]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Inheritance from TObject. Automatic streamers.
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
21// Layout EMC + PPSD has name GPS2:
ed4205d8 22// Produces cumulated hits
a3dfe79c 23//---
24// Layout EMC + CPV has name IHEP:
ed4205d8 25// Produces hits for CPV, cumulated hits
26//---
27// Layout EMC + CPV + PPSD has name GPS:
28// Produces hits for CPV, cumulated hits
29//---
5f20d3fb 30//*-- Author: Yves Schutz (SUBATECH)
b2a60966 31
7587f5a5 32
33// --- ROOT system ---
bea63bea 34
35#include "TBRIK.h"
36#include "TNode.h"
7587f5a5 37#include "TRandom.h"
94de3818 38#include "TTree.h"
f6d1e5e1 39#include "TParticle.h"
7587f5a5 40
41// --- Standard library ---
42
de9ec31b 43#include <stdio.h>
44#include <string.h>
45#include <stdlib.h>
46#include <strstream.h>
7587f5a5 47
48// --- AliRoot header files ---
49
50#include "AliPHOSv1.h"
51#include "AliPHOSHit.h"
97cee223 52#include "AliPHOSCPVDigit.h"
7587f5a5 53#include "AliRun.h"
54#include "AliConst.h"
94de3818 55#include "AliMC.h"
97cee223 56#include "AliPHOSGeometry.h"
7b326aac 57#include "AliPHOSQAIntCheckable.h"
58#include "AliPHOSQAFloatCheckable.h"
59#include "AliPHOSQAMeanChecker.h"
7587f5a5 60
61ClassImp(AliPHOSv1)
62
bea63bea 63//____________________________________________________________________________
02ab1add 64AliPHOSv1::AliPHOSv1():
65AliPHOSv0()
bea63bea 66{
735e58f1 67 // default ctor: initialze data memebers
68 fQAHitsMul = 0 ;
69 fQAHitsMulB = 0 ;
70 fQATotEner = 0 ;
71 fQATotEnerB = 0 ;
9688c1dd 72
73 fLightYieldMean = 0. ;
74 fIntrinsicPINEfficiency = 0. ;
75 fLightYieldAttenuation = 0. ;
76 fRecalibrationFactor = 0. ;
77 fElectronsPerGeV = 0. ;
27f33ee5 78 fAPDGain = 0. ;
79 fLightFactor = 0. ;
80 fAPDFactor = 0. ;
9688c1dd 81
bea63bea 82}
83
7587f5a5 84//____________________________________________________________________________
85AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 86 AliPHOSv0(name,title)
7587f5a5 87{
5f20d3fb 88 //
ed4205d8 89 // We store hits :
5f20d3fb 90 // - fHits (the "normal" one), which retains the hits associated with
91 // the current primary particle being tracked
92 // (this array is reset after each primary has been tracked).
93 //
fa412d9b 94
037cc66d 95
5f20d3fb 96
97 // We do not want to save in TreeH the raw hits
98 // But save the cumulated hits instead (need to create the branch myself)
99 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 100 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 101
ed4205d8 102 fHits= new TClonesArray("AliPHOSHit",1000) ;
f6d1e5e1 103 gAlice->AddHitList(fHits) ;
5f20d3fb 104
ed4205d8 105 fNhits = 0 ;
5f20d3fb 106
f6d1e5e1 107 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 108
9688c1dd 109 //Photoelectron statistics:
110 // The light yield is a poissonian distribution of the number of
111 // photons created in the PbWo4 crystal, calculated using following formula
112 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
113 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
114 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
115 // APDEfficiency is 0.02655
116 // k_0 is 0.0045 from Valery Antonenko
117 // The number of electrons created in the APD is
118 // NumberOfElectrons = APDGain * LightYield
119 // The APD Gain is 300
120 fLightYieldMean = 47000;
121 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 122 fLightYieldAttenuation = 0.0045 ;
123 fRecalibrationFactor = 13.418/ fLightYieldMean ;
124 fElectronsPerGeV = 2.77e+8 ;
125 fAPDGain = 300. ;
126 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
127 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
128
9688c1dd 129
fa7cce36 130 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 131
7b326aac 132 // create checkables
133 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
134 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
135 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
136 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
137 char tempo[20] ;
138 Int_t i ;
139 for ( i = 0 ; i < nb ; i++ ) {
140 sprintf(tempo, "HitsMB%d", i+1) ;
141 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
142 sprintf(tempo, "TotEnB%d", i+1) ;
143 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
144 }
145
7b326aac 146 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
147 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
148 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
149 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
150
151 // associate checkables and checkers
152 fQAHitsMul->AddChecker(hmc) ;
153 fQATotEner->AddChecker(emc) ;
154 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 155 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
156 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 157 }
7b7c1533 158
5f20d3fb 159}
160
7587f5a5 161//____________________________________________________________________________
bea63bea 162AliPHOSv1::~AliPHOSv1()
b2a60966 163{
bea63bea 164 // dtor
5f20d3fb 165
ed4205d8 166 if ( fHits) {
167 fHits->Delete() ;
168 delete fHits ;
169 fHits = 0 ;
8dfa469d 170 }
7b7c1533 171 if (fTreeQA)
172 delete fTreeQA ;
7587f5a5 173}
174
7587f5a5 175//____________________________________________________________________________
b37750a6 176void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 177{
178 // Add a hit to the hit list.
f6d1e5e1 179 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 180
5f20d3fb 181 Int_t hitCounter ;
bea63bea 182 AliPHOSHit *newHit ;
5f20d3fb 183 AliPHOSHit *curHit ;
184 Bool_t deja = kFALSE ;
fa7cce36 185 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 186
b37750a6 187 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 188
7854a24a 189 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 190 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 191 if(curHit->GetPrimary() != primary) break ;
192 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 193 if( *curHit == *newHit ) {
f15a01eb 194 *curHit + *newHit ;
ed4205d8 195 deja = kTRUE ;
5f20d3fb 196 }
197 }
198
199 if ( !deja ) {
ed4205d8 200 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 201 // get the block Id number
9688c1dd 202 Int_t relid[4] ;
fa7cce36 203 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 204 // and fill the relevant QA checkable (only if in PbW04)
205 if ( relid[1] == 0 ) {
206 fQAHitsMul->Update(1) ;
29b077b5 207 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 208 }
ed4205d8 209 fNhits++ ;
5f20d3fb 210 }
211
bea63bea 212 delete newHit;
bea63bea 213}
214
7b326aac 215//____________________________________________________________________________
216void AliPHOSv1::FinishPrimary()
217{
218 // called at the end of each track (primary) by AliRun
219 // hits are reset for each new track
220 // accumulate the total hit-multiplicity
221// if ( fQAHitsMul )
222// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
223
224}
225
226//____________________________________________________________________________
227void AliPHOSv1::FinishEvent()
228{
229 // called at the end of each event by AliRun
230 // accumulate the hit-multiplicity and total energy per block
231 // if the values have been updated check it
232
233 if ( fQATotEner ) {
234 if ( fQATotEner->HasChanged() ) {
235 fQATotEner->CheckMe() ;
236 fQATotEner->Reset() ;
237 }
238 }
239
240 Int_t i ;
241 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 242 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 243 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
244 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 245 if ( ci->HasChanged() ) {
246 ci->CheckMe() ;
247 ci->Reset() ;
248 }
249 if ( cf->HasChanged() ) {
250 cf->CheckMe() ;
251 cf->Reset() ;
252 }
253 }
254 }
255
256 // check the total multiplicity
257
258 if ( fQAHitsMul ) {
259 if ( fQAHitsMul->HasChanged() ) {
260 fQAHitsMul->CheckMe() ;
261 fQAHitsMul->Reset() ;
262 }
263 }
264}
5f20d3fb 265//____________________________________________________________________________
7587f5a5 266void AliPHOSv1::StepManager(void)
267{
9688c1dd 268 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 269
4f5bbbd4 270 Int_t relid[4] ; // (box, layer, row, column) indices
271 Int_t absid ; // absolute cell ID number
471193a8 272 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 273 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 274 Int_t copy ;
7587f5a5 275
bea63bea 276 Int_t tracknumber = gAlice->CurrentTrack() ;
fa412d9b 277 Int_t primary = gAlice->GetPrimary( gAlice->CurrentTrack() );
fa7cce36 278 TString name = GetGeometry()->GetName() ;
037cc66d 279
9688c1dd 280 Int_t moduleNumber ;
281
282 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
283 (gMC->IsTrackEntering() ) &&
284 gMC->TrackCharge() != 0) {
f6d1e5e1 285
9688c1dd 286 gMC -> TrackPosition(pos);
f6d1e5e1 287
9688c1dd 288 Float_t xyzm[3], xyzd[3] ;
289 Int_t i;
290 for (i=0; i<3; i++) xyzm[i] = pos[i];
291 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
292
e3daf02c 293 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 294 xyd[0] = xyzd[0];
53e03a1e 295 xyd[1] =-xyzd[2];
296 xyd[2] =-xyzd[1];
f6d1e5e1 297
9688c1dd 298 // Current momentum of the hit's track in the local ref. system
299 TLorentzVector pmom ; //momentum of the particle initiated hit
300 gMC -> TrackMomentum(pmom);
301 Float_t pm[3], pd[3];
302 for (i=0; i<3; i++)
303 pm[i] = pmom[i];
f6d1e5e1 304
9688c1dd 305 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
306 pmom[0] = pd[0];
cf75bc19 307 pmom[1] =-pd[1];
308 pmom[2] =-pd[2];
f6d1e5e1 309
9688c1dd 310 // Digitize the current CPV hit:
311
312 // 1. find pad response and
313 gMC->CurrentVolOffID(3,moduleNumber);
314 moduleNumber--;
315
316 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
317 CPVDigitize(pmom,xyd,moduleNumber,cpvDigits);
fa412d9b 318
9688c1dd 319 Float_t xmean = 0;
320 Float_t zmean = 0;
321 Float_t qsum = 0;
322 Int_t idigit,ndigits;
323
324 // 2. go through the current digit list and sum digits in pads
325
326 ndigits = cpvDigits->GetEntriesFast();
327 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 328 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 329 Float_t x1 = cpvDigit1->GetXpad() ;
330 Float_t z1 = cpvDigit1->GetYpad() ;
331 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 332 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 333 Float_t x2 = cpvDigit2->GetXpad() ;
334 Float_t z2 = cpvDigit2->GetYpad() ;
335 if (x1==x2 && z1==z2) {
336 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
337 cpvDigit2->SetQpad(qsum) ;
338 cpvDigits->RemoveAt(idigit) ;
fa412d9b 339 }
340 }
9688c1dd 341 }
342 cpvDigits->Compress() ;
343
344 // 3. add digits to temporary hit list fTmpHits
345
346 ndigits = cpvDigits->GetEntriesFast();
347 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 348 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 349 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
350 relid[1] =-1 ; // means CPV
351 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
352 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
353
354 // get the absolute Id number
355 GetGeometry()->RelToAbsNumbering(relid, absid) ;
356
357 // add current digit to the temporary hit list
358
471193a8 359 xyzte[3] = gMC->TrackTime() ;
360 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
9688c1dd 361 primary = -1; // No need in primary for CPV
471193a8 362 AddHit(fIshunt, primary, tracknumber, absid, xyzte);
9688c1dd 363
364 if (cpvDigit->GetQpad() > 0.02) {
365 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
366 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
367 qsum += cpvDigit->GetQpad();
fa412d9b 368 }
fa412d9b 369 }
e534a69d 370 if (cpvDigits) {
371 cpvDigits->Delete();
372 delete cpvDigits;
373 cpvDigits=0;
374 }
9688c1dd 375 }
037cc66d 376
9688c1dd 377
378
fa412d9b 379 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 380
fa412d9b 381 gMC->TrackPosition(pos) ;
471193a8 382 xyzte[0] = pos[0] ;
383 xyzte[1] = pos[1] ;
384 xyzte[2] = pos[2] ;
597e6309 385
9688c1dd 386 Float_t global[3], local[3] ;
387 global[0] = pos[0] ;
388 global[1] = pos[1] ;
389 global[2] = pos[2] ;
390 Float_t lostenergy = gMC->Edep();
f6d1e5e1 391
392 //Put in the TreeK particle entering PHOS and all its parents
393 if ( gMC->IsTrackEntering() ){
394 Float_t xyzd[3] ;
471193a8 395 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
f6d1e5e1 396 if (xyzd[1] > GetGeometry()->GetCrystalSize(1)/2-0.002 ||
397 xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2+0.002) {
398 TParticle * part = 0 ;
399 Int_t parent = gAlice->CurrentTrack() ;
400 while ( parent != -1 ) {
401 part = gAlice->Particle(parent) ;
402 part->SetBit(kKeepBit);
403 parent = part->GetFirstMother() ;
404 }
405 }
406 }
9688c1dd 407 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 408 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 409
9688c1dd 410 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 411
9688c1dd 412 Int_t strip ;
413 gMC->CurrentVolOffID(3, strip);
414 Int_t cell ;
415 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 416
9688c1dd 417 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
418 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 419
9688c1dd 420 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
421 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 422
9688c1dd 423 gMC->Gmtod(global, local, 1) ;
424
471193a8 425 //Calculates the light yield, the number of photons produced in the
9688c1dd 426 //crystal
27f33ee5 427 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 428 exp(-fLightYieldAttenuation *
429 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
430 ) ;
471193a8 431
9688c1dd 432 //Calculates de energy deposited in the crystal
471193a8 433 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 434
435 // add current hit to the hit list
f6d1e5e1 436 //cout << "AliPHOSv1::StepManager " << primary << " " << tracknumber << endl ;
471193a8 437 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 438
94de8339 439 // fill the relevant QA Checkables
471193a8 440 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
441 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 442
fa412d9b 443 } // there is deposited energy
444 } // we are inside a PHOS Xtal
f6d1e5e1 445
fa412d9b 446}
447
448//____________________________________________________________________________
449void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, Int_t moduleNumber, TClonesArray *cpvDigits)
450{
451 // ------------------------------------------------------------------------
452 // Digitize one CPV hit:
453 // On input take exact 4-momentum p and position zxhit of the hit,
454 // find the pad response around this hit and
455 // put the amplitudes in the pads into array digits
456 //
457 // Author: Yuri Kharlov (after Serguei Sadovsky)
458 // 2 October 2000
459 // ------------------------------------------------------------------------
460
fa7cce36 461 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 462 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
463 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
464 const Int_t kNgamz = 5; // Ionization size in Z
465 const Int_t kNgamx = 9; // Ionization size in Phi
466 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 467
468 Float_t rnor1,rnor2;
469
470 // Just a reminder on axes notation in the CPV module:
471 // axis Z goes along the beam
472 // axis X goes across the beam in the module plane
473 // axis Y is a normal to the module plane showing from the IP
474
475 Float_t hitX = zxhit[0];
476 Float_t hitZ =-zxhit[1];
477 Float_t pX = p.Px();
478 Float_t pZ =-p.Pz();
479 Float_t pNorm = p.Py();
a3dfe79c 480 Float_t eloss = kdEdx;
3d402178 481
7b326aac 482// cout << "CPVDigitize: YVK : "<<hitX<<" "<<hitZ<<" | "<<pX<<" "<<pZ<<" "<<pNorm<<endl;
483
fa7cce36 484 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
485 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 486 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 487 eloss *= (1 + kDetR*rnor1) *
fa7cce36 488 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
489 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
490 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 491 Float_t zhit2 = zhit1 + dZY;
492 Float_t xhit2 = xhit1 + dXY;
493
a3dfe79c 494 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
495 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 496
497 Int_t nIter;
498 Float_t zxe[3][5];
499 if (iwht1==iwht2) { // incline 1-wire hit
500 nIter = 2;
501 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 502 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
503 zxe[2][0] = eloss/2;
fa412d9b 504 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 505 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
506 zxe[2][1] = eloss/2;
fa412d9b 507 }
508 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
509 nIter = 3;
510 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 511 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
512 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
513 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 514 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
515 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
516 Float_t dxw1 = xhit1 - xwr13;
517 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 518 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
519 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
520 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 521 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
522 zxe[1][0] = xwht1;
a3dfe79c 523 zxe[2][0] = eloss * egm1;
fa412d9b 524 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
525 zxe[1][1] = xwht2;
a3dfe79c 526 zxe[2][1] = eloss * egm2;
fa412d9b 527 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
528 zxe[1][2] = xwht3;
a3dfe79c 529 zxe[2][2] = eloss * egm3;
fa412d9b 530 }
531 else { // incline 2-wire hit
532 nIter = 2;
a3dfe79c 533 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
534 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 535 Float_t xwr12 = (xwht1 + xwht2) / 2;
536 Float_t dxw1 = xhit1 - xwr12;
537 Float_t dxw2 = xhit2 - xwr12;
538 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
539 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
540 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
541 zxe[1][0] = xwht1;
a3dfe79c 542 zxe[2][0] = eloss * egm1;
fa412d9b 543 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
544 zxe[1][1] = xwht2;
a3dfe79c 545 zxe[2][1] = eloss * egm2;
fa412d9b 546 }
bea63bea 547
fa412d9b 548 // Finite size of ionization region
549
fa7cce36 550 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
551 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 552 Int_t nz3 = (kNgamz+1)/2;
553 Int_t nx3 = (kNgamx+1)/2;
554 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 555 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 556
557 for (Int_t iter=0; iter<nIter; iter++) {
558
559 Float_t zhit = zxe[0][iter];
560 Float_t xhit = zxe[1][iter];
561 Float_t qhit = zxe[2][iter];
fa7cce36 562 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
563 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 564 if ( zcell<=0 || xcell<=0 ||
565 zcell>=nCellZ || xcell>=nCellX) return;
566 Int_t izcell = (Int_t) zcell;
567 Int_t ixcell = (Int_t) xcell;
568 Float_t zc = zcell - izcell - 0.5;
569 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 570 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 571 Int_t kzg = izcell + iz - nz3;
572 if (kzg<=0 || kzg>nCellZ) continue;
573 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 574 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 575 Int_t kxg = ixcell + ix - nx3;
576 if (kxg<=0 || kxg>nCellX) continue;
577 Float_t xg = (Float_t)(ix-nx3) - xc;
578
579 // Now calculate pad response
580 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 581 qpad += kNoise*rnor2;
fa412d9b 582 if (qpad<0) continue;
583
584 // Fill the array with pad response ID and amplitude
3d402178 585 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 586 }
fa412d9b 587 }
fa412d9b 588 }
589}
590
591//____________________________________________________________________________
592Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
593 // ------------------------------------------------------------------------
594 // Calculate the amplitude in one CPV pad using the
595 // cumulative pad response function
596 // Author: Yuri Kharlov (after Serguei Sadovski)
597 // 3 October 2000
598 // ------------------------------------------------------------------------
599
fa7cce36 600 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
601 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
602 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
603 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 604 Double_t amplitude = qhit *
605 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
606 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
607 return (Float_t)amplitude;
7587f5a5 608}
609
fa412d9b 610//____________________________________________________________________________
611Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
612 // ------------------------------------------------------------------------
613 // Cumulative pad response function
614 // It includes several terms from the CF decomposition in electrostatics
615 // Note: this cumulative function is wrong since omits some terms
616 // but the cell amplitude obtained with it is correct because
617 // these omitting terms cancel
618 // Author: Yuri Kharlov (after Serguei Sadovski)
619 // 3 October 2000
620 // ------------------------------------------------------------------------
621
a3dfe79c 622 const Double_t kA=1.0;
623 const Double_t kB=0.7;
fa412d9b 624
625 Double_t r2 = x*x + y*y;
626 Double_t xy = x*y;
627 Double_t cumulPRF = 0;
628 for (Int_t i=0; i<=4; i++) {
a3dfe79c 629 Double_t b1 = (2*i + 1) * kB;
fa412d9b 630 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
631 }
a3dfe79c 632 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 633 return cumulPRF;
634}
7eb9d12d 635