]> git.uio.no Git - u/mrichter/AliRoot.git/blame - CRT/AliCRTv0.cxx
First version, generation of cosmic muons on the surface
[u/mrichter/AliRoot.git] / CRT / AliCRTv0.cxx
CommitLineData
fb7a1f55 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
778e67bd 18Revision 1.6 2002/07/26 06:21:12 gamez
19CRT3 volume taken as sensitive volume
20
67721dc4 21Revision 1.5 2002/07/25 12:52:34 morsch
22AddHit call only if hit has been defined.
23
bd1047f8 24Revision 1.4 2002/07/12 12:57:29 gamez
25Division of CRT1 corrected
26
7cedada3 27Revision 1.3.2.1 2002/07/12 12:32:50 gamez
28Division of CRT1 corrected
29
30Revision 1.3 2002/07/10 15:57:04 gamez
31CreateHall() removed, and new Molasse volumes
32
6e9adb00 33Revision 1.2 2002/07/09 08:45:35 hristov
34Old style include files needed on HP (aCC)
35
b73f53b3 36Revision 1.1 2002/06/16 17:08:19 hristov
37First version of CRT
38
fb7a1f55 39
40*/
41
42///////////////////////////////////////////////////////////////////////////////
43// //
6e9adb00 44// ALICE Cosmic Ray Trigger //
fb7a1f55 45// //
6e9adb00 46// This class contains the functions for version 0 of the ALICE Cosmic Ray //
778e67bd 47// Trigger. This version will be used to simulation comic rays in alice //
48// with all the detectors. //
fb7a1f55 49//
50// Authors:
51//
52// Arturo Fernandez <afernand@fcfm.buap.mx>
53// Enrique Gamez <egamez@fcfm.buap.mx>
54//
55// Universidad Autonoma de Puebla
56//
57//
58//Begin_Html
59/*
60<img src="picts/AliCRTv0Class.gif">
61</pre>
62<br clear=left>
63<p>The responsible person for this module is
64<a href="mailto:egamez@fcfm.buap.mx">Enrique Gamez</a>.
65</font>
66<pre>
67*/
68//End_Html
69// //
70///////////////////////////////////////////////////////////////////////////////
71
b73f53b3 72#include <iostream.h>
fb7a1f55 73
fb7a1f55 74#include <TGeometry.h>
778e67bd 75#include <TBRIK.h>
fb7a1f55 76#include <TNode.h>
77#include <TLorentzVector.h>
78
fb7a1f55 79#include "AliRun.h"
80#include "AliMC.h"
81#include "AliMagF.h"
82#include "AliConst.h"
83#include "AliPDG.h"
84
778e67bd 85#include "AliCRTv0.h"
86#include "AliCRTConstants.h"
87
fb7a1f55 88ClassImp(AliCRTv0)
89
90//_____________________________________________________________________________
91AliCRTv0::AliCRTv0() : AliCRT()
92{
93 //
778e67bd 94 // Default constructor for CRT v0
fb7a1f55 95 //
fb7a1f55 96}
97
98//_____________________________________________________________________________
99AliCRTv0::AliCRTv0(const char *name, const char *title)
100 : AliCRT(name,title)
101{
102 //
778e67bd 103 // Standard constructor for CRT v0
fb7a1f55 104 //
105 //Begin_Html
106 /*
107 <img src="picts/AliCRTv0.gif">
108 */
109 //End_Html
110}
111
778e67bd 112//_____________________________________________________________________________
113AliCRTv0::AliCRTv0(const AliCRTv0& crt)
114{
115 //
116 // Copy ctor.
117 //
118 crt.Copy(*this);
119}
120
121//_____________________________________________________________________________
122AliCRTv0& AliCRTv0::operator= (const AliCRTv0& crt)
123{
124 //
125 // Asingment operator.
126 //
127 crt.Copy(*this);
128 return *this;
129}
130
fb7a1f55 131//_____________________________________________________________________________
132void AliCRTv0::BuildGeometry()
133{
778e67bd 134 //
135 // Create the ROOT TNode geometry for the CRT
136 //
137
138 TNode *node, *top;
139
140 const Int_t kColorCRT = kRed;
141
142 // Find the top node alice.
143 top = gAlice->GetGeometry()->GetNode("alice");
144
145 new TBRIK("S_CRT_A", "CRT box", "void",
146 AliCRTConstants::fgActiveAreaLenght/2.,
147 AliCRTConstants::fgActiveAreaHeight/2.,
148 AliCRTConstants::fgActiveAreaWidth/2.);
149
150
151 new TRotMatrix("Left", "Left", 90., 315., 90., 45., 0., 337.5);
152 new TRotMatrix("Right", "Right", 90., 45., 90., 315., 180., 202.5);
153 new TRotMatrix("Up", "Up", 90., 0., 90., 90., 0., 90.);
154 top->cd();
155
156 //
157 // Put 4 modules on the top of the magnet
158 Float_t box = AliCRTConstants::fgCageWidth/2.;
159 top->cd();
160 node = new TNode("upper1", "upper1", "S_CRT_A", 0., 790., 3.*box, "Up");
161 node->SetLineColor(kColorCRT);
162 fNodes->Add(node);
163
164 top->cd();
165 node = new TNode("upper2", "upper2", "S_CRT_A", 0., 790., box, "Up");
166 node->SetLineColor(kColorCRT);
167 fNodes->Add(node);
168
169 top->cd();
170 node = new TNode("upper3", "upper3", "S_CRT_A", 0., 790., -1.*box, "Up");
171 node->SetLineColor(kColorCRT);
172 fNodes->Add(node);
173
174 top->cd();
175 node = new TNode("upper4", "upper4", "S_CRT_A", 0., 790., -3.*box, "Up");
176 node->SetLineColor(kColorCRT);
177 fNodes->Add(node);
178
179
180 // Modules on the left side.
181 Float_t xtragap = 10.;
182 Float_t initXside = (790.+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
183 Float_t initYside = (790.+xtragap)*TMath::Cos(2*22.5*kDegrad);
184 top->cd();
185 node = new TNode("upper5", "upper5", "S_CRT_A", initXside, initYside, 3.*box, "Left");
186 node->SetLineColor(kColorCRT);
187 fNodes->Add(node);
188
189 top->cd();
190 node = new TNode("upper6", "upper6", "S_CRT_A", initXside, initYside, box, "Left");
191 node->SetLineColor(kColorCRT);
192 fNodes->Add(node);
193
194 top->cd();
195 node = new TNode("upper7", "upper7", "S_CRT_A", initXside, initYside, -1.*box, "Left");
196 node->SetLineColor(kColorCRT);
197 fNodes->Add(node);
198
199 top->cd();
200 node = new TNode("upper8", "upper8", "S_CRT_A", initXside, initYside, -3.*box, "Left");
201 node->SetLineColor(kColorCRT);
202 fNodes->Add(node);
203
204
205 // Modules on the right side.
206 top->cd();
207 node = new TNode("upper9", "upper9", "S_CRT_A", -initXside, initYside, 3.*box, "Right");
208 node->SetLineColor(kColorCRT);
209 fNodes->Add(node);
210
211 top->cd();
212 node = new TNode("upper10", "upper10", "S_CRT_A", -initXside, initYside, box, "Right");
213 node->SetLineColor(kColorCRT);
214 fNodes->Add(node);
215
216 top->cd();
217 node = new TNode("upper11","upper11", "S_CRT_A", -initXside, initYside, -1.*box, "Right");
218 node->SetLineColor(kColorCRT);
219 fNodes->Add(node);
220
221 top->cd();
222 node = new TNode("upper12","upper12", "S_CRT_A", -initXside, initYside, -3.*box, "Right");
223 node->SetLineColor(kColorCRT);
224 fNodes->Add(node);
225
fb7a1f55 226
227}
228
229//_____________________________________________________________________________
230void AliCRTv0::CreateGeometry()
231{
232 //
233 // Create geometry for the CRT array
234 //
778e67bd 235 Int_t idrotm[2499]; // The rotation matrix.
236
237 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
238
239 //
240 // Molasse
241 CreateMolasse();
242
243 //
244 // Scintillators
245
246 Float_t box[3];
247 box[0] = AliCRTConstants::fgCageLenght/2.; // Half Length of the box along the X axis, cm.
248 box[1] = AliCRTConstants::fgCageHeight/2.; // Half Length of the box along the Y axis, cm.
249 box[2] = AliCRTConstants::fgCageWidth/2.; // Half Length of the box along the Z axis, cm.
250
251
252 // Define the Scintillators. as a big box.
253 Float_t scint[3];
254 scint[0] = AliCRTConstants::fgActiveAreaLenght/2.; // Half Length in X
255 scint[1] = AliCRTConstants::fgActiveAreaHeight/2.; // Half Length in Y
256 scint[2] = AliCRTConstants::fgActiveAreaWidth/2.; // Half Length in Z
257 gMC->Gsvolu("CRT1", "BOX ", idtmed[1112], scint, 3); // Scintillators
258
259 //
260 // Define the coordinates where the draw will begin.
261 //
262
263 //
264 // -- X axis.
265 // we'll start dawing from the center.
266 Float_t initX = 0.;
267
268 //
269 // -- Y axis
270 Float_t gapY = 30.; // 30 cms. above the barrel.
271 // For the height we staimate the from the center of the ceiling,
272 // if were a cilinder, must be about 280cm.
273 Float_t barrel = 790.; // Barrel radius.
274 Float_t height = barrel + gapY - 30.;
275 Float_t initY = height;
276
277 //
278 // -- Z axis.
279 // we'll start dawing from the center.
280
281 //
282 // Put 4 modules on the top of the magnet
283 Int_t step = 4;
284 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
285 gMC->Gspos("CRT1", i, "ALIC", initX, initY, (i-step)*box[2], 0, "ONLY");
286 step--;
287 }
288
289 // Modules on the barrel sides.
290 // Because the openenig angle for each face is 22.5, and if we want to
291 // put the modules right in the middle
292 Float_t xtragap = 10.;
293 Float_t initXside = (height+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
294 Float_t initYside = (height+xtragap)*TMath::Cos(2*22.5*kDegrad);
295
296 // Put 4 modules on the left side of the magnet
297 // The rotation matrix parameters, for the left side.
298 AliMatrix(idrotm[232], 90., 315., 90., 45., 0., 337.5);
299 Int_t stepl = 4;
300 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
301 gMC->Gspos("CRT1", i+4, "ALIC", initXside, initYside, (i-stepl)*box[2],
302 idrotm[232], "ONLY");
303 stepl--;
304 }
305
306 // Put 4 modules on the right side of the magnet
307 // The rotation matrix parameters for the right side.
308 AliMatrix(idrotm[231], 90., 45., 90., 315., 180., 202.5);
309 Int_t stepr = 4;
310 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
311 gMC->Gspos("CRT1", i+8, "ALIC", -initXside, initYside, (i-stepr)*box[2],
312 idrotm[231], "ONLY");
313 stepr--;
314 }
fb7a1f55 315
778e67bd 316 // Divide the modules in 2 planes.
317 //gMC->Gsdvn("CRT2", "CRT1", 2, 2);
318 // Now divide each plane in 8 palettes
319 //gMC->Gsdvn("CRT3", "CRT2", 8, 3);
320
321}
322
323//_____________________________________________________________________________
324void AliCRTv0::CreateMolasse()
325{
fb7a1f55 326 Int_t idrotm[2499]; // The rotation matrix.
327
fb7a1f55 328 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
329
6e9adb00 330 //
331 // Molasse
332 //
333
334 // Exactly above the hall
335 Float_t tspar[5];
336 tspar[0] = 1170.;
337 tspar[1] = 1170. + 375.;
338 tspar[2] = (1900.+1150.)/2.+100.;
339 tspar[3] = 0.;
340 tspar[4] = 180.;
7cedada3 341 gMC->Gsvolu("CMO1", "TUBS", idtmed[1123], tspar, 5);
6e9adb00 342 gMC->Gspos("CMO1", 1, "ALIC", 0., 500., 1900.-tspar[2]+400., 0, "MANY");
343
344 Float_t tbox[3];
345 tbox[0] = 1250.;
346 tbox[1] = (4420. - 1670.)/2.;
347 tbox[2] = (1900.+1150.)/2. + 200.;
7cedada3 348 gMC->Gsvolu("CM12", "BOX", idtmed[1123], tbox, 3);
6e9adb00 349 gMC->Gspos("CM12", 1, "ALIC", 0., 4420. -tbox[1], 1900.-tbox[2]+400., 0, "MANY");
350
351 AliMatrix(idrotm[2003], 0., 0., 90., 0., 90., 90.);
352 // Along the PM25
353 Float_t tube[3];
354 tube[0] = 455. + 100.;
355 tube[1] = 555. + 375.;
356 tube[2] = (5150. - 1166.)/2.;
7cedada3 357 gMC->Gsvolu("CMO2", "TUBE", idtmed[1123], tube, 3);
6e9adb00 358 gMC->Gspos("CMO2", 1, "ALIC", -2100., 4420.-tube[2], 0., idrotm[2003], "MANY");
359
360
361 // Along the PGC2
362 tube[0] = 650.;
363 tube[1] = 2987.7;
364 tube[2] = (5150. - 690.)/2.;
7cedada3 365 gMC->Gsvolu("CMO3", "TUBE", idtmed[1123], tube, 3);
6e9adb00 366 gMC->Gspos("CMO3", 1, "ALIC", 375., 4420.-tube[2], 1900.+2987.7, idrotm[2003], "MANY");
367 // Behind the PGC2 up to the end of the M. volume.
368 tbox[0] = 12073.;
369 tbox[1] = 2575. + 95.;
778e67bd 370 tbox[2] = (12073. - 1900.-2987.7-650.)/2.;
7cedada3 371 gMC->Gsvolu("CMO7", "BOX", idtmed[1123], tbox, 3);
6e9adb00 372 gMC->Gspos("CMO7", 1, "ALIC", 0., 4420.-tbox[1], 1900.+2987.7+650.+tbox[2], 0, "MANY");
373
374 // Along the PX24 , upper part.
375 tube[0] = 1250.;
376 tube[1] = 2300;
377 tube[2] = 2575. - 1300. + 95.;
7cedada3 378 gMC->Gsvolu("CMO4", "TUBE", idtmed[1123], tube, 3);
6e9adb00 379 gMC->Gspos("CMO4", 1, "ALIC", 0., 404.+1300.+tube[2], -2300., idrotm[2003], "MANY");
380
381 // Along the PX24 , lower part
382 tspar[0] = 1250.;
383 tspar[1] = 2300;
384 tspar[2] = 1300.;
385 tspar[3] = kRaddeg*TMath::ASin(1070./1150.);
386 tspar[4] = 360. - tspar[3];
7cedada3 387 gMC->Gsvolu("CMO5", "TUBS", idtmed[1123], tspar, 5);
6e9adb00 388 gMC->Gspos("CMO5", 1, "ALIC", 0., 404., -2300., idrotm[2003], "MANY");
389 // behind the PX24
390 tbox[0] = 12073.;
391 tbox[1] = 2575. + 95.;
392 tbox[2] = 8523./2.;
7cedada3 393 gMC->Gsvolu("CMO6", "BOX", idtmed[1123], tbox, 3);
6e9adb00 394 gMC->Gspos("CMO6", 1, "ALIC", 0., 4420.-tbox[1], -3550.-tbox[2], 0, "MANY");
395
396
397 // On the right side of th hall
398 tbox[0] = (12073. - 1250.)/2.;
399 tbox[1] = 2575. + 95.;
400 tbox[2] = (8437.7+650.)/2.;
7cedada3 401 gMC->Gsvolu("CMO8", "BOX", idtmed[1123], tbox, 3);
6e9adb00 402 gMC->Gspos("CMO8", 1, "ALIC", 1250.+tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
403
404 // on the left side of the hall, behind
405 tbox[0] = (12073. - 2755.)/2.;
406 tbox[1] = 2575. + 95.;
407 tbox[2] = (8437.7+650.)/2.;
7cedada3 408 gMC->Gsvolu("CMO9", "BOX", idtmed[1123], tbox, 3);
6e9adb00 409 gMC->Gspos("CMO9", 1, "ALIC", -2755.-tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
410
411
412 // Molasse betwen the PX24 & PM25 on the left side.
413 tbox[0] = (2755. - 1250.)/2.;
414 tbox[1] = 2575. + 95.;
415 tbox[2] = (3550. - 555.)/2.;
7cedada3 416 gMC->Gsvolu("CM10", "BOX", idtmed[1123], tbox, 3);
6e9adb00 417 gMC->Gspos("CM10", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], -tbox[2]-555., 0, "MANY");
418
419
420 // Molasse betwen the PGC2 & PM25 on the left side.
421 tbox[0] = (2755. - 1250.)/2.;
422 tbox[1] = 2575. + 95.;
423 tbox[2] = (1900.+2987.7 - 555. + 650.)/2.;
7cedada3 424 gMC->Gsvolu("CM11", "BOX", idtmed[1123], tbox, 3);
6e9adb00 425 gMC->Gspos("CM11", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], 555.+tbox[2], 0, "MANY");
426
fb7a1f55 427
778e67bd 428}
429
430//_____________________________________________________________________________
431void AliCRTv0::CreateShafts()
432{
433 //
434 //
435 //
436 Int_t idrotm[2499]; // The rotation matrix.
fb7a1f55 437
778e67bd 438 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
fb7a1f55 439
778e67bd 440 // HAll ceiling
441 Float_t ptubs[5];
442 ptubs[0] = 1070.;
443 ptubs[1] = 1170.;
444 ptubs[2] = 1900.;
445 ptubs[3] = 0.;
446 ptubs[4] = 180.;
447 gMC->Gsvolu("CHC1", "TUBS", idtmed[1116], ptubs, 5);
448 gMC->Gspos("CHC1", 1, "ALIC", 0., 500., 0., 0, "ONLY");
fb7a1f55 449
450
451 //
778e67bd 452 // Acces shafts
fb7a1f55 453 //
778e67bd 454 AliMatrix(idrotm[2001], 0., 0., 90., 0., 90., 90.);
455
456 // PX24
457 ptubs[0] = 1150.;
458 ptubs[1] = 1250.;
459 ptubs[2] = 1300.;
460 ptubs[3] = kRaddeg*TMath::ASin(1070./ptubs[0]);
461 ptubs[4] = 360 - ptubs[3];
462 gMC->Gsvolu("CSF1", "TUBS", idtmed[1116], ptubs, 5);
463 gMC->Gspos("CSF1", 1, "ALIC", 0., 404., -2300., idrotm[2001], "MANY");
464
465 Float_t ptube[3];
466 ptube[0] = ptubs[0];
467 ptube[1] = ptubs[1];
468 ptube[2] = 2575. - ptubs[2] + 95.;
469 gMC->Gsvolu("CSF2", "TUBE", idtmed[1116], ptube, 3);
470 gMC->Gspos("CSF2", 1, "ALIC", 0., 404.+ptubs[2]+ptube[2], -2300., idrotm[2001], "MANY");
471
472 // Concrete walls along the shaft
473 Float_t pbox[3];
474 pbox[0] = 585./2.;
475 pbox[1] = 2575. + 95.;
476 pbox[2] = 20.;
477 gMC->Gsvolu("CSW1", "BOX", idtmed[1116], pbox, 3);
478 gMC->Gspos("CSW1", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
479
fb7a1f55 480 //
778e67bd 481 pbox[0] = 750./2.;
482 pbox[1] = 2575. + 95.;
483 pbox[2] = 20.;
484 gMC->Gsvolu("CSW3", "BOX", idtmed[1116], pbox, 3);
485 gMC->Gspos("CSW3", 1, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
486
fb7a1f55 487 //
778e67bd 488 pbox[0] = 60.;
489 pbox[1] = 2575. + 95.;
490 pbox[2] = 210.;
491 gMC->Gsvolu("CSW2", "BOX", idtmed[1116], pbox, 3);
492 gMC->Gspos("CSW2", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
493 gMC->Gspos("CSW2", 2, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
494
495
496 //
497 pbox[0] = 1000.;
498 pbox[1] = 80.;
499 pbox[2] = 200.;
500 gMC->Gsvolu("CSP1", "BOX", idtmed[1116], pbox, 3);
501 gMC->Gspos("CSP1", 1, "ALIC", 0., 2600.-700., -1150-pbox[2], 0, "MANY");
502
fb7a1f55 503 //
778e67bd 504 pbox[0] = 340.8;
505 pbox[1] = 300./2.;
506 pbox[2] = 460./2.;
507 gMC->Gsvolu("CSP2", "BOX", idtmed[1116], pbox, 3);
508 gMC->Gspos("CSP2", 1, "ALIC", 0., 2950.-700., -3450+pbox[2], 0, "MANY");
509
fb7a1f55 510 //
778e67bd 511 pbox[0] = 600.;
512 pbox[1] = 150.;
513 pbox[2] = 75.;
514 gMC->Gsvolu("CSP3", "BOX", idtmed[1116], pbox, 3);
515 gMC->Gspos("CSP3", 1, "ALIC", 0., 2950.-700., -1150.-210.-pbox[2], 0, "MANY");
516
517 //
518 pbox[0] = 600.;
519 pbox[1] = 250.;
520 pbox[2] = 38.;
521 gMC->Gsvolu("CSP4", "BOX", idtmed[1116], pbox, 3);
522 gMC->Gspos("CSP4", 1, "ALIC", 0., 2950.-700.+155.+pbox[1], -1150.-210.-pbox[2], 0, "MANY");
523
524
525 // Shielding plug
526 pbox[0] = 850.;
527 pbox[1] = 90.;
528 pbox[2] = 720.;
529 gMC->Gsvolu("CSP5", "BOX", idtmed[1116], pbox, 3);
530 gMC->Gspos("CSP5", 1, "ALIC", 0., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
531
532 //
533 pbox[0] = 80.;
534 pbox[1] = 150.;
535 pbox[2] = 720.;
536 gMC->Gsvolu("CSP6", "BOX", idtmed[1116], pbox, 3);
537 gMC->Gspos("CSP6", 1, "ALIC", 1150.-600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
538 gMC->Gspos("CSP6", 2, "ALIC", -1150.+600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
539
540
541 //
542 pbox[0] = 130.;
543 pbox[1] = 60.;
544 pbox[2] = 750.;
545 gMC->Gsvolu("CSP7", "BOX", idtmed[1116], pbox, 3);
546 gMC->Gspos("CSP7", 1, "ALIC", 850.+pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
547 gMC->Gspos("CSP7", 2, "ALIC", -850.-pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
548
549
550 // PM25 Acces Shaft
551 ptube[0] = 910./2.;
552 ptube[1] = ptube[0] + 100.;
553 ptube[2] = (5150. - 1166.)/2.;
554 gMC->Gsvolu("CSF3", "TUBE", idtmed[1116], ptube, 3);
555 gMC->Gspos("CSF3", 1, "ALIC", -2100., AliCRTConstants::fgDepth-ptube[2], 0., idrotm[2001], "MANY");
556
557 // PGC2 Access Shaft
558 ptube[0] = 1100./2.;
559 ptube[1] = ptube[0] + 100.;
560 ptube[2] = (5150. - 690.)/2.;
561 gMC->Gsvolu("CSF4", "TUBE", idtmed[1116], ptube, 3);
562 gMC->Gspos("CSF4", 1, "ALIC", 375., AliCRTConstants::fgDepth-ptube[2], 1900.+2987.7, idrotm[2001], "MANY");
fb7a1f55 563
564}
565
fb7a1f55 566//_____________________________________________________________________________
778e67bd 567
fb7a1f55 568void AliCRTv0::CreateMaterials()
569{
fb7a1f55 570 // Use the standard materials.
778e67bd 571 AliCRT::CreateMaterials();
fb7a1f55 572}
573
574
575//_____________________________________________________________________________
576void AliCRTv0::DrawDetector()
fb7a1f55 577{
578 //
579 // Draw a shaded view of the L3 magnet
580 //
581 cout << "AliCRTv0::DrawModule() : Drawing the module" << endl;
582
583 gMC->Gsatt("*", "seen", -1);
584 gMC->Gsatt("alic", "seen", 0);
585
6e9adb00 586 gMC->Gsatt("ALIC","seen",0);
fb7a1f55 587 gMC->Gsatt("L3MO","seen",1); // L3 Magnet
6e9adb00 588 gMC->Gsatt("CRT1","seen",1); // Scintillators
589
590 // Draw the molasse volumes
591 gMC->Gsatt("CMO1","seen",0); // Exactly above the HALL
592 gMC->Gsatt("CMO2","seen",0); // Molasse, along the PM25
593 gMC->Gsatt("CMO3","seen",0); // molasse along the PGC2
594 gMC->Gsatt("CMO4","seen",0); // Molasse, behind the PX24 upper part
595 gMC->Gsatt("CMO5","seen",0); // molasse behind px24, lower part
596 gMC->Gsatt("CMO6","seen",0); // behind the PX24
597 gMC->Gsatt("CMO7","seen",0); // behind the PGC2
598 gMC->Gsatt("CMO8","seen",0); // on the right side.
599 gMC->Gsatt("CMO9","seen",0); // on the left side.
600 gMC->Gsatt("CM10","seen",0); // betwen PX24 & PM25.
601 gMC->Gsatt("CM11","seen",0); // betwen PGC2 & PM25.
602 gMC->Gsatt("CM12","seen",0); // box above the hall.
fb7a1f55 603
604 gMC->Gdopt("hide", "on");
605 gMC->Gdopt("edge","off");
606 gMC->Gdopt("shad", "on");
607 gMC->Gsatt("*", "fill", 7);
608 gMC->SetClipBox("ALIC", 0, 3000, -3000, 3000, -6000, 6000);
609 gMC->DefaultRange();
610 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .009, .009);
611 gMC->Gdhead(1111, "View of CRT(ACORDE)");
612 gMC->Gdman(18, 4, "MAN");
613
614
615}
616
617//_____________________________________________________________________________
618void AliCRTv0::Init()
619{
620 //
621 // Initialise L3 magnet after it has been built
622 Int_t i;
623 //
624 if(fDebug) {
625 printf("\n%s: ",ClassName());
626 for(i=0;i<35;i++) printf("*");
627 printf(" CRTv0_INIT ");
628 for(i=0;i<35;i++) printf("*");
629 printf("\n%s: ",ClassName());
630 //
631 // Here the CRTv0 initialisation code (if any!)
632 for(i=0;i<80;i++) printf("*");
633 printf("\n");
634 }
635
636}
637
638//_____________________________________________________________________________
639void AliCRTv0::StepManager()
640{
641 //
67721dc4 642 // Called for every step in the Cosmic Ray Trigger
fb7a1f55 643 //
67721dc4 644 static Int_t vol[5];
778e67bd 645 Int_t copy;
67721dc4 646 Int_t ipart;
647 TLorentzVector pos;
648 TLorentzVector mom;
649
778e67bd 650 static Float_t hits[13];
651 Int_t tracknumber = gAlice->CurrentTrack();
67721dc4 652
778e67bd 653 static Float_t eloss;
654 static Float_t tlength;
655 Float_t theta;
656 Float_t phi;
67721dc4 657
778e67bd 658 if ( !gMC->IsTrackAlive() ) return;
bd1047f8 659
778e67bd 660 if (gMC->IsNewTrack()) {
661 // Reset the deposited energy
662 eloss = 0.;
663 }
664
665 eloss += gMC->Edep(); // Store the energy loss along the trajectory.
666 tlength += gMC->TrackStep();
bd1047f8 667
778e67bd 668 if (gMC->IsTrackEntering() && (strcmp(gMC->CurrentVolName(),"CM12") == 0) ) {
67721dc4 669
778e67bd 670 // Get current particle id (ipart), track position (pos) and momentum (mom)
671 gMC->TrackPosition(pos);
672 gMC->TrackMomentum(mom);
673 ipart = gMC->TrackPid();
674
675 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
676 Double_t pt = TMath::Sqrt(tc);
677 theta = Float_t(TMath::ATan2(pt,Double_t(mom[2])))*kRaddeg;
678 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
679
680
681 vol[0] = gMC->CurrentVolOffID(1, vol[1]);
682 vol[2] = gMC->CurrentVolID(copy);
683 vol[3] = copy;
684
67721dc4 685 hits[0] = 0.f; // (fnmou)
686 hits[1] = (Float_t)ipart; // (fId)
687
688 hits[2] = pos[0]; // X coordinate (fX)
689 hits[3] = pos[1]; // Y coordinate (fY)
690 hits[4] = pos[2]; // Z coordinate (fZ)
691 hits[5] = mom[0]; // Px (fpxug)
692 hits[6] = mom[1]; // Py (fpyug)
693 hits[7] = mom[2]; // Pz (fpzug)
694
695 hits[8] = gMC->GetMedium();//layer(flay)
778e67bd 696 hits[9] = theta; // arrival angle
697 hits[10] = phi; //
698 hits[11] = eloss; // Energy loss
699 hits[12] = tlength; // Trajectory lenght
700 hits[13] = (Float_t)tracknumber;
67721dc4 701
702 AddHit(gAlice->CurrentTrack(),vol, hits);
778e67bd 703
67721dc4 704 }
705
706}
778e67bd 707