]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSRecoParam.h
fix warning
[u/mrichter/AliRoot.git] / ITS / AliITSRecoParam.h
CommitLineData
44347160 1#ifndef ALIITSRECOPARAM_H
2#define ALIITSRECOPARAM_H
572f41f9 3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
44347160 4 * See cxx source for full Copyright notice */
5
572f41f9 6/* $Id$ */
7
44347160 8///////////////////////////////////////////////////////////////////////////////
9// //
10// Class with ITS reconstruction parameters //
11// Origin: andrea.dainese@lnl.infn.it //
12// //
13///////////////////////////////////////////////////////////////////////////////
14
15
6518a6c5 16#include "AliDetectorRecoParam.h"
e50912db 17#include "AliITSgeomTGeo.h"
767aaecb 18#include "AliESDV0Params.h"
44347160 19
6518a6c5 20class AliITSRecoParam : public AliDetectorRecoParam
44347160 21{
22 public:
23 AliITSRecoParam();
24 virtual ~AliITSRecoParam();
25
26 static AliITSRecoParam *GetLowFluxParam();// make reco parameters for low flux env.
27 static AliITSRecoParam *GetHighFluxParam();// make reco parameters for high flux env.
28 static AliITSRecoParam *GetCosmicTestParam();// special setting for cosmic
4a66240a 29 static AliITSRecoParam *GetPlaneEffParam(Int_t i);// special setting for Plane Efficiency studies
44347160 30
e50912db 31 static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; }
32 static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; }
33 static Int_t GetMaxClusterPerLayer() { return fgkMaxClusterPerLayer; }
34 static Int_t GetMaxClusterPerLayer5() { return fgkMaxClusterPerLayer5; }
35 static Int_t GetMaxClusterPerLayer10() { return fgkMaxClusterPerLayer10; }
36 static Int_t GetMaxClusterPerLayer20() { return fgkMaxClusterPerLayer20; }
37 static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; }
38 static Double_t Getriw() { return fgkriw; }
39 static Double_t Getdiw() { return fgkdiw; }
40 static Double_t GetX0iw() { return fgkX0iw; }
41 static Double_t Getrcd() { return fgkrcd; }
42 static Double_t Getdcd() { return fgkdcd; }
43 static Double_t GetX0cd() { return fgkX0cd; }
44 static Double_t Getyr() { return fgkyr; }
45 static Double_t Getdr() { return fgkdr; }
46 static Double_t Getzm() { return fgkzm; }
47 static Double_t Getdm() { return fgkdm; }
48 static Double_t Getrs() { return fgkrs; }
49 static Double_t Getds() { return fgkds; }
50 static Double_t GetrInsideITSscreen() { return fgkrInsideITSscreen; }
51 static Double_t GetrInsideSPD1() { return fgkrInsideSPD1; }
52 static Double_t GetrPipe() { return fgkrPipe; }
53 static Double_t GetrInsidePipe() { return fgkrInsidePipe; }
54 static Double_t GetrOutsidePipe() { return fgkrOutsidePipe; }
55 static Double_t GetdPipe() { return fgkdPipe; }
56 static Double_t GetrInsideShield(Int_t i) { return fgkrInsideShield[i]; }
57 static Double_t GetrOutsideShield(Int_t i) { return fgkrOutsideShield[i]; }
58 static Double_t Getdshield(Int_t i) { return fgkdshield[i]; }
59 static Double_t GetX0shield(Int_t i) { return fgkX0shield[i]; }
60 static Double_t GetX0Air() { return fgkX0Air; }
61 static Double_t GetX0Be() { return fgkX0Be; }
62 static Double_t GetBoundaryWidth() { return fgkBoundaryWidth; }
63 static Double_t GetDeltaXNeighbDets() { return fgkDeltaXNeighbDets; }
64 static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; }
65 static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; }
66
ed446fa3 67 void PrintParameters() const;
68
f9119eb9 69 void SetTracker(Int_t tracker=0) { fTracker=tracker; }
9f9cae94 70 void SetTrackerDefault() { SetTracker(0); } // = MI and SA
876026b6 71 void SetTrackerMI() { SetTracker(1); }
72 void SetTrackerV2() { SetTracker(2); }
f9119eb9 73 Int_t GetTracker() const { return fTracker; }
9f9cae94 74 void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; }
75 Bool_t GetTrackerSAOnly() const { return fITSonly; }
f9119eb9 76 void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; }
876026b6 77 void SetVertexer3D() { SetVertexer(0); }
78 void SetVertexerZ() { SetVertexer(1); }
79 void SetVertexerCosmics() { SetVertexer(2); }
80 void SetVertexerIons() { SetVertexer(3); }
9364069b 81 void SetVertexerSmearMC(Float_t smearx=0.005, Float_t smeary=0.005, Float_t smearz=0.01) {
82 fVertexerFastSmearX=smearx; fVertexerFastSmearY=smeary; fVertexerFastSmearZ=smearz; SetVertexer(4);
83 }
c8735dd3 84 void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests
85 void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests
f9119eb9 86 Int_t GetVertexer() const { return fVertexer; }
9364069b 87 Float_t GetVertexerFastSmearX() const {return fVertexerFastSmearX;}
88 Float_t GetVertexerFastSmearY() const {return fVertexerFastSmearY;}
89 Float_t GetVertexerFastSmearZ() const {return fVertexerFastSmearZ;}
90
876026b6 91 void SetClusterFinder(Int_t cf=0) { fClusterFinder=cf; }
92 void SetClusterFinderV2() { SetClusterFinder(0); }
93 void SetClusterFinderOrig() { SetClusterFinder(1); }
94 Int_t GetClusterFinder() const { return fClusterFinder; }
95 void SetPID(Int_t pid=0) {fPID=pid;}
96 void SetDefaultPID() {SetPID(0);}
97 void SetLandauFitPID() {SetPID(1);}
98 Int_t GetPID() const {return fPID;}
f9119eb9 99
67f622fd 100 void SetVertexer3DFiducialRegions(Float_t dzwid=40.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){
7203e11a 101 SetVertexer3DWideFiducialRegion(dzwid,drwid);
102 SetVertexer3DNarrowFiducialRegion(dznar,drnar);
103 }
20c00606 104 void SetVertexer3DWideFiducialRegion(Float_t dz=40.0, Float_t dr=2.5){
7203e11a 105 fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr;
106 }
107 void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){
108 fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr;
109 }
20c00606 110 void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.025){
7203e11a 111 fVtxr3DPhiCutLoose=dphiloose;
112 fVtxr3DPhiCutTight=dphitight;
113 }
114 void SetVertexer3DDCACut(Float_t dca=0.1){
115 fVtxr3DDCACut=dca;
116 }
117 void SetVertexer3DDefaults(){
118 SetVertexer3DFiducialRegions();
119 SetVertexer3DDeltaPhiCuts();
120 SetVertexer3DDCACut();
121 }
9ce18bbb 122 void SetSPDVertexerPileupAlgoOff(){fVtxr3DPileupAlgo=3;}
8b78365f 123 void SetSPDVertexerPileupAlgoZ(){fVtxr3DPileupAlgo=0;}
124 void SetSPDVertexerPileupAlgo3DTwoSteps(){fVtxr3DPileupAlgo=1;}
125 void SetSPDVertexerPileupAlgo3DOneShot(){fVtxr3DPileupAlgo=2;}
126
7203e11a 127
128 Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;}
129 Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;}
130 Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;}
131 Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;}
132 Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;}
133 Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;}
134 Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;}
8b78365f 135 Int_t GetSPDVertexerPileupAlgo() const {return fVtxr3DPileupAlgo;}
7203e11a 136
44347160 137 Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; }
138 Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; }
139
140 Double_t GetMaxSnp() const { return fMaxSnp; }
141
142 Double_t GetNSigmaYLayerForRoadY() const { return fNSigmaYLayerForRoadY; }
143 Double_t GetNSigmaRoadY() const { return fNSigmaRoadY; }
144 Double_t GetNSigmaZLayerForRoadZ() const { return fNSigmaZLayerForRoadZ; }
145 Double_t GetNSigmaRoadZ() const { return fNSigmaRoadZ; }
146 Double_t GetNSigma2RoadYC() const { return fNSigma2RoadYC; }
147 Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; }
148 Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; }
149 Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; }
1c97ce2f 150 Double_t GetRoadMisal() const { return fRoadMisal; }
151 void SetRoadMisal(Double_t road=0) { fRoadMisal=road; }
44347160 152
153 Double_t GetChi2PerCluster() const { return fChi2PerCluster; }
154 Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; }
155 Double_t GetMaxNormChi2NonC(Int_t i) const { return fMaxNormChi2NonC[i]; }
156 Double_t GetMaxNormChi2C(Int_t i) const { return fMaxNormChi2C[i]; }
afd25725 157 Double_t GetMaxNormChi2NonCForHypothesis() const { return fMaxNormChi2NonCForHypothesis; }
44347160 158 Double_t GetMaxChi2() const { return fMaxChi2; }
159 Double_t GetMaxChi2s(Int_t i) const { return fMaxChi2s[i]; }
160 Double_t GetMaxChi2sR(Int_t i) const { return fMaxChi2sR[i]; }
161 Double_t GetMaxChi2In() const { return fMaxChi2In; }
44347160 162 Double_t GetMaxRoad() const { return fMaxRoad; }
afd25725 163 Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; }
44347160 164
794d9013 165 void SetSearchForExtraClusters(Bool_t opt=kTRUE){ fSearchForExtras=opt; }
166 Double_t GetSearchForExtraClusters() const { return fSearchForExtras; }
167
44347160 168 Double_t GetXVdef() const { return fXV; }
169 Double_t GetYVdef() const { return fYV; }
170 Double_t GetZVdef() const { return fZV; }
171 Double_t GetSigmaXVdef() const { return fSigmaXV; }
172 Double_t GetSigmaYVdef() const { return fSigmaYV; }
173 Double_t GetSigmaZVdef() const { return fSigmaZV; }
afd25725 174
175 Double_t GetVertexCut() const { return fVertexCut; }
176 Double_t GetMaxDZforPrimTrk() const { return fMaxDZforPrimTrk; }
177 Double_t GetMaxDZToUseConstraint() const { return fMaxDZToUseConstraint; }
178 Double_t GetMaxDforV0dghtrForProlongation() const { return fMaxDforV0dghtrForProlongation; }
179 Double_t GetMaxDForProlongation() const { return fMaxDForProlongation; }
180 Double_t GetMaxDZForProlongation() const { return fMaxDZForProlongation; }
181 Double_t GetMinPtForProlongation() const { return fMinPtForProlongation; }
182
183 void SetAddVirtualClustersInDeadZone(Bool_t add=kTRUE) { fAddVirtualClustersInDeadZone=add; return; }
184 Bool_t GetAddVirtualClustersInDeadZone() const { return fAddVirtualClustersInDeadZone; }
185 Double_t GetZWindowDeadZone() const { return fZWindowDeadZone; }
186 Double_t GetSigmaXDeadZoneHit2() const { return fSigmaXDeadZoneHit2; }
187 Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; }
188 Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; }
189
87b4605f 190 Bool_t GetSkipSubdetsNotInTriggerCluster() const { return fSkipSubdetsNotInTriggerCluster; }
191 void SetSkipSubdetsNotInTriggerCluster(Bool_t flag=kTRUE) { fSkipSubdetsNotInTriggerCluster=flag; }
afd25725 192
e50912db 193 void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; }
194 Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; }
9be1d1c7 195 void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; }
196 Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; }
44347160 197
afd25725 198 void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; }
199 Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; }
200
e50912db 201 void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; }
202 Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; }
f9119eb9 203 void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; }
204 void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; }
205 void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); }
4fd4a5d7 206 void SetClusterMisalErrorYBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorYBOn[0]=e0; fClusterMisalErrorYBOn[1]=e1; fClusterMisalErrorYBOn[2]=e2; fClusterMisalErrorYBOn[3]=e3; fClusterMisalErrorYBOn[4]=e4; fClusterMisalErrorYBOn[5]=e5; return; }
207 void SetClusterMisalErrorZBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZBOn[0]=e0; fClusterMisalErrorZBOn[1]=e1; fClusterMisalErrorZBOn[2]=e2; fClusterMisalErrorZBOn[3]=e3; fClusterMisalErrorZBOn[4]=e4; fClusterMisalErrorZBOn[5]=e5; return; }
208 void SetClusterMisalErrorBOn(Float_t err=0.) { SetClusterMisalErrorYBOn(err,err,err,err,err,err); SetClusterMisalErrorZBOn(err,err,err,err,err,err); }
209 Float_t GetClusterMisalErrorY(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorY[i] : fClusterMisalErrorYBOn[i]); }
210 Float_t GetClusterMisalErrorZ(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorZ[i] : fClusterMisalErrorZBOn[i]); }
401eff16 211
e50912db 212 void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i<AliITSgeomTGeo::kNLayers;i++) fUseAmplitudeInfo[i]=use; return; }
572f41f9 213 void SetUseAmplitudeInfo(Int_t ilay,Bool_t use) { fUseAmplitudeInfo[ilay]=use; return; }
214 Bool_t GetUseAmplitudeInfo(Int_t ilay) const { return fUseAmplitudeInfo[ilay]; }
0ed58a47 215// Option for Plane Efficiency evaluation
216 void SetComputePlaneEff(Bool_t eff=kTRUE, Bool_t his=kTRUE)
5fbd4fd6 217 { fComputePlaneEff=eff; fHistoPlaneEff=his; return; }
4a66240a 218 Bool_t GetComputePlaneEff() const { return fComputePlaneEff; }
5fbd4fd6 219 Bool_t GetHistoPlaneEff() const { return fHistoPlaneEff; }
58e8dc31 220 void SetUseTrackletsPlaneEff(Bool_t use=kTRUE) {fUseTrackletsPlaneEff=use; return;}
221 Bool_t GetUseTrackletsPlaneEff() const {return fUseTrackletsPlaneEff;}
222 void SetOptTrackletsPlaneEff(Bool_t mc=kFALSE,Bool_t bkg=kFALSE)
223 {fMCTrackletsPlaneEff=mc;fBkgTrackletsPlaneEff=bkg; return;}
224 Bool_t GetMCTrackletsPlaneEff() const {return fMCTrackletsPlaneEff;}
225 Bool_t GetBkgTrackletsPlaneEff() const {return fBkgTrackletsPlaneEff;}
226 void SetTrackleterPhiWindowL1(Float_t w=0.10) {fTrackleterPhiWindowL1=w; return;}
227 Float_t GetTrackleterPhiWindowL1() const {return fTrackleterPhiWindowL1;}
7284b2b2 228 void SetTrackleterPhiWindowL2(Float_t w=0.07) {fTrackleterPhiWindowL2=w; return;}
229 Float_t GetTrackleterPhiWindowL2() const {return fTrackleterPhiWindowL2;}
58e8dc31 230 void SetTrackleterZetaWindowL1(Float_t w=0.6) {fTrackleterZetaWindowL1=w; return;}
231 Float_t GetTrackleterZetaWindowL1() const {return fTrackleterZetaWindowL1;}
7284b2b2 232 void SetTrackleterZetaWindowL2(Float_t w=0.40) {fTrackleterZetaWindowL2=w; return;}
233 Float_t GetTrackleterZetaWindowL2() const {return fTrackleterZetaWindowL2;}
58e8dc31 234 void SetUpdateOncePerEventPlaneEff(Bool_t use=kTRUE) {fUpdateOncePerEventPlaneEff=use; return;}
235 Bool_t GetUpdateOncePerEventPlaneEff() const {return fUpdateOncePerEventPlaneEff;}
236 void SetMinContVtxPlaneEff(Int_t n=3) {fMinContVtxPlaneEff=n; return;}
237 Int_t GetMinContVtxPlaneEff() const {return fMinContVtxPlaneEff;}
1a64bda6 238 void SetIPlanePlaneEff(Int_t i=0) {if(i<-1 || i>=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; }
0ed58a47 239 Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;}
275a301c 240 void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; }
241 Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; }
0ed58a47 242 void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; }
243 Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; }
244 void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;}
245 Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;}
061c42a0 246 void SetMaxMissingClustersOutPlaneEff(Int_t max=0) { fMaxMissingClustersOutPlaneEff=max;}
247 Int_t GetMaxMissingClustersOutPlaneEff() const {return fMaxMissingClustersOutPlaneEff;}
0ed58a47 248 void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;}
249 Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;}
250 void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;}
251 Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;}
252 void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; }
253 Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; }
061c42a0 254 void SetNSigXFromBoundaryPlaneEff(Double_t nsigx=1.) {fNSigXFromBoundaryPlaneEff=nsigx;}
255 Double_t GetNSigXFromBoundaryPlaneEff() const {return fNSigXFromBoundaryPlaneEff;}
256 void SetNSigZFromBoundaryPlaneEff(Double_t nsigz=1.) {fNSigZFromBoundaryPlaneEff=nsigz;}
257 Double_t GetNSigZFromBoundaryPlaneEff() const {return fNSigZFromBoundaryPlaneEff;}
ae00569a 258 //
333d86cb 259 void SetImproveWithVertex(Bool_t impr=kFALSE) { fImproveWithVertex=impr; return; }
260 Bool_t GetImproveWithVertex() const { return fImproveWithVertex; }
2755f080 261 void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; }
262 Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; }
ae00569a 263 void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; }
264 Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; }
265
23197852 266 void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; }
267 Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; }
268
269 void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; }
270 Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; }
271
272 void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; }
273 Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; }
572f41f9 274
12b1afb7 275 void SetOutwardFindingSA() {fInwardFlagSA=kFALSE;}
276 void SetInwardFindingSA() {fInwardFlagSA=kTRUE;}
277 Bool_t GetInwardFindingSA() const {return fInwardFlagSA;}
9f9cae94 278 void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; }
279 Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; }
12b1afb7 280 void SetInnerStartLayerSA(Int_t lay) { fInnerStartLayerSA=lay; return; }
281 Int_t GetInnerStartLayerSA() const { return fInnerStartLayerSA; }
282 void SetMinNPointsSA(Int_t np) { fMinNPointsSA=np; return; }
283 Int_t GetMinNPointsSA() const { return fMinNPointsSA;}
2755f080 284 void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; }
285 Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; }
572f41f9 286
c7d6d7b7 287 void SetNLoopsSA(Int_t nl=10) {fNLoopsSA=nl;}
288 Int_t GetNLoopsSA() const { return fNLoopsSA;}
289 void SetPhiLimitsSA(Double_t phimin,Double_t phimax){
290 fMinPhiSA=phimin; fMaxPhiSA=phimax;
291 }
292 Double_t GetMinPhiSA() const {return fMinPhiSA;}
293 Double_t GetMaxPhiSA() const {return fMaxPhiSA;}
294 void SetLambdaLimitsSA(Double_t lambmin,Double_t lambmax){
295 fMinLambdaSA=lambmin; fMaxLambdaSA=lambmax;
296 }
297 Double_t GetMinLambdaSA() const {return fMinLambdaSA;}
298 Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;}
3733ccd2 299
300 void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;}
301 Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;}
c7d6d7b7 302
5a03f353 303 void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; }
304 Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; }
305
3bfb5cac 306 void SetSAUseAllClusters(Bool_t opt=kTRUE) { fSAUseAllClusters=opt; return; }
5a03f353 307 Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; }
308
8227519f 309 void SetMaxSPDcontrForSAToUseAllClusters(Int_t contr=50) { fMaxSPDcontrForSAToUseAllClusters=contr; return; }
310 Int_t GetMaxSPDcontrForSAToUseAllClusters() const { return fMaxSPDcontrForSAToUseAllClusters; }
311
afd25725 312 void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; }
313 Bool_t GetFindV0s() const { return fFindV0s; }
314
b0160ebc 315 void SetStoreLikeSignV0s(Bool_t like=kFALSE) { fStoreLikeSignV0s=like; return; }
316 Bool_t GetStoreLikeSignV0s() const { return fStoreLikeSignV0s; }
317
2755f080 318 void SetLayersParameters();
319
320 void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; }
321 Int_t GetLayersToSkip(Int_t i) const { return fLayersToSkip[i]; }
e340bb86 322
6518a6c5 323 void SetUseUnfoldingInClusterFinderSPD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSPD=use; return; }
324 Bool_t GetUseUnfoldingInClusterFinderSPD() const { return fUseUnfoldingInClusterFinderSPD; }
325 void SetUseUnfoldingInClusterFinderSDD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSDD=use; return; }
326 Bool_t GetUseUnfoldingInClusterFinderSDD() const { return fUseUnfoldingInClusterFinderSDD; }
327 void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; }
328 Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; }
329
7101948c 330 void SetUseBadChannelsInClusterFinderSSD(Bool_t use=kFALSE) { fUseBadChannelsInClusterFinderSSD=use; return; }
331 Bool_t GetUseBadChannelsInClusterFinderSSD() const { return fUseBadChannelsInClusterFinderSSD; }
332
ba0a07bf 333 void SetUseSDDCorrectionMaps(Bool_t use=kTRUE) {fUseSDDCorrectionMaps=use;}
334 Bool_t GetUseSDDCorrectionMaps() const {return fUseSDDCorrectionMaps;}
b779c7dc 335 void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;}
336 Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;}
337 void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;}
338 Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;}
339
a86176e3 340 void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; }
341 Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; }
342
42ed6062 343 void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; }
344 Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; }
345
7b116aa1 346 // SPD Tracklets (D. Elia)
7b116aa1 347 void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;}
7284b2b2 348 void SetTrackleterThetaWindow(Float_t w=0.025) {fTrackleterThetaWindow=w;}
fa9ed8e9 349 void SetTrackleterPhiShift(Float_t w=0.0045) {fTrackleterPhiShift=w;}
7b116aa1 350 Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;}
7284b2b2 351 Float_t GetTrackleterThetaWindow() const {return fTrackleterThetaWindow;}
fa9ed8e9 352 Float_t GetTrackleterPhiShift() const {return fTrackleterPhiShift;}
7b116aa1 353 void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; }
354 Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; }
355 void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;}
356 void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;}
357 Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;}
358 Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;}
7c6da836 359 void SetTrackleterPhiRotationAngle(Float_t w=0.0) {fTrackleterPhiRotationAngle=w;}
360 Float_t GetTrackleterPhiRotationAngle() const {return fTrackleterPhiRotationAngle;}
f9f90134 361 //
362 void SetTrackleterNStdDevCut(Float_t f=1.) {fTrackleterNStdDev = f<0.01 ? 0.01 : f;}
363 Float_t GetTrackleterNStdDevCut() const {return fTrackleterNStdDev;}
364 void SetTrackleterScaleDThetaBySin2T(Bool_t v=kFALSE) {fScaleDTBySin2T = v;}
365 Bool_t GetTrackleterScaleDThetaBySin2T() const {return fScaleDTBySin2T;}
44347160 366 //
ad7f2bfa 367 void SetSPDRemoveNoisyFlag(Bool_t value) {fSPDRemoveNoisyFlag = value;}
f27a7e81 368 Bool_t GetSPDRemoveNoisyFlag() const {return fSPDRemoveNoisyFlag;}
ad7f2bfa 369 void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;}
f27a7e81 370 Bool_t GetSPDRemoveDeadFlag() const {return fSPDRemoveDeadFlag;}
ad7f2bfa 371
f27a7e81 372 //
373 void SetAlignFilterCosmics(Bool_t b=kTRUE) {fAlignFilterCosmics=b;}
374 void SetAlignFilterCosmicMergeTracks(Bool_t b=kTRUE) {fAlignFilterCosmicMergeTracks=b;}
375 void SetAlignFilterMinITSPoints(Int_t n=4) {fAlignFilterMinITSPoints=n;}
376 void SetAlignFilterMinITSPointsMerged(Int_t n=4) {fAlignFilterMinITSPointsMerged=n;}
377 void SetAlignFilterOnlyITSSATracks(Bool_t b=kTRUE) {fAlignFilterOnlyITSSATracks=b;}
378 void SetAlignFilterOnlyITSTPCTracks(Bool_t b=kFALSE) {fAlignFilterOnlyITSTPCTracks=b;}
379 void SetAlignFilterUseLayer(Int_t ilay,Bool_t use) {fAlignFilterUseLayer[ilay]=use;}
380 void SetAlignFilterSkipExtra(Bool_t b=kFALSE) {fAlignFilterSkipExtra=b;}
381 void SetAlignFilterMaxMatchingAngle(Float_t max=0.085/*5deg*/) {fAlignFilterMaxMatchingAngle=max;}
382 void SetAlignFilterMinAngleWrtModulePlanes(Float_t min=0.52/*30deg*/) {fAlignFilterMinAngleWrtModulePlanes=min;}
383 void SetAlignFilterMinPt(Float_t min=0.) {fAlignFilterMinPt=min;}
384 void SetAlignFilterMaxPt(Float_t max=1.e10) {fAlignFilterMaxPt=max;}
385 void SetAlignFilterFillQANtuples(Bool_t b=kTRUE) {fAlignFilterFillQANtuples=b;}
386 Bool_t GetAlignFilterCosmics() const {return fAlignFilterCosmics;}
387 Bool_t GetAlignFilterCosmicMergeTracks() const {return fAlignFilterCosmicMergeTracks;}
388 Int_t GetAlignFilterMinITSPoints() const {return fAlignFilterMinITSPoints;}
389 Int_t GetAlignFilterMinITSPointsMerged() const {return fAlignFilterMinITSPointsMerged;}
390 Bool_t GetAlignFilterOnlyITSSATracks() const {return fAlignFilterOnlyITSSATracks;}
391 Bool_t GetAlignFilterOnlyITSTPCTracks() const {return fAlignFilterOnlyITSTPCTracks;}
392 Bool_t GetAlignFilterUseLayer(Int_t i) const {return fAlignFilterUseLayer[i];}
393 Bool_t GetAlignFilterSkipExtra() const {return fAlignFilterSkipExtra;}
394 Float_t GetAlignFilterMaxMatchingAngle() const {return fAlignFilterMaxMatchingAngle;}
395 Float_t GetAlignFilterMinAngleWrtModulePlanes() const {return fAlignFilterMinAngleWrtModulePlanes;}
396 Float_t GetAlignFilterMinPt() const {return fAlignFilterMinPt;}
397 Float_t GetAlignFilterMaxPt() const {return fAlignFilterMaxPt;}
398 Bool_t GetAlignFilterFillQANtuples() const {return fAlignFilterFillQANtuples;}
399
6de485aa 400 // Multiplicity Reconstructor
401 Float_t GetMultCutPxDrSPDin() const {return fMultCutPxDrSPDin;}
402 Float_t GetMultCutPxDrSPDout() const {return fMultCutPxDrSPDout;}
403 Float_t GetMultCutPxDz() const {return fMultCutPxDz;}
404 Float_t GetMultCutDCArz() const {return fMultCutDCArz;}
405 Float_t GetMultCutMinElectronProbTPC() const {return fMultCutMinElectronProbTPC;}
406 Float_t GetMultCutMinElectronProbESD() const {return fMultCutMinElectronProbESD;}
407 Float_t GetMultCutMinP() const {return fMultCutMinP;}
408 Float_t GetMultCutMinRGamma() const {return fMultCutMinRGamma;}
409 Float_t GetMultCutMinRK0() const {return fMultCutMinRK0;}
410 Float_t GetMultCutMinPointAngle() const {return fMultCutMinPointAngle;}
411 Float_t GetMultCutMaxDCADauther() const {return fMultCutMaxDCADauther;}
412 Float_t GetMultCutMassGamma() const {return fMultCutMassGamma;}
413 Float_t GetMultCutMassGammaNSigma() const {return fMultCutMassGammaNSigma;}
414 Float_t GetMultCutMassK0() const {return fMultCutMassK0;}
415 Float_t GetMultCutMassK0NSigma() const {return fMultCutMassK0NSigma;}
416 Float_t GetMultCutChi2cGamma() const {return fMultCutChi2cGamma;}
417 Float_t GetMultCutChi2cK0() const {return fMultCutChi2cK0;}
418 Float_t GetMultCutGammaSFromDecay() const {return fMultCutGammaSFromDecay;}
419 Float_t GetMultCutK0SFromDecay() const {return fMultCutK0SFromDecay;}
420 Float_t GetMultCutMaxDCA() const {return fMultCutMaxDCA;}
421 //
422 void SetMultCutPxDrSPDin(Float_t v=0.1) { fMultCutPxDrSPDin = v;}
423 void SetMultCutPxDrSPDout(Float_t v=0.15) { fMultCutPxDrSPDout = v;}
424 void SetMultCutPxDz(Float_t v=0.2) { fMultCutPxDz = v;}
425 void SetMultCutDCArz(Float_t v=0.5) { fMultCutDCArz = v;}
426 void SetMultCutMinElectronProbTPC(Float_t v=0.5) { fMultCutMinElectronProbTPC = v;}
427 void SetMultCutMinElectronProbESD(Float_t v=0.1) { fMultCutMinElectronProbESD = v;}
428 void SetMultCutMinP(Float_t v=0.05) { fMultCutMinP = v;}
429 void SetMultCutMinRGamma(Float_t v=2.) { fMultCutMinRGamma = v;}
430 void SetMultCutMinRK0(Float_t v=1.) { fMultCutMinRK0 = v;}
431 void SetMultCutMinPointAngle(Float_t v=0.98) { fMultCutMinPointAngle = v;}
432 void SetMultCutMaxDCADauther(Float_t v=0.5) { fMultCutMaxDCADauther = v;}
433 void SetMultCutMassGamma(Float_t v=0.03) { fMultCutMassGamma = v;}
434 void SetMultCutMassGammaNSigma(Float_t v=5.) { fMultCutMassGammaNSigma = v;}
435 void SetMultCutMassK0(Float_t v=0.03) { fMultCutMassK0 = v;}
436 void SetMultCutMassK0NSigma(Float_t v=5.) { fMultCutMassK0NSigma = v;}
437 void SetMultCutChi2cGamma(Float_t v=2.) { fMultCutChi2cGamma = v;}
438 void SetMultCutChi2cK0(Float_t v=2.) { fMultCutChi2cK0 = v;}
439 void SetMultCutGammaSFromDecay(Float_t v=-10.) { fMultCutGammaSFromDecay = v;}
440 void SetMultCutK0SFromDecay(Float_t v=-10.) { fMultCutK0SFromDecay = v;}
441 void SetMultCutMaxDCA(Float_t v=1.) { fMultCutMaxDCA = v;}
442 //
767aaecb 443 AliESDV0Params *GetESDV0Params() const {return fESDV0Params;}
58b891db 444 //
445 // Lorentz angle
446 Bool_t GetCorrectLorentzAngleSPD() const {return fCorrectLorentzAngleSPD;}
66b89079 447 Float_t GetTanLorentzAngleHolesSPD() const {return fTanLorentzAngleHolesSPD;}
58b891db 448 Bool_t GetCorrectLorentzAngleSSD() const {return fCorrectLorentzAngleSSD;}
66b89079 449 Float_t GetTanLorentzAngleHolesSSD() const {return fTanLorentzAngleHolesSSD;}
450 Float_t GetTanLorentzAngleElectronsSSD() const {return fTanLorentzAngleElectronsSSD;}
58b891db 451
452 void SetCorrectLorentzAngleSPD(Bool_t flag) {fCorrectLorentzAngleSPD=flag;}
66b89079 453 void SetTanLorentzAngleHolesSPD(Float_t la) {fTanLorentzAngleHolesSPD=la;}
58b891db 454 void SetCorrectLorentzAngleSSD(Bool_t flag) {fCorrectLorentzAngleSSD=flag;}
66b89079 455 void SetTanLorentzAngleHolesSSD(Float_t la) {fTanLorentzAngleHolesSSD=la;}
456 void SetTanLorentzAngleElectronsSSD(Float_t la) {fTanLorentzAngleElectronsSSD=la;}
58b891db 457
6de485aa 458 //
e50912db 459 enum {fgkMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer
460 enum {fgkMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer
461 enum {fgkMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer
462 enum {fgkMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer
463
44347160 464 protected:
465 //
e50912db 466 static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip
467 static const Int_t fgkLastLayerToTrackTo; // innermost layer
468 static const Int_t fgkMaxDetectorPerLayer; // max clusters per layer
469 static const Double_t fgkriw; // TPC inner wall radius
470 static const Double_t fgkdiw; // TPC inner wall x/X0
471 static const Double_t fgkX0iw; // TPC inner wall X0
472 static const Double_t fgkrcd; // TPC central drum radius
473 static const Double_t fgkdcd; // TPC central drum x/X0
474 static const Double_t fgkX0cd; // TPC central drum X0
475 static const Double_t fgkyr; // TPC rods y (tracking c.s.)
476 static const Double_t fgkdr; // TPC rods x/X0
477 static const Double_t fgkzm; // TPC membrane z
478 static const Double_t fgkdm; // TPC membrane x/X0
479 static const Double_t fgkrs; // ITS screen radius
480 static const Double_t fgkds; // ITS screed x/X0
481 static const Double_t fgkrInsideITSscreen; // inside ITS screen radius
482 static const Double_t fgkrInsideSPD1; // inside SPD1 radius
483 static const Double_t fgkrPipe; // pipe radius
484 static const Double_t fgkrInsidePipe; // inside pipe radius
485 static const Double_t fgkrOutsidePipe; // outside pipe radius
486 static const Double_t fgkdPipe; // pipe x/X0
487 static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius
488 static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius
489 static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0
490 static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0
491 static const Double_t fgkX0Air; // air X0
492 static const Double_t fgkX0Be; // Berillium X0
493 static const Double_t fgkBoundaryWidth; // to define track at detector boundary
494 static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors
495 static const Double_t fgkSPDdetzlength; // SPD ladder length in z
496 static const Double_t fgkSPDdetxlength; // SPD ladder length in x
497
f9119eb9 498
499 Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor)
500 Bool_t fITSonly; // tracking only in ITS (no TPC)
501 Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor)
876026b6 502 Int_t fClusterFinder; // ITS cf to be used (see AliITSReconstructor)
503 Int_t fPID; // ITS PID method to be used (see AliITSReconstructor)
f9119eb9 504
7203e11a 505
8b78365f 506 // SPD 3D Vertexer configuration
7203e11a 507 Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D
508 Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D
509 Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D
510 Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D
511 Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D
512 Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D
513 Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D
8b78365f 514 Int_t fVtxr3DPileupAlgo; // pileup algorithm (0 = VtxZ, 1 = 3D - 2 step, 2 = 3D all in once)
7203e11a 515
2755f080 516 Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA)
517
44347160 518 // spatial resolutions of the detectors
e50912db 519 Double_t fSigmaY2[AliITSgeomTGeo::kNLayers]; // y
520 Double_t fSigmaZ2[AliITSgeomTGeo::kNLayers]; // z
44347160 521 //
522 Double_t fMaxSnp; // maximum of sin(phi) (MI)
523 //
524 // search road (MI)
36e140f1 525 Double_t fNSigmaYLayerForRoadY; // y
526 Double_t fNSigmaRoadY; // y
527 Double_t fNSigmaZLayerForRoadZ; // z
528 Double_t fNSigmaRoadZ; // z
529 Double_t fNSigma2RoadZC; // z
530 Double_t fNSigma2RoadYC; // y
531 Double_t fNSigma2RoadZNonC; // z
532 Double_t fNSigma2RoadYNonC; // y
1c97ce2f 533
534 Double_t fRoadMisal; // [cm] increase of road for misalignment (MI)
44347160 535 //
536 // chi2 cuts
e50912db 537 Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI)
538 Double_t fMaxNormChi2NonC[AliITSgeomTGeo::kNLayers]; //max norm chi2 for non constrained tracks (MI)
539 Double_t fMaxNormChi2C[AliITSgeomTGeo::kNLayers]; //max norm chi2 for constrained tracks (MI)
afd25725 540 Double_t fMaxNormChi2NonCForHypothesis; //max norm chi2 (on layers 0,1,2) for hypotheis to be kept (MI)
44347160 541 Double_t fMaxChi2; // used to initialize variables needed to find minimum chi2 (MI,V2)
e50912db 542 Double_t fMaxChi2s[AliITSgeomTGeo::kNLayers]; // max predicted chi2 (cluster & track prol.) (MI)
44347160 543 //
544 Double_t fMaxRoad; // (V2)
545 //
546 Double_t fMaxChi2In; // (NOT USED)
e50912db 547 Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED)
44347160 548 Double_t fChi2PerCluster; // (NOT USED)
794d9013 549 // search for extra clusters
550 Bool_t fSearchForExtras; // swicth yes/no for the search of extra-clusters in RefitInward step
44347160 551 //
552 // default primary vertex (MI,V2)
36e140f1 553 Double_t fXV; // x
554 Double_t fYV; // y
555 Double_t fZV; // z
556 Double_t fSigmaXV; // x
557 Double_t fSigmaYV; // y
558 Double_t fSigmaZV; // z
44347160 559 Double_t fVertexCut; // (V2)
afd25725 560 Double_t fMaxDZforPrimTrk; // maximum (imp. par.)/(1+layer) to define
561 // a primary and apply vertex constraint (MI)
562 Double_t fMaxDZToUseConstraint; // maximum (imp. par.) for tracks to be
563 // prolonged with constraint
564 // cuts to decide if trying to prolong a TPC track (MI)
565 Double_t fMaxDforV0dghtrForProlongation; // max. rphi imp. par. cut for V0 daughter
44347160 566 //
afd25725 567 Double_t fMaxDForProlongation; // max. rphi imp. par. cut
568 Double_t fMaxDZForProlongation; // max. 3D imp. par. cut
569 Double_t fMinPtForProlongation; // min. pt cut
570
571 // parameters to create "virtual" clusters in SPD dead zone (MI)
36e140f1 572 Bool_t fAddVirtualClustersInDeadZone; // add if kTRUE
573 Double_t fZWindowDeadZone; // window size
574 Double_t fSigmaXDeadZoneHit2; // x error virtual cls
575 Double_t fSigmaZDeadZoneHit2; // z error virtual cls
576 Double_t fXPassDeadZoneHits; // x distance between clusters
afd25725 577
87b4605f 578 Bool_t fSkipSubdetsNotInTriggerCluster; // skip the subdetectors that are not in the trigger cluster
afd25725 579
e50912db 580 Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI
9be1d1c7 581 Double_t fStepSizeTGeo; // step size (cm)
582 // in AliITStrackerMI::CorrectFor*Material methods
afd25725 583 Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI)
e50912db 584 Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError()
f9119eb9 585 Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
586 Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
4fd4a5d7 587 Float_t fClusterMisalErrorYBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
588 Float_t fClusterMisalErrorZBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
401eff16 589
e50912db 590 Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI)
f9119eb9 591
0ed58a47 592 // Plane Efficiency evaluation
ae00569a 593 Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency
5fbd4fd6 594 Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions)
58e8dc31 595 Bool_t fUseTrackletsPlaneEff; // flag to enable estimate of SPD PlaneEfficiency using tracklets
596 Bool_t fMCTrackletsPlaneEff; // flag to enable the use of MC info for corrections (SPD PlaneEff using tracklets)
597 Bool_t fBkgTrackletsPlaneEff; // flag to evaluate background instead of normal use (SPD PlaneEff using tracklets)
598 Float_t fTrackleterPhiWindowL1; // Search window in phi for inner layer (1) (SPD PlaneEff using tracklets)
7284b2b2 599 Float_t fTrackleterPhiWindowL2; // Search window in phi for outer layer (2) (SPD PlaneEff using tracklets)
58e8dc31 600 Float_t fTrackleterZetaWindowL1; // Search window in zeta for inner layer (1) (SPD PlaneEff using tracklets)
7284b2b2 601 Float_t fTrackleterZetaWindowL2; // Search window in zeta for outer layer (2) (SPD PlaneEff using tracklets)
58e8dc31 602 Bool_t fUpdateOncePerEventPlaneEff; // option to update chip efficiency once/event (to avoid doubles)
603 Int_t fMinContVtxPlaneEff; // min number of contributors to ESD vtx for SPD PlaneEff using tracklets
1a64bda6 604 Int_t fIPlanePlaneEff; // index of the plane (in the range [-1,5]) to study the efficiency (-1 ->Tracklets)
275a301c 605 Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB
606 // The analized events would be used to increase the statistics
0ed58a47 607 Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation
608 Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track
061c42a0 609 Int_t fMaxMissingClustersOutPlaneEff; // max n. of outermost layers without a cluster associated to the track
0ed58a47 610 Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest
611 Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer
612 Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff.
061c42a0 613 Double_t fNSigXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z)
614 Double_t fNSigZFromBoundaryPlaneEff; // is greater than fNSigXFromBoundaryPlaneEff * Track_precision
0ed58a47 615
333d86cb 616 Bool_t fImproveWithVertex; // use the method AliITStrackV2::Improve() to point to the vertex during prolongation
2755f080 617 Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI)
23197852 618 Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI)
619 Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI)
620 Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI)
ae00569a 621 Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI)
12b1afb7 622 Int_t fInwardFlagSA; // flag for inward track finding in SA
623 Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA outward
624 Int_t fInnerStartLayerSA; // inner ITS layer to start track in SA inward
625 Int_t fMinNPointsSA; // min. number of ITS clusters for a SA track
2755f080 626 Double_t fFactorSAWindowSizes; // larger window sizes in SA
c7d6d7b7 627 Int_t fNLoopsSA; // number of loops in tracker SA
628 Double_t fMinPhiSA; // minimum phi value for SA windows
629 Double_t fMaxPhiSA; // maximum phi value for SA windows
630 Double_t fMinLambdaSA; // minimum lambda value for SA windows
631 Double_t fMaxLambdaSA; // maximum lambda value for SA windows
3733ccd2 632 Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker
5a03f353 633 Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!)
634 Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!)
8227519f 635 Int_t fMaxSPDcontrForSAToUseAllClusters; // maximum nContr of SPD vertex for which trackerSA will reuse all ITS clusters
afd25725 636
637 Bool_t fFindV0s; // flag to enable V0 finder (MI)
b0160ebc 638 Bool_t fStoreLikeSignV0s; // flag to store like-sign V0s (MI)
afd25725 639
6518a6c5 640 // cluster unfolding in ITS cluster finders
641 Bool_t fUseUnfoldingInClusterFinderSPD; // SPD
642 Bool_t fUseUnfoldingInClusterFinderSDD; // SDD
643 Bool_t fUseUnfoldingInClusterFinderSSD; // SSD
644
7101948c 645 Bool_t fUseBadChannelsInClusterFinderSSD; // flag to switch on bad channels in CF SSD
646
ba0a07bf 647 Bool_t fUseSDDCorrectionMaps; // flag for use of SDD maps in C.F.
b779c7dc 648 Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size
649 Float_t fMinClusterChargeSDD; // cut on SDD cluster charge
650
a86176e3 651 Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD
652
7b116aa1 653 // SPD Tracklets (D. Elia)
7b116aa1 654 Float_t fTrackleterPhiWindow; // Search window in phi
fa9ed8e9 655 Float_t fTrackleterThetaWindow; // Search window in theta
656 Float_t fTrackleterPhiShift; // Phi shift reference value (at 0.5 T)
7b116aa1 657 Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
658 Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut
659 Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut
7c6da836 660 Float_t fTrackleterPhiRotationAngle; // Angle to rotate cluster in the SPD inner layer for combinatorial reco only
f9f90134 661 Float_t fTrackleterNStdDev; // cut on the number of standard deviations
662 Bool_t fScaleDTBySin2T; // scale Dtheta by 1/sin^2(theta)
663
42ed6062 664 Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008)
7b116aa1 665
b779c7dc 666
ad7f2bfa 667 // SPD flags to specify whether noisy and dead pixels
668 // should be removed at the local reconstruction step (default and safe way is true for both)
669 Bool_t fSPDRemoveNoisyFlag; // Flag saying whether noisy pixels should be removed
670 Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed
9364069b 671
672 // VertexerFast configuration
673 Float_t fVertexerFastSmearX; // gaussian sigma for x MC vertex smearing
674 Float_t fVertexerFastSmearY; // gaussian sigma for y MC vertex smearing
675 Float_t fVertexerFastSmearZ; // gaussian sigma for z MC vertex smearing
ad7f2bfa 676
f27a7e81 677 // PWG1/AliAlignmentDataFilterITS configuration
678 Bool_t fAlignFilterCosmics; // flag for cosmics case
679 Bool_t fAlignFilterCosmicMergeTracks; // merge cosmic tracks
680 Int_t fAlignFilterMinITSPoints; // min points per track
681 Int_t fAlignFilterMinITSPointsMerged; // min points for merged tracks
682 Bool_t fAlignFilterOnlyITSSATracks; // only ITS SA tracks
683 Bool_t fAlignFilterOnlyITSTPCTracks; // only ITS+TPC tracks
684 Bool_t fAlignFilterUseLayer[AliITSgeomTGeo::kNLayers]; // layers to use
685 Bool_t fAlignFilterSkipExtra; // no extra cls in array
686 Float_t fAlignFilterMaxMatchingAngle; // matching for cosmics
687 Float_t fAlignFilterMinAngleWrtModulePlanes; // min angle track-to-sensor
688 Float_t fAlignFilterMinPt; // min pt
689 Float_t fAlignFilterMaxPt; // max pt
690 Bool_t fAlignFilterFillQANtuples; // fill QA ntuples
691
6de485aa 692 // Multiplicity reconstructor settings
693 // cuts for flagging secondaries
694 Float_t fMultCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD
695 Float_t fMultCutPxDrSPDout; // max P*DR for primaries not involving any SPD
696 Float_t fMultCutPxDz; // max P*DZ for primaries
697 Float_t fMultCutDCArz; // max DR or DZ for primares
698 //
699 // cuts for flagging tracks in V0s
700 Float_t fMultCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC
701 Float_t fMultCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC
702 //
703 Float_t fMultCutMinP; // min P of V0
704 Float_t fMultCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas
705 Float_t fMultCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s
706 Float_t fMultCutMinPointAngle; // min pointing angle cosine
707 Float_t fMultCutMaxDCADauther; // max DCA of daughters at V0
708 Float_t fMultCutMassGamma; // max gamma mass
709 Float_t fMultCutMassGammaNSigma; // max standard deviations from 0 for gamma
710 Float_t fMultCutMassK0; // max K0 mass difference from PGD value
711 Float_t fMultCutMassK0NSigma; // max standard deviations for K0 mass from PDG value
712 Float_t fMultCutChi2cGamma; // max constrained chi2 cut for gammas
713 Float_t fMultCutChi2cK0; // max constrained chi2 cut for K0s
714 Float_t fMultCutGammaSFromDecay; // min path*P for gammas
715 Float_t fMultCutK0SFromDecay; // min path*P for K0s
716 Float_t fMultCutMaxDCA; // max DCA for V0 at ESD vertex
717 //
58b891db 718 // Lorentz angle
719 Bool_t fCorrectLorentzAngleSPD; // flag to enable correction
66b89079 720 Float_t fTanLorentzAngleHolesSPD; // angle for holes in SPD
58b891db 721 Bool_t fCorrectLorentzAngleSSD; // flag to enable correction
66b89079 722 Float_t fTanLorentzAngleHolesSSD; // tan(angle) for holes in SSD @ B = 0.5 T
723 Float_t fTanLorentzAngleElectronsSSD; // tan(angle) for electrons in SSD @ B = 0.5 T
58b891db 724
767aaecb 725 private:
726 AliESDV0Params * fESDV0Params; // declare the AliESDV0Params to be able to used in AliITSV0Finder
727
728 AliITSRecoParam(const AliITSRecoParam & param);
729 AliITSRecoParam & operator=(const AliITSRecoParam &param);
f27a7e81 730
778c8b71 731 ClassDef(AliITSRecoParam,36) // ITS reco parameters
44347160 732};
733
734#endif