TMath::Cos(ang);
+
+  zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
+         Gap*TMath::Tan(ang)-
+        (zSenStrip/2)/TMath::Cos(ang);
+
+  nrot = 0;
+  i=0;
+  ycoor= -hTof*0.5+Space+Gap;
+
+  do {
+     i++;
+     ang = atan(zpos/Radius);
+     ang *= kRaddeg;
+     AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
+     ang /= kRaddeg;
+     zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
+     gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
+
+     printf("%f,  St. %2i, Pl.5 ",ang*kRaddeg,i); 
+     printf("y = %f,  z = %f, zpos = %f \n",ycoor,zcoor,zpos);
+
+     zpos = zpos - zSenStrip/TMath::Cos(ang);
+  }  while (zpos-StripWidth*TMath::Cos(ang)*0.5>-t);
+
+
+////////// Layers after detector /////////////////
+
+// honeycomb (Polyethilene) Layer after (3cm)
+
+  Float_t OverSpace = fOverSpc;//cm
+
   par[0] = -1;
   par[1] = 0.6;
   par[2] = -1;
-  ycoor = -yFLT/2 + SpaceAfter - par[1];
-  gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
+  ycoor = -yFLT/2 + OverSpace + par[1];
+  gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
 
 // Electronics (Cu) after
+  ycoor += par[1];
   par[0] = -1;
-  par[1] = 1.43*0.05 / 2.; // 5% of X0
+  par[1] = 1.43*0.05*0.5; // 5% of X0
   par[2] = -1;
-  ycoor = -yFLT/2 + SpaceAfter +par[1];
-  gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
-  gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-// Cooling water after
-  ycoor = ycoor+par[1];
+  ycoor += par[1];
+  gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
+  gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+
+// cooling WAter after
+  ycoor += par[1];
   par[0] = -1;
-  par[1] = 36.1*0.02 / 2.; // 2% of X0
+  par[1] = 36.1*0.02*0.5; // 2% of X0
   par[2] = -1;
-  ycoor = ycoor+par[1];
-  gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
-  gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
-
-//back plate honycomb (2cm)
+  ycoor += par[1];
+  gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
+  gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
+
+//Back Plate honycomb (2cm)
   par[0] = -1;
-  par[1] = 1.;
+  par[1] = 2 *0.5;
   par[2] = -1;
   ycoor = yFLT/2 - par[1];
-  gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
-  gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
-  gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
+  gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
+  gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
 }
 
 //_____________________________________________________________________________
@@ -318,33 +629,29 @@ void AliTOFv4::DrawModule()
   //
   // Set the volumes visible
   gMC->Gsatt("ALIC","SEEN",0);
-  gMC->Gsatt("FBAR","SEEN",1);
-  gMC->Gsatt("FTO1","SEEN",1);
-  gMC->Gsatt("FTO2","SEEN",1);
-  gMC->Gsatt("FTO3","SEEN",1);
-  gMC->Gsatt("FBT1","SEEN",1);
-  gMC->Gsatt("FBT2","SEEN",1);
-  gMC->Gsatt("FBT3","SEEN",1);
-  gMC->Gsatt("FDT1","SEEN",1);
-  gMC->Gsatt("FDT2","SEEN",1);
-  gMC->Gsatt("FDT3","SEEN",1);
-  gMC->Gsatt("FLT1","SEEN",1);
-  gMC->Gsatt("FLT2","SEEN",1);
-  gMC->Gsatt("FLT3","SEEN",1);
-  gMC->Gsatt("FPL1","SEEN",1);
-  gMC->Gsatt("FPL2","SEEN",1);
-  gMC->Gsatt("FPL3","SEEN",1);
-  gMC->Gsatt("FLD1","SEEN",1);
-  gMC->Gsatt("FLD2","SEEN",1);
-  gMC->Gsatt("FLD3","SEEN",1);
-  gMC->Gsatt("FLZ1","SEEN",1);
-  gMC->Gsatt("FLZ2","SEEN",1);
-  gMC->Gsatt("FLZ3","SEEN",1);
-  gMC->Gsatt("FLX1","SEEN",1);
-  gMC->Gsatt("FLX2","SEEN",1);
-  gMC->Gsatt("FLX3","SEEN",1);
-  gMC->Gsatt("FPA0","SEEN",1);
-  //
+
+  gMC->Gsatt("FTOA","SEEN",1);
+  gMC->Gsatt("FTOB","SEEN",1);
+  gMC->Gsatt("FTOC","SEEN",1);
+  gMC->Gsatt("FLTA","SEEN",1);
+  gMC->Gsatt("FLTB","SEEN",1);
+  gMC->Gsatt("FLTC","SEEN",1);
+  gMC->Gsatt("FPLA","SEEN",1);
+  gMC->Gsatt("FPLB","SEEN",1);
+  gMC->Gsatt("FPLC","SEEN",1);
+  gMC->Gsatt("FSTR","SEEN",1);
+  gMC->Gsatt("FPEA","SEEN",1);
+  gMC->Gsatt("FPEB","SEEN",1);
+  gMC->Gsatt("FPEC","SEEN",1);
+  
+  gMC->Gsatt("FLZ1","SEEN",0);
+  gMC->Gsatt("FLZ2","SEEN",0);
+  gMC->Gsatt("FLZ3","SEEN",0);
+  gMC->Gsatt("FLX1","SEEN",0);
+  gMC->Gsatt("FLX2","SEEN",0);
+  gMC->Gsatt("FLX3","SEEN",0);
+  gMC->Gsatt("FPAD","SEEN",0);
+
   gMC->Gdopt("hide", "on");
   gMC->Gdopt("shad", "on");
   gMC->Gsatt("*", "fill", 7);
@@ -372,12 +679,24 @@ void AliTOFv4::Init()
   //
   // Initialise the detector after the geometry has been defined
   //
+  printf("**************************************"
+        "  TOF  "
+        "**************************************\n");
+  printf("\n   Version 4 of TOF initialing, "
+             "symmetric TOF - Full Coverage version\n");
+
   AliTOF::Init();
-  fIdFTO2=gMC->VolId("FTO2");
-  fIdFTO3=gMC->VolId("FTO3");
-  fIdFLT1=gMC->VolId("FLT1");
-  fIdFLT2=gMC->VolId("FLT2");
-  fIdFLT3=gMC->VolId("FLT3");
+
+  fIdFTOA = gMC->VolId("FTOA");
+  fIdFTOB = gMC->VolId("FTOB");
+  fIdFTOC = gMC->VolId("FTOC");
+  fIdFLTA = gMC->VolId("FLTA");
+  fIdFLTB = gMC->VolId("FLTB");
+  fIdFLTC = gMC->VolId("FLTC");
+
+  printf("**************************************"
+        "  TOF  "
+        "**************************************\n");
 }
  
 //_____________________________________________________________________________
@@ -387,46 +706,84 @@ void AliTOFv4::StepManager()
   // Procedure called at each step in the Time Of Flight
   //
   TLorentzVector mom, pos;
-  Float_t hits[8];
-  Int_t vol[3];
-  Int_t copy, id, i;
-  Int_t *idtmed = fIdtmed->GetArray()-499;
-  if(gMC->GetMedium()==idtmed[514-1] && 
+  Float_t xm[3],pm[3],xpad[3],ppad[3];
+  Float_t hits[13],phi,phid,z;
+  Int_t   vol[5];
+  Int_t   sector, plate, pad_x, pad_z, strip;
+  Int_t   copy, pad_z_id, pad_x_id, strip_id, i;
+  Int_t   *idtmed = fIdtmed->GetArray()-499;
+  Float_t IncidenceAngle;
+  
+  if(gMC->GetMedium()==idtmed[513] && 
      gMC->IsTrackEntering() && gMC->TrackCharge()
-     && gMC->CurrentVolID(copy)==fIdSens) {
-    TClonesArray &lhits = *fHits;
-    //
-    // Record only charged tracks at entrance
-    gMC->CurrentVolOffID(1,copy);
-    vol[2]=copy;
-    gMC->CurrentVolOffID(3,copy);
-    vol[1]=copy;
-    id=gMC->CurrentVolOffID(8,copy);
-    vol[0]=copy;
-    if(id==fIdFTO3) {
-      vol[0]+=22;
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT3) vol[1]+=6;
-    } else if (id==fIdFTO2) {
-      vol[0]+=20;
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT2) vol[1]+=8;
-    } else {
-      id=gMC->CurrentVolOffID(5,copy);
-      if(id==fIdFLT1) vol[1]+=14;
-    }
+     && gMC->CurrentVolID(copy)==fIdSens) 
+  {    
+    // getting information about hit volumes
+    
+    pad_z_id=gMC->CurrentVolOffID(2,copy);
+    pad_z=copy;  
+    
+    pad_x_id=gMC->CurrentVolOffID(1,copy);
+    pad_x=copy;  
+    
+    strip_id=gMC->CurrentVolOffID(5,copy);
+    strip=copy;  
+
     gMC->TrackPosition(pos);
     gMC->TrackMomentum(mom);
-    //
-    Double_t ptot=mom.Rho();
-    Double_t norm=1/ptot;
+
+//    Double_t NormPos=1./pos.Rho();
+    Double_t NormMom=1./mom.Rho();
+
+//  getting the cohordinates in pad ref system
+    xm[0] = (Float_t)pos.X();
+    xm[1] = (Float_t)pos.Y();
+    xm[2] = (Float_t)pos.Z();
+
+    pm[0] = (Float_t)mom.X()*NormMom;
+    pm[1] = (Float_t)mom.Y()*NormMom;
+    pm[2] = (Float_t)mom.Z()*NormMom;
+    gMC->Gmtod(xm,xpad,1);
+    gMC->Gmtod(pm,ppad,2);
+
+    IncidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
+
+    z = pos[2];
+
+    plate = 0;   
+    if (TMath::Abs(z) <=  fZlenA*0.5)  plate = 3;
+    if (z < (fZlenA*0.5+fZlenB) && 
+        z >  fZlenA*0.5)               plate = 4;
+    if (z >-(fZlenA*0.5+fZlenB) &&
+        z < -fZlenA*0.5)               plate = 2;
+    if (z > (fZlenA*0.5+fZlenB))       plate = 5;
+    if (z <-(fZlenA*0.5+fZlenB))       plate = 1;
+
+    phi = pos.Phi();
+    phid = phi*kRaddeg+180.;
+    sector = Int_t (phid/20.);
+    sector++;
+
     for(i=0;i<3;++i) {
-      hits[i]=pos[i];
-      hits[i+3]=mom[i]*norm;
+      hits[i]   = pos[i];
+      hits[i+3] = pm[i];
     }
-    hits[6]=ptot;
-    hits[7]=pos[3];
-    new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
+
+    hits[6] = mom.Rho();
+    hits[7] = pos[3];
+    hits[8] = xpad[0];
+    hits[9] = xpad[1];
+    hits[10]= xpad[2];
+    hits[11]= IncidenceAngle;
+    hits[12]= gMC->Edep();
+    
+    vol[0]= sector;
+    vol[1]= plate;
+    vol[2]= strip;
+    vol[3]= pad_x;
+    vol[4]= pad_z;
+    
+    AddHit(gAlice->CurrentTrack(),vol, hits);
   }
 }
-