]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
New macro from Massimo Masera to plot hits, digits and recpoints
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
a1f090e0 16#include <iostream.h>
17
78a228db 18#include <TFile.h>
a1f090e0 19#include <TMath.h>
20#include <math.h>
b0f5e3fc 21
22#include "AliITSClusterFinderSDD.h"
e8189707 23#include "AliITSMapA1.h"
24#include "AliITS.h"
78a228db 25#include "AliITSdigit.h"
26#include "AliITSRawCluster.h"
27#include "AliITSRecPoint.h"
28#include "AliITSsegmentation.h"
29#include "AliITSresponse.h"
b0f5e3fc 30#include "AliRun.h"
31
32
33
34ClassImp(AliITSClusterFinderSDD)
35
36//----------------------------------------------------------
37AliITSClusterFinderSDD::AliITSClusterFinderSDD
38(AliITSsegmentation *seg, AliITSresponse *response, TClonesArray *digits, TClonesArray *recp)
39{
40 // constructor
78a228db 41
b0f5e3fc 42 fSegmentation=seg;
43 fResponse=response;
44 fDigits=digits;
45 fClusters=recp;
46 fNclusters= fClusters->GetEntriesFast();
b0f5e3fc 47 SetCutAmplitude();
48 SetDAnode();
49 SetDTime();
b0f5e3fc 50 SetMinPeak();
78a228db 51 SetMinNCells();
52 SetMaxNCells();
53 SetTimeCorr();
a1f090e0 54 SetMinCharge();
78a228db 55 fMap=new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
56
b0f5e3fc 57}
58
59//_____________________________________________________________________________
60AliITSClusterFinderSDD::AliITSClusterFinderSDD()
61{
62 // constructor
63 fSegmentation=0;
64 fResponse=0;
65 fDigits=0;
66 fClusters=0;
67 fNclusters=0;
e8189707 68 fMap=0;
b0f5e3fc 69 SetCutAmplitude();
70 SetDAnode();
71 SetDTime();
b0f5e3fc 72 SetMinPeak();
78a228db 73 SetMinNCells();
74 SetMaxNCells();
75 SetTimeCorr();
a1f090e0 76 SetMinCharge();
b0f5e3fc 77
78}
79
e8189707 80//_____________________________________________________________________________
81AliITSClusterFinderSDD::~AliITSClusterFinderSDD()
82{
83 // destructor
84
85 if(fMap) delete fMap;
e8189707 86
87}
b0f5e3fc 88//__________________________________________________________________________
89AliITSClusterFinderSDD::AliITSClusterFinderSDD(const AliITSClusterFinderSDD &source){
90 // Copy Constructor
91 if(&source == this) return;
92 this->fClusters = source.fClusters ;
93 this->fNclusters = source.fNclusters ;
94 this->fMap = source.fMap ;
95 this->fCutAmplitude = source.fCutAmplitude ;
96 this->fDAnode = source.fDAnode ;
97 this->fDTime = source.fDTime ;
78a228db 98 this->fTimeCorr = source.fTimeCorr ;
b0f5e3fc 99 this->fMinPeak = source.fMinPeak ;
100 this->fMinNCells = source.fMinNCells ;
78a228db 101 this->fMaxNCells = source.fMaxNCells ;
b0f5e3fc 102 return;
103}
104
105//_________________________________________________________________________
106AliITSClusterFinderSDD&
107 AliITSClusterFinderSDD::operator=(const AliITSClusterFinderSDD &source) {
108 // Assignment operator
109 if(&source == this) return *this;
110 this->fClusters = source.fClusters ;
111 this->fNclusters = source.fNclusters ;
112 this->fMap = source.fMap ;
113 this->fCutAmplitude = source.fCutAmplitude ;
114 this->fDAnode = source.fDAnode ;
115 this->fDTime = source.fDTime ;
78a228db 116 this->fTimeCorr = source.fTimeCorr ;
b0f5e3fc 117 this->fMinPeak = source.fMinPeak ;
118 this->fMinNCells = source.fMinNCells ;
78a228db 119 this->fMaxNCells = source.fMaxNCells ;
b0f5e3fc 120 return *this;
121}
122
b0f5e3fc 123
b0f5e3fc 124//_____________________________________________________________________________
125
126void AliITSClusterFinderSDD::Find1DClusters()
127{
128 // find 1D clusters
129
a1f090e0 130 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
131
132 // retrieve the parameters
133 Int_t fNofMaps = fSegmentation->Npz();
134 Int_t fMaxNofSamples = fSegmentation->Npx();
135 Int_t fNofAnodes = fNofMaps/2;
136 Int_t dummy=0;
137 Float_t fTimeStep = fSegmentation->Dpx(dummy);
138 Float_t fSddLength = fSegmentation->Dx();
139 Float_t fDriftSpeed = fResponse->DriftSpeed();
140
141 Float_t anodePitch = fSegmentation->Dpz(dummy);
142 // map the signal
143 fMap->SetThreshold(fCutAmplitude);
b0f5e3fc 144
a1f090e0 145 fMap->FillMap();
146
147 Float_t noise;
148 Float_t baseline;
149 fResponse->GetNoiseParam(noise,baseline);
150
151 Int_t nofFoundClusters = 0;
152 Int_t i;
153 Float_t **dfadc = new Float_t*[fNofAnodes];
154 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
155 Float_t fadc = 0.;
156 Float_t fadc1 = 0.;
157 Float_t fadc2 = 0.;
158 Int_t j,k,idx,l,m;
159 for(j=0;j<2;j++) {
160 for(k=0;k<fNofAnodes;k++) {
161 idx = j*fNofAnodes+k;
162 // signal (fadc) & derivative (dfadc)
163 dfadc[k][255]=0.;
164 for(l=0; l<fMaxNofSamples; l++) {
165 fadc2=(Float_t)fMap->GetSignal(idx,l);
166 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
167 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
168 } // samples
169 } // anodes
b0f5e3fc 170
a1f090e0 171 for(k=0;k<fNofAnodes;k++) {
172 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
173 idx = j*fNofAnodes+k;
174
175 Int_t imax = 0;
176 Int_t imaxd = 0;
177 Int_t it=0;
178 while(it <= fMaxNofSamples-3) {
b0f5e3fc 179
a1f090e0 180 imax = it;
181 imaxd = it;
182 // maximum of signal
b0f5e3fc 183
a1f090e0 184 Float_t fadcmax = 0.;
185 Float_t dfadcmax = 0.;
186 Int_t lthrmina = 1;
187 Int_t lthrmint = 3;
b0f5e3fc 188
a1f090e0 189 Int_t lthra = 1;
190 Int_t lthrt = 0;
b0f5e3fc 191
a1f090e0 192 for(m=0;m<20;m++) {
193 Int_t id = it+m;
194 if(id>=fMaxNofSamples) break;
195 fadc=(float)fMap->GetSignal(idx,id);
196 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
197 if(fadc > (float)fCutAmplitude) {
198 lthrt++;
199 }
200
201 if(dfadc[k][id] > dfadcmax) {
202 dfadcmax = dfadc[k][id];
203 imaxd = id;
204 }
205 }
206 it = imaxd;
b0f5e3fc 207
a1f090e0 208 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
209
210 // cluster charge
211 Int_t tstart = it-2;
212 if(tstart < 0) tstart = 0;
213
214 Bool_t ilcl = 0;
215 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
216
217 if(ilcl) {
218 nofFoundClusters++;
219
220 Int_t tstop = tstart;
221 Float_t dfadcmin = 10000.;
222 Int_t ij;
223 for(ij=0; ij<20; ij++) {
224 if(tstart+ij > 255) { tstop = 255; break; }
225 fadc=(float)fMap->GetSignal(idx,tstart+ij);
226 if((dfadc[k][tstart+ij] < dfadcmin) && (fadc > fCutAmplitude)) {
227 tstop = tstart+ij+5;
228 if(tstop > 255) tstop = 255;
229 dfadcmin = dfadc[k][it+ij];
230 }
231 }
232
233 Float_t clusterCharge = 0.;
234 Float_t clusterAnode = k+0.5;
235 Float_t clusterTime = 0.;
236 Float_t clusterMult = 0.;
237 Float_t clusterPeakAmplitude = 0.;
238 Int_t its,peakpos=-1;
239 Float_t n, baseline;
240 fResponse->GetNoiseParam(n,baseline);
241 for(its=tstart; its<=tstop; its++) {
242 fadc=(float)fMap->GetSignal(idx,its);
243 if(fadc>baseline)
244 fadc-=baseline;
245 else
246 fadc=0.;
247 clusterCharge += fadc;
248 // as a matter of fact we should take the peak pos before FFT
249 // to get the list of tracks !!!
250 if(fadc > clusterPeakAmplitude) {
251 clusterPeakAmplitude = fadc;
252 //peakpos=fMap->GetHitIndex(idx,its);
253 Int_t shift=(int)(fTimeCorr/fTimeStep);
254 if(its>shift && its<(fMaxNofSamples-shift)) peakpos=fMap->GetHitIndex(idx,its+shift);
255 else peakpos=fMap->GetHitIndex(idx,its);
256 if(peakpos<0) peakpos=fMap->GetHitIndex(idx,its);
257 }
258 clusterTime += fadc*its;
259 if(fadc > 0) clusterMult++;
260 if(its == tstop) {
261 clusterTime /= (clusterCharge/fTimeStep); // ns
262 if(clusterTime > fTimeCorr) clusterTime -= fTimeCorr; // ns
263 }
264 }
265
266 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*anodePitch;
267 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
268 clusterDriftPath = fSddLength-clusterDriftPath;
269
270 if(clusterCharge <= 0.) break;
271 AliITSRawClusterSDD clust(j+1,clusterAnode,clusterTime,clusterCharge,clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterMult,0,0,0,0,0,0,0);
272 iTS->AddCluster(1,&clust);
273 it = tstop;
b0f5e3fc 274 } // ilcl
275
276 it++;
277
278 } // while (samples)
279 } // anodes
280 } // detectors (2)
a1f090e0 281
282 //fMap->ClearMap();
44b3710f 283
78a228db 284 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
44b3710f 285 delete [] dfadc;
a1f090e0 286
287 return;
288
289}
290
291//_____________________________________________________________________________
292
293void AliITSClusterFinderSDD::Find1DClustersE()
294{
295
296 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
297
298 // retrieve the parameters
299 Int_t fNofMaps = fSegmentation->Npz();
300 Int_t fMaxNofSamples = fSegmentation->Npx();
301 Int_t fNofAnodes = fNofMaps/2;
302 Int_t dummy=0;
303 Float_t fTimeStep = fSegmentation->Dpx( dummy );
304 Float_t fSddLength = fSegmentation->Dx();
305 Float_t fDriftSpeed = fResponse->DriftSpeed();
306 Float_t anodePitch = fSegmentation->Dpz( dummy );
307 Float_t n, baseline;
308 fResponse->GetNoiseParam( n, baseline );
309
310 // map the signal
311 fMap->SetThreshold( fCutAmplitude );
312 fMap->FillMap();
313 Int_t nClu = 0;
314
315// cout << "Search cluster... "<< endl;
316 for( Int_t j=0; j<2; j++ )
317 {
318 for( Int_t k=0; k<fNofAnodes; k++ )
319 {
320 Int_t idx = j*fNofAnodes+k;
321
322 Bool_t On = kFALSE;
323 Int_t start = 0;
324 Int_t nTsteps = 0;
325 Float_t fmax = 0.;
326 Int_t lmax = 0;
327 Float_t charge = 0.;
328 Float_t time = 0.;
329 Float_t anode = k+0.5;
330 Int_t peakpos = -1;
331
332 for( Int_t l=0; l<fMaxNofSamples; l++ )
333 {
334 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
335 if( fadc > 0.0 )
336 {
337 if( On == kFALSE && l<fMaxNofSamples-4) // star RawCluster (reset var.)
338 {
339 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
340 if( fadc1 < fadc ) continue;
341 start = l;
342 fmax = 0.;
343 lmax = 0;
344 time = 0.;
345 charge = 0.;
346 On = kTRUE;
347 nTsteps = 0;
348 }
349
350 nTsteps++ ;
351 if( fadc > baseline )
352 fadc -= baseline;
353 else
354 fadc=0.;
355
356 charge += fadc;
357 time += fadc*l;
358
359 if( fadc > fmax )
360 {
361 fmax = fadc;
362 lmax = l;
363 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
364 if( l > shift && l < (fMaxNofSamples-shift) )
365 peakpos = fMap->GetHitIndex( idx, l+shift );
366 else
367 peakpos = fMap->GetHitIndex( idx, l );
368 if( peakpos < 0 ) peakpos = fMap->GetHitIndex( idx, l );
369 }
370 }
371 else
372 {
373 if( On == kTRUE )
374 {
375 if( nTsteps > 2 ) // min # of timesteps for a RawCluster
376 {
377 // Found a RawCluster...
378 Int_t stop = l-1;
379 time /= (charge/fTimeStep); // ns
380 // time = lmax*fTimeStep; // ns
381 if( time > fTimeCorr ) time -= fTimeCorr; // ns
382 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
383 Float_t DriftPath = time*fDriftSpeed;
384 DriftPath = fSddLength-DriftPath;
385 AliITSRawClusterSDD clust( j+1, anode, time, charge,
386 fmax, peakpos, 0., 0., DriftPath, anodePath, nTsteps
387 , start, stop, start, stop, 1, k, k );
388 iTS->AddCluster( 1, &clust );
389 // clust.PrintInfo();
390 nClu++;
391 }
392 On = kFALSE;
393 }
394 }
395 } // samples
396 } // anodes
397 } // wings
398
399// cout << "# Rawclusters " << nClu << endl;
400 return;
401
402}
403
404//_____________________________________________________________________________
405
406Int_t AliITSClusterFinderSDD::SearchPeak( Float_t *spect, Int_t xdim, Int_t zdim,
407 Int_t *peakX, Int_t *peakZ, Float_t *peakAmp, Float_t minpeak )
408{
409 Int_t npeak = 0; // # peaks
410
411 // search peaks
412 for( Int_t z=1; z<zdim-1; z++ )
413 {
414 for( Int_t x=2; x<xdim-3; x++ )
415 {
416 Float_t Sxz = spect[x*zdim+z];
417 Float_t Sxz1 = spect[(x+1)*zdim+z];
418 Float_t Sxz2 = spect[(x-1)*zdim+z];
419
420 // search a local max. in s[x,z]
421 if( Sxz < minpeak || Sxz1 <= 0 || Sxz2 <= 0 ) continue;
422 if( Sxz >= spect[(x+1)*zdim+z ] && Sxz >= spect[(x-1)*zdim+z ] &&
423 Sxz >= spect[x*zdim +z+1] && Sxz >= spect[x*zdim +z-1] &&
424 Sxz >= spect[(x+1)*zdim+z+1] && Sxz >= spect[(x+1)*zdim+z-1] &&
425 Sxz >= spect[(x-1)*zdim+z+1] && Sxz >= spect[(x-1)*zdim+z-1] )
426 {
427 // peak found
428 peakX[npeak] = x;
429 peakZ[npeak] = z;
430 peakAmp[npeak] = Sxz;
431 npeak++;
432 }
433 }
434 }
435
436 // search groups of peaks with same amplitude.
437 Int_t *Flag = new Int_t[npeak];
438 for( Int_t i=0; i<npeak; i++ ) Flag[i] = 0;
439 for( Int_t i=0; i<npeak; i++ )
440 {
441 for( Int_t j=0; j<npeak; j++ )
442 {
443 if( i==j) continue;
444 if( Flag[j] > 0 ) continue;
445 if( peakAmp[i] == peakAmp[j] && abs(peakX[i]-peakX[j])<=1 && abs(peakZ[i]-peakZ[j])<=1 )
446 {
447 if( Flag[i] == 0) Flag[i] = i+1;
448 Flag[j] = Flag[i];
449 }
450 }
451 }
452
453 // make average of peak groups
454 for( Int_t i=0; i<npeak; i++ )
455 {
456 Int_t nFlag = 1;
457 if( Flag[i] <= 0 ) continue;
458 for( Int_t j=0; j<npeak; j++ )
459 {
460 if( i==j ) continue;
461 if( Flag[j] != Flag[i] ) continue;
462 peakX[i] += peakX[j];
463 peakZ[i] += peakZ[j];
464 nFlag++;
465 npeak--;
466 for( Int_t k=j; k<npeak; k++ )
467 {
468 peakX[k] = peakX[k+1];
469 peakZ[k] = peakZ[k+1];
470 peakAmp[k] = peakAmp[k+1];
471 Flag[k] = Flag[k+1];
472 }
473 j--;
474 }
b0f5e3fc 475
a1f090e0 476 if( nFlag > 1 )
477 {
478 peakX[i] /= nFlag;
479 peakZ[i] /= nFlag;
480 }
481 }
482
483 delete [] Flag;
484 return( npeak );
485}
486
487
f5805f09 488void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral)
a1f090e0 489{
490 Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
491 Int_t param_peak = 5;
492 // par -> paramiters..
493 // par[0] number of peaks.
494 // for each peak i=1, ..., par[0]
495 // par[i] = Ampl.
496 // par[i+1] = xpos
497 // par[i+2] = zpos
498 // par[i+3] = tau
499 // par[i+4] = sigma.
500 Int_t npeak = (Int_t)par[0];
501
502 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
503
504 Int_t k = 1;
505 for( Int_t i=0; i<npeak; i++ )
506 {
507 if( Integral != 0 ) Integral[i] = 0.;
508 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
509 Float_t T2 = par[k+3]; //PASCAL
510 if(Electronics == 2) { T2 *= T2; T2 *= 2; } // OLA
511 for( Int_t z=0; z<zdim; z++ ) {
512 for( Int_t x=0; x<xdim; x++ ) {
513 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
514 Float_t x2 = 0.;
515 if(Electronics == 1) // PASCAL
516 x2 = (x-par[k+1]+T2)/T2;
517 else if(Electronics == 2) //OLA
518 x2 = (x-par[k+1])*(x-par[k+1])/T2;
519 else
520 cout << "Wrong Electronics" << endl;
521 // Float_t signal = (x2 > 0.) ? par[k] * x2*x2 * exp( -2*x2+2. - z2 ) : 0.0; // RCCR
522 Float_t signal = 0.;
523 if(Electronics == 1)
524 signal = (x2 > 0.) ? par[k] * x2 * exp( -x2+1. - z2 ) : 0.0;
525 else if(Electronics == 2) //OLA
526 signal = par[k] * exp( -x2 - z2 );
527 else
528 cout << "Wrong Electronics" << endl;
529
530 spe[x*zdim+z] += signal;
531 if( Integral != 0 ) Integral[i] += signal;
532 }
533 }
534 k += param_peak;
535 }
b0f5e3fc 536 return;
a1f090e0 537}
538
b0f5e3fc 539
a1f090e0 540/*
541void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral=0 )
542{
543 Int_t param_peak = 5;
544// par -> paramiters..
545// par[0] number of peaks.
546// for each peak i=1, ..., par[0]
547// par[i] = Ampl.
548// par[i+1] = xpos
549// par[i+2] = zpos
550// par[i+3] = tau
551// par[i+4] = sigma.
552 Int_t npeak = (Int_t)par[0];
553
554 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
555
556 Int_t k = 1;
557 for( Int_t i=0; i<npeak; i++ )
558 {
559 if( Integral != 0 ) Integral[i] = 0.;
560 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
561 Float_t T2 = par[k+3]*par[k+3]*2.;
562 for( Int_t z=0; z<zdim; z++ )
563 {
564 for( Int_t x=0; x<xdim; x++ )
565 {
566 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
567 Float_t x2 = (x-par[k+1])*(x-par[k+1])/T2;
568 Float_t signal = par[k] * exp( -x2 - z2 );
569 spe[x*zdim+z] += signal;
570 if( Integral != 0 ) Integral[i] += signal;
571 }
572 }
573 k += param_peak;
574 }
575 return;
b0f5e3fc 576}
a1f090e0 577*/
578
579Float_t AliITSClusterFinderSDD::chisq( Int_t xdim, Int_t zdim, Float_t *spe, Float_t *speFit )
580{
581 // EVALUATES UNNORMALIZED CHI-SQUARED
582
583 Float_t chi2 = 0.;
584 for( Int_t z=0; z<zdim; z++ )
585 {
586 for( Int_t x=1; x<xdim-1; x++ )
587 {
588 Int_t index = x*zdim+z;
589 Float_t tmp = spe[index] - speFit[index];
590 chi2 += tmp*tmp;
591 }
592 }
593 return( chi2 );
594}
595
596
597void AliITSClusterFinderSDD::minim( Int_t xdim, Int_t zdim, Float_t *param, Float_t *prm0, Float_t *steprm, Float_t *chisqr,
598 Float_t *spe, Float_t *speFit )
599{
600 Int_t k, nnn, mmm, i;
601 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
602
603 Int_t param_peak = 5;
604 Int_t npeak = (Int_t)param[0];
605 for( k=1; k<(npeak*param_peak+1); k++ ) prm0[k] = param[k];
606
607 for( k=1; k<(npeak*param_peak+1); k++ )
608 {
609 p1 = param[k];
610 delta = steprm[k];
611 d1 = delta;
612
613 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
614 if( fabs( p1 ) > 1.0E-6 )
615 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
616 else delta = (Float_t)1.0E-4;
617
618 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
619 PeakFunc( xdim, zdim, param, speFit );
620 chisq1 = chisq( xdim, zdim, spe, speFit );
621
622 p2 = p1+delta;
623 param[k] = p2;
624
625 PeakFunc( xdim, zdim, param, speFit );
626 chisq2 = chisq( xdim, zdim, spe, speFit );
627
628 if( chisq1 < chisq2 )
629 {
630 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
631 delta = -delta;
632 t = p1;
633 p1 = p2;
634 p2 = t;
635 t = chisq1;
636 chisq1 = chisq2;
637 chisq2 = t;
638 }
639
640 i = 1; nnn = 0;
641 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
642 nnn++;
643 p3 = p2 + delta;
644 mmm = nnn - (nnn/5)*5; // multiplo de 5
645 if( mmm == 0 )
646 {
647 d1 = delta;
648 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
649 delta *= 5;
650 }
651 param[k] = p3;
652
653 // Constrain paramiters
654 Int_t kpos = (k-1) % param_peak;
655 switch( kpos )
656 {
657 case 0 :
658 if( param[k] <= 20 ) param[k] = fMinPeak;
659 case 1 :
660 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
661 case 2 :
662 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
663 case 3 :
664 if( param[k] < .5 ) param[k] = .5;
665 case 4 :
666 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
667 };
668
669 PeakFunc( xdim, zdim, param, speFit );
670 chisq3 = chisq( xdim, zdim, spe, speFit );
671
672 if( chisq3 < chisq2 && nnn < 50 )
673 {
674 p1 = p2;
675 p2 = p3;
676 chisq1 = chisq2;
677 chisq2 = chisq3;
678 }
679 else i=0;
680
681 } while( i );
682
683 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
684 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
685 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
686 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
687 else p0 = 10000;
688
689 //---IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
690 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
691 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
692
693 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
694 //if( fabs( p2-p0 ) > dp ) p0 = p2;
695 param[k] = p0;
696
697 // Constrain paramiters
698 Int_t kpos = (k-1) % param_peak;
699 switch( kpos )
700 {
701 case 0 :
702 if( param[k] <= 20 ) param[k] = fMinPeak;
703 case 1 :
704 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
705 case 2 :
706 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
707 case 3 :
708 if( param[k] < .5 ) param[k] = .5;
709 case 4 :
710 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
711 };
712
713 PeakFunc( xdim, zdim, param, speFit );
714 chisqt = chisq( xdim, zdim, spe, speFit );
715
716 // DO NOT ALLOW ERRONEOUS INTERPOLATION
717 if( chisqt <= *chisqr )
718 *chisqr = chisqt;
719 else
720 param[k] = prm0[k];
721
722 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
723 steprm[k] = (param[k]-prm0[k])/5;
724 if( steprm[k] >= d1 ) steprm[k] = d1/5;
725 }
726
727 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
728 PeakFunc( xdim, zdim, param, speFit );
729 *chisqr = chisq( xdim, zdim, spe, speFit );
730 return;
731}
732
733Int_t AliITSClusterFinderSDD::noLinearFit( Int_t xdim, Int_t zdim, Float_t *param, Float_t *spe, Int_t *niter, Float_t *chir )
734{
735 const Float_t chilmt = 0.01; // relative accuracy
736 const Int_t nel = 3; // for parabolic minimization
737 const Int_t nstop = 50; // Max. iteration number
738 const Int_t param_peak = 5;
739
740 Int_t npeak = (Int_t)param[0];
741
742 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
743 if( (xdim*zdim - npeak*param_peak) <= 0 ) return( -1 );
744 Float_t deg_free = (xdim*zdim - npeak*param_peak)-1;
745
746 Int_t n, k, iter_num = 0;
747 Float_t *prm0 = new Float_t[npeak*param_peak+1];
748 Float_t *step = new Float_t[npeak*param_peak+1];
749 Float_t *schi = new Float_t[npeak*param_peak+1];
750 Float_t *sprm[3];
751 sprm[0] = new Float_t[npeak*param_peak+1];
752 sprm[1] = new Float_t[npeak*param_peak+1];
753 sprm[2] = new Float_t[npeak*param_peak+1];
754
755 Float_t chi0, chi1, reldif, a, b, prmin, dp;
756
757 Float_t *speFit = new Float_t[ xdim*zdim ];
758 PeakFunc( xdim, zdim, param, speFit );
759 chi0 = chisq( xdim, zdim, spe, speFit );
760 chi1 = chi0;
761
762
763 for( k=1; k<(npeak*param_peak+1); k++) prm0[k] = param[k];
764
765 for( k=1 ; k<(npeak*param_peak+1); k+=param_peak )
766 {
767 step[k] = param[k] / 20.0 ;
768 step[k+1] = param[k+1] / 50.0;
769 step[k+2] = param[k+2] / 50.0;
770 step[k+3] = param[k+3] / 20.0;
771 step[k+4] = param[k+4] / 20.0;
772 }
773
774 Int_t out = 0;
775 do
776 {
777 iter_num++;
778 chi0 = chi1;
779
780 minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
781 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
782
783 // EXIT conditions
784 if( reldif < (float) chilmt )
785 {
786 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/deg_free) :0;
787 *niter = iter_num;
788 out = 0;
789 break;
790 }
791
792 if( (reldif < (float)(5*chilmt)) && (iter_num > nstop) )
793 {
794 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
795 *niter = iter_num;
796 out = 0;
797 break;
798 }
799
800 if( iter_num > 5*nstop )
801 {
802 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
803 *niter = iter_num;
804 out = 1;
805 break;
806 }
807
808 if( iter_num <= nel ) continue;
809
810 n = iter_num - (iter_num/nel)*nel; // EXTRAPOLATION LIMIT COUNTER N
811 if( n > 3 || n == 0 ) continue;
812 schi[n-1] = chi1;
813 for( k=1; k<(npeak*param_peak+1); k++ ) sprm[n-1][k] = param[k];
814 if( n != 3 ) continue;
815
816 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
817 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
818
819 for( k=1; k<(npeak*param_peak+1); k++ )
820 {
821 Float_t tmp0 = sprm[0][k];
822 Float_t tmp1 = sprm[1][k];
823 Float_t tmp2 = sprm[2][k];
824 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
825 a += (schi[2]*(tmp0-tmp1));
826 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
827 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*(tmp0*tmp0-tmp1*tmp1)));
828 if ((double)a < 1.0E-6) prmin = 0;
829 else prmin = (float) (0.5*b/a);
830 dp = 5*(tmp2-tmp0);
831
832 if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
833 param[k] = prmin;
834 step[k] = dp/10; // OPTIMIZE SEARCH STEP
835 }
836
837 } while( kTRUE );
838
839 delete [] prm0;
840 delete [] step;
841 delete [] schi;
842 delete [] sprm[0];
843 delete [] sprm[1];
844 delete [] sprm[2];
845 delete [] speFit;
846
847 return( out );
848}
849//_____________________________________________________________________________
850void AliITSClusterFinderSDD::ResolveClustersE()
851{
852 // The function to resolve clusters if the clusters overlapping exists
853
854 AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
855 // get number of clusters for this module
856 Int_t nofClusters = fClusters->GetEntriesFast();
857 nofClusters -= fNclusters;
858
859 Int_t fNofMaps = fSegmentation->Npz();
860 Int_t fNofAnodes = fNofMaps/2;
861 Int_t fMaxNofSamples = fSegmentation->Npx();
862 Int_t dummy=0;
863 Double_t fTimeStep = fSegmentation->Dpx( dummy );
864 Double_t fSddLength = fSegmentation->Dx();
865 Double_t fDriftSpeed = fResponse->DriftSpeed();
866 Double_t anodePitch = fSegmentation->Dpz( dummy );
867 Float_t n, baseline;
868 fResponse->GetNoiseParam( n, baseline );
869 Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
870
871 // fill Map of signals
872 fMap->FillMap();
873
874 for( Int_t j=0; j<nofClusters; j++ )
875 {
876 // get cluster information
877 AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At( j );
878 Int_t astart = clusterJ->Astart();
879 Int_t astop = clusterJ->Astop();
880 Int_t tstart = clusterJ->Tstartf();
881 Int_t tstop = clusterJ->Tstopf();
882 Int_t wing = (Int_t)clusterJ->W();
883 if( wing == 2 )
884 {
885 astart += fNofAnodes;
886 astop += fNofAnodes;
887 }
888 Int_t xdim = tstop-tstart+3;
889 Int_t zdim = astop-astart+3;
890 Float_t *sp = new Float_t[ xdim*zdim+1 ];
891 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
892
893 // make a local map from cluster region
894 for( Int_t ianode=astart; ianode<=astop; ianode++ )
895 {
896 for( Int_t itime=tstart; itime<=tstop; itime++ )
897 {
898 Float_t fadc = fMap->GetSignal( ianode, itime );
899 if( fadc > baseline ) fadc -= (Double_t)baseline;
900 else fadc = 0.;
901 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
902 sp[index] = fadc;
903 } // time loop
904 } // anode loop
905
906 // search peaks on cluster
907 const Int_t np = 150;
908 Int_t peakX1[np];
909 Int_t peakZ1[np];
910 Float_t peakAmp1[np];
911 Int_t npeak = SearchPeak( sp, xdim, zdim, peakX1, peakZ1, peakAmp1, fMinPeak );
912
913 // if multiple peaks, split cluster
914 if( npeak >= 1 )
915 {
916 // cout << "npeak " << npeak << endl;
917 // clusterJ->PrintInfo();
918
919 Float_t *par = new Float_t[npeak*5+1];
920 par[0] = (Float_t)npeak;
921
922 // Initial paramiters in cell dimentions
923 Int_t k1 = 1;
924 for( Int_t i=0; i<npeak; i++ ) {
925 par[k1] = peakAmp1[i];
926 par[k1+1] = peakX1[i]; // local time pos. [timebin]
927 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
928 if(Electronics == 1)
929 par[k1+3] = 2.; // PASCAL
930 else if(Electronics == 2)
931 par[k1+3] = 0.7; // tau [timebin] OLA
932 par[k1+4] = .4; // sigma [anodepich]
933 k1+=5;
934 }
935 Int_t niter;
936 Float_t chir;
937 noLinearFit( xdim, zdim, par, sp, &niter, &chir );
938
939 Float_t peakX[np];
940 Float_t peakZ[np];
941 Float_t sigma[np];
942 Float_t tau[np];
943 Float_t peakAmp[np];
944 Float_t Integral[np];
945
946 //get integrals => charge for each peak
947 PeakFunc( xdim, zdim, par, sp, Integral );
948
949 k1 = 1;
950 for( Int_t i=0; i<npeak; i++ )
951 {
952 peakAmp[i] = par[k1];
953 peakX[i] = par[k1+1];
954 peakZ[i] = par[k1+2];
955 tau[i] = par[k1+3];
956 sigma[i] = par[k1+4];
957 k1+=5;
958 }
959
960 // calculate paramiter for new clusters
961 for( Int_t i=0; i<npeak; i++ )
962 {
963 AliITSRawClusterSDD clusterI( *clusterJ );
964 Int_t newAnode = peakZ1[i]-1 + astart;
965 Int_t newiTime = peakX1[i]-1 + tstart;
966
967 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
968 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) shift = 0;
969 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
970 clusterI.SetPeakPos( peakpos );
971 clusterI.SetPeakAmpl( peakAmp1[i] );
972
973 Float_t newAnodef = peakZ[i] - 0.5 + astart;
974 Float_t newiTimef = peakX[i] - 1 + tstart;
975 if( wing == 2 ) newAnodef -= fNofAnodes;
976 Float_t AnodePath = (newAnodef - fNofAnodes/2)*anodePitch;
977 newiTimef *= fTimeStep;
978 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
979 if(Electronics == 1) {
980 newiTimef *= 0.999438; // PASCAL
981 newiTimef += (6./fDriftSpeed - newiTimef/3000.);
982 }
983 else if(Electronics == 2)
984 newiTimef *= 0.99714; // OLA
985
986 Float_t DriftPath = fSddLength - newiTimef * fDriftSpeed;
987 Float_t sign = ( wing == 1 ) ? -1. : 1.;
988 clusterI.SetX( DriftPath*sign * 0.0001 );
989 clusterI.SetZ( AnodePath * 0.0001 );
990 clusterI.SetAnode( newAnodef );
991 clusterI.SetTime( newiTimef );
992 clusterI.SetAsigma( sigma[i]*anodePitch );
993 clusterI.SetTsigma( tau[i]*fTimeStep );
994 clusterI.SetQ( Integral[i] );
995
996 // clusterI.PrintInfo();
997 iTS->AddCluster( 1, &clusterI );
998 }
999 fClusters->RemoveAt( j );
1000 delete [] par;
1001 }
1002 else cout <<" --- Peak not found!!!! minpeak=" << fMinPeak<<
1003 " cluster peak=" << clusterJ->PeakAmpl() << endl << endl;
1004
1005 delete [] sp;
1006 } // cluster loop
1007
1008 fClusters->Compress();
1009 fMap->ClearMap();
1010}
1011
b0f5e3fc 1012
1013//_____________________________________________________________________________
1014void AliITSClusterFinderSDD::GroupClusters()
1015{
1016 // group clusters
1017 Int_t dummy=0;
1018 Float_t fTimeStep = fSegmentation->Dpx(dummy);
1019
1020
1021 // get number of clusters for this module
1022 Int_t nofClusters = fClusters->GetEntriesFast();
1023 nofClusters -= fNclusters;
1024
b0f5e3fc 1025 AliITSRawClusterSDD *clusterI;
1026 AliITSRawClusterSDD *clusterJ;
1027
44b3710f 1028 Int_t *label = new Int_t [nofClusters];
b0f5e3fc 1029 Int_t i,j;
1030 for(i=0; i<nofClusters; i++) label[i] = 0;
1031 for(i=0; i<nofClusters; i++) {
1032 if(label[i] != 0) continue;
1033 for(j=i+1; j<nofClusters; j++) {
1034 if(label[j] != 0) continue;
1035 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
1036 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
1037 // 1.3 good
a1f090e0 1038 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
1039 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
b0f5e3fc 1040 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
1041 if(!pair) continue;
e8189707 1042 // clusterI->PrintInfo();
1043 // clusterJ->PrintInfo();
b0f5e3fc 1044 clusterI->Add(clusterJ);
1045 label[j] = 1;
1046 fClusters->RemoveAt(j);
a1f090e0 1047 j=i; // <- Ernesto
b0f5e3fc 1048 } // J clusters
1049 label[i] = 1;
1050 } // I clusters
1051 fClusters->Compress();
44b3710f 1052
1053 delete [] label;
b0f5e3fc 1054 return;
1055
1056}
1057
1058//_____________________________________________________________________________
1059
1060void AliITSClusterFinderSDD::SelectClusters()
1061{
1062 // get number of clusters for this module
1063 Int_t nofClusters = fClusters->GetEntriesFast();
1064 nofClusters -= fNclusters;
1065
b0f5e3fc 1066 Int_t i;
1067 for(i=0; i<nofClusters; i++) {
1068 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
1069 Int_t rmflg = 0;
1070 Float_t wy = 0.;
1071 if(clusterI->Anodes() != 0.) {
1072 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
1073 }
a1f090e0 1074 Int_t amp = (Int_t) clusterI->PeakAmpl();
1075 Int_t cha = (Int_t) clusterI->Q();
b0f5e3fc 1076 if(amp < fMinPeak) rmflg = 1;
a1f090e0 1077 if(cha < fMinCharge) rmflg = 1;
b0f5e3fc 1078 if(wy < fMinNCells) rmflg = 1;
78a228db 1079 //if(wy > fMaxNCells) rmflg = 1;
b0f5e3fc 1080 if(rmflg) fClusters->RemoveAt(i);
1081 } // I clusters
1082 fClusters->Compress();
1083 return;
1084
1085}
1086
a1f090e0 1087//_____________________________________________________________________________
1088
1089void AliITSClusterFinderSDD::ResolveClusters()
1090{
1091
1092// The function to resolve clusters if the clusters overlapping exists
1093
1094 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1095
1096 // get number of clusters for this module
1097 Int_t nofClusters = fClusters->GetEntriesFast();
1098 nofClusters -= fNclusters;
1099 // cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","<<fNclusters<<endl;
1100
1101 Int_t fNofMaps = fSegmentation->Npz();
1102 Int_t fNofAnodes = fNofMaps/2;
1103 Int_t dummy=0;
1104 Double_t fTimeStep = fSegmentation->Dpx(dummy);
1105 Double_t fSddLength = fSegmentation->Dx();
1106 Double_t fDriftSpeed = fResponse->DriftSpeed();
1107 Double_t anodePitch = fSegmentation->Dpz(dummy);
1108 Float_t n, baseline;
1109 fResponse->GetNoiseParam(n,baseline);
1110 Float_t dzz_1A = anodePitch * anodePitch / 12;
1111
1112 // fill Map of signals
1113 fMap->FillMap();
1114
1115 Int_t j,i,ii,ianode,anode,itime;
1116 Int_t wing,astart,astop,tstart,tstop,nanode;
1117 Double_t fadc,ClusterTime;
1118 Double_t q[400],x[400],z[400]; // digit charges and coordinates
1119
1120 for(j=0; j<nofClusters; j++) {
1121
1122 AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
1123
1124 Int_t ndigits = 0;
1125 astart=clusterJ->Astart();
1126 astop=clusterJ->Astop();
1127 tstart=clusterJ->Tstartf();
1128 tstop=clusterJ->Tstopf();
1129 nanode=clusterJ->Anodes(); // <- Ernesto
1130 wing=(Int_t)clusterJ->W();
1131 if(wing == 2) {
1132 astart += fNofAnodes;
1133 astop += fNofAnodes;
1134 }
1135
1136// cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","<<tstart<<","<<tstop<<endl;
1137
1138 // clear the digit arrays
1139 for(ii=0; ii<400; ii++) {
1140 q[ii] = 0.;
1141 x[ii] = 0.;
1142 z[ii] = 0.;
1143 }
1144
1145 for(ianode=astart; ianode<=astop; ianode++) {
1146 for(itime=tstart; itime<=tstop; itime++) {
1147 fadc=fMap->GetSignal(ianode,itime);
1148 if(fadc>baseline) {
1149 fadc-=(Double_t)baseline;
1150 q[ndigits] = fadc*(fTimeStep/160); // KeV
1151 anode = ianode;
1152 if(wing == 2) anode -= fNofAnodes;
1153 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
1154 ClusterTime = itime*fTimeStep;
1155 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr; // ns
1156 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1157 if(wing == 1) x[ndigits] *= (-1);
1158// cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","<<fadc<<endl;
1159// cout<<"wing,anode,ndigits,charge ="<<wing<<","<<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1160 ndigits++;
1161 continue;
1162 }
1163 fadc=0;
1164 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1165 } // time loop
1166 } // anode loop
1167 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1168
1169
1170 // Fit cluster to resolve for two separate ones --------------------
1171
1172 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1173 Double_t dxx=0., dzz=0., dxz=0.;
1174 Double_t scl = 0., tmp, tga, elps = -1.;
1175 Double_t xfit[2], zfit[2], qfit[2];
1176 Double_t pitchz = anodePitch*1.e-4; // cm
1177 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1178 Double_t sigma2;
1179 Int_t nfhits;
1180 Int_t nbins = ndigits;
1181 Int_t separate = 0;
1182
1183 // now, all lengths are in microns
1184
1185 for (ii=0; ii<nbins; ii++) {
1186 qq += q[ii];
1187 xm += x[ii]*q[ii];
1188 zm += z[ii]*q[ii];
1189 xx += x[ii]*x[ii]*q[ii];
1190 zz += z[ii]*z[ii]*q[ii];
1191 xz += x[ii]*z[ii]*q[ii];
1192 }
1193
1194 xm /= qq;
1195 zm /= qq;
1196 xx /= qq;
1197 zz /= qq;
1198 xz /= qq;
1199
1200 dxx = xx - xm*xm;
1201 dzz = zz - zm*zm;
1202 dxz = xz - xm*zm;
1203
1204 // shrink the cluster in the time direction proportionaly to the
1205 // dxx/dzz, which lineary depends from the drift path
1206
1207 // new Ernesto........
1208 if( nanode == 1 )
1209 {
1210 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1211 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1212 }
1213 if( nanode == 2 )
1214 {
1215 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1216 }
1217
1218 if( nanode == 3 )
1219 {
1220 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1221 }
1222
1223 if( nanode > 3 )
1224 {
1225 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1226 }
1227
1228 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1229
1230 // old Boris.........
1231 // tmp=29730. - 585.*fabs(xm/1000.);
1232 // scl=TMath::Sqrt(tmp/130000.);
1233
1234 xm *= scl;
1235 xx *= scl*scl;
1236 xz *= scl;
1237
1238
1239 dxx = xx - xm*xm;
1240// dzz = zz - zm*zm;
1241 dxz = xz - xm*zm;
1242
1243 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1244
1245// if(dzz < 7200.) dzz = 7200.; // for one anode cluster dzz = anode**2/12
1246
1247 if (dxx < 0.) dxx=0.;
1248
1249 // the data if no cluster overlapping (the coordunates are in cm)
1250 nfhits = 1;
1251 xfit[0] = xm*1.e-4;
1252 zfit[0] = zm*1.e-4;
1253 qfit[0] = qq;
1254
1255// if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1256
1257 if (nbins >= 7) {
1258 if (dxz==0.) tga=0.;
1259 else {
1260 tmp=0.5*(dzz-dxx)/dxz;
1261 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : tmp+TMath::Sqrt(tmp*tmp+1);
1262 }
1263 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1264
1265 // change from microns to cm
1266 xm *= 1.e-4;
1267 zm *= 1.e-4;
1268 zz *= 1.e-8;
1269 xx *= 1.e-8;
1270 xz *= 1.e-8;
1271 dxz *= 1.e-8;
1272 dxx *= 1.e-8;
1273 dzz *= 1.e-8;
1274
1275 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1276
1277 for (i=0; i<nbins; i++) {
1278 x[i] = x[i] *= scl;
1279 x[i] = x[i] *= 1.e-4;
1280 z[i] = z[i] *= 1.e-4;
1281 }
1282
1283 // cout<<"!!! elps ="<<elps<<endl;
1284
1285 if (elps < 0.3) { // try to separate hits
1286 separate = 1;
1287 tmp=atan(tga);
1288 Double_t cosa=cos(tmp),sina=sin(tmp);
1289 Double_t a1=0., x1=0., xxx=0.;
1290 for (i=0; i<nbins; i++) {
1291 tmp=x[i]*cosa + z[i]*sina;
1292 if (q[i] > a1) {
1293 a1=q[i];
1294 x1=tmp;
1295 }
1296 xxx += tmp*tmp*tmp*q[i];
1297 }
1298 xxx /= qq;
1299 Double_t z12=-sina*xm + cosa*zm;
1300 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1301 xm=cosa*xm + sina*zm;
1302 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1303 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1304 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1305 for (i=0; i<33; i++) { // solve a system of equations
1306 Double_t x1_old=x1, x2_old=x2, r_old=r;
1307 Double_t c11=x1-x2;
1308 Double_t c12=r;
1309 Double_t c13=1-r;
1310 Double_t c21=x1*x1 - x2*x2;
1311 Double_t c22=2*r*x1;
1312 Double_t c23=2*(1-r)*x2;
1313 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1314 Double_t c32=3*r*(sigma2 + x1*x1);
1315 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1316 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1317 Double_t f2=-(r*(sigma2 + x1*x1) + (1-r)*(sigma2 + x2*x2) - xx);
1318 Double_t f3=-(r*x1*(3*sigma2+x1*x1) + (1-r)*x2*(3*sigma2+x2*x2)-xxx);
1319 Double_t d=c11*c22*c33 + c21*c32*c13 + c12*c23*c31 - c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1320 if (d==0.) {
1321 cout<<"*********** d=0 ***********\n";
1322 break;
1323 }
1324 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1325 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1326 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1327 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1328 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1329 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1330 r += dr/d;
1331 x1 += d1/d;
1332 x2 += d2/d;
1333
1334 if (fabs(x1-x1_old) > 0.0001) continue;
1335 if (fabs(x2-x2_old) > 0.0001) continue;
1336 if (fabs(r-r_old)/5 > 0.001) continue;
1337
1338 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1339 Double_t a2=a1*(1-r)/r;
1340 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + z12*cosa;
1341 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + z12*cosa;
1342 nfhits=2;
1343 break; // Ok !
1344 }
1345 if (i==33) cerr<<"No more iterations ! "<<endl;
1346 } // end of attempt to separate overlapped clusters
1347 } // end of nbins cut
1348
1349 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1350 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="<<elps<<","<<nfhits<<endl;
1351 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1352
1353 for (i=0; i<nfhits; i++) {
1354 xfit[i] *= (1.e+4/scl);
1355 if(wing == 1) xfit[i] *= (-1);
1356 zfit[i] *= 1.e+4;
1357 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","<<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1358 }
1359
1360 Int_t ncl = nfhits;
1361 if(nfhits == 1 && separate == 1) {
1362 cout<<"!!!!! no separate"<<endl;
1363 ncl = -2;
1364 }
1365
1366 if(nfhits == 2) {
1367 cout << "Split cluster: " << endl;
1368 clusterJ->PrintInfo();
1369 cout << " in: " << endl;
1370 for (i=0; i<nfhits; i++) {
1371
1372 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],ncl,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop);
1373 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],0,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop,ncl);
1374
1375 // ???????????
1376 // if(wing == 1) xfit[i] *= (-1);
1377 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1378 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1379 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1380 Float_t peakpos = clusterJ->PeakPos();
1381
1382 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1383 Float_t clusterDriftPath = Time*fDriftSpeed;
1384 clusterDriftPath = fSddLength-clusterDriftPath;
1385
1386 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,Time,qfit[i],
1387 clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterJ->Samples()/2
1388 ,tstart,tstop,0,0,0,astart,astop);
1389 clust->PrintInfo();
1390 iTS->AddCluster(1,clust);
1391 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="<<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]<<","<<ncl<<endl;
1392 delete clust;
1393 }// nfhits loop
1394 fClusters->RemoveAt(j);
1395
1396 } // if nfhits = 2
1397 } // cluster loop
1398
1399 fClusters->Compress();
1400 fMap->ClearMap();
1401
1402 return;
1403}
1404
1405
b0f5e3fc 1406//_____________________________________________________________________________
1407
1408void AliITSClusterFinderSDD::GetRecPoints()
1409{
1410 // get rec points
b0f5e3fc 1411
1412 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1413
1414 // get number of clusters for this module
1415 Int_t nofClusters = fClusters->GetEntriesFast();
1416 nofClusters -= fNclusters;
1417
b0f5e3fc 1418 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1419 const Float_t kconv = 1.0e-4;
1420 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1421 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1422
e8189707 1423
78a228db 1424 Int_t i;
1425 Int_t ix, iz, idx=-1;
1426 AliITSdigitSDD *dig=0;
78a228db 1427 Int_t ndigits=fDigits->GetEntriesFast();
b0f5e3fc 1428 for(i=0; i<nofClusters; i++) {
78a228db 1429 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1430 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1431 if(clusterI) idx=clusterI->PeakPos();
1432 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1433 // try peak neighbours - to be done
1434 if(idx && idx <= ndigits) dig = (AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1435 if(!dig) {
1436 // try cog
1437 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1438 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1439 // if null try neighbours
1440 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1441 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1442 if (!dig) printf("SDD: cannot assign the track number!\n");
1443 }
1444
b0f5e3fc 1445 AliITSRecPoint rnew;
1446 rnew.SetX(clusterI->X());
1447 rnew.SetZ(clusterI->Z());
1448 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
b0f5e3fc 1449 rnew.SetdEdX(kconvGeV*clusterI->Q());
1450 rnew.SetSigmaX2(kRMSx*kRMSx);
1451 rnew.SetSigmaZ2(kRMSz*kRMSz);
78a228db 1452 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1453 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1454 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1455 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],clusterI->X(),clusterI->Z());
b0f5e3fc 1456 iTS->AddRecPoint(rnew);
b0f5e3fc 1457 } // I clusters
b0f5e3fc 1458
e8189707 1459 fMap->ClearMap();
b0f5e3fc 1460}
1461
1462//_____________________________________________________________________________
1463
1464void AliITSClusterFinderSDD::FindRawClusters()
1465{
1466 // find raw clusters
a1f090e0 1467 Find1DClustersE();
b0f5e3fc 1468 GroupClusters();
1469 SelectClusters();
a1f090e0 1470 ResolveClustersE();
b0f5e3fc 1471 GetRecPoints();
1472}
a1f090e0 1473//_____________________________________________________________________________
1474
1475void AliITSClusterFinderSDD::Print()
1476{
1477 // Print SDD cluster finder Parameters
1478
1479 cout << "**************************************************" << endl;
1480 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1481 cout << "**************************************************" << endl;
1482 cout << "Number of Clusters: " << fNclusters << endl;
1483 cout << "Anode Tolerance: " << fDAnode << endl;
1484 cout << "Time Tolerance: " << fDTime << endl;
1485 cout << "Time correction (electronics): " << fTimeCorr << endl;
1486 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1487 cout << "Minimum Amplitude: " << fMinPeak << endl;
1488 cout << "Minimum Charge: " << fMinCharge << endl;
1489 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1490 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1491 cout << "**************************************************" << endl;
1492}