]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Cleaning of warnings (gcc -W)
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
21// Layout EMC + PPSD has name GPS2:
ed4205d8 22// Produces cumulated hits
a3dfe79c 23//---
24// Layout EMC + CPV has name IHEP:
ed4205d8 25// Produces hits for CPV, cumulated hits
26//---
27// Layout EMC + CPV + PPSD has name GPS:
28// Produces hits for CPV, cumulated hits
29//---
5f20d3fb 30//*-- Author: Yves Schutz (SUBATECH)
b2a60966 31
7587f5a5 32
33// --- ROOT system ---
88cb7938 34
35#include <TBRIK.h>
36#include <TNode.h>
37#include <TParticle.h>
38#include <TRandom.h>
39#include <TTree.h>
40#include <TVirtualMC.h>
7587f5a5 41
42// --- Standard library ---
43
88cb7938 44#include <string.h>
45#include <stdlib.h>
46
7587f5a5 47// --- AliRoot header files ---
48
88cb7938 49#include "AliConst.h"
97cee223 50#include "AliPHOSCPVDigit.h"
97cee223 51#include "AliPHOSGeometry.h"
88cb7938 52#include "AliPHOSHit.h"
7b326aac 53#include "AliPHOSQAFloatCheckable.h"
88cb7938 54#include "AliPHOSQAIntCheckable.h"
7b326aac 55#include "AliPHOSQAMeanChecker.h"
88cb7938 56#include "AliPHOSv1.h"
57#include "AliRun.h"
7587f5a5 58
59ClassImp(AliPHOSv1)
60
bea63bea 61//____________________________________________________________________________
02ab1add 62AliPHOSv1::AliPHOSv1():
63AliPHOSv0()
bea63bea 64{
735e58f1 65 // default ctor: initialze data memebers
66 fQAHitsMul = 0 ;
67 fQAHitsMulB = 0 ;
68 fQATotEner = 0 ;
69 fQATotEnerB = 0 ;
9688c1dd 70
71 fLightYieldMean = 0. ;
72 fIntrinsicPINEfficiency = 0. ;
73 fLightYieldAttenuation = 0. ;
74 fRecalibrationFactor = 0. ;
75 fElectronsPerGeV = 0. ;
27f33ee5 76 fAPDGain = 0. ;
77 fLightFactor = 0. ;
78 fAPDFactor = 0. ;
9688c1dd 79
bea63bea 80}
81
7587f5a5 82//____________________________________________________________________________
83AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 84 AliPHOSv0(name,title)
7587f5a5 85{
5f20d3fb 86 //
ed4205d8 87 // We store hits :
5f20d3fb 88 // - fHits (the "normal" one), which retains the hits associated with
89 // the current primary particle being tracked
90 // (this array is reset after each primary has been tracked).
91 //
fa412d9b 92
037cc66d 93
5f20d3fb 94
95 // We do not want to save in TreeH the raw hits
96 // But save the cumulated hits instead (need to create the branch myself)
97 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 98 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 99
ed4205d8 100 fHits= new TClonesArray("AliPHOSHit",1000) ;
f6d1e5e1 101 gAlice->AddHitList(fHits) ;
5f20d3fb 102
ed4205d8 103 fNhits = 0 ;
5f20d3fb 104
f6d1e5e1 105 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 106
9688c1dd 107 //Photoelectron statistics:
108 // The light yield is a poissonian distribution of the number of
109 // photons created in the PbWo4 crystal, calculated using following formula
110 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
111 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
112 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
113 // APDEfficiency is 0.02655
114 // k_0 is 0.0045 from Valery Antonenko
115 // The number of electrons created in the APD is
116 // NumberOfElectrons = APDGain * LightYield
117 // The APD Gain is 300
118 fLightYieldMean = 47000;
119 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 120 fLightYieldAttenuation = 0.0045 ;
121 fRecalibrationFactor = 13.418/ fLightYieldMean ;
122 fElectronsPerGeV = 2.77e+8 ;
123 fAPDGain = 300. ;
124 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
125 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
126
9688c1dd 127
fa7cce36 128 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 129
7b326aac 130 // create checkables
131 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
132 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
9bc230c0 133 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
134 fQAHitsMulB->SetOwner() ;
7b326aac 135 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
9bc230c0 136 fQATotEnerB->SetOwner() ;
7b326aac 137 char tempo[20] ;
138 Int_t i ;
139 for ( i = 0 ; i < nb ; i++ ) {
140 sprintf(tempo, "HitsMB%d", i+1) ;
141 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
142 sprintf(tempo, "TotEnB%d", i+1) ;
143 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
144 }
145
7b326aac 146 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
147 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
148 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
149 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
150
151 // associate checkables and checkers
152 fQAHitsMul->AddChecker(hmc) ;
153 fQATotEner->AddChecker(emc) ;
154 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 155 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
156 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 157 }
7b7c1533 158
5f20d3fb 159}
160
7587f5a5 161//____________________________________________________________________________
bea63bea 162AliPHOSv1::~AliPHOSv1()
b2a60966 163{
bea63bea 164 // dtor
88cb7938 165 if ( fHits) {
ed4205d8 166 fHits->Delete() ;
167 delete fHits ;
168 fHits = 0 ;
8dfa469d 169 }
9bc230c0 170
9bc230c0 171 if ( fQAHitsMulB ) {
172 fQAHitsMulB->Delete() ;
173 delete fQAHitsMulB ;
174 }
175
176 if ( fQATotEnerB ) {
177 fQATotEnerB->Delete() ;
178 delete fQATotEnerB ;
179 }
180
7587f5a5 181}
182
7587f5a5 183//____________________________________________________________________________
b37750a6 184void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 185{
186 // Add a hit to the hit list.
f6d1e5e1 187 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 188
5f20d3fb 189 Int_t hitCounter ;
bea63bea 190 AliPHOSHit *newHit ;
5f20d3fb 191 AliPHOSHit *curHit ;
192 Bool_t deja = kFALSE ;
fa7cce36 193 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 194
b37750a6 195 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 196
7854a24a 197 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 198 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 199 if(curHit->GetPrimary() != primary) break ;
200 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 201 if( *curHit == *newHit ) {
f15a01eb 202 *curHit + *newHit ;
ed4205d8 203 deja = kTRUE ;
5f20d3fb 204 }
205 }
206
207 if ( !deja ) {
ed4205d8 208 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 209 // get the block Id number
9688c1dd 210 Int_t relid[4] ;
fa7cce36 211 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 212 // and fill the relevant QA checkable (only if in PbW04)
213 if ( relid[1] == 0 ) {
214 fQAHitsMul->Update(1) ;
29b077b5 215 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 216 }
ed4205d8 217 fNhits++ ;
5f20d3fb 218 }
219
bea63bea 220 delete newHit;
bea63bea 221}
222
7b326aac 223//____________________________________________________________________________
224void AliPHOSv1::FinishPrimary()
225{
226 // called at the end of each track (primary) by AliRun
227 // hits are reset for each new track
228 // accumulate the total hit-multiplicity
229// if ( fQAHitsMul )
230// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
231
232}
233
234//____________________________________________________________________________
235void AliPHOSv1::FinishEvent()
236{
237 // called at the end of each event by AliRun
238 // accumulate the hit-multiplicity and total energy per block
239 // if the values have been updated check it
88cb7938 240
7b326aac 241
242 if ( fQATotEner ) {
243 if ( fQATotEner->HasChanged() ) {
244 fQATotEner->CheckMe() ;
245 fQATotEner->Reset() ;
246 }
247 }
248
249 Int_t i ;
250 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 251 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 252 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
253 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 254 if ( ci->HasChanged() ) {
255 ci->CheckMe() ;
256 ci->Reset() ;
257 }
258 if ( cf->HasChanged() ) {
259 cf->CheckMe() ;
260 cf->Reset() ;
261 }
262 }
263 }
264
265 // check the total multiplicity
266
267 if ( fQAHitsMul ) {
268 if ( fQAHitsMul->HasChanged() ) {
269 fQAHitsMul->CheckMe() ;
270 fQAHitsMul->Reset() ;
271 }
272 }
88cb7938 273
274 AliDetector::FinishEvent();
7b326aac 275}
5f20d3fb 276//____________________________________________________________________________
7587f5a5 277void AliPHOSv1::StepManager(void)
278{
9688c1dd 279 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 280
4f5bbbd4 281 Int_t relid[4] ; // (box, layer, row, column) indices
282 Int_t absid ; // absolute cell ID number
471193a8 283 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 284 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 285 Int_t copy ;
7587f5a5 286
642f15cf 287 Int_t tracknumber = gAlice->GetCurrentTrackNumber() ;
288 Int_t primary = gAlice->GetPrimary( gAlice->GetCurrentTrackNumber() );
fa7cce36 289 TString name = GetGeometry()->GetName() ;
037cc66d 290
9688c1dd 291 Int_t moduleNumber ;
292
293 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
294 (gMC->IsTrackEntering() ) &&
295 gMC->TrackCharge() != 0) {
f6d1e5e1 296
9688c1dd 297 gMC -> TrackPosition(pos);
f6d1e5e1 298
9688c1dd 299 Float_t xyzm[3], xyzd[3] ;
300 Int_t i;
301 for (i=0; i<3; i++) xyzm[i] = pos[i];
302 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
303
e3daf02c 304 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 305 xyd[0] = xyzd[0];
53e03a1e 306 xyd[1] =-xyzd[2];
307 xyd[2] =-xyzd[1];
f6d1e5e1 308
9688c1dd 309 // Current momentum of the hit's track in the local ref. system
310 TLorentzVector pmom ; //momentum of the particle initiated hit
311 gMC -> TrackMomentum(pmom);
312 Float_t pm[3], pd[3];
313 for (i=0; i<3; i++)
314 pm[i] = pmom[i];
f6d1e5e1 315
9688c1dd 316 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
317 pmom[0] = pd[0];
cf75bc19 318 pmom[1] =-pd[1];
319 pmom[2] =-pd[2];
f6d1e5e1 320
9688c1dd 321 // Digitize the current CPV hit:
322
323 // 1. find pad response and
324 gMC->CurrentVolOffID(3,moduleNumber);
325 moduleNumber--;
326
327 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
328 CPVDigitize(pmom,xyd,moduleNumber,cpvDigits);
fa412d9b 329
9688c1dd 330 Float_t xmean = 0;
331 Float_t zmean = 0;
332 Float_t qsum = 0;
333 Int_t idigit,ndigits;
334
335 // 2. go through the current digit list and sum digits in pads
336
337 ndigits = cpvDigits->GetEntriesFast();
338 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 339 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 340 Float_t x1 = cpvDigit1->GetXpad() ;
341 Float_t z1 = cpvDigit1->GetYpad() ;
342 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 343 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 344 Float_t x2 = cpvDigit2->GetXpad() ;
345 Float_t z2 = cpvDigit2->GetYpad() ;
346 if (x1==x2 && z1==z2) {
347 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
348 cpvDigit2->SetQpad(qsum) ;
349 cpvDigits->RemoveAt(idigit) ;
fa412d9b 350 }
351 }
9688c1dd 352 }
353 cpvDigits->Compress() ;
354
355 // 3. add digits to temporary hit list fTmpHits
356
357 ndigits = cpvDigits->GetEntriesFast();
358 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 359 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 360 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
361 relid[1] =-1 ; // means CPV
362 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
363 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
364
365 // get the absolute Id number
366 GetGeometry()->RelToAbsNumbering(relid, absid) ;
367
368 // add current digit to the temporary hit list
369
471193a8 370 xyzte[3] = gMC->TrackTime() ;
371 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
9688c1dd 372 primary = -1; // No need in primary for CPV
471193a8 373 AddHit(fIshunt, primary, tracknumber, absid, xyzte);
9688c1dd 374
375 if (cpvDigit->GetQpad() > 0.02) {
376 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
377 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
378 qsum += cpvDigit->GetQpad();
fa412d9b 379 }
fa412d9b 380 }
e534a69d 381 if (cpvDigits) {
382 cpvDigits->Delete();
383 delete cpvDigits;
384 cpvDigits=0;
385 }
9688c1dd 386 }
037cc66d 387
9688c1dd 388
389
fa412d9b 390 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 391
fa412d9b 392 gMC->TrackPosition(pos) ;
471193a8 393 xyzte[0] = pos[0] ;
394 xyzte[1] = pos[1] ;
395 xyzte[2] = pos[2] ;
597e6309 396
9688c1dd 397 Float_t global[3], local[3] ;
398 global[0] = pos[0] ;
399 global[1] = pos[1] ;
400 global[2] = pos[2] ;
401 Float_t lostenergy = gMC->Edep();
f6d1e5e1 402
403 //Put in the TreeK particle entering PHOS and all its parents
404 if ( gMC->IsTrackEntering() ){
405 Float_t xyzd[3] ;
471193a8 406 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
f6d1e5e1 407 if (xyzd[1] > GetGeometry()->GetCrystalSize(1)/2-0.002 ||
408 xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2+0.002) {
409 TParticle * part = 0 ;
642f15cf 410 Int_t parent = gAlice->GetCurrentTrackNumber() ;
f6d1e5e1 411 while ( parent != -1 ) {
412 part = gAlice->Particle(parent) ;
413 part->SetBit(kKeepBit);
414 parent = part->GetFirstMother() ;
415 }
416 }
417 }
9688c1dd 418 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 419 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 420
9688c1dd 421 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 422
9688c1dd 423 Int_t strip ;
424 gMC->CurrentVolOffID(3, strip);
425 Int_t cell ;
426 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 427
9688c1dd 428 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
429 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 430
9688c1dd 431 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
432 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 433
9688c1dd 434 gMC->Gmtod(global, local, 1) ;
435
471193a8 436 //Calculates the light yield, the number of photons produced in the
9688c1dd 437 //crystal
27f33ee5 438 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 439 exp(-fLightYieldAttenuation *
440 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
441 ) ;
471193a8 442
9688c1dd 443 //Calculates de energy deposited in the crystal
471193a8 444 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 445
446 // add current hit to the hit list
21cd0c07 447 // Info("StepManager","%d %d", primary, tracknumber) ;
471193a8 448 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 449
94de8339 450 // fill the relevant QA Checkables
471193a8 451 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
452 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 453
fa412d9b 454 } // there is deposited energy
455 } // we are inside a PHOS Xtal
f6d1e5e1 456
fa412d9b 457}
458
459//____________________________________________________________________________
460void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, Int_t moduleNumber, TClonesArray *cpvDigits)
461{
462 // ------------------------------------------------------------------------
463 // Digitize one CPV hit:
464 // On input take exact 4-momentum p and position zxhit of the hit,
465 // find the pad response around this hit and
466 // put the amplitudes in the pads into array digits
467 //
468 // Author: Yuri Kharlov (after Serguei Sadovsky)
469 // 2 October 2000
470 // ------------------------------------------------------------------------
471
fa7cce36 472 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 473 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
474 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
475 const Int_t kNgamz = 5; // Ionization size in Z
476 const Int_t kNgamx = 9; // Ionization size in Phi
477 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 478
479 Float_t rnor1,rnor2;
480
481 // Just a reminder on axes notation in the CPV module:
482 // axis Z goes along the beam
483 // axis X goes across the beam in the module plane
484 // axis Y is a normal to the module plane showing from the IP
485
486 Float_t hitX = zxhit[0];
487 Float_t hitZ =-zxhit[1];
488 Float_t pX = p.Px();
489 Float_t pZ =-p.Pz();
490 Float_t pNorm = p.Py();
a3dfe79c 491 Float_t eloss = kdEdx;
3d402178 492
21cd0c07 493//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 494
fa7cce36 495 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
496 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 497 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 498 eloss *= (1 + kDetR*rnor1) *
fa7cce36 499 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
500 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
501 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 502 Float_t zhit2 = zhit1 + dZY;
503 Float_t xhit2 = xhit1 + dXY;
504
a3dfe79c 505 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
506 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 507
508 Int_t nIter;
509 Float_t zxe[3][5];
510 if (iwht1==iwht2) { // incline 1-wire hit
511 nIter = 2;
512 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 513 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
514 zxe[2][0] = eloss/2;
fa412d9b 515 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 516 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
517 zxe[2][1] = eloss/2;
fa412d9b 518 }
519 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
520 nIter = 3;
521 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 522 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
523 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
524 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 525 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
526 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
527 Float_t dxw1 = xhit1 - xwr13;
528 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 529 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
530 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
531 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 532 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
533 zxe[1][0] = xwht1;
a3dfe79c 534 zxe[2][0] = eloss * egm1;
fa412d9b 535 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
536 zxe[1][1] = xwht2;
a3dfe79c 537 zxe[2][1] = eloss * egm2;
fa412d9b 538 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
539 zxe[1][2] = xwht3;
a3dfe79c 540 zxe[2][2] = eloss * egm3;
fa412d9b 541 }
542 else { // incline 2-wire hit
543 nIter = 2;
a3dfe79c 544 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
545 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 546 Float_t xwr12 = (xwht1 + xwht2) / 2;
547 Float_t dxw1 = xhit1 - xwr12;
548 Float_t dxw2 = xhit2 - xwr12;
549 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
550 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
551 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
552 zxe[1][0] = xwht1;
a3dfe79c 553 zxe[2][0] = eloss * egm1;
fa412d9b 554 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
555 zxe[1][1] = xwht2;
a3dfe79c 556 zxe[2][1] = eloss * egm2;
fa412d9b 557 }
bea63bea 558
fa412d9b 559 // Finite size of ionization region
560
fa7cce36 561 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
562 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 563 Int_t nz3 = (kNgamz+1)/2;
564 Int_t nx3 = (kNgamx+1)/2;
565 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 566 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 567
568 for (Int_t iter=0; iter<nIter; iter++) {
569
570 Float_t zhit = zxe[0][iter];
571 Float_t xhit = zxe[1][iter];
572 Float_t qhit = zxe[2][iter];
fa7cce36 573 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
574 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 575 if ( zcell<=0 || xcell<=0 ||
576 zcell>=nCellZ || xcell>=nCellX) return;
577 Int_t izcell = (Int_t) zcell;
578 Int_t ixcell = (Int_t) xcell;
579 Float_t zc = zcell - izcell - 0.5;
580 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 581 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 582 Int_t kzg = izcell + iz - nz3;
583 if (kzg<=0 || kzg>nCellZ) continue;
584 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 585 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 586 Int_t kxg = ixcell + ix - nx3;
587 if (kxg<=0 || kxg>nCellX) continue;
588 Float_t xg = (Float_t)(ix-nx3) - xc;
589
590 // Now calculate pad response
591 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 592 qpad += kNoise*rnor2;
fa412d9b 593 if (qpad<0) continue;
594
595 // Fill the array with pad response ID and amplitude
3d402178 596 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 597 }
fa412d9b 598 }
fa412d9b 599 }
600}
601
602//____________________________________________________________________________
603Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
604 // ------------------------------------------------------------------------
605 // Calculate the amplitude in one CPV pad using the
606 // cumulative pad response function
607 // Author: Yuri Kharlov (after Serguei Sadovski)
608 // 3 October 2000
609 // ------------------------------------------------------------------------
610
fa7cce36 611 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
612 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
613 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
614 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 615 Double_t amplitude = qhit *
616 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
617 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
618 return (Float_t)amplitude;
7587f5a5 619}
620
fa412d9b 621//____________________________________________________________________________
622Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
623 // ------------------------------------------------------------------------
624 // Cumulative pad response function
625 // It includes several terms from the CF decomposition in electrostatics
626 // Note: this cumulative function is wrong since omits some terms
627 // but the cell amplitude obtained with it is correct because
628 // these omitting terms cancel
629 // Author: Yuri Kharlov (after Serguei Sadovski)
630 // 3 October 2000
631 // ------------------------------------------------------------------------
632
a3dfe79c 633 const Double_t kA=1.0;
634 const Double_t kB=0.7;
fa412d9b 635
636 Double_t r2 = x*x + y*y;
637 Double_t xy = x*y;
638 Double_t cumulPRF = 0;
639 for (Int_t i=0; i<=4; i++) {
a3dfe79c 640 Double_t b1 = (2*i + 1) * kB;
fa412d9b 641 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
642 }
a3dfe79c 643 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 644 return cumulPRF;
645}
7eb9d12d 646