Moved old AliMagFCheb to AliMagF, small fixes/optimizations in field classes
[u/mrichter/AliRoot.git] / MUON / AliMUONSt1GeometryBuilderV2.cxx
CommitLineData
ba030c0e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
d1cd2474 16// $Id$
17//
3d1463c8 18//-----------------------------------------------------------------------------
d1cd2474 19// Class AliMUONSt1GeometryBuilderV2
20// ---------------------------------
21// MUON Station1 detailed geometry construction class.
5f1df83a 22// (Originally defined in AliMUONv2.cxx - now removed.)
23// Included in AliRoot 2004/01/23
3d1463c8 24// Authors: David Guez, Ivana Hrivnacova, Marion MacCormick; IPN Orsay
25//-----------------------------------------------------------------------------
d1cd2474 26
adbabf6d 27#include "AliMUONSt1GeometryBuilderV2.h"
28#include "AliMUONSt1SpecialMotif.h"
29#include "AliMUON.h"
30#include "AliMUONConstants.h"
31#include "AliMUONGeometryModule.h"
32#include "AliMUONGeometryEnvelopeStore.h"
ba030c0e 33
331a617a 34#include "AliMpSegmentation.h"
35#include "AliMpDEManager.h"
86488ea7 36#include "AliMpContainers.h"
4d8c279c 37#include "AliMpConstants.h"
331a617a 38#include "AliMpCDB.h"
adbabf6d 39#include "AliMpSector.h"
40#include "AliMpRow.h"
41#include "AliMpVRowSegment.h"
42#include "AliMpMotifMap.h"
43#include "AliMpMotifPosition.h"
4d8c279c 44#include "AliMpPlaneType.h"
adbabf6d 45
46#include "AliRun.h"
47#include "AliMagF.h"
48#include "AliLog.h"
ba030c0e 49
50#include <TVector2.h>
d1cd2474 51#include <TVector3.h>
52#include <TGeoMatrix.h>
ba030c0e 53#include <TClonesArray.h>
5f91c9e8 54#include <Riostream.h>
55#include <TSystem.h>
5d12ce38 56#include <TVirtualMC.h>
91111b9c 57#include <TGeoManager.h>
58#include <TGeoVolume.h>
59#include <TGeoTube.h>
0ab920eb 60#include <TGeoXtru.h>
91111b9c 61#include <TGeoCompositeShape.h>
ba030c0e 62
86488ea7 63#ifdef WITH_STL
adbabf6d 64 #include <vector>
65#endif
e118b27e 66
86488ea7 67#ifdef WITH_ROOT
adbabf6d 68 #include "TArrayI.h"
69#endif
ba030c0e 70
5398f946 71/// \cond CLASSIMP
72ClassImp(AliMUONSt1GeometryBuilderV2)
73/// \endcond
74
5f91c9e8 75// Thickness Constants
d1cd2474 76const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzPadPlane=0.0148/2.; //Pad plane
1c4b9c4c 77const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFoam = 2.503/2.; //Foam of mechanicalplane
78const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFR4 = 0.062/2.; //FR4 of mechanical plane
d1cd2474 79const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzSnPb = 0.0091/2.; //Pad/Kapton connection (66 pt)
80const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzKapton = 0.0122/2.; //Kapton
81const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergPlastic = 0.3062/2.;//Berg connector
82const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergCopper = 0.1882/2.; //Berg connector
83const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzDaughter = 0.0156/2.; //Daughter board
b367fd8f 84const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzGas = 0.42/2.; //Gas thickness
5f91c9e8 85
86// Quadrant Mother volume - TUBS1 - Middle layer of model
d1cd2474 87const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR1 = 18.3;
88const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR1 = 105.673;
89const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick1 = 6.5/2;
90const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL1 = 0.;
91const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU1 = 90.;
5f91c9e8 92
93// Quadrant Mother volume - TUBS2 - near and far layers of model
d1cd2474 94const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR2 = 20.7;
95const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR2 = 100.073;
96const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick2 = 3.0/2;
97const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL2 = 0.;
98const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU2 = 90.;
5f91c9e8 99
100// Sensitive copper pads, foam layer, PCB and electronics model parameters
d1cd2474 101const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxHole=1.5/2.;
102const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyHole=6./2.;
103const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergPlastic=0.74/2.;
104const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergPlastic=5.09/2.;
105const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergCopper=0.25/2.;
106const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergCopper=3.6/2.;
107const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxKapton=0.8/2.;
108const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyKapton=5.7/2.;
109const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxDaughter=2.3/2.;
110const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyDaughter=6.3/2.;
111const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetX=1.46;
112const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetY=0.71;
5ae5869b 113const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamX=1.00;
d1cd2474 114const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamY=0.051;
115
116const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaQuadLHC=2.6; // LHC Origin wrt Quadrant Origin
b367fd8f 117const GReal_t AliMUONSt1GeometryBuilderV2::fgkFrameOffset=5.2;
118 // Fix (1) of overlap SQN* layers with SQM* ones (was 5.0)
119
120// Pad planes offsets
121const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadXOffsetBP = 0.50 - 0.63/2; // = 0.185
122const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadYOffsetBP = -0.31 - 0.42/2; // =-0.52
d1cd2474 123
62c708bf 124const char* AliMUONSt1GeometryBuilderV2::fgkHoleName="SCHL";
125const char* AliMUONSt1GeometryBuilderV2::fgkDaughterName="SCDB";
b367fd8f 126const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantEnvelopeName="SE";
d1cd2474 127const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMLayerName="SQM";
128const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantNLayerName="SQN";
129const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantFLayerName="SQF";
5ae5869b 130const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMFLayerName="SQMF";
62c708bf 131const Int_t AliMUONSt1GeometryBuilderV2::fgkFoamBoxNameOffset=200;
132const Int_t AliMUONSt1GeometryBuilderV2::fgkFR4BoxNameOffset=400;
e8c253a0 133const Int_t AliMUONSt1GeometryBuilderV2::fgkDaughterCopyNoOffset=1000;
5f91c9e8 134
135//______________________________________________________________________________
d1cd2474 136AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2(AliMUON* muon)
8cf07955 137 : AliMUONVGeometryBuilder(0, 2),
d1cd2474 138 fMUON(muon)
ba030c0e 139{
5398f946 140/// Standard constructor
ba030c0e 141}
142
5f91c9e8 143//______________________________________________________________________________
d1cd2474 144AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2()
145 : AliMUONVGeometryBuilder(),
146 fMUON(0)
ba030c0e 147{
5398f946 148/// Default Constructor
ba030c0e 149}
ba030c0e 150
5f91c9e8 151//______________________________________________________________________________
d1cd2474 152AliMUONSt1GeometryBuilderV2::~AliMUONSt1GeometryBuilderV2()
ba030c0e 153{
5398f946 154/// Destructor
ba030c0e 155}
156
d1cd2474 157
5f91c9e8 158//
159// Private methods
160//
161
162//______________________________________________________________________________
b367fd8f 163TString
164AliMUONSt1GeometryBuilderV2::QuadrantEnvelopeName(Int_t chamber, Int_t quadrant) const
165{
5398f946 166/// Generate unique envelope name from chamber Id and quadrant number
b367fd8f 167
168 return Form("%s%d", Form("%s%d",fgkQuadrantEnvelopeName,chamber), quadrant);
169}
170
171//______________________________________________________________________________
d1cd2474 172void AliMUONSt1GeometryBuilderV2::CreateHole()
ba030c0e 173{
5398f946 174/// Create all the elements found inside a foam hole
175
d1cd2474 176 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
177 Int_t idAir = idtmed[1100]; // medium 1
178 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
179 Int_t idCopper = idtmed[1121]; // medium 22 = copper
ba030c0e 180
5f91c9e8 181 GReal_t par[3];
182 GReal_t posX,posY,posZ;
183
184 par[0] = fgkHxHole;
185 par[1] = fgkHyHole;
186 par[2] = fgkHzFoam;
187 gMC->Gsvolu(fgkHoleName,"BOX",idAir,par,3);
188
189 par[0] = fgkHxKapton;
190 par[1] = fgkHyKapton;
191 par[2] = fgkHzSnPb;
192 gMC->Gsvolu("SNPB", "BOX", idCopper, par, 3);
193 posX = 0.;
194 posY = 0.;
195 posZ = -fgkHzFoam+fgkHzSnPb;
196 gMC->Gspos("SNPB",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
ba030c0e 197
5f91c9e8 198 par[0] = fgkHxHole;
199 par[1] = fgkHyBergPlastic;
200 par[2] = fgkHzKapton;
62c708bf 201 gMC->Gsvolu("SKPT", "BOX", idCopper, par, 3);
5f91c9e8 202 posX = 0.;
203 posY = 0.;
204 posZ = 0.;
62c708bf 205 gMC->Gspos("SKPT",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
5f91c9e8 206}
ba030c0e 207
5f91c9e8 208//______________________________________________________________________________
d1cd2474 209void AliMUONSt1GeometryBuilderV2::CreateDaughterBoard()
5f91c9e8 210{
5398f946 211/// Create all the elements in a daughter board
212
d1cd2474 213 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 214 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 215 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
216 //Int_t idPlastic =idtmed[1116]; // medium 17 = Plastic
217 Int_t idCopper = idtmed[1121]; // medium 22 = copper
218 Int_t idPlastic =idtmed[1127]; // medium 28 = Plastic
ba030c0e 219
5f91c9e8 220 GReal_t par[3];
221 GReal_t posX,posY,posZ;
ba030c0e 222
5f91c9e8 223 par[0]=fgkHxDaughter;
224 par[1]=fgkHyDaughter;
225 par[2]=TotalHzDaughter();
226 gMC->Gsvolu(fgkDaughterName,"BOX",idAir,par,3);
ba030c0e 227
5f91c9e8 228 par[0]=fgkHxBergPlastic;
229 par[1]=fgkHyBergPlastic;
230 par[2]=fgkHzBergPlastic;
62c708bf 231 gMC->Gsvolu("SBGP","BOX",idPlastic,par,3);
5f91c9e8 232 posX=0.;
233 posY=0.;
234 posZ = -TotalHzDaughter() + fgkHzBergPlastic;
62c708bf 235 gMC->Gspos("SBGP",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 236
237 par[0]=fgkHxBergCopper;
238 par[1]=fgkHyBergCopper;
239 par[2]=fgkHzBergCopper;
62c708bf 240 gMC->Gsvolu("SBGC","BOX",idCopper,par,3);
5f91c9e8 241 posX=0.;
242 posY=0.;
243 posZ=0.;
62c708bf 244 gMC->Gspos("SBGC",1,"SBGP",posX,posY,posZ,0,"ONLY");
5f91c9e8 245
246 par[0]=fgkHxDaughter;
247 par[1]=fgkHyDaughter;
248 par[2]=fgkHzDaughter;
62c708bf 249 gMC->Gsvolu("SDGH","BOX",idCopper,par,3);
5f91c9e8 250 posX=0.;
251 posY=0.;
252 posZ = -TotalHzDaughter() + 2.*fgkHzBergPlastic + fgkHzDaughter;
62c708bf 253 gMC->Gspos("SDGH",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 254}
255
256//______________________________________________________________________________
d1cd2474 257void AliMUONSt1GeometryBuilderV2::CreateInnerLayers()
5f91c9e8 258{
5398f946 259/// Create the layer of sensitive volumes with gas
260/// and the copper layer.
0ab920eb 261/// The shape of the sensitive area is defined as an extruded
262/// solid substracted with tube (to get inner circular shape).
5f91c9e8 263
0ab920eb 264 TGeoMedium* kMedArCO2 = gGeoManager->GetMedium("MUON_ARG_CO2");
265 TGeoMedium* kMedCopper = gGeoManager->GetMedium("MUON_COPPER_II");
5f91c9e8 266
0ab920eb 267 Double_t rmin = 0.0;
268 Double_t rmax = fgkMotherIR1;
269 Double_t hz = fgkHzPadPlane + fgkHzGas;
270 new TGeoTube("cutTube",rmin, rmax, hz);
5f91c9e8 271
0ab920eb 272 Double_t maxXY = 89.0;
273 Double_t xy1 = 77.33;
274 Double_t xy2 = 48.77;
275 Double_t dxy1 = maxXY - xy1;
5f91c9e8 276
0ab920eb 277 Int_t nz = 2;
278 Int_t nv = 6;
279 Double_t vx[6] = { 0.0, 0.0, xy2, maxXY, maxXY, dxy1 };
280 Double_t vy[6] = { dxy1, maxXY, maxXY, xy2, 0.0, 0.0 };
281
282 TGeoXtru* xtruS1 = new TGeoXtru(nz);
283 xtruS1->SetName("xtruS1");
284 xtruS1->DefinePolygon(nv, vx, vy);
285 xtruS1->DefineSection(0, -fgkHzGas, 0.0, 0.0, 1.0);
286 xtruS1->DefineSection(1, fgkHzGas, 0.0, 0.0, 1.0);
287 TGeoCompositeShape* layerS1 = new TGeoCompositeShape("layerS1", "xtruS1-cutTube");
288 new TGeoVolume("SA1G", layerS1, kMedArCO2 );
289
290 TGeoXtru* xtruS2 = new TGeoXtru(nz);
291 xtruS2->SetName("xtruS2");
292 xtruS2->DefinePolygon(nv, vx, vy);
293 xtruS2->DefineSection(0, -fgkHzGas, 0.0, 0.0, 1.0);
294 xtruS2->DefineSection(1, fgkHzGas, 0.0, 0.0, 1.0);
295 TGeoCompositeShape* layerS2 = new TGeoCompositeShape("layerS2", "xtruS2-cutTube");
296 new TGeoVolume("SA2G", layerS2, kMedArCO2 );
297
298 TGeoXtru* xtruS3 = new TGeoXtru(nz);
299 xtruS3->SetName("xtruS3");
300 xtruS3->DefinePolygon(nv, vx, vy);
301 xtruS3->DefineSection(0, -fgkHzPadPlane, 0.0, 0.0, 1.0);
302 xtruS3->DefineSection(1, fgkHzPadPlane, 0.0, 0.0, 1.0);
303 TGeoCompositeShape* layerS3 = new TGeoCompositeShape("layerS3", "xtruS3-cutTube");
304 new TGeoVolume("SA1C", layerS3, kMedCopper );
305}
306
5f91c9e8 307
308//______________________________________________________________________________
fdbaed6e 309void AliMUONSt1GeometryBuilderV2::CreateSpacer0()
310{
311/// The spacer volumes are defined according to the input prepared by Nicole Willis
312/// without any modifications
313/// <pre>
314/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
315/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
316/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
317/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
318/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
319/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
ab6c4493 320/// </pre>
fdbaed6e 321
322 // tracking medias
323 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
324 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
325 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
326
327 GReal_t par[3];
328 par[0] = 0.575;
329 par[1] = 0.150;
330 par[2] = 2.550;
331 gMC->Gsvolu("Spacer05","BOX",idFrameEpoxy,par,3);
332
333 par[0] = 0.575;
334 par[1] = 1.500;
335 par[2] = 0.100;
336 gMC->Gsvolu("Spacer06","BOX",idFrameEpoxy,par,3);
337
338 par[0] = 0.000;
339 par[1] = 0.300;
340 par[2] = 2.063;
341 gMC->Gsvolu("Spacer07","TUBE",idInox,par,3);
342}
343
344
345//______________________________________________________________________________
346void AliMUONSt1GeometryBuilderV2::CreateSpacer()
347{
348/// The spacer volumes are defined according to the input prepared by Nicole Willis
349/// with modifications needed to fit into existing geometry.
350/// <pre>
351/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
352/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
353/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
354/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
355/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
356/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
357/// </pre>
358/// To fit in existing volumes the volumes 5 and 7 are represented by 2 volumes
359/// with half size in z (5A, &A); the dimensions of the volume 5A were also modified
360/// to avoid overlaps (x made smaller, y larger to abotain the identical volume)
361
362 // tracking medias
363 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
364 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
365 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
366
367 //GReal_t par[3];
368 //par[0] = 0.575;
369 //par[1] = 0.150;
370 //par[2] = 2.550;
371 //gMC->Gsvolu("Spacer5","BOX",idFrameEpoxy,par,3);
372
373 GReal_t par[3];
374 par[0] = 0.510;
375 par[1] = 0.170;
5ae5869b 376 par[2] = 1.1515;
fdbaed6e 377 gMC->Gsvolu("Spacer5A","BOX",idFrameEpoxy,par,3);
378
afab29fc 379 par[0] = 0.510;
fdbaed6e 380 par[1] = 1.500;
381 par[2] = 0.100;
382 gMC->Gsvolu("Spacer6","BOX",idFrameEpoxy,par,3);
383
384 //par[0] = 0.000;
385 //par[1] = 0.300;
386 //par[2] = 2.063;
387 //gMC->Gsvolu("Spacer7","TUBE",idInox,par,3);
388
389 par[0] = 0.000;
390 par[1] = 0.300;
391 par[2] = 1.0315;
392 gMC->Gsvolu("Spacer7A","TUBE",idInox,par,3);
393}
394
395//______________________________________________________________________________
d1cd2474 396void AliMUONSt1GeometryBuilderV2::CreateQuadrant(Int_t chamber)
ba030c0e 397{
5398f946 398/// Create the quadrant (bending and non-bending planes)
399/// for the given chamber
5f91c9e8 400
5ae5869b 401 // CreateQuadrantLayersAsVolumes(chamber);
402 CreateQuadrantLayersAsAssemblies(chamber);
ba030c0e 403
5ae5869b 404 CreateFrame(chamber);
d1cd2474 405
5ae5869b 406 TExMap specialMap;
407 specialMap.Add(76, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.1, 0.72), 90.));
ddfa5dbc 408 specialMap.Add(75, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.7, 0.36)));
e8c253a0 409 specialMap.Add(47, (Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01, 0.36)));
d1cd2474 410
331a617a 411 // Load mapping from OCDB
412 if ( ! AliMpSegmentation::Instance() ) {
413 AliFatal("Mapping has to be loaded first !");
414 }
415
f3ed9a44 416 const AliMpSector* kSector1
417 = AliMpSegmentation::Instance()->GetSector(100, AliMpDEManager::GetCathod(100, AliMp::kBendingPlane));
418 if ( ! kSector1 ) {
331a617a 419 AliFatal("Could not access sector segmentation !");
420 }
5ae5869b 421
b367fd8f 422 //Bool_t reflectZ = true;
423 Bool_t reflectZ = false;
424 //TVector3 where = TVector3(2.5+0.1+0.56+0.001, 2.5+0.1+0.001, 0.);
425 TVector3 where = TVector3(fgkDeltaQuadLHC + fgkPadXOffsetBP,
426 fgkDeltaQuadLHC + fgkPadYOffsetBP, 0.);
331a617a 427 PlaceSector(kSector1, specialMap, where, reflectZ, chamber);
ba030c0e 428
866c3232 429 Int_t nb = AliMpConstants::ManuMask(AliMp::kNonBendingPlane);
cd872630 430 TExMapIter it(&specialMap);
431 Long_t key;
432 Long_t value;
433 while ( it.Next(key,value) == kTRUE ) {
434 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
435 }
d1cd2474 436 specialMap.Delete();
5ae5869b 437 specialMap.Add(76 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01,0.51),90.));
35bf4a8f 438 specialMap.Add(75 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.20,-0.08)));
439 specialMap.Add(47 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.40,-1.11)));
4d8c279c 440 specialMap.Add(20 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08)));
35bf4a8f 441 specialMap.Add(46 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.92 , 0.17)));
ddfa5dbc 442 specialMap.Add(74 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.405, -0.10)));
b367fd8f 443 // Fix (7) - overlap of SQ42 with MCHL (after moving the whole sector
444 // in the true position)
5ae5869b 445
f3ed9a44 446 const AliMpSector* kSector2
447 = AliMpSegmentation::Instance()
448 ->GetSector(100, AliMpDEManager::GetCathod(100, AliMp::kNonBendingPlane));
449 if ( ! kSector2 ) {
450 AliFatal("Could not access sector !");
331a617a 451 }
331a617a 452
b367fd8f 453 //reflectZ = false;
454 reflectZ = true;
331a617a 455 TVector2 offset = kSector2->Position();
e77b6d6b 456 where = TVector3(where.X()+offset.X(), where.Y()+offset.Y(), 0.);
b367fd8f 457 // Add the half-pad shift of the non-bending plane wrt bending plane
458 // (The shift is defined in the mapping as sector offset)
459 // Fix (4) - was TVector3(where.X()+0.63/2, ... - now it is -0.63/2
331a617a 460 PlaceSector(kSector2, specialMap, where, reflectZ, chamber);
d1cd2474 461
cd872630 462 it.Reset();
463 while ( it.Next(key,value) == kTRUE ) {
464 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
465 }
d1cd2474 466 specialMap.Delete();
ba030c0e 467}
468
5f91c9e8 469//______________________________________________________________________________
62c708bf 470void AliMUONSt1GeometryBuilderV2::CreateFoamBox(
471 Int_t segNumber,
472 const TVector2& dimensions)
ba030c0e 473{
5398f946 474/// Create all the elements in the copper plane
ba030c0e 475
d1cd2474 476 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 477 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 478 //Int_t idFoam = idtmed[1115]; // medium 16 = Foam
479 //Int_t idFR4 = idtmed[1114]; // medium 15 = FR4
480 Int_t idFoam = idtmed[1125]; // medium 26 = Foam
481 Int_t idFR4 = idtmed[1122]; // medium 23 = FR4
ba030c0e 482
5f91c9e8 483 // mother volume
484 GReal_t par[3];
485 par[0] = dimensions.X();
486 par[1] = dimensions.Y();
487 par[2] = TotalHzPlane();
62c708bf 488 gMC->Gsvolu(PlaneSegmentName(segNumber).Data(),"BOX",idAir,par,3);
5f91c9e8 489
490 // foam layer
5f91c9e8 491 par[0] = dimensions.X();
492 par[1] = dimensions.Y();
493 par[2] = fgkHzFoam;
62c708bf 494 gMC->Gsvolu(FoamBoxName(segNumber).Data(),"BOX",idFoam,par,3);
495 GReal_t posX,posY,posZ;
5f91c9e8 496 posX=0.;
497 posY=0.;
498 posZ = -TotalHzPlane() + fgkHzFoam;
62c708bf 499 gMC->Gspos(FoamBoxName(segNumber).Data(),1,
500 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
ba030c0e 501
5f91c9e8 502 // mechanical plane FR4 layer
5f91c9e8 503 par[0] = dimensions.X();
504 par[1] = dimensions.Y();
505 par[2] = fgkHzFR4;
62c708bf 506 gMC->Gsvolu(FR4BoxName(segNumber).Data(),"BOX",idFR4,par,3);
5f91c9e8 507 posX=0.;
508 posY=0.;
509 posZ = -TotalHzPlane()+ 2.*fgkHzFoam + fgkHzFR4;
62c708bf 510 gMC->Gspos(FR4BoxName(segNumber).Data(),1,
511 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 512}
ba030c0e 513
5f91c9e8 514//______________________________________________________________________________
62c708bf 515void AliMUONSt1GeometryBuilderV2::CreatePlaneSegment(Int_t segNumber,
516 const TVector2& dimensions,
517 Int_t nofHoles)
5f91c9e8 518{
5398f946 519/// Create a segment of a plane (this includes a foam layer,
520/// holes in the foam to feed the kaptons through, kapton connectors
521/// and the mother board.)
ba030c0e 522
62c708bf 523 CreateFoamBox(segNumber,dimensions);
fdbaed6e 524
525 // Place spacer in the concrete plane segments:
526 // S225 (in S025), S267 (in S067) in chamber1 and S309 (in S109). S351(in S151)
527 // in chamber2
528 // The segments were found as those which caused overlaps when we placed
529 // the spacer in global coordinates via PlaceSpacer0
530 //
531 // <posXYZ X_Y_Z=" 12.6000; 0.75000; 0.0000"> <volume name="Spacer5A"/>
532 // <posXYZ X_Y_Z=" 12.6000; -0.75000; 0.0000"> <volume name="Spacer5A"/>
533 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 1.1515"> <volume name="Spacer6"/>
534 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 0.0000"> <volume name="Spacer7A"/>
535
536 if ( FoamBoxName(segNumber) == "S225" ||
537 FoamBoxName(segNumber) == "S267" ||
538 FoamBoxName(segNumber) == "S309" ||
539 FoamBoxName(segNumber) == "S351" )
540 {
5ae5869b 541 GReal_t posX = 12.6;
542 GReal_t posY = 0.75;
543 GReal_t posZ = -0.1;
544 if ( FoamBoxName(segNumber) == "S267" ||
545 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 546 gMC->Gspos("Spacer5A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
547
548 posY = -0.75;
5ae5869b 549 if ( FoamBoxName(segNumber) == "S267" ||
550 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 551 gMC->Gspos("Spacer5A", 2, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
552
553 posY = 0.0;
554 posZ = 1.1515;
555 if ( FoamBoxName(segNumber) == "S267" ||
5ae5869b 556 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 557 gMC->Gspos("Spacer6", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
558
559 posY = 0.0;
560 posZ = 0.0;
5ae5869b 561 if ( FoamBoxName(segNumber) == "S267" ||
562 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 563 gMC->Gspos("Spacer7A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
564 }
ba030c0e 565
5f91c9e8 566 for (Int_t holeNum=0;holeNum<nofHoles;holeNum++) {
567 GReal_t posX = ((2.*holeNum+1.)/nofHoles-1.)*dimensions.X();
568 GReal_t posY = 0.;
569 GReal_t posZ = 0.;
5ae5869b 570
62c708bf 571 gMC->Gspos(fgkHoleName,holeNum+1,
572 FoamBoxName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 573 }
ba030c0e 574}
575
5f91c9e8 576//______________________________________________________________________________
5ae5869b 577void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsVolumes(Int_t chamber)
578{
579/// Create the three main layers as real volumes.
580/// Not used anymore.
581
582 // tracking medias
583 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
584 Int_t idAir = idtmed[1100]; // medium 1
585
586 Float_t par[11];
587 Float_t posX,posY,posZ;
588
589// Quadrant volume TUBS1, positioned at the end
590 par[0] = fgkMotherIR1;
591 par[1] = fgkMotherOR1;
592 par[2] = fgkMotherThick1;
593 par[3] = fgkMotherPhiL1;
594 par[4] = fgkMotherPhiU1;
595 gMC->Gsvolu(QuadrantMLayerName(chamber),"TUBS",idAir,par,5);
596 // gMC->Gsvolu(QuadrantMFLayerName(chamber),"TUBS",idAir,par,5);
597
598// Replace the volume shape with a composite shape
599// with substracted overlap with beam shield (YMOT)
600
601 if ( gMC->IsRootGeometrySupported() ) {
602
603 // Get shape
604 TGeoVolume* mlayer
605 = gGeoManager->FindVolumeFast(QuadrantMLayerName(chamber));
606 if ( !mlayer ) {
607 AliErrorStream()
608 << "Quadrant volume " << QuadrantMLayerName(chamber) << " not found"
609 << endl;
610 }
611 else {
612 TGeoShape* quadrant = mlayer->GetShape();
613 quadrant->SetName("quadrant");
614
615 // Beam shield recess
616 par[0] = 0;
617 par[1] = 15.4;
618 par[2] = fgkMotherThick1;
619 new TGeoTube("shield_tube", par[0], par[1], par[2]);
620
621 // Displacement
622 posX = 2.6;
623 posY = 2.6;
624 posZ = 0;
625 TGeoTranslation* displacement
626 = new TGeoTranslation("TR", posX, posY, posZ);
627 displacement->RegisterYourself();
628
629 // Composite shape
630 TGeoShape* composite
631 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
632
633 // Reset shape to volume
634 mlayer->SetShape(composite);
635 }
636
637 TGeoVolume* malayer
638 = gGeoManager->FindVolumeFast(QuadrantMFLayerName(chamber));
639 if ( !malayer ) {
640 AliErrorStream()
641 << "Quadrant volume " << QuadrantMFLayerName(chamber) << " not found"
642 << endl;
643 }
644 else {
645 TGeoShape* quadrant = malayer->GetShape();
646 quadrant->SetName("quadrant");
647
648 // Beam shield recess
649 par[0] = 0;
650 par[1] = 15.4;
651 par[2] = fgkMotherThick1;
652 new TGeoTube("shield_tube", par[0], par[1], par[2]);
653
654 // Displacement
655 posX = 2.6;
656 posY = 2.6;
657 posZ = 0;
658 TGeoTranslation* displacement
659 = new TGeoTranslation("TR", posX, posY, posZ);
660 displacement->RegisterYourself();
661
662 // Composite shape
663 TGeoShape* composite
664 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
665
666 // Reset shape to volume
667 malayer->SetShape(composite);
668 }
669 }
670
671// Quadrant volume TUBS2, positioned at the end
672 par[0] = fgkMotherIR2;
673 par[1] = fgkMotherOR2;
674 par[2] = fgkMotherThick2;
675 par[3] = fgkMotherPhiL2;
676 par[4] = fgkMotherPhiU2;
677
678 gMC->Gsvolu(QuadrantNLayerName(chamber),"TUBS",idAir,par,5);
679 gMC->Gsvolu(QuadrantFLayerName(chamber),"TUBS",idAir,par,5);
680}
681
682//______________________________________________________________________________
683void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsAssemblies(Int_t chamber)
684{
685/// Create the three main layers as assemblies
686
687 gGeoManager->MakeVolumeAssembly(QuadrantMLayerName(chamber).Data());
688 gGeoManager->MakeVolumeAssembly(QuadrantMFLayerName(chamber).Data());
689 gGeoManager->MakeVolumeAssembly(QuadrantNLayerName(chamber).Data());
690 gGeoManager->MakeVolumeAssembly(QuadrantFLayerName(chamber).Data());
691}
692
693//______________________________________________________________________________
d1cd2474 694void AliMUONSt1GeometryBuilderV2::CreateFrame(Int_t chamber)
ba030c0e 695{
5398f946 696/// Create the non-sensitive elements of the frame for the \a chamber
697///
698/// Model and notation: \n
699/// \n
700/// The Quadrant volume name starts with SQ \n
701/// The volume segments are numbered 00 to XX \n
702/// \n
703/// OutTopFrame \n
704/// (SQ02-16) \n
705/// ------------ \n
706/// OutEdgeFrame / | \n
707/// (SQ17-24) / | InVFrame (SQ00-01) \n
708/// / | \n
709/// | | \n
710/// OutVFrame | _- - \n
711/// (SQ25-39) | | InArcFrame (SQ42-45) \n
712/// | | \n
713/// ------------- \n
714/// InHFrame (SQ40-41) \n
715/// \n
716/// \n
717/// 06 February 2003 - Overlapping volumes resolved. \n
718/// One quarter chamber is comprised of three TUBS volumes: SQMx, SQNx, and SQFx,
719/// where SQMx is the Quadrant Middle layer for chamber \a chamber ( posZ in [-3.25,3.25]),
720/// SQNx is the Quadrant Near side layer for chamber \a chamber ( posZ in [-6.25,3-.25) ), and
721/// SQFx is the Quadrant Far side layer for chamber \a chamber ( posZ in (3.25,6.25] ).
ba030c0e 722
5ae5869b 723 // TString quadrantMLayerName = QuadrantMLayerName(chamber);
724
725 TString quadrantMLayerName = QuadrantMFLayerName(chamber);
726 TString quadrantNLayerName = QuadrantNLayerName(chamber);
727 TString quadrantFLayerName = QuadrantFLayerName(chamber);
728
d1cd2474 729 const Float_t kNearFarLHC=2.4; // Near and Far TUBS Origin wrt LHC Origin
ba030c0e 730
ba030c0e 731 // tracking medias
d1cd2474 732 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 733
5ae5869b 734 //Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 735 //Int_t idFrameEpoxy = idtmed[1115]; // medium 16 = Frame Epoxy ME730
736 //Int_t idInox = idtmed[1116]; // medium 17 Stainless Steel (18%Cr,9%Ni,Fe)
737 //Int_t idFR4 = idtmed[1110]; // medium 11 FR4
738 //Int_t idCopper = idtmed[1109]; // medium 10 Copper
739 //Int_t idAlu = idtmed[1103]; // medium 4 Aluminium
740 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
741 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
742 Int_t idFR4 = idtmed[1122]; // medium 23 FR4 // was 15 not 11
743 Int_t idCopper = idtmed[1121]; // medium 22 Copper
744 Int_t idAlu = idtmed[1120]; // medium 21 Aluminium
5f91c9e8 745
746
0ab920eb 747 TGeoMedium* kMedEpoxy = gGeoManager->GetMedium("MUON_FrameCH$");
748 TGeoMedium* kMedInox = gGeoManager->GetMedium("MUON_Kapton");
749 TGeoMedium* kMedAlu = gGeoManager->GetMedium("MUON_ALU_II$");
750
751
5f91c9e8 752// Rotation Matrices
0ab920eb 753 Int_t rot1, rot2, rot3, rot4;
5f91c9e8 754
755// Rotation matrices
d1cd2474 756 fMUON->AliMatrix(rot1, 90., 90., 90., 180., 0., 0.); // +90 deg in x-y plane
757 fMUON->AliMatrix(rot2, 90., 45., 90., 135., 0., 0.); // +45 deg in x-y plane
758 fMUON->AliMatrix(rot3, 90., 45., 90., 315.,180., 0.); // +45 deg in x-y + rotation 180° around y
0ab920eb 759 fMUON->AliMatrix(rot4, 90., 315., 90., 45., 0., 0.); // -45 deg in x-y plane
5f91c9e8 760
0ab920eb 761// ___________________Volume thicknesses________________________
ba030c0e 762
d1cd2474 763 const Float_t kHzFrameThickness = 1.59/2.; //equivalent thickness
764 const Float_t kHzOuterFrameEpoxy = 1.19/2.; //equivalent thickness
765 const Float_t kHzOuterFrameInox = 0.1/2.; //equivalent thickness
766 const Float_t kHzFoam = 2.083/2.; //evaluated elsewhere
767 // CHECK with fgkHzFoam
5f91c9e8 768
769// Pertaining to the top outer area
d1cd2474 770 const Float_t kHzTopAnodeSteel1 = 0.185/2.; //equivalent thickness
771 const Float_t kHzTopAnodeSteel2 = 0.51/2.; //equivalent thickness
772 const Float_t kHzAnodeFR4 = 0.08/2.; //equivalent thickness
773 const Float_t kHzTopEarthFaceCu = 0.364/2.; //equivalent thickness
774 const Float_t kHzTopEarthProfileCu = 1.1/2.; //equivalent thickness
775 const Float_t kHzTopPositionerSteel = 1.45/2.; //should really be 2.125/2.;
776 const Float_t kHzTopGasSupportAl = 0.85/2.; //equivalent thickness
5f91c9e8 777
778// Pertaining to the vertical outer area
d1cd2474 779 const Float_t kHzVerticalCradleAl = 0.8/2.; //equivalent thickness
780 const Float_t kHzLateralSightAl = 0.975/2.; //equivalent thickness
781 const Float_t kHzLateralPosnInoxFace = 2.125/2.;//equivalent thickness
782 const Float_t kHzLatPosInoxProfM = 6.4/2.; //equivalent thickness
783 const Float_t kHzLatPosInoxProfNF = 1.45/2.; //equivalent thickness
784 const Float_t kHzLateralPosnAl = 0.5/2.; //equivalent thickness
785 const Float_t kHzVertEarthFaceCu = 0.367/2.; //equivalent thickness
786 const Float_t kHzVertBarSteel = 0.198/2.; //equivalent thickness
787 const Float_t kHzVertEarthProfCu = 1.1/2.; //equivalent thickness
5f91c9e8 788
0ab920eb 789//_______________Parameter definitions in sequence _________
5f91c9e8 790
791// InVFrame parameters
d1cd2474 792 const Float_t kHxInVFrame = 1.85/2.;
793 const Float_t kHyInVFrame = 73.95/2.;
794 const Float_t kHzInVFrame = kHzFrameThickness;
ba030c0e 795
5f91c9e8 796//Flat 7.5mm vertical section
d1cd2474 797 const Float_t kHxV1mm = 0.75/2.;
798 const Float_t kHyV1mm = 1.85/2.;
799 const Float_t kHzV1mm = kHzFrameThickness;
ba030c0e 800
5f91c9e8 801// OuterTopFrame Structure
802//
803// FRAME
804// The frame is composed of a cuboid and two trapezoids
805// (TopFrameAnode, TopFrameAnodeA, TopFrameAnodeB).
806// Each shape is composed of two layers (Epoxy and Inox) and
807// takes the frame's inner anode circuitry into account in the material budget.
808//
809// ANODE
810// The overhanging anode part is composed froma cuboid and two trapezoids
811// (TopAnode, TopAnode1, and TopAnode2). These surfaces neglect implanted
812// resistors, but accounts for the major Cu, Pb/Sn, and FR4 material
813// contributions.
814// The stainless steel anode supports have been included.
815//
816// EARTHING (TopEarthFace, TopEarthProfile)
817// Al GAS SUPPORT (TopGasSupport)
818//
819// ALIGNMENT (TopPositioner) - Alignment system, three sights per quarter
820// chamber. This sight is forseen for the alignment of the horizontal level
821// (parallel to the OY axis of LHC). Its position will be evaluated relative
822// to a system of sights places on the cradles;
823//
824//---
ba030c0e 825
5f91c9e8 826//TopFrameAnode parameters - cuboid, 2 layers
d1cd2474 827 const Float_t kHxTFA = 34.1433/2.;
828 const Float_t kHyTFA = 7.75/2.;
829 const Float_t kHzTFAE = kHzOuterFrameEpoxy; // layer 1 thickness
830 const Float_t kHzTFAI = kHzOuterFrameInox; // layer 3 thickness
ba030c0e 831
0ab920eb 832// TopFrameAnode parameters - 2 trapezoids, 2 layers
833// (redefined with TGeoXtru shape)
d1cd2474 834 const Float_t kH1FAA = 8.7/2.;
d1cd2474 835 const Float_t kTl1FAB = 4.35/2.;
0ab920eb 836 const Float_t kTl1FAA = 7.75/2.;
837
5f91c9e8 838// TopAnode parameters - cuboid (part 1 of 3 parts)
d1cd2474 839 const Float_t kHxTA1 = 16.2/2.;
840 const Float_t kHyTA1 = 3.5/2.;
841 const Float_t kHzTA11 = kHzTopAnodeSteel1; // layer 1
842 const Float_t kHzTA12 = kHzAnodeFR4; // layer 2
5f91c9e8 843
844// TopAnode parameters - trapezoid 1 (part 2 of 3 parts)
d1cd2474 845 const Float_t kHzTA21 = kHzTopAnodeSteel2; // layer 1
846 const Float_t kHzTA22 = kHzAnodeFR4; // layer 2
847 const Float_t kTetTA2 = 0.;
848 const Float_t kPhiTA2= 0.;
849 const Float_t kH1TA2 = 7.268/2.;
850 const Float_t kBl1TA2 = 2.03/2.;
851 const Float_t kTl1TA2 = 3.5/2.;
852 const Float_t kAlp1TA2 = 5.78;
853 const Float_t kH2TA2 = 7.268/2.;
854 const Float_t kBl2TA2 = 2.03/2.;
855 const Float_t kTl2TA2 = 3.5/2.;
856 const Float_t kAlp2TA2 = 5.78;
5f91c9e8 857
858// TopAnode parameters - trapezoid 2 (part 3 of 3 parts)
d1cd2474 859 const Float_t kHzTA3 = kHzAnodeFR4; // layer 1
860 const Float_t kTetTA3 = 0.;
861 const Float_t kPhiTA3 = 0.;
862 const Float_t kH1TA3 = 7.268/2.;
863 const Float_t kBl1TA3 = 0.;
864 const Float_t kTl1TA3 = 2.03/2.;
865 const Float_t kAlp1TA3 = 7.95;
866 const Float_t kH2TA3 = 7.268/2.;
867 const Float_t kBl2TA3 = 0.;
868 const Float_t kTl2TA3 = 2.03/2.;
869 const Float_t kAlp2TA3 = 7.95;
ba030c0e 870
5f91c9e8 871// TopEarthFace parameters - single trapezoid
d1cd2474 872 const Float_t kHzTEF = kHzTopEarthFaceCu;
873 const Float_t kTetTEF = 0.;
874 const Float_t kPhiTEF = 0.;
875 const Float_t kH1TEF = 1.200/2.;
876 const Float_t kBl1TEF = 21.323/2.;
877 const Float_t kTl1TEF = 17.963/2.;
878 const Float_t kAlp1TEF = -54.46;
879 const Float_t kH2TEF = 1.200/2.;
880 const Float_t kBl2TEF = 21.323/2.;
881 const Float_t kTl2TEF = 17.963/2.;
882 const Float_t kAlp2TEF = -54.46;
5f91c9e8 883
884// TopEarthProfile parameters - single trapezoid
d1cd2474 885 const Float_t kHzTEP = kHzTopEarthProfileCu;
886 const Float_t kTetTEP = 0.;
887 const Float_t kPhiTEP = 0.;
888 const Float_t kH1TEP = 0.40/2.;
889 const Float_t kBl1TEP = 31.766/2.;
890 const Float_t kTl1TEP = 30.535/2.;
891 const Float_t kAlp1TEP = -56.98;
892 const Float_t kH2TEP = 0.40/2.;
893 const Float_t kBl2TEP = 31.766/2.;
894 const Float_t kTl2TEP = 30.535/2.;
895 const Float_t kAlp2TEP = -56.98;
5f91c9e8 896
897// TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 898 const Float_t kHzTP = kHzTopPositionerSteel;
899 const Float_t kTetTP = 0.;
900 const Float_t kPhiTP = 0.;
901 const Float_t kH1TP = 3.00/2.;
902 const Float_t kBl1TP = 7.023/2.;
903 const Float_t kTl1TP = 7.314/2.;
904 const Float_t kAlp1TP = 2.78;
905 const Float_t kH2TP = 3.00/2.;
906 const Float_t kBl2TP = 7.023/2.;
907 const Float_t kTl2TP = 7.314/2.;
908 const Float_t kAlp2TP = 2.78;
5f91c9e8 909
910// TopGasSupport parameters - single cuboid
d1cd2474 911 const Float_t kHxTGS = 8.50/2.;
912 const Float_t kHyTGS = 3.00/2.;
913 const Float_t kHzTGS = kHzTopGasSupportAl;
5f91c9e8 914
915// OutEdgeFrame parameters - 4 trapezoidal sections, 2 layers of material
0ab920eb 916// (redefined with TGeoXtru shape)
5f91c9e8 917//
d1cd2474 918 const Float_t kH1OETF = 7.196/2.; // common to all 4 trapezoids
0ab920eb 919 const Float_t kTl1OETF1 = 3.996/2.; // Trapezoid 1
920 const Float_t kTl1OETF2 = 3.75/2; // Trapezoid 2
921 const Float_t kTl1OETF3 = 3.01/2.; // Trapezoid 3
922 const Float_t kTl1OETF4 = 1.77/2.; // Trapezoid 4
923
5f91c9e8 924
5f91c9e8 925// Frame Structure (OutVFrame):
926//
927// OutVFrame and corner (OutVFrame cuboid, OutVFrame trapezoid)
928// EARTHING (VertEarthFaceCu,VertEarthSteel,VertEarthProfCu),
929// DETECTOR POSITIONNING (SuppLateralPositionner, LateralPositionner),
930// CRADLE (VertCradle), and
931// ALIGNMENT (LateralSightSupport, LateralSight)
932//
933//---
934
935// OutVFrame parameters - cuboid
d1cd2474 936 const Float_t kHxOutVFrame = 1.85/2.;
937 const Float_t kHyOutVFrame = 46.23/2.;
938 const Float_t kHzOutVFrame = kHzFrameThickness;
5f91c9e8 939
940// OutVFrame corner parameters - trapezoid
d1cd2474 941 const Float_t kHzOCTF = kHzFrameThickness;
942 const Float_t kTetOCTF = 0.;
943 const Float_t kPhiOCTF = 0.;
944 const Float_t kH1OCTF = 1.85/2.;
945 const Float_t kBl1OCTF = 0.;
946 const Float_t kTl1OCTF = 3.66/2.;
947 const Float_t kAlp1OCTF = 44.67;
948 const Float_t kH2OCTF = 1.85/2.;
949 const Float_t kBl2OCTF = 0.;
950 const Float_t kTl2OCTF = 3.66/2.;
951 const Float_t kAlp2OCTF = 44.67;
5f91c9e8 952
953// VertEarthFaceCu parameters - single trapezoid
d1cd2474 954 const Float_t kHzVFC = kHzVertEarthFaceCu;
955 const Float_t kTetVFC = 0.;
956 const Float_t kPhiVFC = 0.;
957 const Float_t kH1VFC = 1.200/2.;
958 const Float_t kBl1VFC = 46.11/2.;
959 const Float_t kTl1VFC = 48.236/2.;
960 const Float_t kAlp1VFC = 41.54;
961 const Float_t kH2VFC = 1.200/2.;
962 const Float_t kBl2VFC = 46.11/2.;
963 const Float_t kTl2VFC = 48.236/2.;
964 const Float_t kAlp2VFC = 41.54;
5f91c9e8 965
966// VertEarthSteel parameters - single trapezoid
d1cd2474 967 const Float_t kHzVES = kHzVertBarSteel;
968 const Float_t kTetVES = 0.;
969 const Float_t kPhiVES = 0.;
970 const Float_t kH1VES = 1.200/2.;
971 const Float_t kBl1VES = 30.486/2.;
972 const Float_t kTl1VES = 32.777/2.;
973 const Float_t kAlp1VES = 43.67;
974 const Float_t kH2VES = 1.200/2.;
975 const Float_t kBl2VES = 30.486/2.;
976 const Float_t kTl2VES = 32.777/2.;
977 const Float_t kAlp2VES = 43.67;
5f91c9e8 978
979// VertEarthProfCu parameters - single trapezoid
d1cd2474 980 const Float_t kHzVPC = kHzVertEarthProfCu;
981 const Float_t kTetVPC = 0.;
982 const Float_t kPhiVPC = 0.;
983 const Float_t kH1VPC = 0.400/2.;
984 const Float_t kBl1VPC = 29.287/2.;
985 const Float_t kTl1VPC = 30.091/2.;
986 const Float_t kAlp1VPC = 45.14;
987 const Float_t kH2VPC = 0.400/2.;
988 const Float_t kBl2VPC = 29.287/2.;
989 const Float_t kTl2VPC = 30.091/2.;
990 const Float_t kAlp2VPC = 45.14;
5f91c9e8 991
992// SuppLateralPositionner - single cuboid
d1cd2474 993 const Float_t kHxSLP = 2.80/2.;
994 const Float_t kHySLP = 5.00/2.;
995 const Float_t kHzSLP = kHzLateralPosnAl;
5f91c9e8 996
997// LateralPositionner - squared off U bend, face view
d1cd2474 998 const Float_t kHxLPF = 5.2/2.;
999 const Float_t kHyLPF = 3.0/2.;
1000 const Float_t kHzLPF = kHzLateralPosnInoxFace;
5f91c9e8 1001
1002// LateralPositionner - squared off U bend, profile view
d1cd2474 1003 const Float_t kHxLPP = 0.425/2.;
1004 const Float_t kHyLPP = 3.0/2.;
1005 const Float_t kHzLPP = kHzLatPosInoxProfM; // middle layer
1006 const Float_t kHzLPNF = kHzLatPosInoxProfNF; // near and far layers
5f91c9e8 1007
1008// VertCradle, 3 layers (copies), each composed of 4 trapezoids
0ab920eb 1009// (redefined with TGeoXtru shape)
1010//
1011 const Float_t kH1VC1 = 10.25/2.; // all cradles
1012 const Float_t kBl1VC1 = 3.70/2.; // VertCradleA
1013 const Float_t kBl1VC2 = 6.266/2.; // VertCradleB
1014 const Float_t kBl1VC3 = 7.75/2.; // VertCradleC
5f91c9e8 1015
1016// VertCradleD
d1cd2474 1017 const Float_t kHzVC4 = kHzVerticalCradleAl;
1018 const Float_t kTetVC4 = 0.;
1019 const Float_t kPhiVC4 = 0.;
1020 const Float_t kH1VC4 = 10.27/2.;
1021 const Float_t kBl1VC4 = 8.273/2.;
1022 const Float_t kTl1VC4 = 7.75/2.;
1023 const Float_t kAlp1VC4 = -1.46;
1024 const Float_t kH2VC4 = 10.27/2.;
1025 const Float_t kBl2VC4 = 8.273/2.;
1026 const Float_t kTl2VC4 = 7.75/2.;
1027 const Float_t kAlp2VC4 = -1.46;
0ab920eb 1028
5f91c9e8 1029// LateralSightSupport - single trapezoid
d1cd2474 1030 const Float_t kHzVSS = kHzLateralSightAl;
1031 const Float_t kTetVSS = 0.;
1032 const Float_t kPhiVSS = 0.;
1033 const Float_t kH1VSS = 5.00/2.;
1034 const Float_t kBl1VSS = 7.747/2;
1035 const Float_t kTl1VSS = 7.188/2.;
1036 const Float_t kAlp1VSS = -3.20;
1037 const Float_t kH2VSS = 5.00/2.;
1038 const Float_t kBl2VSS = 7.747/2.;
1039 const Float_t kTl2VSS = 7.188/2.;
1040 const Float_t kAlp2VSS = -3.20;
5f91c9e8 1041
1042// LateralSight (reference point) - 3 per quadrant, only 1 programmed for now
d1cd2474 1043 const Float_t kVSInRad = 0.6;
1044 const Float_t kVSOutRad = 1.3;
1045 const Float_t kVSLen = kHzFrameThickness;
5f91c9e8 1046
1047//---
ba030c0e 1048
5f91c9e8 1049// InHFrame parameters
d1cd2474 1050 const Float_t kHxInHFrame = 75.8/2.;
1051 const Float_t kHyInHFrame = 1.85/2.;
1052 const Float_t kHzInHFrame = kHzFrameThickness;
5f91c9e8 1053
1054//Flat 7.5mm horizontal section
d1cd2474 1055 const Float_t kHxH1mm = 1.85/2.;
1056 const Float_t kHyH1mm = 0.75/2.;
1057 const Float_t kHzH1mm = kHzFrameThickness;
ba030c0e 1058
5f91c9e8 1059//---
ba030c0e 1060
5f91c9e8 1061// InArcFrame parameters
d1cd2474 1062 const Float_t kIAF = 15.70;
1063 const Float_t kOAF = 17.55;
1064 const Float_t kHzAF = kHzFrameThickness;
1065 const Float_t kAFphi1 = 0.0;
1066 const Float_t kAFphi2 = 90.0;
ba030c0e 1067
5f91c9e8 1068//---
ba030c0e 1069
5f91c9e8 1070// ScrewsInFrame parameters HEAD
d1cd2474 1071 const Float_t kSCRUHMI = 0.;
1072 const Float_t kSCRUHMA = 0.690/2.;
1073 const Float_t kSCRUHLE = 0.4/2.;
5f91c9e8 1074// ScrewsInFrame parameters MIDDLE
d1cd2474 1075 const Float_t kSCRUMMI = 0.;
1076 const Float_t kSCRUMMA = 0.39/2.;
1077 const Float_t kSCRUMLE = kHzFrameThickness;
5f91c9e8 1078// ScrewsInFrame parameters NUT
d1cd2474 1079 const Float_t kSCRUNMI = 0.;
1080 const Float_t kSCRUNMA = 0.78/2.;
1081 const Float_t kSCRUNLE = 0.8/2.;
5f91c9e8 1082
1083 // ___________________Make volumes________________________
ba030c0e 1084
5f91c9e8 1085 Float_t par[11];
1086 Float_t posX,posY,posZ;
ba030c0e 1087
5f91c9e8 1088 if (chamber==1) {
1089 // InVFrame
d1cd2474 1090 par[0] = kHxInVFrame;
1091 par[1] = kHyInVFrame;
1092 par[2] = kHzInVFrame;
5f91c9e8 1093 gMC->Gsvolu("SQ00","BOX",idFrameEpoxy,par,3);
1094
1095 //Flat 1mm vertical section
d1cd2474 1096 par[0] = kHxV1mm;
1097 par[1] = kHyV1mm;
1098 par[2] = kHzV1mm;
5f91c9e8 1099 gMC->Gsvolu("SQ01","BOX",idFrameEpoxy,par,3);
1100
1101// OutTopFrame
1102//
1103// - 3 components (a cuboid and 2 trapezes) and 2 layers (Epoxy/Inox)
1104//
1105//---
ba030c0e 1106
5f91c9e8 1107 // TopFrameAnode - layer 1 of 2
d1cd2474 1108 par[0] = kHxTFA;
1109 par[1] = kHyTFA;
1110 par[2] = kHzTFAE;
5f91c9e8 1111 gMC->Gsvolu("SQ02","BOX",idFrameEpoxy,par,3);
1112
1113 // TopFrameAnode - layer 2 of 2
d1cd2474 1114 par[2] = kHzTFAI;
5f91c9e8 1115 gMC->Gsvolu("SQ03","BOX",idInox,par,3);
1116
0ab920eb 1117
1118 // Common declarations for TGeoXtru parameters
1119 Double_t dx, dx0, dx1, dx2, dx3;
1120 Double_t dy, dy1, dy2, dy3, dy4;
1121 Double_t vx[16];
1122 Double_t vy[16];
1123 Int_t nz;
1124 Int_t nv;
1125
1126 // SQ04to06 and SQ05to07
1127
1128 dx = 2.*kH1FAA;
1129 dy1 = 2.*kTl1FAA;
1130 dy2 = 2.*kTl1FAB;
1131
1132 nz = 2;
1133 nv = 5;
1134 vx[0] = 0.0; vy[0] = 0.0;
1135 vx[1] = 0.0; vy[1] = dy1;
1136 vx[2] = dx; vy[2] = dy2;
1137 vx[3] = 2*dx; vy[3] = 0.0;
1138 vx[4] = dx; vy[4] = 0.0;
1139
1140 // Shift center in the middle
1141 for ( Int_t i=0; i<nv; i++ ) {
1142 vx[i] -= dx;
1143 vy[i] -= 0.5*dy1;
1144 }
1145
1146 TGeoXtru* xtruS5 = new TGeoXtru(nz);
1147 xtruS5->DefinePolygon(nv, vx, vy);
1148 xtruS5->DefineSection(0, -kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1149 xtruS5->DefineSection(1, kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1150 new TGeoVolume("SQ04toSQ06", xtruS5, kMedEpoxy);
1151
1152 TGeoXtru* xtruS6 = new TGeoXtru(nz);
1153 xtruS6->DefinePolygon(nv, vx, vy);
1154 xtruS6->DefineSection(0, -kHzOuterFrameInox, 0.0, 0.0, 1.0);
1155 xtruS6->DefineSection(1, kHzOuterFrameInox, 0.0, 0.0, 1.0);
1156 new TGeoVolume("SQ05toSQ07", xtruS6, kMedInox);
1157
5f91c9e8 1158
1159 // TopAnode1 - layer 1 of 2
d1cd2474 1160 par[0] = kHxTA1;
1161 par[1] = kHyTA1;
1162 par[2] = kHzTA11;
5f91c9e8 1163 gMC->Gsvolu("SQ08","BOX",idInox,par,3);
1164
1165 // TopAnode1 - layer 2 of 2
d1cd2474 1166 par[2] = kHzTA12;
5f91c9e8 1167 gMC->Gsvolu("SQ09","BOX",idFR4,par,11);
1168
1169 // TopAnode2 - layer 1 of 2
d1cd2474 1170 par[0] = kHzTA21;
1171 par[1] = kTetTA2;
1172 par[2] = kPhiTA2;
1173 par[3] = kH1TA2;
1174 par[4] = kBl1TA2;
1175 par[5] = kTl1TA2;
1176 par[6] = kAlp1TA2;
1177 par[7] = kH2TA2;
1178 par[8] = kBl2TA2;
1179 par[9] = kTl2TA2;
1180 par[10] = kAlp2TA2;
5f91c9e8 1181 gMC->Gsvolu("SQ10","TRAP",idInox,par,11);
1182
1183 // TopAnode2 - layer 2 of 2
d1cd2474 1184 par[0] = kHzTA22;
5f91c9e8 1185 gMC->Gsvolu("SQ11","TRAP",idFR4,par,11);
1186
1187 // TopAnode3 - layer 1 of 1
d1cd2474 1188 par[0] = kHzTA3;
1189 par[1] = kTetTA3;
1190 par[2] = kPhiTA3;
1191 par[3] = kH1TA3;
1192 par[4] = kBl1TA3;
1193 par[5] = kTl1TA3;
1194 par[6] = kAlp1TA3;
1195 par[7] = kH2TA3;
1196 par[8] = kBl2TA3;
1197 par[9] = kTl2TA3;
1198 par[10] = kAlp2TA3;
5f91c9e8 1199 gMC->Gsvolu("SQ12","TRAP",idFR4,par,11);
1200
1201 // TopEarthFace
d1cd2474 1202 par[0] = kHzTEF;
1203 par[1] = kTetTEF;
1204 par[2] = kPhiTEF;
1205 par[3] = kH1TEF;
1206 par[4] = kBl1TEF;
1207 par[5] = kTl1TEF;
1208 par[6] = kAlp1TEF;
1209 par[7] = kH2TEF;
1210 par[8] = kBl2TEF;
1211 par[9] = kTl2TEF;
1212 par[10] = kAlp2TEF;
5f91c9e8 1213 gMC->Gsvolu("SQ13","TRAP",idCopper,par,11);
1214
1215 // TopEarthProfile
d1cd2474 1216 par[0] = kHzTEP;
1217 par[1] = kTetTEP;
1218 par[2] = kPhiTEP;
1219 par[3] = kH1TEP;
1220 par[4] = kBl1TEP;
1221 par[5] = kTl1TEP;
1222 par[6] = kAlp1TEP;
1223 par[7] = kH2TEP;
1224 par[8] = kBl2TEP;
1225 par[9] = kTl2TEP;
1226 par[10] = kAlp2TEP;
5f91c9e8 1227 gMC->Gsvolu("SQ14","TRAP",idCopper,par,11);
1228
1229 // TopGasSupport
d1cd2474 1230 par[0] = kHxTGS;
1231 par[1] = kHyTGS;
1232 par[2] = kHzTGS;
5f91c9e8 1233 gMC->Gsvolu("SQ15","BOX",idAlu,par,3);
1234
1235 // TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 1236 par[0] = kHzTP;
1237 par[1] = kTetTP;
1238 par[2] = kPhiTP;
1239 par[3] = kH1TP;
1240 par[4] = kBl1TP;
1241 par[5] = kTl1TP;
1242 par[6] = kAlp1TP;
1243 par[7] = kH2TP;
1244 par[8] = kBl2TP;
1245 par[9] = kTl2TP;
1246 par[10] = kAlp2TP;
5f91c9e8 1247 gMC->Gsvolu("SQ16","TRAP",idInox,par,11);
ba030c0e 1248
5f91c9e8 1249//
1250// OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
0ab920eb 1251// (redefined with TGeoXtru shape )
5f91c9e8 1252//---
ba030c0e 1253
0ab920eb 1254 dx = 2.*kH1OETF;
1255 dy1 = 2.*kTl1OETF4;
1256 dy2 = 2.*kTl1OETF3;
1257 dy3 = 2.*kTl1OETF2;
1258 dy4 = 2.*kTl1OETF1;
1259
1260 nz = 2;
1261 nv = 16;
1262 vx[0] = -4*dx; vy[0] = 0.0;
1263 vx[1] = -3*dx; vy[1] = dy1;
1264 vx[2] = -2*dx; vy[2] = dy2;
1265 vx[3] = -1*dx; vy[3] = dy3;
1266 vx[4] = 0.0; vy[4] = dy4;
1267 vx[5] = dx; vy[5] = dy3;
1268 vx[6] = 2*dx; vy[6] = dy2;
1269 vx[7] = 3*dx; vy[7] = dy1;
1270 vx[8] = 4*dx; vy[8] = 0.0;
1271 vx[9] = 3*dx; vy[9] = 0.0;
1272 vx[10] = 2*dx; vy[10] = 0.0;
1273 vx[11] = dx; vy[11] = 0.0;
1274 vx[12] = 0.0; vy[12] = 0.0;
1275 vx[13] = -1*dx; vy[13] = 0.0;
1276 vx[14] = -2*dx; vy[14] = 0.0;
1277 vx[15] = -3*dx; vy[15] = 0.0;
1278
1279 // Shift center in the middle
1280 for ( Int_t i=0; i<nv; i++ ) vy[i] += dy4/2.0;
1281
1282 TGeoXtru* xtruS1 = new TGeoXtru(nz);
1283 xtruS1->DefinePolygon(nv, vx, vy);
1284 xtruS1->DefineSection(0, -kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1285 xtruS1->DefineSection(1, kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1286 new TGeoVolume("SQ17to23", xtruS1, kMedEpoxy );
1287
1288 TGeoXtru* xtruS2 = new TGeoXtru(nz);
1289 xtruS2->DefinePolygon(nv, vx, vy);
1290 xtruS2->DefineSection(0, -kHzOuterFrameInox, 0.0, 0.0, 1.0);
1291 xtruS2->DefineSection(1, kHzOuterFrameInox, 0.0, 0.0, 1.0);
1292 new TGeoVolume("SQ18to24", xtruS2, kMedInox );
ba030c0e 1293
0ab920eb 1294//
1295// OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
5f91c9e8 1296//---
1297 // OutVFrame
d1cd2474 1298 par[0] = kHxOutVFrame;
1299 par[1] = kHyOutVFrame;
1300 par[2] = kHzOutVFrame;
5f91c9e8 1301 gMC->Gsvolu("SQ25","BOX",idFrameEpoxy,par,3);
d1cd2474 1302
5f91c9e8 1303 // OutVFrame corner
d1cd2474 1304 par[0] = kHzOCTF;
1305 par[1] = kTetOCTF;
1306 par[2] = kPhiOCTF;
1307 par[3] = kH1OCTF;
1308 par[4] = kBl1OCTF;
1309 par[5] = kTl1OCTF;
1310 par[6] = kAlp1OCTF;
1311 par[7] = kH2OCTF;
1312 par[8] = kBl2OCTF;
1313 par[9] = kTl2OCTF;
1314 par[10] = kAlp2OCTF;
5f91c9e8 1315 gMC->Gsvolu("SQ26","TRAP",idFrameEpoxy,par,11);
1316
1317 // EarthFaceCu trapezoid
d1cd2474 1318 par[0] = kHzVFC;
1319 par[1] = kTetVFC;
1320 par[2] = kPhiVFC;
1321 par[3] = kH1VFC;
1322 par[4] = kBl1VFC;
1323 par[5] = kTl1VFC;
1324 par[6] = kAlp1VFC;
1325 par[7] = kH2VFC;
1326 par[8] = kBl2VFC;
1327 par[9] = kTl2VFC;
1328 par[10] = kAlp2VFC;
5f91c9e8 1329 gMC->Gsvolu("SQ27","TRAP",idCopper,par,11);
1330
1331 // VertEarthSteel trapezoid
d1cd2474 1332 par[0] = kHzVES;
1333 par[1] = kTetVES;
1334 par[2] = kPhiVES;
1335 par[3] = kH1VES;
1336 par[4] = kBl1VES;
1337 par[5] = kTl1VES;
1338 par[6] = kAlp1VES;
1339 par[7] = kH2VES;
1340 par[8] = kBl2VES;
1341 par[9] = kTl2VES;
1342 par[10] = kAlp2VES;
5f91c9e8 1343 gMC->Gsvolu("SQ28","TRAP",idInox,par,11);
1344
1345 // VertEarthProfCu trapezoid
d1cd2474 1346 par[0] = kHzVPC;
1347 par[1] = kTetVPC;
1348 par[2] = kPhiVPC;
1349 par[3] = kH1VPC;
1350 par[4] = kBl1VPC;
1351 par[5] = kTl1VPC;
1352 par[6] = kAlp1VPC;
1353 par[7] = kH2VPC;
1354 par[8] = kBl2VPC;
1355 par[9] = kTl2VPC;
1356 par[10] = kAlp2VPC;
5f91c9e8 1357 gMC->Gsvolu("SQ29","TRAP",idCopper,par,11);
1358
1359 // SuppLateralPositionner cuboid
d1cd2474 1360 par[0] = kHxSLP;
1361 par[1] = kHySLP;
1362 par[2] = kHzSLP;
5f91c9e8 1363 gMC->Gsvolu("SQ30","BOX",idAlu,par,3);
1364
1365 // LateralPositionerFace
d1cd2474 1366 par[0] = kHxLPF;
1367 par[1] = kHyLPF;
1368 par[2] = kHzLPF;
5f91c9e8 1369 gMC->Gsvolu("SQ31","BOX",idInox,par,3);
1370
1371 // LateralPositionerProfile
d1cd2474 1372 par[0] = kHxLPP;
1373 par[1] = kHyLPP;
1374 par[2] = kHzLPP;
5f91c9e8 1375 gMC->Gsvolu("SQ32","BOX",idInox,par,3); // middle layer
1376
d1cd2474 1377 par[0] = kHxLPP;
1378 par[1] = kHyLPP;
1379 par[2] = kHzLPNF;
5f91c9e8 1380 gMC->Gsvolu("SQ33","BOX",idInox,par,3); // near and far layers
1381
0ab920eb 1382 dy = 2.*kH1VC1;
1383 dx0 = 2.*kBl1VC4;
1384 dx1 = 2.*kBl1VC3;
1385 dx2 = 2.*kBl1VC2;
1386 dx3 = 2.*kBl1VC1;
ba030c0e 1387
0ab920eb 1388 // VertCradle
1389 // (Trapezoids SQ34 to SQ36 or SQ37 redefined with TGeoXtru shape)
1390
1391 nz = 2;
1392 nv = 7;
1393 vx[0] = 0.0; vy[0] = 0.0;
1394 vx[1] = 0.0; vy[1] = dy;
1395 vx[2] = 0.0; vy[2] = 2*dy;
1396 vx[3] = 0.0; vy[3] = 3*dy;
1397 vx[4] = dx3; vy[4] = 2*dy;
1398 vx[5] = dx2; vy[5] = dy;
1399 vx[6] = dx1; vy[6] = 0.0;
1400
1401 // Shift center in the middle
1402 for ( Int_t i=0; i<nv; i++ ) {
1403 vx[i] -= dx1/2.0;
1404 vy[i] -= 1.5*dy;
1405 }
1406
1407 TGeoXtru* xtruS3 = new TGeoXtru(nz);
1408 xtruS3->DefinePolygon(nv, vx, vy);
1409 xtruS3->DefineSection(0, -kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1410 xtruS3->DefineSection(1, kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1411 new TGeoVolume("SQ34to36", xtruS3, kMedAlu);
1412
1413 // Trapezoids SQ34 to SQ37;
1414 // (keeping the same coordinate system as for SQ34to36)
1415
1416 nz = 2;
1417 nv = 9;
1418 vx[0] = 0.0; vy[0] =-1.0*dy;
1419 vx[1] = 0.0; vy[1] = 0.0;
1420 vx[2] = 0.0; vy[2] = dy;
1421 vx[3] = 0.0; vy[3] = 2*dy;
1422 vx[4] = 0.0; vy[4] = 3*dy;
1423 vx[5] = dx3; vy[5] = 2*dy;
1424 vx[6] = dx2; vy[6] = dy;
1425 vx[7] = dx1; vy[7] = 0.0;
1426 vx[8] = dx0; vy[8] =-1.0*dy;
1427
1428 // Shift center in the middle (of SQ34to36!!)
1429 for ( Int_t i=0; i<nv; i++ ) {
1430 vx[i] -= dx1/2.0;
1431 vy[i] -= 1.5*dy;
1432 }
1433
1434 TGeoXtru* xtruS4 = new TGeoXtru(nz);
1435 xtruS4->DefinePolygon(nv, vx, vy);
1436 xtruS4->DefineSection(0, -kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1437 xtruS4->DefineSection(1, kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1438 new TGeoVolume("SQ34to37", xtruS4, kMedAlu);
5f91c9e8 1439
1440 // VertCradleD - 4th trapezoid
d1cd2474 1441 par[0] = kHzVC4;
1442 par[1] = kTetVC4;
1443 par[2] = kPhiVC4;
1444 par[3] = kH1VC4;
1445 par[4] = kBl1VC4;
1446 par[5] = kTl1VC4;
1447 par[6] = kAlp1VC4;
1448 par[7] = kH2VC4;
1449 par[8] = kBl2VC4;
1450 par[9] = kTl2VC4;
1451 par[10] = kAlp2VC4;
5f91c9e8 1452 gMC->Gsvolu("SQ37","TRAP",idAlu,par,11);
1453
1454 // LateralSightSupport trapezoid
d1cd2474 1455 par[0] = kHzVSS;
1456 par[1] = kTetVSS;
1457 par[2] = kPhiVSS;
1458 par[3] = kH1VSS;
1459 par[4] = kBl1VSS;
1460 par[5] = kTl1VSS;
1461 par[6] = kAlp1VSS;
1462 par[7] = kH2VSS;
1463 par[8] = kBl2VSS;
1464 par[9] = kTl2VSS;
1465 par[10] = kAlp2VSS;
5f91c9e8 1466 gMC->Gsvolu("SQ38","TRAP",idAlu,par,11);
1467
1468 // LateralSight
d1cd2474 1469 par[0] = kVSInRad;
1470 par[1] = kVSOutRad;
1471 par[2] = kVSLen;
5f91c9e8 1472 gMC->Gsvolu("SQ39","TUBE",idFrameEpoxy,par,3);
1473
1474//---
1475 // InHFrame
d1cd2474 1476 par[0] = kHxInHFrame;
1477 par[1] = kHyInHFrame;
1478 par[2] = kHzInHFrame;
5f91c9e8 1479 gMC->Gsvolu("SQ40","BOX",idFrameEpoxy,par,3);
1480
1481 //Flat 7.5mm horizontal section
d1cd2474 1482 par[0] = kHxH1mm;
1483 par[1] = kHyH1mm;
1484 par[2] = kHzH1mm;
5f91c9e8 1485 gMC->Gsvolu("SQ41","BOX",idFrameEpoxy,par,3);
1486
1487 // InArcFrame
d1cd2474 1488 par[0] = kIAF;
1489 par[1] = kOAF;
1490 par[2] = kHzAF;
1491 par[3] = kAFphi1;
1492 par[4] = kAFphi2;
5f91c9e8 1493
1494 gMC->Gsvolu("SQ42","TUBS",idFrameEpoxy,par,5);
1495
1496//---
1497 // ScrewsInFrame - 3 sections in order to avoid overlapping volumes
1498 // Screw Head, in air
d1cd2474 1499 par[0] = kSCRUHMI;
1500 par[1] = kSCRUHMA;
1501 par[2] = kSCRUHLE;
5f91c9e8 1502
1503 gMC->Gsvolu("SQ43","TUBE",idInox,par,3);
1504
1505 // Middle part, in the Epoxy
d1cd2474 1506 par[0] = kSCRUMMI;
1507 par[1] = kSCRUMMA;
1508 par[2] = kSCRUMLE;
5f91c9e8 1509 gMC->Gsvolu("SQ44","TUBE",idInox,par,3);
1510
1511 // Screw nut, in air
d1cd2474 1512 par[0] = kSCRUNMI;
1513 par[1] = kSCRUNMA;
1514 par[2] = kSCRUNLE;
5f91c9e8 1515 gMC->Gsvolu("SQ45","TUBE",idInox,par,3);
1516 }
1517
1518// __________________Place volumes in the quadrant ____________
1519
1520 // InVFrame
d1cd2474 1521 posX = kHxInVFrame;
1522 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyInVFrame;
5f91c9e8 1523 posZ = 0.;
5ae5869b 1524 gMC->Gspos("SQ00",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 1525
d1cd2474 1526// keep memory of the mid position. Used for placing screws
1527 const GReal_t kMidVposX = posX;
1528 const GReal_t kMidVposY = posY;
1529 const GReal_t kMidVposZ = posZ;
1530
5f91c9e8 1531 //Flat 7.5mm vertical section
d1cd2474 1532 posX = 2.0*kHxInVFrame+kHxV1mm;
1533 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyV1mm;
5f91c9e8 1534 posZ = 0.;
5ae5869b 1535 gMC->Gspos("SQ01",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
5f91c9e8 1536
1537 // TopFrameAnode place 2 layers of TopFrameAnode cuboids
d1cd2474 1538 posX = kHxTFA;
1539 posY = 2.*kHyInHFrame+2.*kHyH1mm+kIAF+2.*kHyInVFrame+kHyTFA;
ddfa5dbc 1540 posZ = -kHzOuterFrameInox;
5ae5869b 1541 gMC->Gspos("SQ02",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
ddfa5dbc 1542 posZ = kHzOuterFrameEpoxy;
5ae5869b 1543 gMC->Gspos("SQ03",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
5f91c9e8 1544
0ab920eb 1545 // TopFrameAnode - place 2 layers of 2 trapezoids
1546 // (SQ04 - SQ07)
1547 posX += kHxTFA + 2.*kH1FAA;
ddfa5dbc 1548 posZ = -kHzOuterFrameInox;
0ab920eb 1549 gMC->Gspos("SQ04toSQ06",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
ddfa5dbc 1550 posZ = kHzOuterFrameEpoxy;
0ab920eb 1551 gMC->Gspos("SQ05toSQ07",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1552
1553 // TopAnode1 place 2 layers
1554 posX = 6.8+fgkDeltaQuadLHC;
1555 posY = 99.85+fgkDeltaQuadLHC;
d1cd2474 1556 posZ = -1.*kHzAnodeFR4;
5ae5869b 1557 gMC->Gspos("SQ08",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
ddfa5dbc 1558 posZ = kHzTopAnodeSteel1;
5ae5869b 1559 gMC->Gspos("SQ09",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1560
1561 // TopAnode2 place 2 layers
1562 posX = 18.534+fgkDeltaQuadLHC;
1563 posY = 99.482+fgkDeltaQuadLHC;
d1cd2474 1564 posZ = -1.*kHzAnodeFR4;
afab29fc 1565 // shift up to solve overlap with SQ14
1566 posY += 0.1;
5ae5869b 1567 gMC->Gspos("SQ10",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
ddfa5dbc 1568 posZ = kHzTopAnodeSteel2;
5ae5869b 1569 gMC->Gspos("SQ11",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1570
1571 // TopAnode3 place 1 layer
35bf4a8f 1572 posX = 25.804+fgkDeltaQuadLHC;
5f91c9e8 1573 posY = 98.61+fgkDeltaQuadLHC;
1574 posZ = 0.;
5ae5869b 1575 gMC->Gspos("SQ12",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1576
1577 // TopEarthFace - 2 copies
1578 posX = 23.122+fgkDeltaQuadLHC;
1579 posY = 96.90+fgkDeltaQuadLHC;
d1cd2474 1580 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopEarthFaceCu;
5ae5869b 1581 gMC->Gspos("SQ13",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1582 posZ = -1.*posZ;
5ae5869b 1583 gMC->Gspos("SQ13",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1584
1585 // TopEarthProfile
1586 posX = 14.475+fgkDeltaQuadLHC;
1587 posY = 97.900+fgkDeltaQuadLHC;
d1cd2474 1588 posZ = kHzTopEarthProfileCu;
5ae5869b 1589 gMC->Gspos("SQ14",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1590 posZ = -1.0*posZ;
5ae5869b 1591 gMC->Gspos("SQ14",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1592
1593 // TopGasSupport - 2 copies
1594 posX = 4.9500+fgkDeltaQuadLHC;
1595 posY = 96.200+fgkDeltaQuadLHC;
d1cd2474 1596 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopGasSupportAl;
5ae5869b 1597 gMC->Gspos("SQ15",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1598 posZ = -1.*posZ;
5ae5869b 1599 gMC->Gspos("SQ15",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1600
1601 // TopPositioner parameters - single Stainless Steel trapezoid - 2 copies
1602 posX = 7.60+fgkDeltaQuadLHC;
1603 posY = 98.98+fgkDeltaQuadLHC;
d1cd2474 1604 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+2.*kHzTopGasSupportAl+kHzTopPositionerSteel;
5ae5869b 1605 gMC->Gspos("SQ16",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1606 posZ = -1.*posZ;
5ae5869b 1607 gMC->Gspos("SQ16",2,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1608
1609 // OutEdgeFrame
5f91c9e8 1610
0ab920eb 1611 posZ = -1.0*kHzOuterFrameInox;
1612 //Double_t xCenterAll = 70.6615;
1613 Double_t xCenterAll = 70.500;
1614 Double_t yCenterAll = 70.350;
1615 gMC->Gspos("SQ17to23",1,quadrantMLayerName, xCenterAll, yCenterAll, posZ, rot4,"ONLY");
5f91c9e8 1616
ddfa5dbc 1617 posZ = kHzOuterFrameEpoxy;
0ab920eb 1618 gMC->Gspos("SQ18to24",1,quadrantMLayerName, xCenterAll, yCenterAll, posZ, rot4,"ONLY");
5f91c9e8 1619
5f91c9e8 1620//---
1621
ba030c0e 1622// OutVFrame
d1cd2474 1623 posX = 2.*kHxInVFrame+kIAF+2.*kHxInHFrame-kHxOutVFrame+2.*kHxV1mm;
1624 posY = 2.*kHyInHFrame+kHyOutVFrame;
ba030c0e 1625 posZ = 0.;
5ae5869b 1626 gMC->Gspos("SQ25",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1627
d1cd2474 1628 // keep memory of the mid position. Used for placing screws
1629 const GReal_t kMidOVposX = posX;
1630 const GReal_t kMidOVposY = posY;
1631 const GReal_t kMidOVposZ = posZ;
1632
1633 const Float_t kTOPY = posY+kHyOutVFrame;
1634 const Float_t kOUTX = posX;
ba030c0e 1635
5f91c9e8 1636// OutVFrame corner
d1cd2474 1637 posX = kOUTX;
1638 posY = kTOPY+((kBl1OCTF+kTl1OCTF)/2.);
5f91c9e8 1639 posZ = 0.;
4274a250 1640 // shift to solve overlap with SQ17to23 and SQ18to24
1641 posX += 0.02;
5ae5869b 1642 gMC->Gspos("SQ26",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1643
1644// VertEarthFaceCu - 2 copies
1645 posX = 89.4000+fgkDeltaQuadLHC;
1646 posY = 25.79+fgkDeltaQuadLHC;
d1cd2474 1647 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertEarthFaceCu;
5ae5869b 1648 gMC->Gspos("SQ27",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1649 posZ = -1.0*posZ;
5ae5869b 1650 gMC->Gspos("SQ27",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1651
1652// VertEarthSteel - 2 copies
1653 posX = 91.00+fgkDeltaQuadLHC;
1654 posY = 30.616+fgkDeltaQuadLHC;
d1cd2474 1655 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertBarSteel;
5ae5869b 1656 gMC->Gspos("SQ28",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1657 posZ = -1.0*posZ;
5ae5869b 1658 gMC->Gspos("SQ28",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1659
1660// VertEarthProfCu - 2 copies
1661 posX = 92.000+fgkDeltaQuadLHC;
1662 posY = 29.64+fgkDeltaQuadLHC;
d1cd2474 1663 posZ = kHzFrameThickness;
5ae5869b 1664 gMC->Gspos("SQ29",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1665 posZ = -1.0*posZ;
5ae5869b 1666 gMC->Gspos("SQ29",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1667
1668// SuppLateralPositionner - 2 copies
d1cd2474 1669 posX = 90.2-kNearFarLHC;
1670 posY = 5.00-kNearFarLHC;
1671 posZ = kHzLateralPosnAl-fgkMotherThick2;
5ae5869b 1672 gMC->Gspos("SQ30",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1673 posZ = -1.0*posZ;
5ae5869b 1674 gMC->Gspos("SQ30",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1675
1676// LateralPositionner - 2 copies - Face view
d1cd2474 1677 posX = 92.175-kNearFarLHC-2.*kHxLPP;
1678 posY = 5.00-kNearFarLHC;
1679 posZ =2.0*kHzLateralPosnAl+kHzLateralPosnInoxFace-fgkMotherThick2;
5ae5869b 1680 gMC->Gspos("SQ31",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1681 posZ = -1.0*posZ;
5ae5869b 1682 gMC->Gspos("SQ31",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1683
1684// LateralPositionner - Profile view
d1cd2474 1685 posX = 92.175+fgkDeltaQuadLHC+kHxLPF-kHxLPP;
5f91c9e8 1686 posY = 5.00+fgkDeltaQuadLHC;
1687 posZ = 0.;
5ae5869b 1688 gMC->Gspos("SQ32",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY"); // middle layer
5f91c9e8 1689
d1cd2474 1690 posX = 92.175-kNearFarLHC+kHxLPF-kHxLPP;
1691 posY = 5.0000-kNearFarLHC;
1692 posZ = fgkMotherThick2-kHzLPNF;
5ae5869b 1693 gMC->Gspos("SQ33",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY"); // near layer
5f91c9e8 1694 posZ = -1.*posZ;
5ae5869b 1695 gMC->Gspos("SQ33",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY"); // far layer
5f91c9e8 1696
5f91c9e8 1697
0ab920eb 1698// VertCradle - 3 (or 4 ) trapezoids redefined with TGeoXtru shape
5f91c9e8 1699
5f91c9e8 1700 posX = 97.29+fgkDeltaQuadLHC;
1701 posY = 23.02+fgkDeltaQuadLHC;
0ab920eb 1702 posZ = 0.;
1703 posX += 1.39311;
1704 gMC->Gspos("SQ34to37",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1705
d1cd2474 1706 posX = 97.29-kNearFarLHC;
1707 posY = 23.02-kNearFarLHC;
1708 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
0ab920eb 1709 posX += 1.39311;
1710 gMC->Gspos("SQ34to36",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
1711
1712 posZ = -1.0*posZ;
1713 gMC->Gspos("SQ34to36",3,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1714
5f91c9e8 1715
1716// OutVertCradleD 4th Trapeze - 3 copies
0ab920eb 1717
5f91c9e8 1718 posX = 98.81+fgkDeltaQuadLHC;
1719 posY = 2.52+fgkDeltaQuadLHC;
d1cd2474 1720 posZ = fgkMotherThick1-kHzVerticalCradleAl;
5ae5869b 1721 gMC->Gspos("SQ37",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1722 posZ = -1.0*posZ;
5ae5869b 1723 gMC->Gspos("SQ37",3,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1724
1725// LateralSightSupport - 2 copies
b367fd8f 1726 posX = 98.33-kNearFarLHC;
d1cd2474 1727 posY = 10.00-kNearFarLHC;
1728 posZ = kHzLateralSightAl-fgkMotherThick2;
b367fd8f 1729 // Fix (3) of extrusion SQ38 from SQN1, SQN2, SQF1, SQF2
1730 // (was posX = 98.53 ...)
5ae5869b 1731 gMC->Gspos("SQ38",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1732 posZ = -1.0*posZ;
5ae5869b 1733 gMC->Gspos("SQ38",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1734
1735// Mire placement
1736 posX = 92.84+fgkDeltaQuadLHC;
1737 posY = 8.13+fgkDeltaQuadLHC;
ba030c0e 1738 posZ = 0.;
5ae5869b 1739 gMC->Gspos("SQ39",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1740
1741//---
1742
1743// InHFrame
d1cd2474 1744 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxInHFrame;
1745 posY = kHyInHFrame;
5f91c9e8 1746 posZ = 0.;
5ae5869b 1747 gMC->Gspos("SQ40",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 1748
d1cd2474 1749 // keep memory of the mid position. Used for placing screws
1750 const GReal_t kMidHposX = posX;
1751 const GReal_t kMidHposY = posY;
1752 const GReal_t kMidHposZ = posZ;
1753
5f91c9e8 1754// Flat 7.5mm horizontal section
d1cd2474 1755 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxH1mm;
1756 posY = 2.0*kHyInHFrame+kHyH1mm;
ba030c0e 1757 posZ = 0.;
5ae5869b 1758 gMC->Gspos("SQ41",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 1759
1760// InArcFrame
d1cd2474 1761 posX = 2.0*kHxInVFrame+2.*kHxV1mm;
1762 posY = 2.0*kHyInHFrame+2.*kHyH1mm;
ba030c0e 1763 posZ = 0.;
5ae5869b 1764 gMC->Gspos("SQ42",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 1765
d1cd2474 1766// keep memory of the mid position. Used for placing screws
1767 const GReal_t kMidArcposX = posX;
1768 const GReal_t kMidArcposY = posY;
1769 const GReal_t kMidArcposZ = posZ;
1770
5f91c9e8 1771// ScrewsInFrame - in sensitive volume
ba030c0e 1772
1773 Float_t scruX[64];
1774 Float_t scruY[64];
1775
1776// Screws on IHEpoxyFrame
1777
d1cd2474 1778 const Int_t kNumberOfScrewsIH = 14; // no. of screws on the IHEpoxyFrame
1779 const Float_t kOffX = 5.; // inter-screw distance
ba030c0e 1780
1781 // first screw coordinates
1782 scruX[0] = 21.07;
1783 scruY[0] = -2.23;
1784 // other screw coordinates
d1cd2474 1785 for (Int_t i = 1;i<kNumberOfScrewsIH;i++){
1786 scruX[i] = scruX[i-1]+kOffX;
ba030c0e 1787 scruY[i] = scruY[0];
1788 }
1789 // Position the volumes on the frames
d1cd2474 1790 for (Int_t i = 0;i<kNumberOfScrewsIH;i++){
5f91c9e8 1791 posX = fgkDeltaQuadLHC + scruX[i];
1792 posY = fgkDeltaQuadLHC + scruY[i];
ba030c0e 1793 posZ = 0.;
5ae5869b 1794 gMC->Gspos("SQ43",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1795 if (chamber==1)
1796 gMC->Gspos("SQ44",i+1,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 1797 gMC->Gspos("SQ45",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1798 }
1799 // special screw coordinates
1800 scruX[63] = 16.3;
1801 scruY[63] = -2.23;
5f91c9e8 1802 posX = fgkDeltaQuadLHC + scruX[63];
1803 posY = fgkDeltaQuadLHC + scruY[63];
ba030c0e 1804 posZ = 0.;
5ae5869b 1805 gMC->Gspos("SQ43",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1806 if (chamber==1)
1807 gMC->Gspos("SQ44",64,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 1808 gMC->Gspos("SQ45",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1809
1810// Screws on the IVEpoxyFrame
1811
d1cd2474 1812 const Int_t kNumberOfScrewsIV = 15; // no. of screws on the IVEpoxyFrame
1813 const Float_t kOffY = 5.; // inter-screw distance
c03e5213 1814 Int_t firstScrew = 58;
1815 Int_t lastScrew = 44;
ba030c0e 1816
1817 // first (special) screw coordinates
c03e5213 1818 scruX[firstScrew-1] = -2.23;
1819 scruY[firstScrew-1] = 16.3;
ba030c0e 1820 // second (repetitive) screw coordinates
c03e5213 1821 scruX[firstScrew-2] = -2.23;
1822 scruY[firstScrew-2] = 21.07;
ba030c0e 1823 // other screw coordinates
c03e5213 1824 for (Int_t i = firstScrew-3;i>lastScrew-2;i--){
1825 scruX[i] = scruX[firstScrew-2];
d1cd2474 1826 scruY[i] = scruY[i+1]+kOffY;
ba030c0e 1827 }
1828
d1cd2474 1829 for (Int_t i = 0;i<kNumberOfScrewsIV;i++){
c03e5213 1830 posX = fgkDeltaQuadLHC + scruX[i+lastScrew-1];
1831 posY = fgkDeltaQuadLHC + scruY[i+lastScrew-1];
ba030c0e 1832 posZ = 0.;
5ae5869b 1833 gMC->Gspos("SQ43",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1834 if (chamber==1)
1835 gMC->Gspos("SQ44",i+lastScrew,"SQ00",posX+0.1-kMidVposX, posY+0.1-kMidVposY, posZ-kMidVposZ, 0, "ONLY");
5ae5869b 1836 gMC->Gspos("SQ45",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1837 }
1838
1839// Screws on the OVEpoxyFrame
1840
d1cd2474 1841 const Int_t kNumberOfScrewsOV = 10; // no. of screws on the OVEpoxyFrame
ba030c0e 1842
c03e5213 1843 firstScrew = 15;
1844 lastScrew = 25;
ba030c0e 1845
1846 // first (repetitive) screw coordinates
d1cd2474 1847 // notes: 1st screw should be placed in volume 40 (InnerHorizFrame)
c03e5213 1848 scruX[firstScrew-1] = 90.9;
1849 scruY[firstScrew-1] = -2.23; // true value
ba030c0e 1850
1851 // other screw coordinates
c03e5213 1852 for (Int_t i = firstScrew; i<lastScrew; i++ ){
1853 scruX[i] = scruX[firstScrew-1];
d1cd2474 1854 scruY[i] = scruY[i-1]+kOffY;
ba030c0e 1855 }
d1cd2474 1856 for (Int_t i = 1;i<kNumberOfScrewsOV;i++){
c03e5213 1857 posX = fgkDeltaQuadLHC + scruX[i+firstScrew-1];
1858 posY = fgkDeltaQuadLHC + scruY[i+firstScrew-1];
ba030c0e 1859 posZ = 0.;
5ae5869b 1860 gMC->Gspos("SQ43",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1861 // ??
1862 if (chamber==1)
1863 gMC->Gspos("SQ44",i+firstScrew,"SQ25",posX+0.1-kMidOVposX, posY+0.1-kMidOVposY, posZ-kMidOVposZ, 0, "ONLY");
5ae5869b 1864 gMC->Gspos("SQ45",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1865 }
d1cd2474 1866 // special case for 1st screw, inside the horizontal frame (volume 40)
1867 posX = fgkDeltaQuadLHC + scruX[firstScrew-1];
1868 posY = fgkDeltaQuadLHC + scruY[firstScrew-1];
1869 posZ = 0.;
1870 if (chamber==1)
1871 gMC->Gspos("SQ44",firstScrew,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
1872
ba030c0e 1873// Inner Arc of Frame, screw positions and numbers-1
1874 scruX[62] = 16.009; scruY[62] = 1.401;
1875 scruX[61] = 14.564; scruY[61] = 6.791;
1876 scruX[60] = 11.363; scruY[60] = 11.363;
1877 scruX[59] = 6.791 ; scruY[59] = 14.564;
1878 scruX[58] = 1.401 ; scruY[58] = 16.009;
1879
1880 for (Int_t i = 0;i<5;i++){
5f91c9e8 1881 posX = fgkDeltaQuadLHC + scruX[i+58];
1882 posY = fgkDeltaQuadLHC + scruY[i+58];
ba030c0e 1883 posZ = 0.;
5ae5869b 1884 gMC->Gspos("SQ43",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1885 if (chamber==1)
1886 gMC->Gspos("SQ44",i+58+1,"SQ42",posX+0.1-kMidArcposX, posY+0.1-kMidArcposY, posZ-kMidArcposZ, 0, "ONLY");
5ae5869b 1887 gMC->Gspos("SQ45",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
5f91c9e8 1888 }
1889}
5f91c9e8 1890//______________________________________________________________________________
d1cd2474 1891void AliMUONSt1GeometryBuilderV2::PlaceInnerLayers(Int_t chamber)
5f91c9e8 1892{
5398f946 1893/// Place the gas and copper layers for the specified chamber.
ba030c0e 1894
0ab920eb 1895 GReal_t x = fgkDeltaQuadLHC;
1896 GReal_t y = fgkDeltaQuadLHC;
1897 GReal_t zg = 0.0;
1898 GReal_t zc = fgkHzGas + fgkHzPadPlane;
1899 Int_t dpos = (chamber-1)*2;
1900
1901 TString name = GasVolumeName("SAG", chamber);
1902 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1903 gMC->Gspos("SA1C", 1+dpos, QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
1904 gMC->Gspos("SA1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
ba030c0e 1905}
1906
fdbaed6e 1907//______________________________________________________________________________
1908void AliMUONSt1GeometryBuilderV2::PlaceSpacer0(Int_t chamber)
1909{
1910/// Place the spacer defined in global positions
1911/// !! This method should be used only to find out the right mother volume
1912/// for the spacer if geometry is changed and the plane segment volumes
1913/// will change their numbering
1914
1915 // Global position of mother volume for the QuadrantMLayer
1916 // SQM1: (-2.6, -2.6, -522.41)
1917 // SQM2: (-2.6, -2.6, -541.49)
1918 GReal_t mx = 2.6;
1919 GReal_t my = -2.6;
1920 GReal_t mz = 522.41;
1921
1922 GReal_t x, y, z;
1923 x = 40.82 - mx;
1924 y = 43.04 - my;
1925 z = 522.41 - mz;
5ae5869b 1926 AliDebugStream(2) << "spacer05 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1927 gMC->Gspos("Spacer05", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1928
1929 y = 44.54 - my;
5ae5869b 1930 AliDebugStream(2) << "spacer05 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1931 gMC->Gspos("Spacer05", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1932
1933 x = 40.82 - mx;
1934 y = 43.79 - my;
1935 z = 519.76 - mz;
5ae5869b 1936 AliDebugStream(2) << "spacer06 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1937 gMC->Gspos("Spacer06", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1938
1939 z = 525.06 - mz;
5ae5869b 1940 AliDebugStream(2) << "spacer06 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1941 gMC->Gspos("Spacer06", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1942
1943 x = 40.82 - mx;
1944 y = 43.79 - my;
1945 z = 522.41 - mz;
5ae5869b 1946 AliDebugStream(2) << "spacer07 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1947 gMC->Gspos("Spacer07", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1948}
1949
5f91c9e8 1950//______________________________________________________________________________
331a617a 1951void AliMUONSt1GeometryBuilderV2::PlaceSector(const AliMpSector* sector,
5ae5869b 1952 TExMap specialMap,
5f91c9e8 1953 const TVector3& where, Bool_t reflectZ, Int_t chamber)
ba030c0e 1954{
5398f946 1955/// Place all the segments in the mother volume, at the position defined
5ae5869b 1956/// by the sector's data. \n
1957/// The lines with comments COMMENT OUT BEGIN/END indicates blocks
1958/// which can be commented out in order to reduce the number of volumes
1959/// in a sector to the plane segments corresponding to regular motifs only.
ba030c0e 1960
5f91c9e8 1961 static Int_t segNum=1;
1962 Int_t sgn;
1963 Int_t reflZ;
1964 Int_t rotMat;
1965
1966 if (!reflectZ) {
1967 sgn= 1;
1968 reflZ=0; // no reflection along z... nothing
d1cd2474 1969 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,0.,0.); // 90° rotation around z, NO reflection along z
5f91c9e8 1970 } else {
1971 sgn=-1;
d1cd2474 1972 fMUON->AliMatrix(reflZ, 90.,0.,90,90.,180.,0.); // reflection along z
1973 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,180.,0.); // 90° rotation around z AND reflection along z
5f91c9e8 1974 }
1975
ba030c0e 1976 GReal_t posX,posY,posZ;
1977
86488ea7 1978#ifdef WITH_STL
d1cd2474 1979 vector<Int_t> alreadyDone;
1980#endif
1981
86488ea7 1982#ifdef WITH_ROOT
d1cd2474 1983 TArrayI alreadyDone(20);
1984 Int_t nofAlreadyDone = 0;
1985#endif
1986
5f91c9e8 1987 for (Int_t irow=0;irow<sector->GetNofRows();irow++){ // for each row
1988 AliMpRow* row = sector->GetRow(irow);
ba030c0e 1989
ba030c0e 1990
5f91c9e8 1991 for (Int_t iseg=0;iseg<row->GetNofRowSegments();iseg++){ // for each row segment
1992 AliMpVRowSegment* seg = row->GetRowSegment(iseg);
5f91c9e8 1993
d1cd2474 1994 Long_t value = specialMap.GetValue(seg->GetMotifPositionId(0));
1995
1996 if ( value == 0 ){ //if this is a normal segment (ie. not part of <specialMap>)
5f91c9e8 1997
1998 // create the cathode part
62c708bf 1999 CreatePlaneSegment(segNum, seg->Dimensions(), seg->GetNofMotifs());
5f91c9e8 2000
e77b6d6b 2001 posX = where.X() + seg->Position().X();
2002 posY = where.Y() + seg->Position().Y();
5f91c9e8 2003 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
62c708bf 2004 gMC->Gspos(PlaneSegmentName(segNum).Data(), 1,
2005 QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 2006
2007 // and place all the daughter boards of this segment
5ae5869b 2008
2009// COMMENT OUT BEGIN
5f91c9e8 2010 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {
e8c253a0 2011
2012 // Copy number
5f91c9e8 2013 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2014 AliMpMotifPosition* motifPos =
2015 sector->GetMotifMap()->FindMotifPosition(motifPosId);
e8c253a0 2016 Int_t copyNo = motifPosId;
866c3232 2017 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
5f91c9e8 2018
e8c253a0 2019 // Position
e77b6d6b 2020 posX = where.X() + motifPos->Position().X() + fgkOffsetX;
2021 posY = where.Y() + motifPos->Position().Y() + fgkOffsetY;
5f91c9e8 2022 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2023 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 2024 }
5ae5869b 2025// COMMENT OUT END
2026
5f91c9e8 2027 segNum++;
2028
2029 } else {
2030
5ae5869b 2031// COMMENT OUT BEGIN
5f91c9e8 2032 // if this is a special segment
2033 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {// for each motif
2034
2035 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2036
86488ea7 2037#ifdef WITH_STL
d1cd2474 2038 if (find(alreadyDone.begin(),alreadyDone.end(),motifPosId)
2039 != alreadyDone.end()) continue; // don't treat the same motif twice
2040
d1cd2474 2041#endif
86488ea7 2042#ifdef WITH_ROOT
d1cd2474 2043 Bool_t isDone = false;
2044 Int_t i=0;
2045 while (i<nofAlreadyDone && !isDone) {
2046 if (alreadyDone.At(i) == motifPosId) isDone=true;
2047 i++;
2048 }
2049 if (isDone) continue; // don't treat the same motif twice
630711ed 2050#endif
d1cd2474 2051
2052 AliMUONSt1SpecialMotif spMot = *((AliMUONSt1SpecialMotif*)specialMap.GetValue(motifPosId));
5ae5869b 2053 AliDebugStream(2) << chamber << " processing special motif: " << motifPosId << endl;
d1cd2474 2054
5f91c9e8 2055 AliMpMotifPosition* motifPos = sector->GetMotifMap()->FindMotifPosition(motifPosId);
2056
e8c253a0 2057 // Copy number
2058 Int_t copyNo = motifPosId;
866c3232 2059 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
e8c253a0 2060
5f91c9e8 2061 // place the hole for the motif, wrt the requested rotation angle
2062 Int_t rot = ( spMot.GetRotAngle()<0.1 ) ? reflZ:rotMat;
2063
e77b6d6b 2064 posX = where.X() + motifPos->Position().X() + spMot.GetDelta().X();
2065 posY = where.Y() + motifPos->Position().Y() + spMot.GetDelta().Y();
5f91c9e8 2066 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
35bf4a8f 2067 // Shift the hole for special motif 46 to avoid debording into S047
afab29fc 2068 if ( copyNo == 2070 ) {
2069 posX -= 0.1;
2070 posY -= 0.1;
2071 }
e8c253a0 2072 gMC->Gspos(fgkHoleName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2073
2074 // then place the daughter board for the motif, wrt the requested rotation angle
2075 posX = posX+fgkDeltaFilleEtamX;
2076 posY = posY+fgkDeltaFilleEtamY;
35bf4a8f 2077 // Do not shift the daughter board
afab29fc 2078 if ( copyNo == 2070 ) {
2079 posX += 0.1;
2080 posY += 0.1;
2081 }
5f91c9e8 2082 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2083 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2084
86488ea7 2085#ifdef WITH_STL
d1cd2474 2086 alreadyDone.push_back(motifPosId);// mark this motif as done
2087#endif
86488ea7 2088#ifdef WITH_ROOT
d1cd2474 2089 if (nofAlreadyDone == alreadyDone.GetSize())
2090 alreadyDone.Set(2*nofAlreadyDone);
2091 alreadyDone.AddAt(motifPosId, nofAlreadyDone++);
2092#endif
5ae5869b 2093 AliDebugStream(2) << chamber << " processed motifPosId: " << motifPosId << endl;
5f91c9e8 2094 }
5ae5869b 2095// COMMENT OUT END
2096
5f91c9e8 2097 }// end of special motif case
2098 }
2099 }
2100}
2101
2102//______________________________________________________________________________
d1cd2474 2103TString AliMUONSt1GeometryBuilderV2::GasVolumeName(const TString& name, Int_t chamber) const
ba030c0e 2104{
5398f946 2105/// Insert the chamber number into the name.
ba030c0e 2106
5f91c9e8 2107 TString newString(name);
2108
2109 TString number("");
2110 number += chamber;
ba030c0e 2111
5f91c9e8 2112 newString.Insert(2, number);
ba030c0e 2113
5f91c9e8 2114 return newString;
ba030c0e 2115}
2116
5f91c9e8 2117//
2118// public methods
2119//
2120
2121//______________________________________________________________________________
d1cd2474 2122void AliMUONSt1GeometryBuilderV2::CreateMaterials()
ba030c0e 2123{
5398f946 2124/// Define materials specific to station 1
2125
d1cd2474 2126// Materials and medias defined in MUONv1:
2127//
2128// AliMaterial( 9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2129// AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2130// AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
2131// AliMixture( 19, "Bakelite$", abak, zbak, dbak, -3, wbak);
2132// AliMixture( 20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
2133// AliMixture( 21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
2134// AliMixture( 22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
2135// AliMixture( 23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
2136// AliMixture( 24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
2137// AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
2138// AliMixture( 32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
2139// AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
2140// AliMixture( 34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
2141
2142// AliMedium( 1, "AIR_CH_US ", 15, 1, iSXFLD, ...
2143// AliMedium( 4, "ALU_CH_US ", 9, 0, iSXFLD, ...
2144// AliMedium( 5, "ALU_CH_US ", 10, 0, iSXFLD, ...
2145// AliMedium( 6, "AR_CH_US ", 20, 1, iSXFLD, ...
2146// AliMedium( 7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, ...
2147// AliMedium( 8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, ...
2148// AliMedium( 9, "ARG_CO2 ", 22, 1, iSXFLD, ...
2149// AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, ...
2150// AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, ...
2151// AliMedium(13, "CARBON ", 33, 0, iSXFLD, ...
2152// AliMedium(14, "Rohacell ", 34, 0, iSXFLD, ...
2d5a9247 2153// AliMedium(24, "FrameCH$ ", 44, 1, iSXFLD, ...
d1cd2474 2154
2155 //
2156 // --- Define materials for GEANT ---
2157 //
2158
2159 fMUON->AliMaterial(41, "Aluminium II$", 26.98, 13., 2.7, -8.9, 26.1);
2160 // was id: 9
2161 // from PDG and "The Particle Detector BriefBook", Bock and Vasilescu, P.18
2162 // ??? same but the last but one argument < 0
d1cd2474 2163 //
2164 // --- Define mixtures for GEANT ---
2165 //
2166
79be0537 2167 // // Ar-CO2 gas II (80%+20%)
2168// Float_t ag1[2] = { 39.95, 44.01};
2169// Float_t zg1[2] = { 18., 22.};
2170// Float_t wg1[2] = { .8, 0.2};
2171// Float_t dg1 = .001821;
2172// fMUON->AliMixture(45, "ArCO2 II 80%$", ag1, zg1, dg1, 2, wg1);
2173// // was id: 22
2174// // use wg1 weighting factors (6th arg > 0)
d1cd2474 2175
2176 // Rohacell 51 II - imide methacrylique
2177 Float_t aRohacell51[4] = { 12.01, 1.01, 16.00, 14.01};
2178 Float_t zRohacell51[4] = { 6., 1., 8., 7.};
2179 Float_t wRohacell51[4] = { 9., 13., 2., 1.};
5f91c9e8 2180 Float_t dRohacell51 = 0.052;
d1cd2474 2181 fMUON->AliMixture(46, "FOAM$",aRohacell51,zRohacell51,dRohacell51,-4,wRohacell51);
2182 // was id: 32
2183 // use relative A (molecular) values (6th arg < 0)
5f91c9e8 2184
d1cd2474 2185 Float_t aSnPb[2] = { 118.69, 207.19};
2186 Float_t zSnPb[2] = { 50, 82};
2187 Float_t wSnPb[2] = { 0.6, 0.4} ;
5f91c9e8 2188 Float_t dSnPb = 8.926;
d1cd2474 2189 fMUON->AliMixture(47, "SnPb$", aSnPb,zSnPb,dSnPb,2,wSnPb);
2190 // was id: 35
2191 // use wSnPb weighting factors (6th arg > 0)
ba030c0e 2192
5f91c9e8 2193 // plastic definition from K5, Freiburg (found on web)
d1cd2474 2194 Float_t aPlastic[2]={ 1.01, 12.01};
2195 Float_t zPlastic[2]={ 1, 6};
2196 Float_t wPlastic[2]={ 1, 1};
5f91c9e8 2197 Float_t denPlastic=1.107;
d1cd2474 2198 fMUON->AliMixture(48, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
2199 // was id: 33
2200 // use relative A (molecular) values (6th arg < 0)...no other info...
5f91c9e8 2201
d1cd2474 2202 // Not used, to be removed
2203 //
d1cd2474 2204 // was id: 34
2205
5f91c9e8 2206 // Inox/Stainless Steel (18%Cr, 9%Ni)
d1cd2474 2207 Float_t aInox[3] = {55.847, 51.9961, 58.6934};
2208 Float_t zInox[3] = {26., 24., 28.};
2209 Float_t wInox[3] = {0.73, 0.18, 0.09};
5f91c9e8 2210 Float_t denInox = 7.930;
d1cd2474 2211 fMUON->AliMixture(50, "StainlessSteel$",aInox,zInox,denInox,3,wInox);
2212 // was id: 37
2213 // use wInox weighting factors (6th arg > 0)
2214 // from CERN note NUFACT Note023, Oct.2000
2215 //
2216 // End - Not used, to be removed
2217
2218 //
2219 // --- Define the tracking medias for GEANT ---
2220 //
2221
5f91c9e8 2222 GReal_t epsil = .001; // Tracking precision,
d1cd2474 2223 //GReal_t stemax = -1.; // Maximum displacement for multiple scat
5f91c9e8 2224 GReal_t tmaxfd = -20.; // Maximum angle due to field deflection
d1cd2474 2225 //GReal_t deemax = -.3; // Maximum fractional energy loss, DLS
5f91c9e8 2226 GReal_t stmin = -.8;
d1cd2474 2227 GReal_t maxStepAlu = fMUON->GetMaxStepAlu();
2228 GReal_t maxDestepAlu = fMUON->GetMaxDestepAlu();
8224ab9a 2229 // GReal_t maxStepGas = fMUON->GetMaxStepGas();
7b5f6560 2230 Int_t iSXFLD = gAlice->Field()->PrecInteg();
5f91c9e8 2231 Float_t sXMGMX = gAlice->Field()->Max();
2232
d1cd2474 2233 fMUON->AliMedium(21, "ALU_II$", 41, 0, iSXFLD, sXMGMX,
2234 tmaxfd, maxStepAlu, maxDestepAlu, epsil, stmin);
f1501d74 2235
d1cd2474 2236 // was med: 20 mat: 36
79be0537 2237 // fMUON->AliMedium(25, "ARG_CO2_II", 45, 1, iSXFLD, sXMGMX,
2238// tmaxfd, maxStepGas, maxDestepAlu, epsil, stmin);
2239// // was med: 9 mat: 22
d1cd2474 2240 fMUON->AliMedium(26, "FOAM_CH$", 46, 0, iSXFLD, sXMGMX,
2241 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ;
2242 // was med: 16 mat: 32
2243 fMUON->AliMedium(27, "SnPb$", 47, 0, iSXFLD, sXMGMX,
2244 10.0, 0.01, 1.0, 0.003, 0.003);
2245 // was med: 19 mat: 35
2246 fMUON->AliMedium(28, "Plastic$", 48, 0, iSXFLD, sXMGMX,
2247 10.0, 0.01, 1.0, 0.003, 0.003);
2248 // was med: 17 mat: 33
2249
2250 // Not used, to be romoved
2251 //
f1501d74 2252
d1cd2474 2253 fMUON->AliMedium(30, "InoxBolts$", 50, 1, iSXFLD, sXMGMX,
2254 10.0, 0.01, 1.0, 0.003, 0.003);
2255 // was med: 21 mat: 37
2256 //
2257 // End - Not used, to be removed
ba030c0e 2258}
2259
5f91c9e8 2260//______________________________________________________________________________
d1cd2474 2261void AliMUONSt1GeometryBuilderV2::CreateGeometry()
ba030c0e 2262{
5398f946 2263/// Create the detailed GEANT geometry for the dimuon arm station1
2264
5a0e88a7 2265 AliDebug(1,"Called");
5f91c9e8 2266
adbabf6d 2267 // Define chamber volumes as virtual
2268 //
2269
5f91c9e8 2270 // Create basic volumes
2271 //
2272 CreateHole();
2273 CreateDaughterBoard();
2274 CreateInnerLayers();
fdbaed6e 2275 // CreateSpacer0();
2276 CreateSpacer();
ba030c0e 2277
5f91c9e8 2278 // Create reflexion matrices
2279 //
d1cd2474 2280/*
5f91c9e8 2281 Int_t reflXZ, reflYZ, reflXY;
d1cd2474 2282 fMUON->AliMatrix(reflXZ, 90., 180., 90., 90., 180., 0.);
2283 fMUON->AliMatrix(reflYZ, 90., 0., 90.,-90., 180., 0.);
2284 fMUON->AliMatrix(reflXY, 90., 180., 90., 270., 0., 0.);
2285*/
5f91c9e8 2286 // Define transformations for each quadrant
e7addd77 2287 // In old coordinate system: In new coordinate system:
5f91c9e8 2288 //
e7addd77 2289 //
2290 // II. | I. I. | II.
ecbcb19e 2291 // | (101) | (100)
e7addd77 2292 // _____ | ____ _____ | ____
2293 // | |
2294 // III. | IV. IV. | III.
ecbcb19e 2295 // (102) | (103)
5f91c9e8 2296 //
d1cd2474 2297/*
5f91c9e8 2298 Int_t rotm[4];
2299 rotm[0]=0; // quadrant I
2300 rotm[1]=reflXZ; // quadrant II
2301 rotm[2]=reflXY; // quadrant III
2302 rotm[3]=reflYZ; // quadrant IV
d1cd2474 2303*/
2304 TGeoRotation rotm[4];
2305 rotm[0] = TGeoRotation("identity");
2306 rotm[1] = TGeoRotation("reflXZ", 90., 180., 90., 90., 180., 0.);
2307 rotm[2] = TGeoRotation("reflXY", 90., 180., 90., 270., 0., 0.);
2308 rotm[3] = TGeoRotation("reflYZ", 90., 0., 90.,-90., 180., 0.);
ba030c0e 2309
5f91c9e8 2310 TVector3 scale[4];
71167142 2311 scale[0] = TVector3( 1, 1, -1); // quadrant I
2312 scale[1] = TVector3(-1, 1, 1); // quadrant II
2313 scale[2] = TVector3(-1, -1, -1); // quadrant III
2314 scale[3] = TVector3( 1, -1, 1); // quadrant IV
ba030c0e 2315
a432117a 2316 Int_t detElemId[4];
ecbcb19e 2317 detElemId[0] = 1; // quadrant I
e7addd77 2318 detElemId[1] = 0; // quadrant II
ecbcb19e 2319 detElemId[2] = 3; // quadrant III
2320 detElemId[3] = 2; // quadrant IV
a432117a 2321
5f91c9e8 2322 // Shift in Z of the middle layer
10bb087f 2323 Double_t deltaZ = 7.5/2.;
5f91c9e8 2324
2325 // Position of quadrant I wrt to the chamber position
b367fd8f 2326 // TVector3 pos0(-fgkDeltaQuadLHC, -fgkDeltaQuadLHC, deltaZ);
5f91c9e8 2327
2328 // Shift for near/far layers
2329 GReal_t shiftXY = fgkFrameOffset;
2330 GReal_t shiftZ = fgkMotherThick1+fgkMotherThick2;
2331
2332 // Build two chambers
2333 //
2334 for (Int_t ich=1; ich<3; ich++) {
0ab920eb 2335 //for (Int_t ich=1; ich<2; ich++) {
5f91c9e8 2336
2337 // Create quadrant volume
2338 CreateQuadrant(ich);
2339
2340 // Place gas volumes
2341 PlaceInnerLayers(ich);
2342
2343 // Place the quadrant
2344 for (Int_t i=0; i<4; i++) {
0ab920eb 2345 //for (Int_t i=1; i<2; i++) {
b367fd8f 2346 // DE envelope
2347 GReal_t posx0, posy0, posz0;
2348 posx0 = fgkPadXOffsetBP * scale[i].X();
2349 posy0 = fgkPadYOffsetBP * scale[i].Y();;
2350 posz0 = deltaZ * scale[i].Z();
2351 GetEnvelopes(ich-1)
2352 ->AddEnvelope(QuadrantEnvelopeName(ich,i), detElemId[i] + ich*100, true,
2353 TGeoTranslation(posx0, posy0, posz0), rotm[i]);
2354
5f91c9e8 2355 // Middle layer
a432117a 2356 GReal_t posx, posy, posz;
b367fd8f 2357 posx = -fgkDeltaQuadLHC - fgkPadXOffsetBP;
2358 posy = -fgkDeltaQuadLHC - fgkPadYOffsetBP;
2359 posz = 0.;
a432117a 2360 GetEnvelopes(ich-1)
b367fd8f 2361 ->AddEnvelopeConstituent(QuadrantMLayerName(ich), QuadrantEnvelopeName(ich,i),
2362 i+1, TGeoTranslation(posx, posy, posz));
5ae5869b 2363 GetEnvelopes(ich-1)
2364 ->AddEnvelopeConstituent(QuadrantMFLayerName(ich), QuadrantEnvelopeName(ich,i),
2365 i+5, TGeoTranslation(posx, posy, posz));
5f91c9e8 2366
2367 // Near/far layers
b367fd8f 2368 GReal_t posx2 = posx + shiftXY;;
2369 GReal_t posy2 = posy + shiftXY;;
2370 GReal_t posz2 = posz - shiftZ;;
d1cd2474 2371 //gMC->Gspos(QuadrantNLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2372 GetEnvelopes(ich-1)
b367fd8f 2373 ->AddEnvelopeConstituent(QuadrantNLayerName(ich), QuadrantEnvelopeName(ich,i),
2374 i+1, TGeoTranslation(posx2, posy2, posz2));
5f91c9e8 2375
b367fd8f 2376 posz2 = posz + shiftZ;
d1cd2474 2377 //gMC->Gspos(QuadrantFLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2378 GetEnvelopes(ich-1)
b367fd8f 2379 ->AddEnvelopeConstituent(QuadrantFLayerName(ich), QuadrantEnvelopeName(ich,i),
2380 i+1, TGeoTranslation(posx2, posy2, posz2));
5ae5869b 2381
fdbaed6e 2382 // Place spacer in global coordinates in the first non rotated quadrant
2383 // if ( detElemId[i] == 0 ) PlaceSpacer0(ich);
2384 // !! This placement should be used only to find out the right mother volume
2385 // for the spacer if geometry is changed and the plane segment volumes
2386 // will change their numbering
2387 // The call to the method CreateSpacer0(); above haa to be uncommented, too
5f91c9e8 2388 }
2389 }
5f91c9e8 2390}
2391
2392//______________________________________________________________________________
b96f7067 2393void AliMUONSt1GeometryBuilderV2::SetVolumes()
5f91c9e8 2394{
b96f7067 2395/// Define the volumes for the station2 chambers.
5f91c9e8 2396
7b5f6560 2397 if (gAlice->GetModule("SHIL")) {
2398 SetMotherVolume(0, "YOUT1");
2399 SetMotherVolume(1, "YOUT1");
2400 }
2401
adbabf6d 2402 SetVolume(0, "SC01", true);
2403 SetVolume(1, "SC02", true);
b96f7067 2404}
2405
2406//______________________________________________________________________________
2407void AliMUONSt1GeometryBuilderV2::SetTransformations()
2408{
2409/// Define the transformations for the station2 chambers.
adbabf6d 2410
b7ef3c96 2411 Double_t zpos1 = - AliMUONConstants::DefaultChamberZ(0);
2412 SetTranslation(0, TGeoTranslation(0., 0., zpos1));
5f91c9e8 2413
b7ef3c96 2414 Double_t zpos2 = - AliMUONConstants::DefaultChamberZ(1);
2415 SetTranslation(1, TGeoTranslation(0., 0., zpos2));
d1cd2474 2416}
5f91c9e8 2417
d1cd2474 2418//______________________________________________________________________________
2419void AliMUONSt1GeometryBuilderV2::SetSensitiveVolumes()
2420{
5398f946 2421/// Define the sensitive volumes for station2 chambers.
5f91c9e8 2422
e118b27e 2423 GetGeometry(0)->SetSensitiveVolume("SA1G");
e118b27e 2424 GetGeometry(1)->SetSensitiveVolume("SA2G");
ba030c0e 2425}
5f91c9e8 2426