]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv0.cxx
Minor modifications on the geometry. (Tapan Nayak)
[u/mrichter/AliRoot.git] / PMD / AliPMDv0.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
76ad67b5 17Revision 1.11 2001/05/14 14:01:04 morsch
18AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
c4561145 19*/
20
21//
22///////////////////////////////////////////////////////////////////////////////
23// //
24// Photon Multiplicity Detector Version 1 //
25// //
26//Begin_Html
27/*
28<img src="picts/AliPMDv0Class.gif">
29*/
30//End_Html
31// //
32///////////////////////////////////////////////////////////////////////////////
33////
34
35#include "AliPMDv0.h"
36#include "AliRun.h"
37#include "AliMC.h"
38#include "AliConst.h"
39#include "AliMagF.h"
40#include "iostream.h"
41
42static Int_t kdet, ncell_sm, ncell_hole;
43static Float_t zdist, zdist1;
44static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
45static Float_t boundary, th_base, th_air, th_pcb;
46static Float_t th_lead, th_steel;
47
48ClassImp(AliPMDv0)
49
50 //_____________________________________________________________________________
51 AliPMDv0::AliPMDv0()
52{
53 //
54 // Default constructor
55 //
56 fMedSens=0;
57}
58
59//_____________________________________________________________________________
60AliPMDv0::AliPMDv0(const char *name, const char *title)
61 : AliPMD(name,title)
62{
63 //
64 // Standard constructor
65 //
66 fMedSens=0;
67}
68
69//_____________________________________________________________________________
70void AliPMDv0::CreateGeometry()
71{
72 //
73 // Create geometry for Photon Multiplicity Detector Version 3 :
74 // April 2, 2001
75 //
76 //Begin_Html
77 /*
78 <img src="picts/AliPMDv0.gif">
79 */
80 //End_Html
81 //Begin_Html
82 /*
83 <img src="picts/AliPMDv0Tree.gif">
84 */
85 //End_Html
86 GetParameters();
87 CreateSupermodule();
88 CreatePMD();
89}
90
91//_____________________________________________________________________________
92void AliPMDv0::CreateSupermodule()
93{
94 //
95 // Creates the geometry of the cells, places them in supermodule which
96 // is a rhombus object.
97
98 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
99 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
100 // -- Author : S. Chattopadhyay, 02/04/1999.
101
102 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
103 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
104 // in radius gives the dimension of half width of each cell wall.
105 // These cells are placed as 72 x 72 array in a
106 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
107 // to have closed packed structure.
108 //
109 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
110 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
111 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
112 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
113 //
114 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
115 // and EMFE (iron support)
116
117 // EMM1 made of
118 // ESMB --> Normal supermodule, mirror image of ESMA
119 // EMPB --> Pb converter
120 // EMFE --> Fe backing
121 // ESMA --> Normal supermodule
122 //
123 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
124 // and EMFE (iron support)
125
126 // EMM2 made of
127 // ESMY --> Special supermodule, mirror image of ESMX,
128 // EMPB --> Pb converter
129 // EMFE --> Fe backing
130 // ESMX --> First of the two Special supermodules near the hole
131
132 // EMM3 made of
133 // ESMQ --> Special supermodule, mirror image of ESMX,
134 // EMPB --> Pb converter
135 // EMFE --> Fe backing
136 // ESMP --> Second of the two Special supermodules near the hole
137
138 // EMM2 and EMM3 are used to create the hexagonal HOLE
139
140 //
141 // EPMD
142 // |
143 // |
144 // ---------------------------------------------------------------------------
145 // | | | | |
146 // EHOL EMM1 EMM2 EMM3 EALM
147 // | | |
148 // -------------------- -------------------- --------------------
149 // | | | | | | | | | | | |
150 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
151 // | | |
152 // ------------ ------------ -------------
153 // | | | | | | | | |
154 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
155 // | | |
156 // ECCU ECCU ECCU
157 // | | |
158 // ECAR ECAR ECAR
159
160
161 Int_t i, j;
162 Float_t xb, yb, zb;
163 Int_t number;
164 Int_t ihrotm,irotdm;
165 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
166 Int_t *idtmed = fIdtmed->GetArray()-599;
167
168 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
169 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
170
171 zdist = TMath::Abs(zdist1);
172
173
174 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
175 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
176 //(1mm tolerance on both side and 5mm thick G10 wall)
177 //
178
179 // **** CELL SIZE 20 mm^2 EQUIVALENT
180
181 // Inner hexagon filled with gas (Ar+CO2)
182
183 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
184
185 hexd2[4]= - cell_depth/2.;
186 hexd2[7]= cell_depth/2.;
187 hexd2[6]= cell_radius - cell_wall;
188 hexd2[9]= cell_radius - cell_wall;
189
190 // Gas replaced by vacuum for v0(insensitive) version of PMD.
191
192 gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
193 gMC->Gsatt("ECAR", "SEEN", 0);
194
195 // Outer hexagon made of Copper
196
197 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
198 //total wall thickness=0.2*2
199
200 hexd1[4]= - cell_depth/2.;
201 hexd1[7]= cell_depth/2.;
202 hexd1[6]= cell_radius;
203 hexd1[9]= cell_radius;
204
205 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
206 gMC->Gsatt("ECCU", "SEEN", 1);
207
208 // --- place inner hex inside outer hex
209
210 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
211
212// Rhombus shaped supermodules (defined by PARA)
213
214// volume for SUPERMODULE
215
216 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
217 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
218 dpara_sm1[1] = dpara_sm1[0] *root3_2;
219 dpara_sm1[2] = sm_thick/2.;
220
221//
222 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
223 gMC->Gsatt("ESMA", "SEEN", 0);
224 //
225 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
226 gMC->Gsatt("ESMB", "SEEN", 0);
227
228 // Air residing between the PCB and the base
229
230 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
231 dpara_air[0]= dpara_sm1[0];
232 dpara_air[1]= dpara_sm1[1];
233 dpara_air[2]= th_air/2.;
234
235 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
236 gMC->Gsatt("EAIR", "SEEN", 0);
237
238 // volume for honeycomb chamber EHC1
239
240 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
241 dpara1[0] = dpara_sm1[0];
242 dpara1[1] = dpara_sm1[1];
243 dpara1[2] = cell_depth/2.;
244
245 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
246 gMC->Gsatt("EHC1", "SEEN", 1);
247
248
249
250 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
251
252 Int_t xrow=1;
253
254 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
255 zb = 0.;
256
257 for (j = 1; j <= ncell_sm; ++j) {
258 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
259 if(xrow >= 2){
260 xb = xb+(xrow-1)*hexd1[6];
261 }
262 for (i = 1; i <= ncell_sm; ++i) {
263 number = i+(j-1)*ncell_sm;
264 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
265 xb += (hexd1[6]*2.);
266 }
267 xrow = xrow+1;
268 yb += (hexd1[6]*TMath::Sqrt(3.));
269 }
270
271
272 // Place EHC1 and EAIR into ESMA and ESMB
273
274 Float_t z_air1,z_air2,z_gas;
275
276 //ESMA is normal supermodule with base at bottom, with EHC1
277 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
278 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
279 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 280 //Line below Commented for version 0 of PMD routine
281 // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
c4561145 282 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
283 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
284
285 // ESMB is mirror image of ESMA, with base at top, with EHC1
286
287 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
288 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
289 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 290 //Line below Commented for version 0 of PMD routine
291 // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
c4561145 292 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
293 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
294
295
296// special supermodule EMM2(GEANT only) containing 6 unit modules
297
298// volume for SUPERMODULE
299
300 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
301 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
302 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
303 dpara_sm2[2] = sm_thick/2.;
304
305 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
306 gMC->Gsatt("ESMX", "SEEN", 0);
307 //
308 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
309 gMC->Gsatt("ESMY", "SEEN", 0);
310
311 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
312 dpara2[0] = dpara_sm2[0];
313 dpara2[1] = dpara_sm2[1];
314 dpara2[2] = cell_depth/2.;
315
316 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
317 gMC->Gsatt("EHC2", "SEEN", 1);
318
319
320 // Air residing between the PCB and the base
321
322 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
323 dpara2_air[0]= dpara_sm2[0];
324 dpara2_air[1]= dpara_sm2[1];
325 dpara2_air[2]= th_air/2.;
326
327 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
328 gMC->Gsatt("EAIX", "SEEN", 0);
329
330 // Place hexagonal single cells ECCU inside EHC2
331 // skip cells which go into the hole in top left corner.
332
333 xrow=1;
334 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
335 zb = 0.;
336 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
337 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
338 if(xrow >= 2){
339 xb = xb+(xrow-1)*hexd1[6];
340 }
341 for (i = 1; i <= ncell_sm; ++i) {
342 number = i+(j-1)*ncell_sm;
343 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
344 xb += (hexd1[6]*2.);
345 }
346 xrow = xrow+1;
347 yb += (hexd1[6]*TMath::Sqrt(3.));
348 }
349
350
351 // ESMX is normal supermodule with base at bottom, with EHC2
352
353 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
354 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
355 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 356 //Line below Commented for version 0 of PMD routine
357 // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
c4561145 358 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
359 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
360
361 // ESMY is mirror image of ESMX with base at bottom, with EHC2
362
363 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
364 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
365 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 366 //Line below Commented for version 0 of PMD routine
367 // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
c4561145 368 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
369 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
370
371//
372
373
374// special supermodule EMM3 (GEANT only) containing 2 unit modules
375
376// volume for SUPERMODULE
377
378 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
379 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
380 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
381 dpara_sm3[2] = sm_thick/2.;
382
383 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
384 gMC->Gsatt("ESMP", "SEEN", 0);
385 //
386 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
387 gMC->Gsatt("ESMQ", "SEEN", 0);
388
389 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
390 dpara3[0] = dpara_sm3[0];
391 dpara3[1] = dpara_sm3[1];
392 dpara3[2] = cell_depth/2.;
393
394 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
395 gMC->Gsatt("EHC3", "SEEN", 1);
396
397
398 // Air residing between the PCB and the base
399
400 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
401 dpara3_air[0]= dpara_sm3[0];
402 dpara3_air[1]= dpara_sm3[1];
403 dpara3_air[2]= th_air/2.;
404
405 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
406 gMC->Gsatt("EAIP", "SEEN", 0);
407
408
409 // Place hexagonal single cells ECCU inside EHC3
410 // skip cells which go into the hole in top left corner.
411
412 xrow=1;
413 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
414 zb = 0.;
415 for (j = 1; j <= ncell_hole; ++j) {
416 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
417 if(xrow >= 2){
418 xb = xb+(xrow-1)*hexd1[6];
419 }
420 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
421 number = i+(j-1)*(ncell_sm - ncell_hole);
422 gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
423 xb += (hexd1[6]*2.);
424 }
425 xrow = xrow+1;
426 yb += (hexd1[6]*TMath::Sqrt(3.));
427 }
428
429 // ESMP is normal supermodule with base at bottom, with EHC3
430
431 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
432 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
433 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 434 //Line below Commented for version 0 of PMD routine
435 // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
c4561145 436 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
437 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
438
439 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
440
441 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
442 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
443 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 444 //Line below Commented for version 0 of PMD routine
445 // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
c4561145 446 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
447 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
448
449}
450
451//_____________________________________________________________________________
452
453void AliPMDv0::CreatePMD()
454{
455 //
456 // Create final detector from supermodules
457 //
458 // -- Author : Y.P. VIYOGI, 07/05/1996.
459 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
460 // -- Modified: For New Geometry YPV, March 2001.
461
462
463 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
464 const Float_t pi = 3.14159;
465 Int_t i,j;
466
467 Float_t xp, yp, zp;
468
469 Int_t num_mod;
470 Int_t jhrot12,jhrot13, irotdm;
471
472 Int_t *idtmed = fIdtmed->GetArray()-599;
473
474 // VOLUMES Names : begining with "E" for all PMD volumes,
475 // The names of SIZE variables begin with S and have more meaningful
476 // characters as shown below.
477
478 // VOLUME SIZE MEDIUM : REMARKS
479 // ------ ----- ------ : ---------------------------
480
481 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
482
483 // *** Define the EPMD Volume and fill with air ***
484
485
486 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
487
488
489 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
490
491 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
492 gaspmd[8] = gaspmd[5];
493
494 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
495 gMC->Gsatt("EPMD", "SEEN", 0);
496
497 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
498
499 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
500 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
501
502
503 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
504
505 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
506 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
507 // EMM1 : normal volume as in old cases
508
509
510 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
511 dpara_emm1[0] = sm_length/2.;
512 dpara_emm1[1] = dpara_emm1[0] *root3_2;
513 dpara_emm1[2] = dm_thick/2.;
514
515 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
516 gMC->Gsatt("EMM1", "SEEN", 1);
517
518 //
519 // --- DEFINE Modules, iron, and lead volumes
520
521 // Pb Convertor for EMM1
522 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
523 dpara_pb1[0] = sm_length/2.;
524 dpara_pb1[1] = dpara_pb1[0] * root3_2;
525 dpara_pb1[2] = th_lead/2.;
526
527 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
528 gMC->Gsatt ("EPB1", "SEEN", 0);
529
530 // Fe Support for EMM1
531 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
532 dpara_fe1[0] = dpara_pb1[0];
533 dpara_fe1[1] = dpara_pb1[1];
534 dpara_fe1[2] = th_steel/2.;
535
536 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
537 gMC->Gsatt ("EFE1", "SEEN", 0);
538
539
540
541 //
542 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
543
544 Float_t z_ps,z_pb,z_fe,z_cv;
545
546 z_ps = - dpara_emm1[2] + sm_thick/2.;
547 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
548 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
549 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
550 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
551 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
552 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
553 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
554
555
556
557 // EMM2 : special master module having full row of cells but the number
558 // of rows limited by hole.
559
560 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
561 dpara_emm2[0] = sm_length/2.;
562 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
563 dpara_emm2[2] = dm_thick/2.;
564
565 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
566 gMC->Gsatt("EMM2", "SEEN", 1);
567
568
569 // Pb Convertor for EMM2
570 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
571 dpara_pb2[0] = dpara_emm2[0];
572 dpara_pb2[1] = dpara_emm2[1];
573 dpara_pb2[2] = th_lead/2.;
574
575 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
576 gMC->Gsatt ("EPB2", "SEEN", 0);
577
578 // Fe Support for EMM2
579 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
580 dpara_fe2[0] = dpara_pb2[0];
581 dpara_fe2[1] = dpara_pb2[1];
582 dpara_fe2[2] = th_steel/2.;
583
584 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
585 gMC->Gsatt ("EFE2", "SEEN", 0);
586
587
588
589 // position supermodule ESMX, ESMY inside EMM2
590
591 z_ps = - dpara_emm2[2] + sm_thick/2.;
592 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
593 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
594 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
595 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
596 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
597 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
598 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
599 //
600
601
602 // EMM3 : special master module having truncated rows and columns of cells
603 // limited by hole.
604
605 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
606 dpara_emm3[0] = dpara_emm2[1]/root3_2;
607 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
608 dpara_emm3[2] = dm_thick/2.;
609
610 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
611 gMC->Gsatt("EMM3", "SEEN", 1);
612
613
614 // Pb Convertor for EMM3
615 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
616 dpara_pb3[0] = dpara_emm3[0];
617 dpara_pb3[1] = dpara_emm3[1];
618 dpara_pb3[2] = th_lead/2.;
619
620 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
621 gMC->Gsatt ("EPB3", "SEEN", 0);
622
623 // Fe Support for EMM3
624 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
625 dpara_fe3[0] = dpara_pb3[0];
626 dpara_fe3[1] = dpara_pb3[1];
627 dpara_fe3[2] = th_steel/2.;
628
629 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
630 gMC->Gsatt ("EFE3", "SEEN", 0);
631
632
633
634 // position supermodule ESMP, ESMQ inside EMM3
635
636 z_ps = - dpara_emm3[2] + sm_thick/2.;
637 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
638 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
639 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
640 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
641 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
642 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
643 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
644 //
645
646 // EHOL is a tube structure made of air
647 //
648 //Float_t d_hole[3];
649 //d_hole[0] = 0.;
650 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
651 //d_hole[2] = dm_thick/2.;
652 //
653 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
654 //gMC->Gsatt("EHOL", "SEEN", 1);
655
656 //Al-rod as boundary of the supermodules
657
658 Float_t Al_rod[3] ;
659 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
660 Al_rod[1] = boundary;
661 Al_rod[2] = dm_thick/2.;
662
663 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
664 gMC->Gsatt ("EALM", "SEEN", 1);
665 Float_t xalm[3];
666 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
667 xalm[1]=-xalm[0]/2.;
668 xalm[2]=xalm[1];
669
670 Float_t yalm[3];
671 yalm[0]=0.;
672 yalm[1]=xalm[0]*root3_2;
673 yalm[2]=-yalm[1];
674
675 // delx = full side of the supermodule
676 Float_t delx=sm_length * 3.;
677 Float_t x1= delx*root3_2 /2.;
678 Float_t x4=delx/4.;
679
680
681 // placing master modules and Al-rod in PMD
682
683 Float_t dx = sm_length;
684 Float_t dy = dx * root3_2;
685
686 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
687 -dx, 0., dx,
688 -3.*dx/2., -dx/2., dx/2.};
689
690 Float_t ysup[9] = {dy, dy, dy,
691 0., 0., 0.,
692 -dy, -dy, -dy};
693
694 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
695
696 Float_t xoff = boundary * TMath::Tan(pi/6.);
697 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
698 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
699 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
700
701 Float_t xemm2 = sm_length/2. -
702 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
703 + xoff;
704 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
705 - boundary;
706
707 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
708 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
709
710 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
711 Int_t irotate[3] = {0, jhrot12, jhrot13};
712
713 num_mod=0;
714 for (j=0; j<3; ++j)
715 {
716 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
717 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
718 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
719
720 gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
721
722 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
723 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
724
725 gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
726
727 for (i=1; i<9; ++i)
728 {
729 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
730 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
731
732 printf("%f %f \n", xpos[i], ypos[i]);
733
734 num_mod = num_mod+1;
735
736 printf("\nNum_mod %d\n",num_mod);
737
738 gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
739
740 }
741 }
742
743
744 // place EHOL in the centre of EPMD
745 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
746
747 // --- Place the EPMD in ALICE
748 xp = 0.;
749 yp = 0.;
750 zp = zdist1;
751
752 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
753
754}
755
756
757//_____________________________________________________________________________
758void AliPMDv0::DrawModule()
759{
760 //
761 // Draw a shaded view of the Photon Multiplicity Detector
762 //
763
764 gMC->Gsatt("*", "seen", -1);
765 gMC->Gsatt("alic", "seen", 0);
766 //
767 // Set the visibility of the components
768 //
769 gMC->Gsatt("ECAR","seen",0);
770 gMC->Gsatt("ECCU","seen",1);
771 gMC->Gsatt("EHC1","seen",1);
772 gMC->Gsatt("EHC1","seen",1);
773 gMC->Gsatt("EHC2","seen",1);
774 gMC->Gsatt("EMM1","seen",1);
775 gMC->Gsatt("EHOL","seen",1);
776 gMC->Gsatt("EPMD","seen",0);
777 //
778 gMC->Gdopt("hide", "on");
779 gMC->Gdopt("shad", "on");
780 gMC->Gsatt("*", "fill", 7);
781 gMC->SetClipBox(".");
782 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
783 gMC->DefaultRange();
784 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
785 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
786
787 //gMC->Gdman(17, 5, "MAN");
788 gMC->Gdopt("hide", "off");
789}
790
791//_____________________________________________________________________________
792void AliPMDv0::CreateMaterials()
793{
794 //
795 // Create materials for the PMD
796 //
797 // ORIGIN : Y. P. VIYOGI
798 //
799
800 // --- The Argon- CO2 mixture ---
801 Float_t ag[2] = { 39.95 };
802 Float_t zg[2] = { 18. };
803 Float_t wg[2] = { .8,.2 };
804 Float_t dar = .001782; // --- Ar density in g/cm3 ---
805 // --- CO2 ---
806 Float_t ac[2] = { 12.,16. };
807 Float_t zc[2] = { 6.,8. };
808 Float_t wc[2] = { 1.,2. };
809 Float_t dc = .001977;
810 Float_t dco = .002; // --- CO2 density in g/cm3 ---
811
812 Float_t absl, radl, a, d, z;
813 Float_t dg;
814 Float_t x0ar;
815 //Float_t x0xe=2.4;
816 //Float_t dxe=0.005858;
817 Float_t buf[1];
818 Int_t nbuf;
819 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
820 Float_t zsteel[4] = { 26.,24.,28.,14. };
821 Float_t wsteel[4] = { .715,.18,.1,.005 };
822
823 Int_t *idtmed = fIdtmed->GetArray()-599;
824 Int_t isxfld = gAlice->Field()->Integ();
825 Float_t sxmgmx = gAlice->Field()->Max();
826
827 // --- Define the various materials for GEANT ---
828 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
829 x0ar = 19.55 / dar;
830 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
831 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
832 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
833 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
834 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
835 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
836 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
837 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
838 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
839 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
840 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
841 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
842 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
843
844 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
845 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
846 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
847 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
848
849 // define gas-mixtures
850
851 char namate[21];
852 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
853 ag[1] = a;
854 zg[1] = z;
855 dg = (dar * 4 + dco) / 5;
856 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
857
858 // Define tracking media
859 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
860 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
861 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
862 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
863 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
864 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
865 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
866 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
867 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
868 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
869 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
870 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
871 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
872 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
873 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
874
875 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
876 gMC->Gstpar(idtmed[600], "LOSS", 3.);
877 gMC->Gstpar(idtmed[600], "DRAY", 1.);
878
879 gMC->Gstpar(idtmed[603], "LOSS", 3.);
880 gMC->Gstpar(idtmed[603], "DRAY", 1.);
881
882 gMC->Gstpar(idtmed[604], "LOSS", 3.);
883 gMC->Gstpar(idtmed[604], "DRAY", 1.);
884
885 gMC->Gstpar(idtmed[605], "LOSS", 3.);
886 gMC->Gstpar(idtmed[605], "DRAY", 1.);
887
888 gMC->Gstpar(idtmed[606], "LOSS", 3.);
889 gMC->Gstpar(idtmed[606], "DRAY", 1.);
890
891 gMC->Gstpar(idtmed[607], "LOSS", 3.);
892 gMC->Gstpar(idtmed[607], "DRAY", 1.);
893
894 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
895 // --- without affecting the hit patterns ---
896 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
897 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
898 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
899 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
900 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
901 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
902 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
903 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
904 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
905 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
906 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
907 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
908 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
909 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
910 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
911 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
912 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
913 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
914 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
915 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
916
917 // --- Prevent particles stopping in the gas due to energy cut-off ---
918 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
919 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
920 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
921 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
922 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
923}
924
925//_____________________________________________________________________________
926void AliPMDv0::Init()
927{
928 //
929 // Initialises PMD detector after it has been built
930 //
931 Int_t i;
932 kdet=1;
933 //
934 printf("\n");
935 for(i=0;i<35;i++) printf("*");
936 printf(" PMD_INIT ");
937 for(i=0;i<35;i++) printf("*");
938 printf("\n");
939 printf(" PMD simulation package (v0) initialised\n");
940 printf(" parameters of pmd\n");
941 printf("%10.2f %10.2f %10.2f %10.2f\n", cell_radius,cell_wall,cell_depth,zdist1 );
942
943 for(i=0;i<80;i++) printf("*");
944 printf("\n");
945
946 Int_t *idtmed = fIdtmed->GetArray()-599;
947 fMedSens=idtmed[605-1];
948}
949
950//_____________________________________________________________________________
951void AliPMDv0::StepManager()
952{
953 //
954 // Called at each step in the PMD
955 //
956 Int_t copy;
957 Float_t hits[4], destep;
958 Float_t center[3] = {0,0,0};
959 Int_t vol[5];
960 //char *namep;
961
962 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
963
964 gMC->CurrentVolID(copy);
965
966 //namep=gMC->CurrentVolName();
967 //printf("Current vol is %s \n",namep);
968
969 vol[0]=copy;
970 gMC->CurrentVolOffID(1,copy);
971
972 //namep=gMC->CurrentVolOffName(1);
973 //printf("Current vol 11 is %s \n",namep);
974
975 vol[1]=copy;
976 gMC->CurrentVolOffID(2,copy);
977
978 //namep=gMC->CurrentVolOffName(2);
979 //printf("Current vol 22 is %s \n",namep);
980
981 vol[2]=copy;
982
983 // if(strncmp(namep,"EHC1",4))vol[2]=1;
984
985 gMC->CurrentVolOffID(3,copy);
986
987 //namep=gMC->CurrentVolOffName(3);
988 //printf("Current vol 33 is %s \n",namep);
989
990 vol[3]=copy;
991 gMC->CurrentVolOffID(4,copy);
992
993 //namep=gMC->CurrentVolOffName(4);
994 //printf("Current vol 44 is %s \n",namep);
995
996 vol[4]=copy;
997 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
998
999 gMC->Gdtom(center,hits,1);
1000 hits[3] = destep*1e9; //Number in eV
1001 AddHit(gAlice->CurrentTrack(), vol, hits);
1002 }
1003}
1004
1005
1006//------------------------------------------------------------------------
1007// Get parameters
1008
1009void AliPMDv0::GetParameters()
1010{
1011 Int_t ncell_um, num_um;
1012 ncell_um=24;
1013 num_um=3;
1014 ncell_hole=24;
1015 cell_radius=0.25;
1016 cell_wall=0.02;
1017 cell_depth=0.25 * 2.;
1018 //
1019 boundary=0.7;
1020 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1021 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1022 //
1023 th_base=0.3;
1024 th_air=0.1;
1025 th_pcb=0.16;
1026 //
1027 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1028 //
1029 th_lead=1.5;
1030 th_steel=0.5;
1031 //
1032 zdist1 = -365.;
1033}
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046