]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TPC/AliTPCCorrection.cxx
modified classdefs
[u/mrichter/AliRoot.git] / TPC / AliTPCCorrection.cxx
index 2ba9416d1bd9fc3e6f86e37c856f874bc41df1d6..1e0df2523bb390d6e271a6bd74bfc2626aa4a611 100644 (file)
 #include <AliCDBStorage.h>
 #include <AliCDBId.h>
 #include <AliCDBMetaData.h>
+#include  "TVectorD.h"
+
+
+#include "TRandom.h"
+#include "AliExternalTrackParam.h"
+#include "AliTrackPointArray.h"
+#include "TDatabasePDG.h"
+#include "AliTrackerBase.h"
+#include "AliTPCROC.h"
+#include "THnSparse.h"
+
+#include "TRandom.h"
+#include "AliTPCTransform.h"
+#include "AliTPCcalibDB.h"
+#include "AliTPCExB.h"
+#include "AliTPCCorrection.h"
+#include "AliTPCRecoParam.h"
 
 #include  "AliExternalTrackParam.h"
 #include  "AliTrackPointArray.h"
 #include  "TDatabasePDG.h"
 #include  "AliTrackerBase.h"
 #include  "AliTPCROC.h"
+#include  "THnSparse.h"
 
+#include  "AliTPCLaserTrack.h"
 
 #include "AliTPCCorrection.h"
+#include "AliLog.h"
 
 ClassImp(AliTPCCorrection)
 
 // FIXME: the following values should come from the database
-const Double_t AliTPCCorrection::fgkTPC_Z0   =249.7;     // nominal gating grid position 
+const Double_t AliTPCCorrection::fgkTPCZ0    =249.7;     // nominal gating grid position 
 const Double_t AliTPCCorrection::fgkIFCRadius= 83.06;    // Mean Radius of the Inner Field Cage ( 82.43 min,  83.70 max) (cm)
 const Double_t AliTPCCorrection::fgkOFCRadius=254.5;     // Mean Radius of the Outer Field Cage (252.55 min, 256.45 max) (cm)
 const Double_t AliTPCCorrection::fgkZOffSet  = 0.2;      // Offset from CE: calculate all distortions closer to CE as if at this point
@@ -116,7 +136,7 @@ const Double_t AliTPCCorrection::fgkZList[AliTPCCorrection::kNZ]     =   {
 
 
 AliTPCCorrection::AliTPCCorrection() 
-  : TNamed("correction_unity","unity"),fJLow(0),fKLow(0)
+  : TNamed("correction_unity","unity"),fJLow(0),fKLow(0), fT1(1), fT2(1)
 {
   //
   // default constructor
@@ -124,7 +144,7 @@ AliTPCCorrection::AliTPCCorrection()
 }
 
 AliTPCCorrection::AliTPCCorrection(const char *name,const char *title)
-  : TNamed(name,title),fJLow(0),fKLow(0)
+: TNamed(name,title),fJLow(0),fKLow(0), fT1(1), fT2(1)
 {
   //
   // default constructor, that set the name and title
@@ -220,13 +240,15 @@ void AliTPCCorrection::Print(Option_t* /*option*/) const {
   printf("TPC spacepoint correction: \"%s\"\n",GetTitle());
 }
 
-void AliTPCCorrection:: SetOmegaTauT1T2(Float_t /*omegaTau*/,Float_t /*t1*/,Float_t /*t2*/) {
+void AliTPCCorrection:: SetOmegaTauT1T2(Float_t /*omegaTau*/,Float_t t1,Float_t t2) {
   //
   // Virtual funtion to pass the wt values (might become event dependent) to the inherited classes
   // t1 and t2 represent the "effective omegaTau" corrections and were measured in a dedicated
   // calibration run
   //
-  // SetOmegaTauT1T2(omegaTau, t1, t2);
+  fT1=t1;
+  fT2=t2;
+  //SetOmegaTauT1T2(omegaTau, t1, t2);
 }
 
 TH2F* AliTPCCorrection::CreateHistoDRinXY(Float_t z,Int_t nx,Int_t ny) {
@@ -318,7 +340,6 @@ TH2F* AliTPCCorrection::CreateHistoDRinZR(Float_t phi,Int_t nz,Int_t nr) {
       h->SetBinContent(iz,ir,r1-r0);
     }
   }
-  printf("SDF\n");
   return h;
 
 }
@@ -387,12 +408,11 @@ TH2F* AliTPCCorrection::CreateTH2F(const char *name,const char *title,
 // Simple Interpolation functions: e.g. with bi(tri)cubic interpolations (not yet in TH2 and TH3)
 
 void AliTPCCorrection::Interpolate2DEdistortion( const Int_t order, const Double_t r, const Double_t z, 
-                                                 const Double_t er[kNZ][kNR], Double_t &er_value )
-{
+                                                 const Double_t er[kNZ][kNR], Double_t &erValue ) {
   //
   // Interpolate table - 2D interpolation
   //
-  Double_t save_er[10] ;
+  Double_t saveEr[10] ;
 
   Search( kNZ,   fgkZList,  z,   fJLow   ) ;
   Search( kNR,   fgkRList,  r,   fKLow   ) ;
@@ -402,16 +422,15 @@ void AliTPCCorrection::Interpolate2DEdistortion( const Int_t order, const Double
   if ( fKLow + order  >=    kNR - 1 ) fKLow =   kNR - 1 - order ;
 
   for ( Int_t j = fJLow ; j < fJLow + order + 1 ; j++ ) {
-      save_er[j-fJLow]     = Interpolate( &fgkRList[fKLow], &er[j][fKLow], order, r )   ;
+      saveEr[j-fJLow]     = Interpolate( &fgkRList[fKLow], &er[j][fKLow], order, r )   ;
   }
-  er_value = Interpolate( &fgkZList[fJLow], save_er, order, z )   ;
+  erValue = Interpolate( &fgkZList[fJLow], saveEr, order, z )   ;
 
 }
 
 
 Double_t AliTPCCorrection::Interpolate( const Double_t xArray[], const Double_t yArray[], 
-                                      const Int_t order, const Double_t x )
-{
+                                      const Int_t order, const Double_t x ) {
   //
   // Interpolate function Y(x) using linear (order=1) or quadratic (order=2) interpolation.
   //
@@ -430,8 +449,7 @@ Double_t AliTPCCorrection::Interpolate( const Double_t xArray[], const Double_t
 }
 
 
-void AliTPCCorrection::Search( const Int_t n, const Double_t xArray[], const Double_t x, Int_t &low )
-{
+void AliTPCCorrection::Search( const Int_t n, const Double_t xArray[], const Double_t x, Int_t &low ) {
   //
   // Search an ordered table by starting at the most recently used point
   //
@@ -478,8 +496,218 @@ void AliTPCCorrection::Search( const Int_t n, const Double_t xArray[], const Dou
   
 }
 
+void AliTPCCorrection::PoissonRelaxation2D(TMatrixD &arrayV, const TMatrixD &chargeDensity, 
+                                          TMatrixD &arrayErOverEz, const Int_t rows, 
+                                          const Int_t columns, const Int_t iterations ) {
+  //
+  // Solve Poisson's Equation by Relaxation Technique in 2D (assuming cylindrical symmetry)
+  //
+  // Solve Poissons equation in a cylindrical coordinate system. The arrayV matrix must be filled with the 
+  // boundary conditions on the first and last rows, and the first and last columns.  The remainder of the 
+  // array can be blank or contain a preliminary guess at the solution.  The Charge density matrix contains 
+  // the enclosed spacecharge density at each point. The charge density matrix can be full of zero's if 
+  // you wish to solve Laplaces equation however it should not contain random numbers or you will get 
+  // random numbers back as a solution. 
+  // Poisson's equation is solved by iteratively relaxing the matrix to the final solution.  In order to 
+  // speed up the convergence to the best solution, this algorithm does a binary expansion of the solution 
+  // space.  First it solves the problem on a very sparse grid by skipping rows and columns in the original 
+  // matrix.  Then it doubles the number of points and solves the problem again.  Then it doubles the 
+  // number of points and solves the problem again.  This happens several times until the maximum number
+  // of points has been included in the array.  
+  //
+  // NOTE: In order for this algorithmto work, the number of rows and columns must be a power of 2 plus one.
+  // So rows == 2**M + 1 and columns == 2**N + 1.  The number of rows and columns can be different.
+  // 
+  // Original code by Jim Thomas (STAR TPC Collaboration)
+  //
+
+  Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZ0; // = ALICE Electric Field (V/cm) Magnitude ~ -400 V/cm; 
 
-AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackParam & trackIn, Double_t refX, Int_t dir,TTreeSRedirector *pcstream){
+  const Float_t  gridSizeR   =  (fgkOFCRadius-fgkIFCRadius) / (rows-1) ;
+  const Float_t  gridSizeZ   =  fgkTPCZ0 / (columns-1) ;
+  const Float_t  ratio       =  gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ;
+
+  TMatrixD  arrayEr(rows,columns) ;
+  TMatrixD  arrayEz(rows,columns) ;
+
+  //Check that number of rows and columns is suitable for a binary expansion
+  
+  if ( !IsPowerOfTwo(rows-1) ) {
+    AliError("PoissonRelaxation - Error in the number of rows. Must be 2**M - 1");
+    return;
+  }
+  if ( !IsPowerOfTwo(columns-1) ) {
+    AliError("PoissonRelaxation - Error in the number of columns. Must be 2**N - 1");
+    return;
+  }
+  
+  // Solve Poisson's equation in cylindrical coordinates by relaxation technique
+  // Allow for different size grid spacing in R and Z directions
+  // Use a binary expansion of the size of the matrix to speed up the solution of the problem
+  
+  Int_t iOne = (rows-1)/4 ;
+  Int_t jOne = (columns-1)/4 ;
+  // Solve for N in 2**N, add one.
+  Int_t loops = 1 + (int) ( 0.5 + TMath::Log2( (double) TMath::Max(iOne,jOne) ) ) ;  
+
+  for ( Int_t count = 0 ; count < loops ; count++ ) { 
+    // Loop while the matrix expands & the resolution increases.
+
+    Float_t tempGridSizeR = gridSizeR * iOne ;
+    Float_t tempRatio     = ratio * iOne * iOne / ( jOne * jOne ) ;
+    Float_t tempFourth    = 1.0 / (2.0 + 2.0*tempRatio) ;
+    
+    // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
+    std::vector<float> coef1(rows) ;  
+    std::vector<float> coef2(rows) ;  
+
+    for ( Int_t i = iOne ; i < rows-1 ; i+=iOne ) {
+       Float_t radius = fgkIFCRadius + i*gridSizeR ;
+      coef1[i] = 1.0 + tempGridSizeR/(2*radius);
+      coef2[i] = 1.0 - tempGridSizeR/(2*radius);
+    }
+    
+    TMatrixD sumChargeDensity(rows,columns) ;
+
+    for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
+      Float_t radius = fgkIFCRadius + iOne*gridSizeR ;
+      for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
+       if ( iOne == 1 && jOne == 1 ) sumChargeDensity(i,j) = chargeDensity(i,j) ;
+       else {        
+         // Add up all enclosed charge density contributions within 1/2 unit in all directions
+         Float_t weight = 0.0 ;
+         Float_t sum    = 0.0 ;
+         sumChargeDensity(i,j) = 0.0 ;
+         for ( Int_t ii = i-iOne/2 ; ii <= i+iOne/2 ; ii++ ) {
+           for ( Int_t jj = j-jOne/2 ; jj <= j+jOne/2 ; jj++ ) {
+             if ( ii == i-iOne/2 || ii == i+iOne/2 || jj == j-jOne/2 || jj == j+jOne/2 ) weight = 0.5 ;
+             else
+               weight = 1.0 ;
+             // Note that this is cylindrical geometry
+             sumChargeDensity(i,j) += chargeDensity(ii,jj)*weight*radius ;  
+             sum += weight*radius ;
+           }
+         }
+         sumChargeDensity(i,j) /= sum ;
+       }
+        sumChargeDensity(i,j) *= tempGridSizeR*tempGridSizeR; // just saving a step later on
+       }
+    }
+
+    for ( Int_t k = 1 ; k <= iterations; k++ ) {               
+      // Solve Poisson's Equation
+      // Over-relaxation index, must be >= 1 but < 2.  Arrange for it to evolve from 2 => 1 
+      // as interations increase.
+      Float_t overRelax   = 1.0 + TMath::Sqrt( TMath::Cos( (k*TMath::PiOver2())/iterations ) ) ; 
+      Float_t overRelaxM1 = overRelax - 1.0 ;
+      Float_t overRelaxtempFourth, overRelaxcoef5 ;
+      overRelaxtempFourth = overRelax * tempFourth ;
+      overRelaxcoef5 = overRelaxM1 / overRelaxtempFourth ; 
+
+      for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
+       for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
+
+         arrayV(i,j) = (   coef2[i]       *   arrayV(i-iOne,j)
+                         + tempRatio      * ( arrayV(i,j-jOne) + arrayV(i,j+jOne) )
+                         - overRelaxcoef5 *   arrayV(i,j) 
+                         + coef1[i]       *   arrayV(i+iOne,j) 
+                         + sumChargeDensity(i,j) 
+                       ) * overRelaxtempFourth;
+       }
+      }
+
+      if ( k == iterations ) {    
+       // After full solution is achieved, copy low resolution solution into higher res array
+       for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
+         for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
+
+           if ( iOne > 1 ) {              
+             arrayV(i+iOne/2,j)                    =  ( arrayV(i+iOne,j) + arrayV(i,j)     ) / 2 ;
+             if ( i == iOne )  arrayV(i-iOne/2,j) =  ( arrayV(0,j)       + arrayV(iOne,j) ) / 2 ;
+           }
+           if ( jOne > 1 ) {
+             arrayV(i,j+jOne/2)                    =  ( arrayV(i,j+jOne) + arrayV(i,j) )     / 2 ;
+             if ( j == jOne )  arrayV(i,j-jOne/2) =  ( arrayV(i,0)       + arrayV(i,jOne) ) / 2 ;
+           }
+           if ( iOne > 1 && jOne > 1 ) {
+             arrayV(i+iOne/2,j+jOne/2) =  ( arrayV(i+iOne,j+jOne) + arrayV(i,j) ) / 2 ;
+             if ( i == iOne ) arrayV(i-iOne/2,j-jOne/2) =   ( arrayV(0,j-jOne) + arrayV(iOne,j) ) / 2 ;
+             if ( j == jOne ) arrayV(i-iOne/2,j-jOne/2) =   ( arrayV(i-iOne,0) + arrayV(i,jOne) ) / 2 ;
+             // Note that this leaves a point at the upper left and lower right corners uninitialized. 
+             // -> Not a big deal.
+           }
+
+         }
+       }
+      }
+
+    }
+
+    iOne = iOne / 2 ; if ( iOne < 1 ) iOne = 1 ;
+    jOne = jOne / 2 ; if ( jOne < 1 ) jOne = 1 ;
+
+  }      
+
+  // Differentiate V(r) and solve for E(r) using special equations for the first and last rows
+  for ( Int_t j = 0 ; j < columns ; j++ ) {      
+    for ( Int_t i = 1 ; i < rows-1 ; i++ ) arrayEr(i,j) = -1 * ( arrayV(i+1,j) - arrayV(i-1,j) ) / (2*gridSizeR) ;
+    arrayEr(0,j)      =  -1 * ( -0.5*arrayV(2,j) + 2.0*arrayV(1,j) - 1.5*arrayV(0,j) ) / gridSizeR ;  
+    arrayEr(rows-1,j) =  -1 * ( 1.5*arrayV(rows-1,j) - 2.0*arrayV(rows-2,j) + 0.5*arrayV(rows-3,j) ) / gridSizeR ; 
+  }
+
+  // Differentiate V(z) and solve for E(z) using special equations for the first and last columns
+  for ( Int_t i = 0 ; i < rows ; i++) {
+    for ( Int_t j = 1 ; j < columns-1 ; j++ ) arrayEz(i,j) = -1 * ( arrayV(i,j+1) - arrayV(i,j-1) ) / (2*gridSizeZ) ;
+    arrayEz(i,0)         =  -1 * ( -0.5*arrayV(i,2) + 2.0*arrayV(i,1) - 1.5*arrayV(i,0) ) / gridSizeZ ;  
+    arrayEz(i,columns-1) =  -1 * ( 1.5*arrayV(i,columns-1) - 2.0*arrayV(i,columns-2) + 0.5*arrayV(i,columns-3) ) / gridSizeZ ; 
+  }
+  
+  for ( Int_t i = 0 ; i < rows ; i++) {
+    // Note: go back and compare to old version of this code.  See notes below.
+    // JT Test ... attempt to divide by real Ez not Ez to first order
+    for ( Int_t j = 0 ; j < columns ; j++ ) {
+      arrayEz(i,j) += ezField;
+      // This adds back the overall Z gradient of the field (main E field component)
+    } 
+    // Warning: (-=) assumes you are using an error potetial without the overall Field included
+  }                                 
+  
+  // Integrate Er/Ez from Z to zero
+  for ( Int_t j = 0 ; j < columns ; j++ )  {     
+    for ( Int_t i = 0 ; i < rows ; i++ ) {
+      Int_t index = 1 ;   // Simpsons rule if N=odd.  If N!=odd then add extra point by trapezoidal rule.  
+      arrayErOverEz(i,j) = 0.0 ;
+      for ( Int_t k = j ; k < columns ; k++ ) {
+       arrayErOverEz(i,j)  +=  index*(gridSizeZ/3.0)*arrayEr(i,k)/arrayEz(i,k) ;
+       if ( index != 4 )  index = 4; else index = 2 ;
+      }
+      if ( index == 4 ) arrayErOverEz(i,j)  -=  (gridSizeZ/3.0)*arrayEr(i,columns-1)/arrayEz(i,columns-1) ;
+      if ( index == 2 ) arrayErOverEz(i,j)  +=  
+       (gridSizeZ/3.0) * ( 0.5*arrayEr(i,columns-2)/arrayEz(i,columns-2) 
+                           -2.5*arrayEr(i,columns-1)/arrayEz(i,columns-1) )   ;
+      if ( j == columns-2 ) arrayErOverEz(i,j) =  
+       (gridSizeZ/3.0) * ( 1.5*arrayEr(i,columns-2)/arrayEz(i,columns-2)
+                           +1.5*arrayEr(i,columns-1)/arrayEz(i,columns-1) ) ;
+      if ( j == columns-1 ) arrayErOverEz(i,j) =  0.0 ;
+    }
+  }
+  
+}
+
+
+
+const Int_t AliTPCCorrection::IsPowerOfTwo(Int_t i) {
+  //
+  // Helperfunction: Check if integer is a power of 2
+  //
+  Int_t j = 0;
+  while( i > 0 ) { j += (i&1) ; i = (i>>1) ; }
+  if ( j == 1 ) return(1) ;  // True
+  return(0) ;                // False
+}
+
+
+AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackParam & trackIn, Double_t refX, Int_t dir, TTreeSRedirector * const pcstream){
   //
   // Fit the track parameters - without and with distortion
   // 1. Space points in the TPC are simulated along the trajectory  
@@ -498,6 +726,7 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
   // track1.fP[2] - sinus of local inclination angle
   // track1.fP[3] - tangent of deep angle
   // track1.fP[4] - 1/pt
+
   AliTPCROC * roc = AliTPCROC::Instance();
   const Int_t    npoints0=roc->GetNRows(0)+roc->GetNRows(36);
   const Double_t kRTPC0  =roc->GetPadRowRadii(0,0);
@@ -513,14 +742,17 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
   AliTrackPointArray pointArray0(npoints0);
   AliTrackPointArray pointArray1(npoints0);
   Double_t xyz[3];
-  AliTrackerBase::PropagateTrackTo(&track,kRTPC0,kMass,3,kTRUE,kMaxSnp);
+  AliTrackerBase::PropagateTrackToBxByBz(&track,kRTPC0,kMass,3,kTRUE,kMaxSnp);
   //
   // simulate the track
   Int_t npoints=0;
   Float_t covPoint[6]={0,0,0, kSigmaY*kSigmaY,0,kSigmaZ*kSigmaZ};  //covariance at the local frame
   for (Double_t radius=kRTPC0; radius<kRTPC1; radius++){
-    AliTrackerBase::PropagateTrackTo(&track,radius,kMass,3,kTRUE,kMaxSnp);
+    AliTrackerBase::PropagateTrackToBxByBz(&track,radius,kMass,3,kTRUE,kMaxSnp);
     track.GetXYZ(xyz);
+    xyz[0]+=gRandom->Gaus(0,0.005);
+    xyz[1]+=gRandom->Gaus(0,0.005);
+    xyz[2]+=gRandom->Gaus(0,0.005);
     AliTrackPoint pIn0;                               // space point          
     AliTrackPoint pIn1;
     Int_t sector= (xyz[2]>0)? 0:18;
@@ -544,6 +776,7 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
     npoints++;
     if (npoints>=npoints0) break;
   }
+  if (npoints<npoints0/2) return 0;
   //
   // refit track
   //
@@ -552,20 +785,19 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
   AliTrackPoint   point1,point2,point3;
   if (dir==1) {  //make seed inner
     pointArray0.GetPoint(point1,1);
-    pointArray0.GetPoint(point2,10);
-    pointArray0.GetPoint(point3,20);
+    pointArray0.GetPoint(point2,30);
+    pointArray0.GetPoint(point3,60);
   }
   if (dir==-1){ //make seed outer
-    pointArray0.GetPoint(point1,npoints-20);
-    pointArray0.GetPoint(point2,npoints-10);
+    pointArray0.GetPoint(point1,npoints-60);
+    pointArray0.GetPoint(point2,npoints-30);
     pointArray0.GetPoint(point3,npoints-1);
   }  
   track0 = AliTrackerBase::MakeSeed(point1, point2, point3);
   track1 = AliTrackerBase::MakeSeed(point1, point2, point3);
 
-
   for (Int_t jpoint=0; jpoint<npoints; jpoint++){
-    Int_t ipoint= (dir>0) ? ipoint: npoints-1-jpoint;
+    Int_t ipoint= (dir>0) ? jpoint: npoints-1-jpoint;
     //
     AliTrackPoint pIn0;
     AliTrackPoint pIn1;
@@ -574,9 +806,9 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
     AliTrackPoint prot0 = pIn0.Rotate(track0->GetAlpha());   // rotate to the local frame - non distoted  point
     AliTrackPoint prot1 = pIn1.Rotate(track1->GetAlpha());   // rotate to the local frame -     distorted point
     //
-    AliTrackerBase::PropagateTrackTo(track0,prot0.GetX(),kMass,1,kFALSE,kMaxSnp);
-    AliTrackerBase::PropagateTrackTo(track1,prot1.GetX(),kMass,1,kFALSE,kMaxSnp);
-    track.GetXYZ(xyz);
+    AliTrackerBase::PropagateTrackToBxByBz(track0,prot0.GetX(),kMass,3,kFALSE,kMaxSnp);
+    AliTrackerBase::PropagateTrackToBxByBz(track1,prot0.GetX(),kMass,3,kFALSE,kMaxSnp);
+    track.GetXYZ(xyz);  // distorted track also propagated to the same reference radius
     //
     Double_t pointPos[2]={0,0};
     Double_t pointCov[3]={0,0,0};
@@ -587,15 +819,19 @@ AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackPara
     pointCov[2]=prot0.GetCov()[5];//sigmaz^2
     track0->Update(pointPos,pointCov);
     //
-    pointPos[0]=prot1.GetY();//local y
-    pointPos[1]=prot1.GetZ();//local z
+    Double_t deltaX=prot1.GetX()-prot0.GetX();   // delta X 
+    Double_t deltaYX=deltaX*TMath::Tan(TMath::ASin(track1->GetSnp()));  // deltaY due  delta X
+    Double_t deltaZX=deltaX*track1->GetTgl();                           // deltaZ due  delta X
+
+    pointPos[0]=prot1.GetY()-deltaYX;//local y is sign correct? should be minus
+    pointPos[1]=prot1.GetZ()-deltaZX;//local z is sign correct? should be minus
     pointCov[0]=prot1.GetCov()[3];//simay^2
     pointCov[1]=prot1.GetCov()[4];//sigmayz
     pointCov[2]=prot1.GetCov()[5];//sigmaz^2
     track1->Update(pointPos,pointCov);
   }
 
-  AliTrackerBase::PropagateTrackTo(track0,refX,kMass,2.,kTRUE,kMaxSnp);
+  AliTrackerBase::PropagateTrackToBxByBz(track0,refX,kMass,2.,kTRUE,kMaxSnp);
   track1->Rotate(track0->GetAlpha());
   track1->PropagateTo(track0->GetX(),AliTrackerBase::GetBz());
 
@@ -678,7 +914,7 @@ TTree* AliTPCCorrection::CreateDistortionTree(Double_t step){
 
 
 
-void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t ptype, TObjArray * corrArray, Int_t step, Bool_t debug ){
+void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t ptype, const TObjArray * corrArray, Int_t step, Bool_t debug ){
   //
   // Make a fit tree:
   // For each partial correction (specified in array) and given track topology (phi, theta, snp, refX)
@@ -695,7 +931,10 @@ void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t
   // corrArray - array with partial corrections
   // step      - skipe entries  - if 1 all entries processed - it is slow
   // debug     0 if debug on also space points dumped - it is slow
-  const Int_t kMinEntries=50;
+  const Double_t kMaxSnp = 0.85;  
+  const Double_t kMass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass();
+  //  const Double_t kB2C=-0.299792458e-3;
+  const Int_t kMinEntries=50; 
   Double_t phi,theta, snp, mean,rms, entries;
   tinput->SetBranchAddress("theta",&theta);
   tinput->SetBranchAddress("phi", &phi);
@@ -707,35 +946,35 @@ void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t
   //
   Int_t nentries=tinput->GetEntries();
   Int_t ncorr=corrArray->GetEntries();
-  Double_t corrections[100]; //
+  Double_t corrections[100]={0}; //
   Double_t tPar[5];
   Double_t cov[15]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};
   Double_t refX=0;
   Int_t dir=0;
-  if (dtype==0) {refX=85; dir=-1;}
-  if (dtype==1) {refX=245; dir=1;}
-  if (dtype==2) {refX=0; dir=-1;}
+  if (dtype==0) {refX=85.; dir=-1;}
+  if (dtype==1) {refX=275.; dir=1;}
+  if (dtype==2) {refX=85.; dir=-1;}
+  if (dtype==3) {refX=360.; dir=-1;}
   //
   for (Int_t ientry=0; ientry<nentries; ientry+=step){
     tinput->GetEntry(ientry);
+    if (TMath::Abs(snp)>kMaxSnp) continue;
     tPar[0]=0;
     tPar[1]=theta*refX;
     tPar[2]=snp;
     tPar[3]=theta;
-    tPar[4]=0.00001;  // should be calculated - non equal to 0
-    cout<<endl<<endl;
-    cout<<"Entry\n\n"<<ientry<<endl;
-    cout<<"dtype="<<dtype<<   // detector match type
-      "ptype="<<ptype<<   // parameter type
-      "theta="<<theta<<   // theta
-      "phi="<<phi<<       // phi 
-      "snp="<<phi<<       // snp
-      "mean="<<mean<<     // mean dist value
-      "rms="<<rms<<       // rms
-      "entries="<<entries<<endl; // number of entries in bin      
-    
-    if (TMath::Abs(snp)>0.251) continue;
+    tPar[4]=(gRandom->Rndm()-0.5)*0.02;  // should be calculated - non equal to 0
+    Double_t bz=AliTrackerBase::GetBz();
+    if (refX>10. && TMath::Abs(bz)>0.1 )  tPar[4]=snp/(refX*bz*kB2C*2);
+    tPar[4]+=(gRandom->Rndm()-0.5)*0.02;
+    AliExternalTrackParam track(refX,phi,tPar,cov);
+    Double_t xyz[3];
+    track.GetXYZ(xyz);
+    Int_t id=0;
+    Double_t dRrec=0; // dummy value - needed for points - e.g for laser
+    if (ptype==4 &&bz<0) mean*=-1;  // interpret as curvature
     (*pcstream)<<"fit"<<
+      "bz="<<bz<<         // magnetic filed used
       "dtype="<<dtype<<   // detector match type
       "ptype="<<ptype<<   // parameter type
       "theta="<<theta<<   // theta
@@ -743,6 +982,11 @@ void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t
       "snp="<<snp<<       // snp
       "mean="<<mean<<     // mean dist value
       "rms="<<rms<<       // rms
+      "gx="<<xyz[0]<<         // global position at reference
+      "gy="<<xyz[1]<<         // global position at reference
+      "gz="<<xyz[2]<<         // global position at reference  
+      "dRrec="<<dRrec<<      // delta Radius in reconstruction
+      "id="<<id<<             // track id
       "entries="<<entries;// number of entries in bin
     //
     for (Int_t icorr=0; icorr<ncorr; icorr++) {
@@ -753,11 +997,28 @@ void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t
        AliExternalTrackParam *trackOut = 0;
        if (debug) trackOut=corr->FitDistortedTrack(trackIn, refX, dir,pcstream);
        if (!debug) trackOut=corr->FitDistortedTrack(trackIn, refX, dir,0);
-       corrections[icorr]= trackOut->GetParameter()[ptype]-trackIn.GetParameter()[ptype];
-       delete trackOut;      
+       if (dtype==0) {refX=85.; dir=-1;}
+       if (dtype==1) {refX=275.; dir=1;}
+       if (dtype==2) {refX=0; dir=-1;}
+       if (dtype==3) {refX=360.; dir=-1;}
+       //
+       if (trackOut){
+         AliTrackerBase::PropagateTrackToBxByBz(&trackIn,refX,kMass,3,kTRUE,kMaxSnp);
+         trackOut->Rotate(trackIn.GetAlpha());
+         trackOut->PropagateTo(trackIn.GetX(),AliTrackerBase::GetBz());
+         //
+         corrections[icorr]= trackOut->GetParameter()[ptype]-trackIn.GetParameter()[ptype];
+         delete trackOut;      
+       }else{
+         corrections[icorr]=0;
+       }
+       if (ptype==4 &&bz<0) corrections[icorr]*=-1;  // interpret as curvature
       }      
+      Double_t dRdummy=0;
       (*pcstream)<<"fit"<<
-       Form("%s=",corr->GetName())<<corrections[icorr];   // dump correction value
+       Form("%s=",corr->GetName())<<corrections[icorr]<<   // dump correction value
+       Form("dR%s=",corr->GetName())<<dRdummy;   // dump dummy correction value not needed for tracks 
+                                                  // for points it is neccessary
     }
     (*pcstream)<<"fit"<<"\n";
   }
@@ -766,6 +1027,200 @@ void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t
 
 
 
+void AliTPCCorrection::MakeLaserDistortionTree(TTree* tree, TObjArray *corrArray, Int_t itype){
+  //
+  // Make a laser fit tree for global minimization
+  //
+  const Double_t cutErrY=0.1;
+  const Double_t cutErrZ=0.1;
+  const Double_t kEpsilon=0.00000001;
+  TVectorD *vecdY=0;
+  TVectorD *vecdZ=0;
+  TVectorD *veceY=0;
+  TVectorD *veceZ=0;
+  AliTPCLaserTrack *ltr=0;
+  AliTPCLaserTrack::LoadTracks();
+  tree->SetBranchAddress("dY.",&vecdY);
+  tree->SetBranchAddress("dZ.",&vecdZ);
+  tree->SetBranchAddress("eY.",&veceY);
+  tree->SetBranchAddress("eZ.",&veceZ);
+  tree->SetBranchAddress("LTr.",&ltr);
+  Int_t entries= tree->GetEntries();
+  TTreeSRedirector *pcstream= new TTreeSRedirector("distortion4_0.root");
+  Double_t bz=AliTrackerBase::GetBz();
+  // 
+
+  for (Int_t ientry=0; ientry<entries; ientry++){
+    tree->GetEntry(ientry);
+    if (!ltr->GetVecGX()){
+      ltr->UpdatePoints();
+    }
+    TVectorD * delta= (itype==0)? vecdY:vecdZ;
+    TVectorD * err= (itype==0)? veceY:veceZ;
+    
+    for (Int_t irow=0; irow<159; irow++){
+      Int_t nentries = 1000;
+      if (veceY->GetMatrixArray()[irow]>cutErrY||veceZ->GetMatrixArray()[irow]>cutErrZ) nentries=0;
+      if (veceY->GetMatrixArray()[irow]<kEpsilon||veceZ->GetMatrixArray()[irow]<kEpsilon) nentries=0;
+      Int_t dtype=4;
+      Double_t phi   =(*ltr->GetVecPhi())[irow];
+      Double_t theta =ltr->GetTgl();
+      Double_t mean=delta->GetMatrixArray()[irow];
+      Double_t gx=0,gy=0,gz=0;
+      Double_t snp = (*ltr->GetVecP2())[irow];
+      Double_t rms = 0.1+err->GetMatrixArray()[irow];
+      gx = (*ltr->GetVecGX())[irow];
+      gy = (*ltr->GetVecGY())[irow];
+      gz = (*ltr->GetVecGZ())[irow];
+      Int_t bundle= ltr->GetBundle();
+      Double_t dRrec=0;
+      //
+      // get delta R used in reconstruction
+      AliTPCcalibDB*  calib=AliTPCcalibDB::Instance();  
+      AliTPCCorrection * correction = calib->GetTPCComposedCorrection();
+      const AliTPCRecoParam * recoParam = calib->GetTransform()->GetCurrentRecoParam();
+      Double_t xyz0[3]={gx,gy,gz};
+      Double_t oldR=TMath::Sqrt(gx*gx+gy*gy);
+      //
+      // old ExB correction 
+      //      
+      if(recoParam&&recoParam->GetUseExBCorrection()) {        
+       Double_t xyz1[3]={gx,gy,gz};
+       calib->GetExB()->Correct(xyz0,xyz1);
+       Double_t newR=TMath::Sqrt(xyz1[0]*xyz1[0]+xyz1[1]*xyz1[1]);
+       dRrec=oldR-newR;
+      } 
+      if(recoParam&&recoParam->GetUseComposedCorrection()&&correction) {
+       Float_t xyz1[3]={gx,gy,gz};
+       Int_t sector=(gz>0)?0:18;
+       correction->CorrectPoint(xyz1, sector);
+       Double_t newR=TMath::Sqrt(xyz1[0]*xyz1[0]+xyz1[1]*xyz1[1]);
+       dRrec=oldR-newR;
+      } 
+
+
+      (*pcstream)<<"fit"<<
+       "bz="<<bz<<         // magnetic filed used
+       "dtype="<<dtype<<   // detector match type
+       "ptype="<<itype<<   // parameter type
+       "theta="<<theta<<   // theta
+       "phi="<<phi<<       // phi 
+       "snp="<<snp<<       // snp
+       "mean="<<mean<<     // mean dist value
+       "rms="<<rms<<       // rms
+       "gx="<<gx<<         // global position
+       "gy="<<gy<<         // global position
+       "gz="<<gz<<         // global position
+       "dRrec="<<dRrec<<      // delta Radius in reconstruction
+       "id="<<bundle<<     //bundle
+       "entries="<<nentries;// number of entries in bin
+      //
+      //    
+      Double_t ky = TMath::Tan(TMath::ASin(snp));
+      Int_t ncorr = corrArray->GetEntries();
+      Double_t r0   = TMath::Sqrt(gx*gx+gy*gy);
+      Double_t phi0 = TMath::ATan2(gy,gx);
+      Double_t distortions[1000]={0};
+      Double_t distortionsR[1000]={0};
+      for (Int_t icorr=0; icorr<ncorr; icorr++) {
+       AliTPCCorrection *corr = (AliTPCCorrection*)corrArray->At(icorr);
+       Float_t distPoint[3]={gx,gy,gz}; 
+       Int_t sector= (gz>0)? 0:18;
+       if (r0>80){
+         corr->DistortPoint(distPoint, sector);
+       }
+       // Double_t value=distPoint[2]-gz;
+       if (itype==0){
+         Double_t r1   = TMath::Sqrt(distPoint[0]*distPoint[0]+distPoint[1]*distPoint[1]);
+         Double_t phi1 = TMath::ATan2(distPoint[1],distPoint[0]);
+         Double_t drphi= r0*(phi1-phi0);
+         Double_t dr   = r1-r0;
+         distortions[icorr]  = drphi-ky*dr;
+         distortionsR[icorr] = dr;
+       }
+       (*pcstream)<<"fit"<<
+         Form("%s=",corr->GetName())<<distortions[icorr]<<    // dump correction value
+         Form("dR%s=",corr->GetName())<<distortionsR[icorr];   // dump correction R  value
+      }
+      (*pcstream)<<"fit"<<"\n";
+    }
+  }
+  delete pcstream;
+}
+
+
+
+void   AliTPCCorrection::MakeDistortionMap(THnSparse * his0, TTreeSRedirector * const pcstream, const char* hname, Int_t run){
+  //
+  // make a distortion map out ou fthe residual histogram
+  // Results are written to the debug streamer - pcstream
+  // Parameters:
+  //   his0       - input (4D) residual histogram
+  //   pcstream   - file to write the tree
+  //   run        - run number
+  // marian.ivanov@cern.ch
+  const Int_t kMinEntries=50;
+  Int_t nbins1=his0->GetAxis(1)->GetNbins();
+  Int_t first1=his0->GetAxis(1)->GetFirst();
+  Int_t last1 =his0->GetAxis(1)->GetLast();
+  //
+  Double_t bz=AliTrackerBase::GetBz();
+  Int_t idim[4]={0,1,2,3};
+  for (Int_t ibin1=first1; ibin1<last1; ibin1++){   //axis 1 - theta
+    //
+    his0->GetAxis(1)->SetRange(TMath::Max(ibin1,1),TMath::Min(ibin1,nbins1));
+    Double_t       x1= his0->GetAxis(1)->GetBinCenter(ibin1);
+    THnSparse * his1 = his0->Projection(4,idim);  // projected histogram according range1
+    Int_t nbins3     = his1->GetAxis(3)->GetNbins();
+    Int_t first3     = his1->GetAxis(3)->GetFirst();
+    Int_t last3      = his1->GetAxis(3)->GetLast();
+    //
+
+    for (Int_t ibin3=first3-1; ibin3<last3; ibin3+=1){   // axis 3 - local angle
+      his1->GetAxis(3)->SetRange(TMath::Max(ibin3-1,1),TMath::Min(ibin3+1,nbins3));
+      Double_t      x3= his1->GetAxis(3)->GetBinCenter(ibin3);
+      if (ibin3<first3) {
+       his1->GetAxis(3)->SetRangeUser(-1,1);
+       x3=0;
+      }
+      THnSparse * his3= his1->Projection(4,idim);         //projected histogram according selection 3
+      Int_t nbins2    = his3->GetAxis(2)->GetNbins();
+      Int_t first2    = his3->GetAxis(2)->GetFirst();
+      Int_t last2     = his3->GetAxis(2)->GetLast();
+      //
+      for (Int_t ibin2=first2; ibin2<last2; ibin2+=1){
+       his3->GetAxis(2)->SetRange(TMath::Max(ibin2-1,1),TMath::Min(ibin2+1,nbins2));
+       Double_t x2= his3->GetAxis(2)->GetBinCenter(ibin2);
+       TH1 * hisDelta = his3->Projection(0);
+       //
+       Double_t entries = hisDelta->GetEntries();
+       Double_t mean=0, rms=0;
+       if (entries>kMinEntries){
+         mean    = hisDelta->GetMean(); 
+         rms = hisDelta->GetRMS(); 
+       }
+       (*pcstream)<<hname<<
+         "run="<<run<<
+         "bz="<<bz<<
+         "theta="<<x1<<
+         "phi="<<x2<<
+         "snp="<<x3<<
+         "entries="<<entries<<
+         "mean="<<mean<<
+         "rms="<<rms<<
+         "\n";
+       delete hisDelta;
+       printf("%f\t%f\t%f\t%f\t%f\n",x1,x3,x2, entries,mean);
+      }
+      delete his3;
+    }
+    delete his1;
+  }
+}
+
+
+
+
 
 void AliTPCCorrection::StoreInOCDB(Int_t startRun, Int_t endRun, const char *comment){
   //