d15a28e7 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | //_________________________________________________________________________ |
17 | // Geometry class for PHOS version SUBATECH |
18 | //*-- Author : Y. Schutz SUBATECH |
19 | ////////////////////////////////////////////////////////////////////////////// |
20 | |
21 | // --- ROOT system --- |
22 | |
23 | #include "TVector3.h" |
24 | #include "TRotation.h" |
25 | |
26 | // --- Standard library --- |
27 | |
9f616d61 |
28 | #include <iostream> |
29 | #include <cassert> |
d15a28e7 |
30 | |
31 | // --- AliRoot header files --- |
32 | |
33 | #include "AliPHOSGeometry.h" |
34 | #include "AliPHOSPpsdRecPoint.h" |
35 | #include "AliConst.h" |
36 | |
37 | ClassImp(AliPHOSGeometry) |
38 | |
39 | AliPHOSGeometry * AliPHOSGeometry::fGeom = 0 ; |
40 | |
41 | //____________________________________________________________________________ |
42 | AliPHOSGeometry::~AliPHOSGeometry(void) |
43 | { |
44 | fRotMatrixArray->Delete() ; |
45 | delete fRotMatrixArray ; |
46 | } |
47 | |
48 | //____________________________________________________________________________ |
92862013 |
49 | Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid) |
d15a28e7 |
50 | { |
92862013 |
51 | // relid[0] = PHOS Module number 1:fNModules |
52 | // relid[1] = 0 if PbW04 |
d15a28e7 |
53 | // = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level) |
92862013 |
54 | // relid[2] = Row number inside a PHOS or PPSD module |
55 | // relid[3] = Column number inside a PHOS or PPSD module |
d15a28e7 |
56 | |
57 | Bool_t rv = kTRUE ; |
92862013 |
58 | Float_t id = AbsId ; |
d15a28e7 |
59 | |
92862013 |
60 | Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / ( GetNPhi() * GetNZ() ) ) ; |
d15a28e7 |
61 | |
92862013 |
62 | if ( phosmodulenumber > GetNModules() ) { // its a PPSD pad |
d15a28e7 |
63 | |
92862013 |
64 | id -= GetNPhi() * GetNZ() * GetNModules() ; |
d15a28e7 |
65 | Float_t tempo = 2 * GetNumberOfModulesPhi() * GetNumberOfModulesZ() * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; |
92862013 |
66 | relid[0] = (Int_t)TMath::Ceil( id / tempo ) ; |
67 | id -= ( relid[0] - 1 ) * tempo ; |
68 | relid[1] = (Int_t)TMath::Ceil( id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ; |
69 | id -= ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; |
70 | relid[2] = (Int_t)TMath::Ceil( id / GetNumberOfPadsPhi() ) ; |
71 | relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfPadsPhi() ) ; |
d15a28e7 |
72 | } |
73 | else { // its a PW04 crystal |
74 | |
92862013 |
75 | relid[0] = phosmodulenumber ; |
76 | relid[1] = 0 ; |
77 | id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ; |
78 | relid[2] = (Int_t)TMath::Ceil( id / GetNPhi() ) ; |
79 | relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNPhi() ) ; |
d15a28e7 |
80 | } |
81 | return rv ; |
82 | } |
9f616d61 |
83 | //____________________________________________________________________________ |
84 | void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt) |
85 | { |
86 | // calculates the angular coverage in theta and phi of a EMC module |
87 | |
88 | Double_t conv ; |
89 | if ( opt == kRadian ) |
90 | conv = 1. ; |
91 | else if ( opt == kDegre ) |
92 | conv = 180. / TMath::Pi() ; |
93 | else { |
94 | cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; |
95 | conv = 1. ; |
96 | } |
97 | |
98 | Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ; |
92862013 |
99 | Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() |
9f616d61 |
100 | + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; |
101 | |
92862013 |
102 | Double_t angle = TMath::ATan( GetCrystalSize(0)*GetNPhi() / (2 * y0) ) ; |
9f616d61 |
103 | phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 230 and 310 deg.) |
92862013 |
104 | Double_t max = phi - angle ; |
105 | Double_t min = phi + angle ; |
106 | pM = TMath::Max(max, min) * conv ; |
107 | pm = TMath::Min(max, min) * conv ; |
9f616d61 |
108 | |
92862013 |
109 | angle = TMath::ATan( GetCrystalSize(2)*GetNZ() / (2 * y0) ) ; |
110 | max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.) |
111 | min = TMath::Pi() / 2. - angle ; |
112 | tM = TMath::Max(max, min) * conv ; |
113 | tm = TMath::Min(max, min) * conv ; |
9f616d61 |
114 | |
115 | } |
116 | |
117 | //____________________________________________________________________________ |
118 | void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt) |
119 | { |
120 | // calculates the angular coverage in theta and phi of a single crystal in a EMC module |
121 | |
122 | Double_t conv ; |
123 | if ( opt == kRadian ) |
124 | conv = 1. ; |
125 | else if ( opt == kDegre ) |
126 | conv = 180. / TMath::Pi() ; |
127 | else { |
128 | cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; |
129 | conv = 1. ; |
130 | } |
131 | |
92862013 |
132 | Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() |
9f616d61 |
133 | + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; |
92862013 |
134 | theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ; |
135 | phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ; |
9f616d61 |
136 | } |
137 | |
138 | |
139 | //____________________________________________________________________________ |
140 | void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x) |
141 | { |
142 | // calculates the impact coordinates of a neutral particle |
143 | // emitted in direction theta and phi in ALICE |
144 | |
145 | // searches for the PHOS EMC module |
146 | ModuleNumber = 0 ; |
147 | Double_t tm, tM, pm, pM ; |
148 | Int_t index = 1 ; |
149 | while ( ModuleNumber == 0 && index <= GetNModules() ) { |
150 | EmcModuleCoverage(index, tm, tM, pm, pM) ; |
151 | if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) ) |
152 | ModuleNumber = index ; |
153 | index++ ; |
154 | } |
155 | if ( ModuleNumber != 0 ) { |
156 | Float_t phi0 = GetPHOSAngle(ModuleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ; |
92862013 |
157 | Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() |
9f616d61 |
158 | + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; |
159 | Double_t angle = phi - phi0; |
92862013 |
160 | x = y0 * TMath::Tan(angle) ; |
9f616d61 |
161 | angle = theta - TMath::Pi() / 2 ; |
92862013 |
162 | z = y0 * TMath::Tan(angle) ; |
9f616d61 |
163 | } |
164 | } |
d15a28e7 |
165 | |
166 | //____________________________________________________________________________ |
167 | void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) |
168 | { |
169 | |
170 | AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; |
92862013 |
171 | TVector3 localposition ; |
d15a28e7 |
172 | |
173 | tmpPHOS->GetLocalPosition(gpos) ; |
174 | |
175 | |
176 | if ( tmpPHOS->IsEmc() ) // it is a EMC crystal |
177 | { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + |
178 | GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; |
179 | |
180 | } |
181 | else |
182 | { // it is a PPSD pad |
183 | AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; |
184 | if (tmpPpsd->GetUp() ) // it is an upper module |
185 | { |
186 | gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - |
187 | GetLeadToMicro2Gap() - GetLeadConverterThickness() - |
188 | GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; |
189 | } |
190 | else // it is a lower module |
191 | gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; |
192 | } |
193 | |
92862013 |
194 | Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; |
195 | Double_t const kRADDEG = 180.0 / kPI ; |
196 | Float_t rphi = phi / kRADDEG ; |
d15a28e7 |
197 | |
92862013 |
198 | TRotation rot ; |
199 | rot.RotateZ(-rphi) ; // a rotation around Z by angle |
d15a28e7 |
200 | |
92862013 |
201 | TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame |
202 | gpos.Transform(rot) ; // rotate the baby |
6ad0bfa0 |
203 | |
d15a28e7 |
204 | } |
205 | |
206 | //____________________________________________________________________________ |
207 | void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) |
208 | { |
209 | AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; |
92862013 |
210 | TVector3 localposition ; |
d15a28e7 |
211 | tmpPHOS->GetLocalPosition(gpos) ; |
212 | |
213 | |
214 | if ( tmpPHOS->IsEmc() ) // it is a EMC crystal |
215 | { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + |
216 | GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; |
217 | } |
218 | else |
219 | { // it is a PPSD pad |
220 | AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; |
221 | if (tmpPpsd->GetUp() ) // it is an upper module |
222 | { |
223 | gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - |
224 | GetLeadToMicro2Gap() - GetLeadConverterThickness() - |
225 | GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; |
226 | } |
227 | else // it is a lower module |
228 | gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; |
229 | } |
230 | |
92862013 |
231 | Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; |
232 | Double_t const kRADDEG = 180.0 / kPI ; |
233 | Float_t rphi = phi / kRADDEG ; |
d15a28e7 |
234 | |
92862013 |
235 | TRotation rot ; |
236 | rot.RotateZ(-rphi) ; // a rotation around Z by angle |
d15a28e7 |
237 | |
92862013 |
238 | TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame |
239 | gpos.Transform(rot) ; // rotate the baby |
d15a28e7 |
240 | } |
241 | |
242 | //____________________________________________________________________________ |
243 | void AliPHOSGeometry::Init(void) |
244 | { |
245 | fRotMatrixArray = new TObjArray(fNModules) ; |
246 | |
247 | cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ; |
248 | if ( ((strcmp( fName, "default" )) == 0) || ((strcmp( fName, "GPS2" )) == 0) ) { |
249 | fInit = kTRUE ; |
250 | this->InitPHOS() ; |
251 | this->InitPPSD() ; |
252 | this->SetPHOSAngles() ; |
253 | } |
254 | else { |
255 | fInit = kFALSE ; |
256 | cout << "PHOS Geometry setup: option not defined " << fName << endl ; |
257 | } |
258 | } |
259 | |
260 | //____________________________________________________________________________ |
261 | void AliPHOSGeometry::InitPHOS(void) |
262 | { |
263 | // PHOS |
264 | |
265 | fNPhi = 64 ; |
266 | fNZ = 64 ; |
267 | fNModules = 5 ; |
268 | |
269 | fPHOSAngle[0] = 0.0 ; // Module position angles are set in CreateGeometry() |
270 | fPHOSAngle[1] = 0.0 ; |
271 | fPHOSAngle[2] = 0.0 ; |
272 | fPHOSAngle[3] = 0.0 ; |
273 | |
274 | fXtlSize[0] = 2.2 ; |
275 | fXtlSize[1] = 18.0 ; |
276 | fXtlSize[2] = 2.2 ; |
277 | |
278 | // all these numbers coming next are subject to changes |
279 | |
280 | fOuterBoxThickness[0] = 2.8 ; |
281 | fOuterBoxThickness[1] = 5.0 ; |
282 | fOuterBoxThickness[2] = 5.0 ; |
283 | |
284 | fUpperPlateThickness = 4.0 ; |
285 | |
286 | fSecondUpperPlateThickness = 5.0 ; |
287 | |
288 | fCrystalSupportHeight = 6.95 ; |
289 | fCrystalWrapThickness = 0.01 ; |
290 | fCrystalHolderThickness = 0.005 ; |
291 | fModuleBoxThickness = 2.0 ; |
292 | fIPtoOuterCoverDistance = 447.0 ; |
293 | fIPtoCrystalSurface = 460.0 ; |
294 | |
92862013 |
295 | fPinDiodeSize[0] = 1.71 ; //Values given by Odd Harald feb 2000 |
296 | fPinDiodeSize[1] = 0.0280 ; // 0.0280 is the depth of active layer in the silicon |
297 | fPinDiodeSize[2] = 1.61 ; |
d15a28e7 |
298 | |
299 | fUpperCoolingPlateThickness = 0.06 ; |
300 | fSupportPlateThickness = 10.0 ; |
301 | fLowerThermoPlateThickness = 3.0 ; |
302 | fLowerTextolitPlateThickness = 1.0 ; |
303 | fGapBetweenCrystals = 0.03 ; |
304 | |
305 | fTextolitBoxThickness[0] = 1.5 ; |
306 | fTextolitBoxThickness[1] = 0.0 ; |
307 | fTextolitBoxThickness[2] = 3.0 ; |
308 | |
309 | fAirThickness[0] = 1.56 ; |
310 | fAirThickness[1] = 20.5175 ; |
311 | fAirThickness[2] = 2.48 ; |
312 | |
92862013 |
313 | Float_t xtalModulePhiSize = fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ; |
314 | Float_t xtalModuleZSize = fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ; |
d15a28e7 |
315 | |
316 | // The next dimensions are calculated from the above parameters |
317 | |
92862013 |
318 | fOuterBoxSize[0] = xtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness |
d15a28e7 |
319 | + fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ; |
320 | fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness ) |
321 | + 2 * (fAirThickness[1] + fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ; |
92862013 |
322 | fOuterBoxSize[2] = xtalModuleZSize + 2 * ( fAirThickness[2] + fModuleBoxThickness |
d15a28e7 |
323 | + fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ; |
324 | |
325 | fTextolitBoxSize[0] = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ; |
326 | fTextolitBoxSize[1] = fOuterBoxSize[1] - fOuterBoxThickness[1] - fUpperPlateThickness ; |
327 | fTextolitBoxSize[2] = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ; |
328 | |
329 | fAirFilledBoxSize[0] = fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ; |
330 | fAirFilledBoxSize[1] = fTextolitBoxSize[1] - fSecondUpperPlateThickness ; |
331 | fAirFilledBoxSize[2] = fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ; |
332 | |
333 | } |
334 | |
335 | //____________________________________________________________________________ |
336 | void AliPHOSGeometry::InitPPSD(void) |
337 | { |
338 | // PPSD |
339 | |
340 | fAnodeThickness = 0.0009 ; |
341 | fAvalancheGap = 0.01 ; |
342 | fCathodeThickness = 0.0009 ; |
343 | fCompositeThickness = 0.3 ; |
9f616d61 |
344 | fConversionGap = 0.6 ; |
d15a28e7 |
345 | fLeadConverterThickness = 0.56 ; |
346 | fLeadToMicro2Gap = 0.1 ; |
347 | fLidThickness = 0.2 ; |
348 | fMicro1ToLeadGap = 0.1 ; |
349 | fMicromegasWallThickness = 0.6 ; |
350 | fNumberOfModulesPhi = 4 ; |
351 | fNumberOfModulesZ = 4 ; |
352 | fNumberOfPadsPhi = 24 ; |
353 | fNumberOfPadsZ = 24 ; |
354 | fPCThickness = 0.1 ; |
355 | fPhiDisplacement = 0.8 ; |
356 | fZDisplacement = 0.8 ; |
357 | |
358 | fMicromegas1Thickness = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness |
359 | + fAnodeThickness + fConversionGap + fAvalancheGap ; |
360 | fMicromegas2Thickness = fMicromegas1Thickness ; |
361 | |
362 | |
363 | fPPSDModuleSize[0] = 38.0 ; |
364 | fPPSDModuleSize[1] = fMicromegas1Thickness ; |
365 | fPPSDModuleSize[2] = 38.0 ; |
366 | |
367 | fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ; |
368 | fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ; |
369 | fPPSDBoxSize[2] = fNumberOfModulesZ * fPPSDModuleSize[2] + 2 * fZDisplacement ; |
370 | |
371 | fIPtoTopLidDistance = fIPtoOuterCoverDistance - fPPSDBoxSize[1] - 1. ; |
372 | |
373 | } |
374 | |
375 | //____________________________________________________________________________ |
376 | AliPHOSGeometry * AliPHOSGeometry::GetInstance() |
377 | { |
d15a28e7 |
378 | return (AliPHOSGeometry *) fGeom ; |
379 | } |
380 | |
381 | //____________________________________________________________________________ |
382 | AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title) |
383 | { |
384 | AliPHOSGeometry * rv = 0 ; |
385 | if ( fGeom == 0 ) { |
386 | fGeom = new AliPHOSGeometry(name, title) ; |
387 | rv = (AliPHOSGeometry * ) fGeom ; |
388 | } |
389 | else { |
390 | if ( strcmp(fGeom->GetName(), name) != 0 ) { |
391 | cout << "AliPHOSGeometry <E> : current geometry is " << fGeom->GetName() << endl |
392 | << " you cannot call " << name << endl ; |
393 | } |
394 | else |
395 | rv = (AliPHOSGeometry *) fGeom ; |
396 | } |
397 | return rv ; |
398 | } |
399 | |
400 | //____________________________________________________________________________ |
92862013 |
401 | Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId) |
d15a28e7 |
402 | { |
403 | |
404 | // AbsId = 1:fNModules * fNPhi * fNZ -> PbWO4 |
405 | // AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD |
406 | |
407 | Bool_t rv = kTRUE ; |
408 | |
92862013 |
409 | if ( relid[1] > 0 ) { // its a PPSD pad |
d15a28e7 |
410 | |
411 | AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate emcal crystals from PPSD pads |
92862013 |
412 | + ( relid[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ() // the pads offset of PHOS modules |
d15a28e7 |
413 | * GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2 |
92862013 |
414 | + ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() // the pads offset of PPSD modules |
415 | + ( relid[2] - 1 ) * GetNumberOfPadsPhi() // the pads offset of a PPSD row |
416 | + relid[3] ; // the column number |
d15a28e7 |
417 | } |
418 | else { |
92862013 |
419 | if ( relid[1] == 0 ) { // its a Phos crystal |
420 | AbsId = ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules |
421 | + ( relid[2] - 1 ) * GetNPhi() // the offset of a xtal row |
422 | + relid[3] ; // the column number |
d15a28e7 |
423 | } |
424 | } |
425 | |
426 | return rv ; |
427 | } |
428 | |
429 | //____________________________________________________________________________ |
430 | |
92862013 |
431 | void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos ) |
d15a28e7 |
432 | { |
92862013 |
433 | if (id > 0) { |
d15a28e7 |
434 | |
92862013 |
435 | Int_t relid[4] ; |
d15a28e7 |
436 | |
92862013 |
437 | AbsToRelNumbering(id , relid) ; |
d15a28e7 |
438 | |
92862013 |
439 | Int_t phosmodule = relid[0] ; |
d15a28e7 |
440 | |
92862013 |
441 | Float_t y0 = 0 ; |
9f616d61 |
442 | |
92862013 |
443 | if ( relid[1] == 0 ) // it is a PbW04 crystal |
444 | { y0 = -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() |
9f616d61 |
445 | + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ; |
d15a28e7 |
446 | } |
92862013 |
447 | if ( relid[1] > 0 ) { // its a PPSD pad |
448 | if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) // its an bottom module |
d15a28e7 |
449 | { |
92862013 |
450 | y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ; |
d15a28e7 |
451 | } |
452 | else // its an upper module |
92862013 |
453 | y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() |
9f616d61 |
454 | - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ; |
d15a28e7 |
455 | } |
456 | |
457 | Float_t x, z ; |
92862013 |
458 | RelPosInModule(relid, x, z) ; |
d15a28e7 |
459 | |
9f616d61 |
460 | pos.SetX(x) ; |
461 | pos.SetZ(z) ; |
92862013 |
462 | pos.SetY( TMath::Sqrt(x*x + z*z + y0*y0) ) ; |
9f616d61 |
463 | |
d15a28e7 |
464 | |
465 | |
92862013 |
466 | Float_t phi = GetPHOSAngle( phosmodule) ; |
467 | Double_t const kRADDEG = 180.0 / kPI ; |
468 | Float_t rphi = phi / kRADDEG ; |
d15a28e7 |
469 | |
92862013 |
470 | TRotation rot ; |
471 | rot.RotateZ(-rphi) ; // a rotation around Z by angle |
d15a28e7 |
472 | |
92862013 |
473 | TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame |
d15a28e7 |
474 | |
92862013 |
475 | pos.Transform(rot) ; // rotate the baby |
d15a28e7 |
476 | } |
477 | else { |
478 | pos.SetX(0.); |
479 | pos.SetY(0.); |
480 | pos.SetZ(0.); |
481 | } |
482 | } |
483 | |
484 | //____________________________________________________________________________ |
92862013 |
485 | void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z) |
d15a28e7 |
486 | { |
92862013 |
487 | Int_t ppsdmodule ; |
488 | Int_t row = relid[2] ; //offset along z axiz |
489 | Int_t column = relid[3] ; //offset along x axiz |
d15a28e7 |
490 | |
92862013 |
491 | Float_t padsizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ(); |
492 | Float_t padsizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi(); |
d15a28e7 |
493 | |
92862013 |
494 | if ( relid[1] == 0 ) { // its a PbW04 crystal |
495 | x = -( GetNPhi()/2. - row + 0.5 ) * GetCrystalSize(0) ; // position ox Xtal with respect |
496 | z = ( GetNZ() /2. - column + 0.5 ) * GetCrystalSize(2) ; // of center of PHOS module |
d15a28e7 |
497 | } |
498 | else { |
92862013 |
499 | if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) |
500 | ppsdmodule = relid[1]-GetNumberOfModulesPhi() * GetNumberOfModulesZ(); |
501 | else ppsdmodule = relid[1] ; |
502 | Int_t modrow = 1+(Int_t)TMath::Ceil( (Float_t)ppsdmodule / GetNumberOfModulesPhi()-1. ) ; |
503 | Int_t modcol = ppsdmodule - ( modrow - 1 ) * GetNumberOfModulesPhi() ; |
504 | Float_t x0 = ( GetNumberOfModulesPhi() / 2. - modrow + 0.5 ) * GetPPSDModuleSize(0) ; |
505 | Float_t z0 = ( GetNumberOfModulesZ() / 2. - modcol + 0.5 ) * GetPPSDModuleSize(2) ; |
506 | x = - ( GetNumberOfPadsPhi()/2. - row - 0.5 ) * padsizeX + x0 ; // position of pad with respect |
507 | z = ( GetNumberOfPadsZ()/2. - column - 0.5 ) * padsizeZ - z0 ; // of center of PHOS module |
d15a28e7 |
508 | } |
509 | } |
510 | |
511 | //____________________________________________________________________________ |
512 | void AliPHOSGeometry:: SetPHOSAngles() |
513 | { |
92862013 |
514 | Double_t const kRADDEG = 180.0 / kPI ; |
515 | Float_t pphi = TMath::ATan( fOuterBoxSize[0] / ( 2.0 * fIPtoOuterCoverDistance ) ) ; |
516 | pphi *= kRADDEG ; |
d15a28e7 |
517 | |
518 | for( Int_t i = 1; i <= fNModules ; i++ ) { |
92862013 |
519 | Float_t angle = pphi * 2 * ( i - fNModules / 2.0 - 0.5 ) ; |
d15a28e7 |
520 | fPHOSAngle[i-1] = - angle ; |
521 | } |
522 | } |
523 | |