]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALRecoUtils.h
Add positility to import geometry.root at Init
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALRecoUtils.h
CommitLineData
d9b3567c 1#ifndef ALIEMCALRECOUTILS_H
2#define ALIEMCALRECOUTILS_H
3
4/* $Id: AliEMCALRecoUtils.h 33808 2009-07-15 09:48:08Z gconesab $ */
5
6///////////////////////////////////////////////////////////////////////////////
7//
8// Class AliEMCALRecoUtils
9// Some utilities to recalculate the cluster position or energy linearity
10//
11//
12// Author: Gustavo Conesa (LPSC- Grenoble)
b540d03f 13// Track matching part: Rongrong Ma (Yale)
d9b3567c 14///////////////////////////////////////////////////////////////////////////////
15
16//Root includes
01d44f1f 17#include <TNamed.h>
18#include <TMath.h>
7cdec71f 19class TObjArray;
20class TArrayI;
21class TArrayF;
01d44f1f 22#include <TH2I.h>
7cdec71f 23class TH2F;
01d44f1f 24#include <TRandom3.h>
d9b3567c 25
26//AliRoot includes
27class AliVCluster;
28class AliVCaloCells;
bd8c7aef 29class AliVEvent;
57131575 30#include "AliESDEvent.h"
b540d03f 31
32// EMCAL includes
094786cc 33class AliEMCALGeometry;
83bfd77a 34class AliEMCALPIDUtils;
bd8c7aef 35class AliESDtrack;
bb6f5f0b 36class AliExternalTrackParam;
d9b3567c 37
38class AliEMCALRecoUtils : public TNamed {
39
40public:
41
42 AliEMCALRecoUtils();
43 AliEMCALRecoUtils(const AliEMCALRecoUtils&);
44 AliEMCALRecoUtils& operator=(const AliEMCALRecoUtils&);
b540d03f 45 virtual ~AliEMCALRecoUtils() ;
01d44f1f 46 void Print(const Option_t*) const;
b540d03f 47
48 //enums
01d44f1f 49 enum NonlinearityFunctions{kPi0MC=0,kPi0GammaGamma=1,kPi0GammaConversion=2,kNoCorrection=3,kBeamTest=4,kBeamTestCorrected=5};
50 enum PositionAlgorithms{kUnchanged=-1,kPosTowerIndex=0, kPosTowerGlobal=1};
51 enum ParticleType{kPhoton=0, kElectron=1,kHadron =2, kUnknown=-1};
52 enum { kNCuts = 11 }; //track matching
0e7de35b 53 enum TrackCutsType{kTPCOnlyCut=0, kGlobalCut=1, kLooseCut=2};
b540d03f 54
55 //-----------------------------------------------------
d9b3567c 56 //Position recalculation
b540d03f 57 //-----------------------------------------------------
58
01d44f1f 59 void RecalculateClusterPosition (AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
094786cc 60 void RecalculateClusterPositionFromTowerIndex (AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
61 void RecalculateClusterPositionFromTowerGlobal(AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
62
01d44f1f 63 Float_t GetCellWeight(const Float_t eCell, const Float_t eCluster) const { return TMath::Max( 0., fW0 + TMath::Log( eCell / eCluster )) ; }
094786cc 64
65 Float_t GetDepth(const Float_t eCluster, const Int_t iParticle, const Int_t iSM) const ;
66
67 void GetMaxEnergyCell(AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu,
cb231979 68 Int_t & absId, Int_t& iSupMod, Int_t& ieta, Int_t& iphi, Bool_t &shared);
d9b3567c 69
01d44f1f 70 Float_t GetMisalTransShift(const Int_t i) const { if(i < 15 ) { return fMisalTransShift[i] ; }
71 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
72 return 0. ; } }
73 Float_t* GetMisalTransShiftArray() { return fMisalTransShift ; }
d9b3567c 74
2a71e873 75 void SetMisalTransShift(const Int_t i, const Float_t shift) {
01d44f1f 76 if(i < 15 ) { fMisalTransShift[i] = shift ; }
77 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
78 void SetMisalTransShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++) fMisalTransShift[i] = misal[i] ; }
79
80 Float_t GetMisalRotShift(const Int_t i) const { if(i < 15 ) { return fMisalRotShift[i] ; }
81 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
82 return 0. ; } }
83
84 Float_t* GetMisalRotShiftArray() { return fMisalRotShift ; }
2a71e873 85
86 void SetMisalRotShift(const Int_t i, const Float_t shift) {
01d44f1f 87 if(i < 15 ) { fMisalRotShift[i] = shift ; }
88 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
89
90 void SetMisalRotShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++)fMisalRotShift[i] = misal[i] ; }
2a71e873 91
01d44f1f 92 Int_t GetParticleType() const { return fParticleType ; }
93 void SetParticleType(Int_t particle) { fParticleType = particle ; }
2a71e873 94
01d44f1f 95 Int_t GetPositionAlgorithm() const { return fPosAlgo ; }
96 void SetPositionAlgorithm(Int_t alg) { fPosAlgo = alg ; }
2a71e873 97
01d44f1f 98 Float_t GetW0() const { return fW0 ; }
99 void SetW0(Float_t w0) { fW0 = w0 ; }
094786cc 100
b540d03f 101 //-----------------------------------------------------
a7e5a381 102 // Non Linearity
b540d03f 103 //-----------------------------------------------------
104
01d44f1f 105 Float_t CorrectClusterEnergyLinearity(AliVCluster* clu) ;
d9b3567c 106
01d44f1f 107 Float_t GetNonLinearityParam(const Int_t i) const { if(i < 7 ){ return fNonLinearityParams[i] ; }
108 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ;
109 return 0. ; } }
d9b3567c 110 void SetNonLinearityParam(const Int_t i, const Float_t param) {
01d44f1f 111 if(i < 7 ){fNonLinearityParams[i] = param ; }
112 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ; } }
113 void InitNonLinearityParam();
7e0ecb89 114
01d44f1f 115 Int_t GetNonLinearityFunction() const { return fNonLinearityFunction ; }
116 void SetNonLinearityFunction(Int_t fun) { fNonLinearityFunction = fun ; InitNonLinearityParam() ; }
7e0ecb89 117
01d44f1f 118 void SetNonLinearityThreshold(Int_t threshold) { fNonLinearThreshold = threshold ; } //only for Alexie's non linearity correction
119 Int_t GetNonLinearityThreshold() const { return fNonLinearThreshold ; }
120//
121 //-----------------------------------------------------
122 // MC clusters energy smearing
123 //-----------------------------------------------------
124
125 Float_t SmearClusterEnergy(AliVCluster* clu) ;
126 void SwitchOnClusterEnergySmearing() { fSmearClusterEnergy = kTRUE ; }
127 void SwitchOffClusterEnergySmearing() { fSmearClusterEnergy = kFALSE ; }
128 Bool_t IsClusterEnergySmeared() const { return fSmearClusterEnergy ; }
129 void SetSmearingParameters(Int_t i, Float_t param) { if(i < 3){ fSmearClusterParam[i] = param ; }
130 else { AliInfo(Form("Index %d larger than 2, do nothing\n",i)) ; } }
b540d03f 131 //-----------------------------------------------------
a7e5a381 132 // Recalibration
b540d03f 133 //-----------------------------------------------------
a7e5a381 134 Bool_t AcceptCalibrateCell(const Int_t absId, const Int_t bc,
135 Float_t & amp, Double_t & time, AliVCaloCells* cells) ; // Energy and Time
136 void RecalibrateCells(AliVCaloCells * cells, Int_t bc) ; // Energy and Time
137 void RecalibrateClusterEnergy(AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells * cells, const Int_t bc=-1) ; // Energy and time
094786cc 138
a7e5a381 139 // Energy recalibration
01d44f1f 140 Bool_t IsRecalibrationOn() const { return fRecalibration ; }
141 void SwitchOffRecalibration() { fRecalibration = kFALSE ; }
142 void SwitchOnRecalibration() { fRecalibration = kTRUE ;
143 if(!fEMCALRecalibrationFactors)InitEMCALRecalibrationFactors() ; }
144 void InitEMCALRecalibrationFactors() ;
96957075 145
3bfc4732 146 TH2F * GetEMCALChannelRecalibrationFactors(Int_t iSM) const { return (TH2F*)fEMCALRecalibrationFactors->At(iSM) ; }
147 void SetEMCALChannelRecalibrationFactors(TObjArray *map) { fEMCALRecalibrationFactors = map ; }
148 void SetEMCALChannelRecalibrationFactors(Int_t iSM , TH2F* h) { fEMCALRecalibrationFactors->AddAt(h,iSM) ; }
149
01d44f1f 150 Float_t GetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow) const {
3bfc4732 151 if(fEMCALRecalibrationFactors)
152 return (Float_t) ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->GetBinContent(iCol,iRow);
153 else return 1 ; }
094786cc 154
01d44f1f 155 void SetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
3bfc4732 156 if(!fEMCALRecalibrationFactors) InitEMCALRecalibrationFactors() ;
157 ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->SetBinContent(iCol,iRow,c) ; }
158
159 //Recalibrate channels energy with run dependent corrections
160 void SwitchOffRunDepCorrection() { fUseRunCorrectionFactors = kFALSE ; }
161 void SwitchOnRunDepCorrection() { fUseRunCorrectionFactors = kTRUE ;
162 SwitchOnRecalibration() ; }
163 void SetRunDependentCorrections(Int_t runnumber);
164
a7e5a381 165 // Time Recalibration
3bfc4732 166 void RecalibrateCellTime(const Int_t absId, const Int_t bc, Double_t & time);
167
168 Bool_t IsTimeRecalibrationOn() const { return fTimeRecalibration ; }
169 void SwitchOffTimeRecalibration() { fTimeRecalibration = kFALSE ; }
170 void SwitchOnTimeRecalibration() { fTimeRecalibration = kTRUE ;
171 if(!fEMCALTimeRecalibrationFactors)InitEMCALTimeRecalibrationFactors() ; }
172 void InitEMCALTimeRecalibrationFactors() ;
173
a7e5a381 174 Float_t GetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID) const {
3bfc4732 175 if(fEMCALTimeRecalibrationFactors)
176 return (Float_t) ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->GetBinContent(absID);
a7e5a381 177 else return 0 ; }
3bfc4732 178
a7e5a381 179 void SetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID, Double_t c = 0) {
3bfc4732 180 if(!fEMCALTimeRecalibrationFactors) InitEMCALTimeRecalibrationFactors() ;
181 ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->SetBinContent(absID,c) ; }
182
a7e5a381 183 TH1F * GetEMCALChannelTimeRecalibrationFactors(const Int_t bc)const { return (TH1F*)fEMCALTimeRecalibrationFactors->At(bc) ; }
184 void SetEMCALChannelTimeRecalibrationFactors(TObjArray *map) { fEMCALTimeRecalibrationFactors = map ; }
185 void SetEMCALChannelTimeRecalibrationFactors(const Int_t bc , TH1F* h) { fEMCALTimeRecalibrationFactors->AddAt(h,bc) ; }
094786cc 186
b540d03f 187 //-----------------------------------------------------
3bfc4732 188 // Modules fiducial region, remove clusters in borders
b540d03f 189 //-----------------------------------------------------
190
01d44f1f 191 Bool_t CheckCellFiducialRegion(AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells* cells) ;
a7e5a381 192 void SetNumberOfCellsFromEMCALBorder(const Int_t n){ fNCellsFromEMCALBorder = n ; }
01d44f1f 193 Int_t GetNumberOfCellsFromEMCALBorder() const { return fNCellsFromEMCALBorder ; }
fd6df01c 194
01d44f1f 195 void SwitchOnNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kTRUE ; }
196 void SwitchOffNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kFALSE ; }
197 Bool_t IsEMCALNoBorderAtEta0() const { return fNoEMCALBorderAtEta0 ; }
fd6df01c 198
b540d03f 199 //-----------------------------------------------------
fd6df01c 200 // Bad channels
b540d03f 201 //-----------------------------------------------------
202
01d44f1f 203 Bool_t IsBadChannelsRemovalSwitchedOn() const { return fRemoveBadChannels ; }
204 void SwitchOffBadChannelsRemoval() { fRemoveBadChannels = kFALSE ; }
205 void SwitchOnBadChannelsRemoval () { fRemoveBadChannels = kTRUE ;
206 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
fd6df01c 207
01d44f1f 208 Bool_t IsDistanceToBadChannelRecalculated() const { return fRecalDistToBadChannels ; }
209 void SwitchOffDistToBadChannelRecalculation() { fRecalDistToBadChannels = kFALSE ; }
210 void SwitchOnDistToBadChannelRecalculation() { fRecalDistToBadChannels = kTRUE ;
211 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
78467229 212
01d44f1f 213 void InitEMCALBadChannelStatusMap() ;
fd6df01c 214
01d44f1f 215 Int_t GetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow) const {
fd6df01c 216 if(fEMCALBadChannelMap) return (Int_t) ((TH2I*)fEMCALBadChannelMap->At(iSM))->GetBinContent(iCol,iRow);
217 else return 0;}//Channel is ok by default
218
01d44f1f 219 void SetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
220 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ;
221 ((TH2I*)fEMCALBadChannelMap->At(iSM))->SetBinContent(iCol,iRow,c) ; }
fd6df01c 222
01d44f1f 223 TH2I * GetEMCALChannelStatusMap(Int_t iSM) const { return (TH2I*)fEMCALBadChannelMap->At(iSM) ; }
224 void SetEMCALChannelStatusMap(TObjArray *map) { fEMCALBadChannelMap = map ; }
225 void SetEMCALChannelStatusMap(Int_t iSM , TH2I* h) { fEMCALBadChannelMap->AddAt(h,iSM) ; }
6fe0e6d0 226
01d44f1f 227 Bool_t ClusterContainsBadChannel(AliEMCALGeometry* geom, UShort_t* cellList, const Int_t nCells);
fd6df01c 228
b540d03f 229 //-----------------------------------------------------
230 // Recalculate other cluster parameters
231 //-----------------------------------------------------
232
01d44f1f 233 void RecalculateClusterDistanceToBadChannel (AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
234 void RecalculateClusterShowerShapeParameters(AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
235 void RecalculateClusterPID(AliVCluster * cluster);
cb231979 236
83bfd77a 237 AliEMCALPIDUtils * GetPIDUtils() { return fPIDUtils;}
238
83bfd77a 239
b540d03f 240 //----------------------------------------------------
241 // Track matching
242 //----------------------------------------------------
bd8c7aef 243
01d44f1f 244 void FindMatches(AliVEvent *event, TObjArray * clusterArr=0x0, AliEMCALGeometry *geom=0x0);
8fc351e3 245 Int_t FindMatchedClusterInEvent(AliESDtrack *track, AliVEvent *event, AliEMCALGeometry *geom, Float_t &dEta, Float_t &dPhi);
246 Int_t FindMatchedClusterInClusterArr(AliExternalTrackParam *emcalParam, AliExternalTrackParam *trkParam, TObjArray * clusterArr, Float_t &dEta, Float_t &dPhi);
ee602376 247
248 static Bool_t ExtrapolateTrackToEMCalSurface(AliExternalTrackParam *trkParam, Double_t emcalR, Double_t mass, Double_t step, Float_t &eta, Float_t &phi);
249 static Bool_t ExtrapolateTrackToPosition(AliExternalTrackParam *trkParam, Float_t *clsPos, Double_t mass, Double_t step, Float_t &tmpEta, Float_t &tmpPhi);
57131575 250 static Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, AliVCluster *cluster, Double_t mass, Double_t step, Float_t &tmpEta, Float_t &tmpPhi);
251 Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, AliVCluster *cluster, Float_t &tmpEta, Float_t &tmpPhi);
8fc351e3 252
01d44f1f 253 UInt_t FindMatchedPosForCluster(Int_t clsIndex) const;
254 UInt_t FindMatchedPosForTrack(Int_t trkIndex) const;
255
256 void GetMatchedResiduals(Int_t clsIndex, Float_t &dEta, Float_t &dPhi);
257 void GetMatchedClusterResiduals(Int_t trkIndex, Float_t &dEta, Float_t &dPhi);
258 Int_t GetMatchedTrackIndex(Int_t clsIndex);
259 Int_t GetMatchedClusterIndex(Int_t trkIndex);
260
261 Bool_t IsClusterMatched(Int_t clsIndex) const;
262 Bool_t IsTrackMatched(Int_t trkIndex) const;
263
57131575 264 void SetClusterMatchedToTrack (AliESDEvent *event);
265
266 void SetTracksMatchedToCluster(AliESDEvent *event);
01d44f1f 267
268 void SwitchOnCutEtaPhiSum() { fCutEtaPhiSum = kTRUE ;
269 fCutEtaPhiSeparate = kFALSE ; }
270 void SwitchOnCutEtaPhiSeparate() { fCutEtaPhiSeparate = kTRUE ;
271 fCutEtaPhiSum = kFALSE ; }
272
273 Float_t GetCutR() const { return fCutR ; }
274 Float_t GetCutEta() const { return fCutEta ; }
275 Float_t GetCutPhi() const { return fCutPhi ; }
8fc351e3 276 Double_t GetClusterWindow() const { return fClusterWindow ; }
01d44f1f 277 void SetCutR(Float_t cutR) { fCutR = cutR ; }
278 void SetCutEta(Float_t cutEta) { fCutEta = cutEta ; }
279 void SetCutPhi(Float_t cutPhi) { fCutPhi = cutPhi ; }
8fc351e3 280 void SetClusterWindow(Double_t window) { fClusterWindow = window ; }
01d44f1f 281 void SetCutZ(Float_t cutZ) { printf("Obsolete fucntion of cutZ=%1.1f\n",cutZ) ; } //Obsolete
282
283 Double_t GetMass() const { return fMass ; }
8fc351e3 284 Double_t GetStep() const { return fStepCluster ; }
285 Double_t GetStepSurface() const { return fStepSurface ; }
01d44f1f 286 void SetMass(Double_t mass) { fMass = mass ; }
da34fafe 287 void SetStep(Double_t step) { fStepSurface = step ; }
288 void SetStepCluster(Double_t step) { fStepCluster = step ; }
bb6f5f0b 289
a7e5a381 290 // Exotic cells / clusters
291
292 Bool_t IsExoticCell(const Int_t absId, AliVCaloCells* cells, const Int_t bc =-1) ;
293 void SwitchOnRejectExoticCell() { fRejectExoticCells = kTRUE ; }
294 void SwitchOffRejectExoticCell() { fRejectExoticCells = kFALSE ; }
295
296 void SetExoticCellFractionCut(Float_t f) { fExoticCellFraction = f ; }
297 void SetExoticCellDiffTimeCut(Float_t dt) { fExoticCellDiffTime = dt ; }
298 void SetExoticCellMinAmplitudeCut(Float_t ma) { fExoticCellMinAmplitude = ma ; }
299
300 Bool_t IsExoticCluster(AliVCluster *cluster, AliVCaloCells* cells, const Int_t bc=0) ;
301 void SwitchOnRejectExoticCluster() { fRejectExoticCluster = kTRUE ;
302 fRejectExoticCells = kTRUE ; }
303 void SwitchOffRejectExoticCluster() { fRejectExoticCluster = kFALSE ; }
01d44f1f 304 Bool_t IsRejectExoticCluster() const { return fRejectExoticCluster ; }
a7e5a381 305
306 //Cluster cut
307 Bool_t IsGoodCluster(AliVCluster *cluster, AliEMCALGeometry *geom, AliVCaloCells* cells, const Int_t bc =-1);
bd8c7aef 308
309 //Track Cuts
01d44f1f 310 Bool_t IsAccepted(AliESDtrack *track);
311 void InitTrackCuts();
312 void SetTrackCutsType(Int_t type) { fTrackCutsType = type ;
313 InitTrackCuts() ; }
314 Int_t GetTrackCutsType() const { return fTrackCutsType; }
bd8c7aef 315
316 // track quality cut setters
01d44f1f 317 void SetMinTrackPt(Double_t pt=0) { fCutMinTrackPt = pt ; }
318 void SetMinNClustersTPC(Int_t min=-1) { fCutMinNClusterTPC = min ; }
319 void SetMinNClustersITS(Int_t min=-1) { fCutMinNClusterITS = min ; }
320 void SetMaxChi2PerClusterTPC(Float_t max=1e10) { fCutMaxChi2PerClusterTPC = max ; }
321 void SetMaxChi2PerClusterITS(Float_t max=1e10) { fCutMaxChi2PerClusterITS = max ; }
322 void SetRequireTPCRefit(Bool_t b=kFALSE) { fCutRequireTPCRefit = b ; }
323 void SetRequireITSRefit(Bool_t b=kFALSE) { fCutRequireITSRefit = b ; }
324 void SetAcceptKinkDaughters(Bool_t b=kTRUE) { fCutAcceptKinkDaughters = b ; }
325 void SetMaxDCAToVertexXY(Float_t dist=1e10) { fCutMaxDCAToVertexXY = dist ; }
326 void SetMaxDCAToVertexZ(Float_t dist=1e10) { fCutMaxDCAToVertexZ = dist ; }
327 void SetDCAToVertex2D(Bool_t b=kFALSE) { fCutDCAToVertex2D = b ; }
bd8c7aef 328
fa4287a2 329 // getters
01d44f1f 330 Double_t GetMinTrackPt() const { return fCutMinTrackPt ; }
331 Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC ; }
332 Int_t GetMinNClustersITS() const { return fCutMinNClusterITS ; }
333 Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC ; }
334 Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS ; }
335 Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit ; }
336 Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit ; }
337 Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters ; }
338 Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY ; }
339 Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ ; }
340 Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D ; }
bd8c7aef 341
fd6df01c 342
8fc351e3 343private:
b540d03f 344 //Position recalculation
96957075 345 Float_t fMisalTransShift[15]; // Shift parameters
346 Float_t fMisalRotShift[15]; // Shift parameters
96957075 347 Int_t fParticleType; // Particle type for depth calculation
348 Int_t fPosAlgo; // Position recalculation algorithm
349 Float_t fW0; // Weight0
01d44f1f 350
351 // Non linearity
352 Int_t fNonLinearityFunction; // Non linearity function choice
353 Float_t fNonLinearityParams[7]; // Parameters for the non linearity function
7e0ecb89 354 Int_t fNonLinearThreshold; // Non linearity threshold value for kBeamTesh non linearity function
fd6df01c 355
01d44f1f 356 // Energy smearing for MC
357 Bool_t fSmearClusterEnergy; // Smear cluster energy, to be done only for simulated data to match real data
358 Float_t fSmearClusterParam[3]; // Smearing parameters
359 TRandom3 fRandom; // Random generator
360
3bfc4732 361 // Energy Recalibration
362 Bool_t fCellsRecalibrated; // Internal bool to check if cells (time/energy) where recalibrated and not recalibrate them when recalculating different things
fd6df01c 363 Bool_t fRecalibration; // Switch on or off the recalibration
364 TObjArray* fEMCALRecalibrationFactors; // Array of histograms with map of recalibration factors, EMCAL
01d44f1f 365
3bfc4732 366 // Time Recalibration
367 Bool_t fTimeRecalibration; // Switch on or off the time recalibration
368 TObjArray* fEMCALTimeRecalibrationFactors; // Array of histograms with map of time recalibration factors, EMCAL
369
370 // Recalibrate with run dependent corrections, energy
371 Bool_t fUseRunCorrectionFactors; // Use Run Dependent Correction
372 Bool_t fRunCorrectionFactorsSet; // Run Correction set at leat once
01d44f1f 373
b540d03f 374 // Bad Channels
fd6df01c 375 Bool_t fRemoveBadChannels; // Check the channel status provided and remove clusters with bad channels
78467229 376 Bool_t fRecalDistToBadChannels; // Calculate distance from highest energy tower of cluster to closes bad channel
fd6df01c 377 TObjArray* fEMCALBadChannelMap; // Array of histograms with map of bad channels, EMCAL
b540d03f 378
379 // Border cells
fd6df01c 380 Int_t fNCellsFromEMCALBorder; // Number of cells from EMCAL border the cell with maximum amplitude has to be.
381 Bool_t fNoEMCALBorderAtEta0; // Do fiducial cut in EMCAL region eta = 0?
b540d03f 382
a7e5a381 383 // Exotic cell / cluster
01d44f1f 384 Bool_t fRejectExoticCluster; // Switch on or off exotic cluster rejection
a7e5a381 385 Bool_t fRejectExoticCells; // Remove exotic cells
386 Float_t fExoticCellFraction; // Good cell if fraction < 1-ecross/ecell
387 Float_t fExoticCellDiffTime; // If time of candidate to exotic and close cell is too different (in ns), it must be noisy, set amp to 0
388 Float_t fExoticCellMinAmplitude; // Check for exotic only if amplitud is larger than this value
01d44f1f 389
390 // PID
391 AliEMCALPIDUtils * fPIDUtils; // Recalculate PID parameters
392
bb6f5f0b 393 //Track matching
394 UInt_t fAODFilterMask; // Filter mask to select AOD tracks. Refer to $ALICE_ROOT/ANALYSIS/macros/AddTaskESDFilter.C
b540d03f 395 TArrayI * fMatchedTrackIndex; // Array that stores indexes of matched tracks
96957075 396 TArrayI * fMatchedClusterIndex; // Array that stores indexes of matched clusters
fa4287a2 397 TArrayF * fResidualEta; // Array that stores the residual eta
398 TArrayF * fResidualPhi; // Array that stores the residual phi
399 Bool_t fCutEtaPhiSum; // Place cut on sqrt(dEta^2+dPhi^2)
400 Bool_t fCutEtaPhiSeparate; // Cut on dEta and dPhi separately
401 Float_t fCutR; // sqrt(dEta^2+dPhi^2) cut on matching
402 Float_t fCutEta; // dEta cut on matching
403 Float_t fCutPhi; // dPhi cut on matching
8fc351e3 404 Double_t fClusterWindow; // Select clusters in the window to be matched
bb6f5f0b 405 Double_t fMass; // Mass hypothesis of the track
8fc351e3 406 Double_t fStepSurface; // Length of step to extrapolate tracks to EMCal surface
407 Double_t fStepCluster; // Length of step to extrapolate tracks to clusters
9741c6a0 408
9741c6a0 409 // Track cuts
5f7714ad 410 Int_t fTrackCutsType; // Esd track cuts type for matching
fa4287a2 411 Double_t fCutMinTrackPt; // Cut on track pT
96957075 412 Int_t fCutMinNClusterTPC; // Min number of tpc clusters
413 Int_t fCutMinNClusterITS; // Min number of its clusters
414 Float_t fCutMaxChi2PerClusterTPC; // Max tpc fit chi2 per tpc cluster
415 Float_t fCutMaxChi2PerClusterITS; // Max its fit chi2 per its cluster
416 Bool_t fCutRequireTPCRefit; // Require TPC refit
417 Bool_t fCutRequireITSRefit; // Require ITS refit
418 Bool_t fCutAcceptKinkDaughters; // Accepting kink daughters?
419 Float_t fCutMaxDCAToVertexXY; // Track-to-vertex cut in max absolute distance in xy-plane
420 Float_t fCutMaxDCAToVertexZ; // Track-to-vertex cut in max absolute distance in z-plane
8fc351e3 421 Bool_t fCutDCAToVertex2D; // If true a 2D DCA cut is made.
83bfd77a 422
a7e5a381 423 ClassDef(AliEMCALRecoUtils, 17)
d9b3567c 424
425};
426
427#endif // ALIEMCALRECOUTILS_H
428
429