]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
MUONdisplay: (le retour)
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
b1952773 15/*
16$Log$
d1f5ecc3 17Revision 1.23 2003/10/01 05:07:51 bnandi
18New geometry in new Alice Coordinate system
19
b1952773 20New rectangular geometry for ALICE PMD - Bedanga Mohanty and Y. P. Viyogi
21June 2003
22*/
c4561145 23//
24///////////////////////////////////////////////////////////////////////////////
25// //
26// Photon Multiplicity Detector Version 1 //
27// //
28//Begin_Html
29/*
30<img src="picts/AliPMDv1Class.gif">
31*/
32//End_Html
33// //
34///////////////////////////////////////////////////////////////////////////////
35////
36
88cb7938 37#include "AliPMDv1.h"
38#include "AliRun.h"
b1952773 39#include "AliConst.h"
40#include "AliMagF.h"
41#include "iostream.h"
c4561145 42
b1952773 43static Int_t ncol_um1,ncol_um2, nrow_um1, nrow_um2;
44static Int_t kdet;
45static Float_t sm_length_ax,sm_length_ay;
46static Float_t sm_length_bx,sm_length_by;
47static Float_t zdist, zdist1;
48static Float_t sm_thick, cell_radius, cell_wall, cell_depth;
49static Float_t boundary, th_base, th_air, th_pcb;
50static Float_t th_lead, th_steel;
c4561145 51
52ClassImp(AliPMDv1)
53
54 //_____________________________________________________________________________
55 AliPMDv1::AliPMDv1()
56{
57 //
58 // Default constructor
59 //
60 fMedSens=0;
61}
62
63//_____________________________________________________________________________
64AliPMDv1::AliPMDv1(const char *name, const char *title)
65 : AliPMD(name,title)
66{
67 //
68 // Standard constructor
69 //
70 fMedSens=0;
71}
72
73//_____________________________________________________________________________
74void AliPMDv1::CreateGeometry()
75{
b1952773 76 // Create geometry for Photon Multiplicity Detector
77
c4561145 78 GetParameters();
79 CreateSupermodule();
80 CreatePMD();
81}
82
83//_____________________________________________________________________________
84void AliPMDv1::CreateSupermodule()
85{
b1952773 86 //
87 // Creates the geometry of the cells of PMD, places them in supermodule
88 // which is a rectangular object.
89 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is
90 // placed inside another hexagonal cell made of Cu (ECCU) with larger
91 // radius, compared to ECAR. The difference in radius gives the dimension
92 // of half width of each cell wall.
93 // These cells are placed in a rectangular strip which are of 2 types
94 // EST1 and EST2
95 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips
96 // placed repeatedly
97 // Each supermodule (ESMA, ESMB), made of G10 is filled with following
98 //components. They have 9 unit moudles inside them
99 // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter)
c4561145 100 // and EMFE (iron support)
101
c4561145 102
b1952773 103 Int_t i,j;
c4561145 104 Float_t xb, yb, zb;
105 Int_t number;
106 Int_t ihrotm,irotdm;
107 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
b1952773 108 const Float_t root3 = TMath::Sqrt(3.);
c4561145 109 Int_t *idtmed = fIdtmed->GetArray()-599;
110
111 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
112 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
113
114 zdist = TMath::Abs(zdist1);
115
b1952773 116 // First create the sensitive medium of a hexagon cell (ECAR)
c4561145 117 // Inner hexagon filled with gas (Ar+CO2)
b1952773 118
c4561145 119 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
b1952773 120 hexd2[4] = -cell_depth/2.;
121 hexd2[7] = cell_depth/2.;
122 hexd2[6] = cell_radius - cell_wall;
123 hexd2[9] = cell_radius - cell_wall;
c4561145 124
125 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
126 gMC->Gsatt("ECAR", "SEEN", 0);
b1952773 127
128 // Place the sensitive medium inside a hexagon copper cell (ECCU)
c4561145 129 // Outer hexagon made of Copper
b1952773 130
c4561145 131 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
b1952773 132 hexd1[4] = -cell_depth/2.;
133 hexd1[7] = cell_depth/2.;
134 hexd1[6] = cell_radius;
135 hexd1[9] = cell_radius;
c4561145 136
137 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
b1952773 138 gMC->Gsatt("ECCU", "SEEN", 0);
c4561145 139
b1952773 140 // Place inner hex (sensitive volume) inside outer hex (copper)
141
142 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
143
144 // Now create Rectangular TWO strips (EST1, EST2)
145 // of 1 column and 48 or 96 cells length
c4561145 146
b1952773 147 // volume for first strip EST1 made of AIR
c4561145 148
b1952773 149 Float_t dbox1[3];
150 dbox1[0] = ncol_um1*cell_radius;
151 dbox1[1] = cell_radius/root3_2;
152 dbox1[2] = cell_depth/2.;
153
154 gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3);
155 gMC->Gsatt("EST1", "SEEN", 0);
c4561145 156
b1952773 157 // volume for second strip EST2
c4561145 158
b1952773 159 Float_t dbox2[3];
160 dbox2[0] = ncol_um2*cell_radius;
161 dbox2[1] = dbox1[1];
162 dbox2[2] = dbox1[2];
c4561145 163
b1952773 164 gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3);
165 gMC->Gsatt("EST2", "SEEN", 0);
c4561145 166
b1952773 167 // Place hexagonal cells ECCU placed inside EST1
168 yb = 0.;
169 zb = 0.;
170 xb = -(dbox1[0]) + cell_radius;
171 for (i = 1; i <= ncol_um1; ++i)
172 {
173 number = i;
174 gMC->Gsposp("ECCU", number, "EST1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
175 xb += (cell_radius*2.);
176 }
177 // Place hexagonal cells ECCU placed inside EST2
178 yb = 0.;
179 zb = 0.;
180 xb = -(dbox2[0]) + cell_radius;
181 for (i = 1; i <= ncol_um2; ++i)
182 {
183 number = i;
184 gMC->Gsposp("ECCU", number, "EST2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
185 xb += (cell_radius*2.);
186 }
c4561145 187
c4561145 188
189
b1952773 190 // 2 types of rectangular shaped unit modules EUM1 and EUM2 (defined by BOX)
c4561145 191
b1952773 192 // Create EUM1
c4561145 193
b1952773 194 Float_t dbox3[3];
195 dbox3[0] = dbox1[0]+cell_radius/2.;
196 dbox3[1] = (dbox1[1]*nrow_um1)-(cell_radius*root3*(nrow_um1-1)/6.);
197 dbox3[2] = cell_depth/2.;
198
199 gMC->Gsvolu("EUM1","BOX", idtmed[698], dbox3, 3);
200 gMC->Gsatt("EUM1", "SEEN", 1);
201
202 // Place rectangular strips EST1 inside EUM1 unit module
c4561145 203
b1952773 204 yb = -dbox3[1]+dbox1[1];
205 for (j = 1; j <= nrow_um1; ++j)
206 {
207 if(j%2 == 0)
208 {
209 xb =cell_radius/2.0;
210 }
211 else
212 {
213 xb = -cell_radius/2.0;
214 }
215 number = j;
216 gMC->Gsposp("EST1",number, "EUM1", xb, yb , 0. , 0, "MANY",dbox1,3);
217 yb = (-dbox3[1]+dbox1[1])+j*1.0*cell_radius*root3;
c4561145 218 }
c4561145 219
b1952773 220 // Create EUM2
c4561145 221
b1952773 222 Float_t dbox4[3];
223 dbox4[0] = dbox2[0]+cell_radius/2.;
224 dbox4[1] =(dbox2[1]*nrow_um2)-(cell_radius*root3*(nrow_um2-1)/6.);
225 dbox4[2] = dbox3[2];
c4561145 226
b1952773 227 gMC->Gsvolu("EUM2","BOX", idtmed[698], dbox4, 3);
228 gMC->Gsatt("EUM2", "SEEN", 1);
c4561145 229
b1952773 230 // Place rectangular strips EST2 inside EUM2 unit module
c4561145 231
b1952773 232 yb = -dbox4[1]+dbox2[1];
233 for (j = 1; j <= nrow_um2; ++j)
234 {
235 if(j%2 == 0)
236 {
237 xb =cell_radius/2.0;
238 }
239 else
240 {
241 xb = -cell_radius/2.0;
242 }
243 number = j;
244 gMC->Gsposp("EST2",number, "EUM2", xb, yb , 0. , 0, "MANY",dbox2,3);
245 yb = (-dbox4[1]+dbox2[1])+j*1.0*cell_radius*root3;
246 }
c4561145 247
b1952773 248 // 2 types of Rectangular shaped supermodules (BOX)
249 //each with 6 unit modules
250
251 // volume for SUPERMODULE ESMA
252 //Space added to provide a gapping for HV between UM's
253
254 Float_t dbox_sm1[3];
255 dbox_sm1[0] = 3.0*dbox3[0]+(2.0*0.025);
256 dbox_sm1[1] = 2.0*dbox3[1]+0.025;
257 dbox_sm1[2] = cell_depth/2.;
258
259 gMC->Gsvolu("ESMA","BOX", idtmed[698], dbox_sm1, 3);
260 gMC->Gsatt("ESMA", "SEEN", 1);
261
262 //Position the 6 unit modules in EMSA
263 Float_t x_a1,x_a2,x_a3,y_a1,y_a2;
264 x_a1 = -dbox_sm1[0] + dbox3[0];
265 x_a2 = 0.;
266 x_a3 = dbox_sm1[0] - dbox3[0];
267 y_a1 = dbox_sm1[1] - dbox3[1];
268 y_a2 = -dbox_sm1[1] + dbox3[1];
269
270 gMC->Gsposp("EUM1", 1, "ESMA", x_a1, y_a1, 0., 0, "ONLY",dbox3,3);
271 gMC->Gsposp("EUM1", 2, "ESMA", x_a2, y_a1, 0., 0, "ONLY",dbox3,3);
272 gMC->Gsposp("EUM1", 3, "ESMA", x_a3, y_a1, 0., 0, "ONLY",dbox3,3);
273 gMC->Gsposp("EUM1", 4, "ESMA", x_a1, y_a2, 0., 0, "ONLY",dbox3,3);
274 gMC->Gsposp("EUM1", 5, "ESMA", x_a2, y_a2, 0., 0, "ONLY",dbox3,3);
275 gMC->Gsposp("EUM1", 6, "ESMA", x_a3, y_a2, 0., 0, "ONLY",dbox3,3);
276
277
278 // volume for SUPERMODULE ESMB
279 //Space is added to provide a gapping for HV between UM's
280 Float_t dbox_sm2[3];
281 dbox_sm2[0] = 2.0*dbox4[0]+0.025;
282 dbox_sm2[1] = 3.0*dbox4[1]+(2.0*0.025);
283 dbox_sm2[2] = cell_depth/2.;
284
285 gMC->Gsvolu("ESMB","BOX", idtmed[698], dbox_sm2, 3);
286 gMC->Gsatt("ESMB", "SEEN", 1);
287
288 //Position the 6 unit modules in EMSB
289 Float_t x_b1,x_b2,y_b1,y_b2,y_b3;
290 x_b1 = -dbox_sm2[0] +dbox4[0];
291 x_b2 = dbox_sm2[0]-dbox4[0];
292 y_b1 =dbox_sm2[1]-dbox4[1];
293 y_b2 = 0.;
294 y_b3 = -dbox_sm2[1]+dbox4[1];
295
296 gMC->Gsposp("EUM2", 1, "ESMB", x_b1, y_b1, 0., 0, "ONLY",dbox4,3);
297 gMC->Gsposp("EUM2", 2, "ESMB", x_b2, y_b1, 0., 0, "ONLY",dbox4,3);
298 gMC->Gsposp("EUM2", 3, "ESMB", x_b1, y_b2, 0., 0, "ONLY",dbox4,3);
299 gMC->Gsposp("EUM2", 4, "ESMB", x_b2, y_b2, 0., 0, "ONLY",dbox4,3);
300 gMC->Gsposp("EUM2", 5, "ESMB", x_b1, y_b3, 0., 0, "ONLY",dbox4,3);
301 gMC->Gsposp("EUM2", 6, "ESMB", x_b2, y_b3, 0., 0, "ONLY",dbox4,3);
302
303
304 // Make a 3mm thick G10 Base plate for ESMA
305 Float_t dbox_g1a[3];
306 dbox_g1a[0] = dbox_sm1[0];
307 dbox_g1a[1] = dbox_sm1[1];
308 dbox_g1a[2] = th_base/2.;
309
310 gMC->Gsvolu("EBPA","BOX", idtmed[607], dbox_g1a, 3);
311 gMC->Gsatt("EBPA", "SEEN", 1);
312
313 // Make a 1.6mm thick G10 PCB for ESMA
314 Float_t dbox_g2a[3];
315 dbox_g2a[0] = dbox_sm1[0];
316 dbox_g2a[1] = dbox_sm1[1];
317 dbox_g2a[2] = th_pcb/2.;
318
319 gMC->Gsvolu("EPCA","BOX", idtmed[607], dbox_g2a, 3);
320 gMC->Gsatt("EPCA", "SEEN", 1);
321
322
323 // Make a Full module EFPA of AIR to place EBPA,
324 // 1mm AIR, EPCA, ESMA,EPCA for PMD
325
326 Float_t dbox_alla[3];
327 dbox_alla[0] = dbox_sm1[0];
328 dbox_alla[1] = dbox_sm1[1];
329 dbox_alla[2] = (th_base+0.1+th_pcb+dbox_sm1[2]+th_pcb)/2.;
330
331 gMC->Gsvolu("EFPA","BOX", idtmed[698], dbox_alla, 3);
332 gMC->Gsatt("EFPA", "SEEN", 1);
333
334
335 // Make a Full module EFCA of AIR to place EBPA,
336 // 1mm AIR, EPCA, ESMA,EPC for CPV
337 Float_t dbox_alla2[3];
338 dbox_alla2[0] = dbox_sm1[0];
339 dbox_alla2[1] = dbox_sm1[1];
340 dbox_alla2[2] = (th_base+0.1+th_pcb+dbox_sm1[2]+th_pcb)/2.;
341
342 gMC->Gsvolu("EFCA","BOX", idtmed[698], dbox_alla2, 3);
343 gMC->Gsatt("EFCA", "SEEN", 1);
344
345 // Now place everything in EFPA for PMD
346
347 Float_t z_bpa,z_pcba1,z_pcba2,z_sma;
348 z_pcba1 = - dbox_alla[2]+th_pcb/2.0;
349 gMC->Gsposp("EPCA", 1, "EFPA", 0., 0., z_pcba1, 0, "ONLY",dbox_g2a,3);
350 z_sma = z_pcba1+dbox_sm1[2];
351 gMC->Gsposp("ESMA", 1, "EFPA", 0., 0., z_sma, 0, "ONLY",dbox_sm1,3);
352 z_pcba2 = z_sma+th_pcb/2.0;
353 gMC->Gsposp("EPCA", 2, "EFPA", 0., 0., z_pcba2, 0, "ONLY",dbox_g2a,3);
354 z_bpa = z_pcba2+0.1+th_base/2.0; // 0.1 for 0.1 mm Air gap
355 gMC->Gsposp("EBPA", 1, "EFPA", 0., 0., z_bpa, 0, "ONLY",dbox_g1a,3);
356
357 // Now place everything in EFCA for CPV
358
359 Float_t z_bpa2,z_pcba12,z_pcba22,z_sma2;
360 z_bpa2 = - dbox_alla2[2]+th_base/2.0;
361 gMC->Gsposp("EBPA", 1, "EFCA", 0., 0., z_bpa2, 0, "ONLY",dbox_g1a,3);
362 z_pcba12 = z_bpa2+0.1+th_pcb/2.0;
363 gMC->Gsposp("EPCA", 1, "EFCA", 0., 0., z_pcba12, 0, "ONLY",dbox_g2a,3);
364 z_sma2 = z_pcba12+dbox_sm1[2];
365 gMC->Gsposp("ESMA", 1, "EFCA", 0., 0., z_sma2, 0, "ONLY",dbox_sm1,3);
366 z_pcba22 = z_sma2+th_pcb/2.0;
367 gMC->Gsposp("EPCA", 2, "EFCA", 0., 0., z_pcba22, 0, "ONLY",dbox_g2a,3);
c4561145 368
369
c4561145 370
b1952773 371 // Make a 3mm thick G10 Base plate for ESMB
372 Float_t dbox_g1b[3];
373 dbox_g1b[0] = dbox_sm2[0];
374 dbox_g1b[1] = dbox_sm2[1];
375 dbox_g1b[2] = th_base/2.;
376
377 gMC->Gsvolu("EBPB","BOX", idtmed[607], dbox_g1b, 3);
378 gMC->Gsatt("EBPB", "SEEN", 1);
379
380 // Make a 1.6mm thick G10 PCB for ESMB
381 Float_t dbox_g2b[3];
382 dbox_g2b[0] = dbox_sm2[0];
383 dbox_g2b[1] = dbox_sm2[1];
384 dbox_g2b[2] = th_pcb/2.;
c4561145 385
b1952773 386 gMC->Gsvolu("EPCB","BOX", idtmed[607], dbox_g2b, 3);
387 gMC->Gsatt("EPCB", "SEEN", 1);
c4561145 388
c4561145 389
b1952773 390 // Make a Full module EFPB of AIR to place EBPB,
391 //1mm AIR, EPCB, ESMB,EPCB for PMD
392 Float_t dbox_allb[3];
393 dbox_allb[0] = dbox_sm2[0];
394 dbox_allb[1] = dbox_sm2[1];
395 dbox_allb[2] = (th_base+0.1+th_pcb+dbox_sm2[2]+th_pcb)/2.;
c4561145 396
b1952773 397 gMC->Gsvolu("EFPB","BOX", idtmed[698], dbox_allb, 3);
398 gMC->Gsatt("EFPB", "SEEN", 1);
c4561145 399
b1952773 400 // Make a Full module EFCB of AIR to place EBPB,
401 //1mm AIR, EPCB, ESMB,EPCB for CPV
402 Float_t dbox_allb2[3];
403 dbox_allb2[0] = dbox_sm2[0];
404 dbox_allb2[1] = dbox_sm2[1];
405 dbox_allb2[2] = (th_base+0.1+th_pcb+dbox_sm2[2]+th_pcb)/2.;
c4561145 406
b1952773 407 gMC->Gsvolu("EFCB","BOX", idtmed[698], dbox_allb2, 3);
408 gMC->Gsatt("EFCB", "SEEN", 1);
c4561145 409
c4561145 410
b1952773 411 // Now place everything in EFPB for PMD
c4561145 412
b1952773 413 Float_t z_bpb,z_pcbb1,z_pcbb2,z_smb;
414 z_pcbb1 = - dbox_allb[2]+th_pcb/2.0;
415 gMC->Gsposp("EPCB", 1, "EFPB", 0., 0., z_pcbb1, 0, "ONLY",dbox_g2b,3);
416 z_smb = z_pcbb1+dbox_sm2[2];
417 gMC->Gsposp("ESMB", 1, "EFPB", 0., 0., z_smb, 0, "ONLY",dbox_sm2,3);
418 z_pcbb2 = z_smb+th_pcb/2.0;
419 gMC->Gsposp("EPCB", 2, "EFPB", 0., 0., z_pcbb2, 0, "ONLY",dbox_g2b,3);
420 z_bpb = z_pcbb2+0.1+th_base/2.0; // 0.1 for 0.1 mm Air gap
421 gMC->Gsposp("EBPB", 1, "EFPB", 0., 0., z_bpb, 0, "ONLY",dbox_g1b,3);
c4561145 422
c4561145 423
b1952773 424 // Now place everything in EFCB for CPV
425
426 Float_t z_bpb2,z_pcbb12,z_pcbb22,z_smb2;
427 z_bpb2 = - dbox_allb2[2]+th_base/2.0;
428 gMC->Gsposp("EBPB", 1, "EFCB", 0., 0., z_bpb2, 0, "ONLY",dbox_g1b,3);
429 z_pcbb12 = z_bpb2+0.1+th_pcb/2.0;
430 gMC->Gsposp("EPCB", 1, "EFCB", 0., 0., z_pcbb12, 0, "ONLY",dbox_g2b,3);
431 z_smb2 = z_pcbb12+dbox_sm2[2];
432 gMC->Gsposp("ESMB", 1, "EFCB", 0., 0., z_smb2, 0, "ONLY",dbox_sm2,3);
433 z_pcbb22 = z_smb2+th_pcb/2.0;
434 gMC->Gsposp("EPCB", 2, "EFCB", 0., 0., z_pcbb22, 0, "ONLY",dbox_g2b,3);
c4561145 435
c4561145 436
b1952773 437 // Master MODULE EMPA of aluminum for PMD
438 //Float_t dbox_mm1[3];
439 dbox_mm1[0] = dbox_sm1[0]+boundary;
440 dbox_mm1[1] = dbox_sm1[1]+boundary;
441 dbox_mm1[2] = dbox_alla[2];
c4561145 442
b1952773 443 gMC->Gsvolu("EMPA","BOX", idtmed[603], dbox_mm1, 3);
444 gMC->Gsatt("EMPA", "SEEN", 1);
c4561145 445
b1952773 446 // Master MODULE EMCA of aluminum for CPV
447 //Float_t dbox_mm12[3];
448 dbox_mm12[0] = dbox_sm1[0]+boundary;
449 dbox_mm12[1] = dbox_sm1[1]+boundary;
450 dbox_mm12[2] = dbox_alla[2];
c4561145 451
b1952773 452 gMC->Gsvolu("EMCA","BOX", idtmed[603], dbox_mm12, 3);
453 gMC->Gsatt("EMCA", "SEEN", 1);
c4561145 454
455
b1952773 456 //Position EFMA inside EMMA for PMD and CPV
457 gMC->Gsposp("EFPA", 1, "EMPA", 0., 0., 0., 0, "ONLY",dbox_alla,3);
458 gMC->Gsposp("EFCA", 1, "EMCA", 0., 0., 0., 0, "ONLY",dbox_alla2,3);
c4561145 459
c4561145 460
b1952773 461 // Master MODULE EMPB of aluminum for PMD
462 //Float_t dbox_mm2[3];
463 dbox_mm2[0] = dbox_sm2[0]+boundary;
464 dbox_mm2[1] = dbox_sm2[1]+boundary;
465 dbox_mm2[2] = dbox_allb[2];
c4561145 466
b1952773 467 gMC->Gsvolu("EMPB","BOX", idtmed[603], dbox_mm2, 3);
468 gMC->Gsatt("EMPB", "SEEN", 1);
c4561145 469
b1952773 470 // Master MODULE EMCB of aluminum for CPV
471 //Float_t dbox_mm22[3];
472 dbox_mm22[0] = dbox_sm2[0]+boundary;
473 dbox_mm22[1] = dbox_sm2[1]+boundary;
474 dbox_mm22[2] = dbox_allb[2];
c4561145 475
b1952773 476 gMC->Gsvolu("EMCB","BOX", idtmed[603], dbox_mm22, 3);
477 gMC->Gsatt("EMCB", "SEEN", 1);
c4561145 478
b1952773 479
480 //Position EFMB inside EMMB
481 gMC->Gsposp("EFPB", 1, "EMPB", 0., 0., 0., 0, "ONLY",dbox_allb,3);
482 gMC->Gsposp("EFCB", 1, "EMCB", 0., 0., 0., 0, "ONLY",dbox_allb2,3);
c4561145 483
484}
485
486//_____________________________________________________________________________
487
488void AliPMDv1::CreatePMD()
489{
b1952773 490
c4561145 491 //
492 // Create final detector from supermodules
b1952773 493 // -- Author : Bedanga and Viyogi June 2003
c4561145 494
495 Float_t xp, yp, zp;
c4561145 496 Int_t jhrot12,jhrot13, irotdm;
c4561145 497 Int_t *idtmed = fIdtmed->GetArray()-599;
498
b1952773 499 //VOLUMES Names : begining with "E" for all PMD volumes,
500
501 // --- DEFINE Iron, and lead volumes for SM A
502
503 Float_t dbox_pba[3];
504 dbox_pba[0] = sm_length_ax;
505 dbox_pba[1] = sm_length_ay;
506 dbox_pba[2] = th_lead/2.;
c4561145 507
b1952773 508 gMC->Gsvolu("EPBA","BOX", idtmed[600], dbox_pba, 3);
509 gMC->Gsatt ("EPBA", "SEEN", 0);
c4561145 510
b1952773 511 // Fe Support
512 Float_t dbox_fea[3];
513 dbox_fea[0] = sm_length_ax;
514 dbox_fea[1] = sm_length_ay;
515 dbox_fea[2] = th_steel/2.;
c4561145 516
b1952773 517 gMC->Gsvolu("EFEA","BOX", idtmed[618], dbox_fea, 3);
518 gMC->Gsatt ("EFEA", "SEEN", 0);
c4561145 519
b1952773 520 // --- DEFINE Iron, and lead volumes for SM B
521
522 Float_t dbox_pbb[3];
523 dbox_pbb[0] = sm_length_bx;
524 dbox_pbb[1] = sm_length_by;
525 dbox_pbb[2] = th_lead/2.;
526
527 gMC->Gsvolu("EPBB","BOX", idtmed[600], dbox_pbb, 3);
528 gMC->Gsatt ("EPBB", "SEEN", 0);
529
530 // Fe Support
531 Float_t dbox_feb[3];
532 dbox_feb[0] = sm_length_bx;
533 dbox_feb[1] = sm_length_by;
534 dbox_feb[2] = th_steel/2.;
535
536 gMC->Gsvolu("EFEB","BOX", idtmed[618], dbox_feb, 3);
537 gMC->Gsatt ("EFEB", "SEEN", 0);
c4561145 538
c4561145 539
b1952773 540 // Gaspmd, the dimension of RECTANGULAR mother volume of PMD,
c4561145 541
b1952773 542 Float_t gaspmd[3] = {81.5,94.5,7.};
543 gaspmd[0] = sm_length_ax+sm_length_bx;
544 gaspmd[1] = sm_length_ay+sm_length_by;
c4561145 545
c4561145 546
b1952773 547 gMC->Gsvolu("EPMD", "BOX", idtmed[698], gaspmd, 3);
548 gMC->Gsatt("EPMD", "SEEN", 1);
c4561145 549
550 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
551
b1952773 552 AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.);
c4561145 553 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
554
b1952773 555 Float_t x_sma,y_sma;
556 Float_t x_smb,y_smb;
557 x_sma = -(sm_length_bx)/1.0;
558 y_sma = sm_length_by;
559 x_smb = -sm_length_ax;
560 y_smb = -sm_length_ay;
561
562 //Complete detector for Type A
563 //Position Super modules type A for both CPV and PMD in EPMD
564 Float_t z_psa,z_pba,z_fea,z_cva;
565 z_psa = - gaspmd[3] + sm_thick/2.;
566
567 gMC->Gsposp("EMPA", 1, "EPMD", x_sma, y_sma, z_psa, 0, "ONLY",dbox_mm1,3);
568 gMC->Gsposp("EMPA", 2, "EPMD", -x_sma, -y_sma, z_psa, jhrot12, "ONLY",dbox_mm1,3);
569 z_pba=z_psa+sm_thick/2.+dbox_pba[2];
570 gMC->Gsposp("EPBA", 1, "EPMD", x_sma, y_sma, z_pba, 0, "ONLY",dbox_pba,3);
571 gMC->Gsposp("EPBA", 2, "EPMD", -x_sma, -y_sma, z_pba, 0, "ONLY",dbox_pba,3);
572 z_fea=z_pba+dbox_pba[2]+dbox_fea[2];
573 gMC->Gsposp("EFEA", 1, "EPMD", x_sma, y_sma, z_fea, 0, "ONLY",dbox_fea,3);
574 gMC->Gsposp("EFEA", 2, "EPMD", -x_sma, -y_sma, z_fea, 0, "ONLY",dbox_fea,3);
575 z_cva=z_fea+dbox_fea[2]+sm_thick/2.;
576 gMC->Gsposp("EMCA", 1, "EPMD", x_sma, y_sma, z_cva, 0, "ONLY",dbox_mm12,3);
577 gMC->Gsposp("EMCA", 2, "EPMD", -x_sma,-y_sma, z_cva, jhrot12, "ONLY",dbox_mm12,3);
578
579 //Complete detector for Type B
580 //Position Super modules type B for both CPV and PMD in EPMD
581 Float_t z_psb,z_pbb,z_feb,z_cvb;
582 z_psb = - gaspmd[3] + sm_thick/2.;
583
584 gMC->Gsposp("EMPB", 3, "EPMD", x_smb, y_smb, z_psb, 0, "ONLY",dbox_mm2,3);
585 gMC->Gsposp("EMPB", 4, "EPMD", -x_smb, -y_smb, z_psb, jhrot12, "ONLY",dbox_mm2,3);
586 z_pbb=z_psb+sm_thick/2.+dbox_pbb[2];
587 gMC->Gsposp("EPBB", 3, "EPMD", x_smb, y_smb, z_pbb, 0, "ONLY",dbox_pbb,3);
588 gMC->Gsposp("EPBB", 4, "EPMD", -x_smb, -y_smb, z_pbb, 0, "ONLY",dbox_pbb,3);
589 z_feb=z_pbb+dbox_pbb[2]+dbox_feb[2];
590 gMC->Gsposp("EFEB", 3, "EPMD", x_smb, y_smb, z_feb, 0, "ONLY",dbox_feb,3);
591 gMC->Gsposp("EFEB", 4, "EPMD", -x_smb, -y_smb, z_feb, 0, "ONLY",dbox_feb,3);
592 z_cvb=z_feb+dbox_feb[2]+sm_thick/2.;
593 gMC->Gsposp("EMCB", 3, "EPMD", x_smb, y_smb, z_cvb, 0, "ONLY",dbox_mm22,3);
594 gMC->Gsposp("EMCB", 4, "EPMD", -x_smb,-y_smb, z_cvb, jhrot12, "ONLY",dbox_mm22,3);
c4561145 595
c4561145 596 // --- Place the EPMD in ALICE
597 xp = 0.;
598 yp = 0.;
599 zp = zdist1;
b1952773 600
601 //Position Full PMD in ALICE
602 gMC->Gsposp("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY",gaspmd,3);
603
c4561145 604}
605
606
607//_____________________________________________________________________________
608void AliPMDv1::DrawModule()
609{
b1952773 610 cout << " Inside Draw Modules " << endl;
c4561145 611 //
612 // Draw a shaded view of the Photon Multiplicity Detector
613 //
614
615 gMC->Gsatt("*", "seen", -1);
616 gMC->Gsatt("alic", "seen", 0);
617 //
618 // Set the visibility of the components
619 //
620 gMC->Gsatt("ECAR","seen",0);
621 gMC->Gsatt("ECCU","seen",1);
b1952773 622 gMC->Gsatt("EST1","seen",1);
623 gMC->Gsatt("EST2","seen",1);
624 gMC->Gsatt("EUM1","seen",1);
625 gMC->Gsatt("EUM2","seen",1);
626 gMC->Gsatt("ESMA","seen",1);
627 gMC->Gsatt("EPMD","seen",1);
c4561145 628 //
629 gMC->Gdopt("hide", "on");
630 gMC->Gdopt("shad", "on");
631 gMC->Gsatt("*", "fill", 7);
632 gMC->SetClipBox(".");
633 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
634 gMC->DefaultRange();
635 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
636 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
637
638 //gMC->Gdman(17, 5, "MAN");
639 gMC->Gdopt("hide", "off");
b1952773 640
641 cout << " Outside Draw Modules " << endl;
c4561145 642}
643
644//_____________________________________________________________________________
645void AliPMDv1::CreateMaterials()
646{
b1952773 647 cout << " Inside create materials " << endl;
c4561145 648 //
649 // Create materials for the PMD
650 //
651 // ORIGIN : Y. P. VIYOGI
652 //
653
654 // --- The Argon- CO2 mixture ---
655 Float_t ag[2] = { 39.95 };
656 Float_t zg[2] = { 18. };
b1952773 657 Float_t wg[2] = { .7,.3 };
c4561145 658 Float_t dar = .001782; // --- Ar density in g/cm3 ---
659 // --- CO2 ---
660 Float_t ac[2] = { 12.,16. };
661 Float_t zc[2] = { 6.,8. };
662 Float_t wc[2] = { 1.,2. };
663 Float_t dc = .001977;
664 Float_t dco = .002; // --- CO2 density in g/cm3 ---
665
666 Float_t absl, radl, a, d, z;
667 Float_t dg;
668 Float_t x0ar;
c4561145 669 Float_t buf[1];
670 Int_t nbuf;
671 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
672 Float_t zsteel[4] = { 26.,24.,28.,14. };
673 Float_t wsteel[4] = { .715,.18,.1,.005 };
674
675 Int_t *idtmed = fIdtmed->GetArray()-599;
676 Int_t isxfld = gAlice->Field()->Integ();
677 Float_t sxmgmx = gAlice->Field()->Max();
678
679 // --- Define the various materials for GEANT ---
680 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
681 x0ar = 19.55 / dar;
682 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
683 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
684 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
685 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
686 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
687 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
688 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
689 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
690 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
691 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
692 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
693 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
694 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
695
696 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
697 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
698 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
699 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
700
701 // define gas-mixtures
702
b1952773 703 char namate[21];
c4561145 704 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
705 ag[1] = a;
706 zg[1] = z;
707 dg = (dar * 4 + dco) / 5;
708 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
709
710 // Define tracking media
711 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
712 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
713 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
714 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
715 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
716 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
717 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
718 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
719 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
720 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
721 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
722 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
723 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
724 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
725 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
726
727 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
728 gMC->Gstpar(idtmed[600], "LOSS", 3.);
729 gMC->Gstpar(idtmed[600], "DRAY", 1.);
730
731 gMC->Gstpar(idtmed[603], "LOSS", 3.);
732 gMC->Gstpar(idtmed[603], "DRAY", 1.);
733
734 gMC->Gstpar(idtmed[604], "LOSS", 3.);
735 gMC->Gstpar(idtmed[604], "DRAY", 1.);
736
737 gMC->Gstpar(idtmed[605], "LOSS", 3.);
738 gMC->Gstpar(idtmed[605], "DRAY", 1.);
739
740 gMC->Gstpar(idtmed[606], "LOSS", 3.);
741 gMC->Gstpar(idtmed[606], "DRAY", 1.);
742
743 gMC->Gstpar(idtmed[607], "LOSS", 3.);
744 gMC->Gstpar(idtmed[607], "DRAY", 1.);
745
746 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
747 // --- without affecting the hit patterns ---
748 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
749 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
750 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
751 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
752 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
753 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
754 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
755 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
756 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
757 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
758 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
759 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
760 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
761 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
762 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
763 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
764 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
765 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
766 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
767 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
768
769 // --- Prevent particles stopping in the gas due to energy cut-off ---
770 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
771 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
772 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
773 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
774 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
b1952773 775
776 cout << " Outside create materials " << endl;
777
c4561145 778}
779
780//_____________________________________________________________________________
781void AliPMDv1::Init()
782{
783 //
784 // Initialises PMD detector after it has been built
785 //
b1952773 786
c4561145 787 Int_t i;
788 kdet=1;
789 //
b1952773 790 cout << " Inside Init " << endl;
1592ac65 791 if(fDebug) {
792 printf("\n%s: ",ClassName());
793 for(i=0;i<35;i++) printf("*");
794 printf(" PMD_INIT ");
795 for(i=0;i<35;i++) printf("*");
796 printf("\n%s: ",ClassName());
797 printf(" PMD simulation package (v1) initialised\n");
798 printf("%s: parameters of pmd\n",ClassName());
dee197d3 799 printf("%s: %10.2f %10.2f %10.2f \
1592ac65 800 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
801 printf("%s: ",ClassName());
802 for(i=0;i<80;i++) printf("*");
803 printf("\n");
804 }
c4561145 805
806 Int_t *idtmed = fIdtmed->GetArray()-599;
807 fMedSens=idtmed[605-1];
b1952773 808
c4561145 809}
810
811//_____________________________________________________________________________
812void AliPMDv1::StepManager()
813{
814 //
815 // Called at each step in the PMD
816 //
b1952773 817
c4561145 818 Int_t copy;
819 Float_t hits[4], destep;
820 Float_t center[3] = {0,0,0};
b1952773 821 Int_t vol[8]; //5
822 //const char *namep;
c4561145 823
824 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
825
826 gMC->CurrentVolID(copy);
c4561145 827 //namep=gMC->CurrentVolName();
b1952773 828 //printf("Current vol is %s \n",namep);
c4561145 829 vol[0]=copy;
c4561145 830
b1952773 831 gMC->CurrentVolOffID(1,copy);
c4561145 832 //namep=gMC->CurrentVolOffName(1);
833 //printf("Current vol 11 is %s \n",namep);
c4561145 834 vol[1]=copy;
c4561145 835
b1952773 836 gMC->CurrentVolOffID(2,copy);
c4561145 837 //namep=gMC->CurrentVolOffName(2);
838 //printf("Current vol 22 is %s \n",namep);
c4561145 839 vol[2]=copy;
840
841 // if(strncmp(namep,"EHC1",4))vol[2]=1;
842
843 gMC->CurrentVolOffID(3,copy);
c4561145 844 //namep=gMC->CurrentVolOffName(3);
845 //printf("Current vol 33 is %s \n",namep);
c4561145 846 vol[3]=copy;
c4561145 847
b1952773 848 gMC->CurrentVolOffID(4,copy);
c4561145 849 //namep=gMC->CurrentVolOffName(4);
850 //printf("Current vol 44 is %s \n",namep);
c4561145 851 vol[4]=copy;
c4561145 852
b1952773 853 gMC->CurrentVolOffID(5,copy);
854 //namep=gMC->CurrentVolOffName(5);
855 //printf("Current vol 55 is %s \n",namep);
856 vol[5]=copy;
857
858 gMC->CurrentVolOffID(6,copy);
859 //namep=gMC->CurrentVolOffName(6);
860 //printf("Current vol 66 is %s \n",namep);
861 vol[6]=copy;
862
863 gMC->CurrentVolOffID(7,copy);
864 //namep=gMC->CurrentVolOffName(7);
865 //printf("Current vol 77 is %s \n",namep);
866 vol[7]=copy;
867
868
869 //printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],destep*1000000);
870
c4561145 871 gMC->Gdtom(center,hits,1);
872 hits[3] = destep*1e9; //Number in eV
d1f5ecc3 873 AddHit(gAlice->GetCurrentTrackNumber(), vol, hits);
b1952773 874
c4561145 875 }
876}
877
878
879//------------------------------------------------------------------------
880// Get parameters
881
882void AliPMDv1::GetParameters()
883{
b1952773 884 const Float_t root3 = TMath::Sqrt(3.);
885 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
886 //
c4561145 887 cell_radius=0.25;
888 cell_wall=0.02;
889 cell_depth=0.25 * 2.;
890 //
b1952773 891 ncol_um1 = 48;
892 ncol_um2 = 96;
893 nrow_um1 = 96;//each strip has 1 row
894 nrow_um2 = 48;//each strip has 1 row
895 //
896 sm_length_ax = (3.0*(ncol_um1*cell_radius+cell_radius/2.)+(2.0*0.025)) + 0.7;
897 sm_length_bx = 2.0*(ncol_um2*cell_radius+cell_radius/2.)+0.025+0.7;
898
899 sm_length_ay = 2.0*(((cell_radius/root3_2)*nrow_um1)-(cell_radius*root3*(nrow_um1-1)/6.))+0.025+0.7;
900 sm_length_by = 3.0*(((cell_radius/root3_2)*nrow_um2)-(cell_radius*root3*(nrow_um2-1)/6.))+(2.0*0.025)+0.7;
901 //
902 boundary=0.7;
903 //
904 th_base=0.3;
905 th_air=0.1;
906 th_pcb=0.16;
907 //
908 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
909 //
910 th_lead=1.5;
911 th_steel=0.5;
912
913 zdist1 = 361.5;
ef61784c 914
b1952773 915}