]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv3.cxx
Version 3 of the PMD. (Tapan K. Nayak)
[u/mrichter/AliRoot.git] / PMD / AliPMDv3.cxx
CommitLineData
a6a493b8 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
17Revision March 2001 new geometry for relocated PMD : Viyogi
18
19Revision 1.8 2000/06/09 10:31:36 hristov
20sqrt changed to TMath::Sqrt
21
22Revision 1.7 1999/11/03 18:01:40 fca
23Remove non orthogonal unused matrix
24
25Revision 1.6 1999/09/29 09:24:28 fca
26Introduction of the Copyright and cvs Log
27
28*/
29//
30///////////////////////////////////////////////////////////////////////////////
31// //
32// Photon Multiplicity Detector Version 1 //
33// //
34//Begin_Html
35/*
36<img src="picts/AliPMDv3Class.gif">
37*/
38//End_Html
39// //
40///////////////////////////////////////////////////////////////////////////////
41////
42
43#include "AliPMDv3.h"
44#include "AliRun.h"
45#include "AliMagF.h"
46#include "AliMC.h"
47#include "AliConst.h"
48#include "iostream.h"
49
50static Int_t kdet, ncell_sm, ncell_hole;
51static Float_t zdist, zdist1;
52static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
53static Float_t boundary, th_base, th_air, th_pcb;
54static Float_t th_lead, th_steel;
55
56ClassImp(AliPMDv3)
57
58 //_____________________________________________________________________________
59 AliPMDv3::AliPMDv3()
60{
61 //
62 // Default constructor
63 //
64 fMedSens=0;
65}
66
67//_____________________________________________________________________________
68AliPMDv3::AliPMDv3(const char *name, const char *title)
69 : AliPMD(name,title)
70{
71 //
72 // Standard constructor
73 //
74 fMedSens=0;
75}
76
77//_____________________________________________________________________________
78void AliPMDv3::CreateGeometry()
79{
80 //
81 // Create geometry for Photon Multiplicity Detector Version 3 :
82 // April 2, 2001
83 //
84 //Begin_Html
85 /*
86 <img src="picts/AliPMDv3.gif">
87 */
88 //End_Html
89 //Begin_Html
90 /*
91 <img src="picts/AliPMDv3Tree.gif">
92 */
93 //End_Html
94 GetParameters();
95 CreateSupermodule();
96 CreatePMD();
97}
98
99//_____________________________________________________________________________
100void AliPMDv3::CreateSupermodule()
101{
102 //
103 // Creates the geometry of the cells, places them in supermodule which
104 // is a rhombus object.
105
106 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
107 // *** HEXAGONAL CELLS WITH 10 MM SQUARE EQUIVALENT
108 // -- Author : S. Chattopadhyay, 02/04/1999.
109
110 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
111 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
112 // in radius gives the dimension of half width of each cell wall.
113 // These cells are placed as 72 x 72 array in a
114 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
115 // to have closed packed structure.
116 //
117 // Each supermodule (ESM1 or ESM2), made of G10 is filled with following components
118 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
119 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
120 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
121 //
122 // ESM1 is placed in EMM1 along with EMPB (Pb converter) and EMFE (iron support)
123 // EMM1 made of
124 // ESM1 --> Normal supermodule
125 // EMPB --> Pb converter
126 // EMFE --> Fe backing
127 //
128 // ESM2 is placed in EMM2 along with EMPB (Pb converter) and EMFE (iron support)
129 // EMM2 made of
130 // ESM2 --> Special supermodule containing the cut for the hole
131 // EMPB --> Pb converter
132 // EMFE --> Fe backing
133
134 //
135 // EPMD
136 // |
137 // |
138 // -------------------------------------------------------------------
139 // | | | |
140 // EHOL EMM1 EMM2 EALM
141 // | |
142 // ---------------------- ------------------------
143 // | | | | | | | |
144 // ESM1 EMPB EMFE ESM1 ESM2 EMPB EMFE ESM2
145 // | |
146 // ------------ -------------
147 // | | | | | |
148 // EAIR EHC1 EAIR EAIR EHC2 EAIR
149 // | |
150 // ECCU ECCU
151 // | |
152 // ECAR ECAR
153
154
155 Int_t i, j;
156 Float_t xb, yb, zb;
157 Int_t number;
158 Int_t ihrotm,irotdm;
159 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
160 Int_t *idtmed = fIdtmed->GetArray()-599;
161
162 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
163 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
164
165 zdist = TMath::Abs(zdist1);
166
167
168 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
169 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
170 //(1mm tolerance on both side and 5mm thick G10 wall)
171 //
172
173 // **** CELL SIZE 20mm^2 EQUIVALENT
174
175 // Inner hexagon filled with gas (Ar+CO2)
176
177 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
178
179 hexd2[4]= - cell_depth/2.;
180 hexd2[7]= cell_depth/2.;
181 hexd2[6]= cell_radius - cell_wall;
182 hexd2[9]= cell_radius - cell_wall;
183
184 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
185 gMC->Gsatt("ECAR", "SEEN", 0);
186
187 // Outer hexagon made of Copper
188
189 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
190 //total wall thickness=0.2*2
191
192 hexd1[4]= - cell_depth/2.;
193 hexd1[7]= cell_depth/2.;
194 hexd1[6]= cell_radius;
195 hexd1[9]= cell_radius;
196
197 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
198 gMC->Gsatt("ECCU", "SEEN", 1);
199
200
201// Rhombus shaped supermodules (defined by PARA)
202
203// volume for SUPERMODULE
204
205 Float_t dpara_sm[6] = {12.5,12.5,0.8,30.,0.,0.};
206 dpara_sm[0]=(ncell_sm+0.25)*hexd1[6] ;
207 dpara_sm[1] = dpara_sm[0] *root3_2;
208 dpara_sm[2] = sm_thick/2.;
209
210// G10 inner part of supermodule, these will be 9 in all, one being special
211
212 Float_t dpara_g10[6] = {12.5,12.5,8.,30.,0.,0.};
213 dpara_g10[0]= dpara_sm[0];
214 dpara_g10[1]= dpara_sm[1];
215 dpara_g10[2]= dpara_sm[2];
216
217//
218 gMC->Gsvolu("ESM1","PARA", idtmed[607], dpara_g10, 6);
219 gMC->Gsatt("ESM1", "SEEN", 0);
220 //
221 gMC->Gsvolu("ESM2","PARA", idtmed[607], dpara_g10, 6);
222 gMC->Gsatt("ESM2", "SEEN", 0);
223
224 // Air residing between the PCB and the base
225
226 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
227 dpara_air[0]= dpara_sm[0];
228 dpara_air[1]= dpara_sm[1];
229 dpara_air[2]= th_air/2.;
230
231 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
232 gMC->Gsatt("EAIR", "SEEN", 0);
233
234 // volume for honeycomb chamber (EHC1 and EHC2)
235
236 Float_t dpara[6] = {12.5,12.5,0.4,30.,0.,0.};
237 dpara[0] = dpara_sm[0];
238 dpara[1] = dpara_sm[1];
239 dpara[2] = cell_depth/2.;
240
241 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara, 6);
242 gMC->Gsatt("EHC1", "SEEN", 1);
243
244 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara, 6);
245 gMC->Gsatt("EHC2", "SEEN", 1);
246
247 // --- place inner hex inside outer hex
248
249 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
250
251 // Place outer hex ECCU cells inside EHC1 (72 X 72)
252
253 Int_t xrow=1;
254
255 yb = -dpara[1] + (1./root3_2)*hexd1[6];
256 zb = 0.;
257
258 for (j = 1; j <= ncell_sm; ++j) {
259 xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
260 if(xrow >= 2){
261 xb = xb+(xrow-1)*hexd1[6];
262 }
263 for (i = 1; i <= ncell_sm; ++i) {
264 number = i+(j-1)*ncell_sm;
265 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
266 xb += (hexd1[6]*2.);
267 }
268 xrow = xrow+1;
269 yb += (hexd1[6]*TMath::Sqrt(3.));
270 }
271
272
273 // Place outer hex ECCU inside EHC2
274 // skip cells which go into the hole in top left corner.
275
276 xrow=1;
277 yb = -dpara[1] + (1./root3_2)*hexd1[6];
278 zb = 0.;
279 for (j = 1; j <= ncell_sm; ++j) {
280 xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6];
281 if(xrow >= 2){
282 xb = xb+(xrow-1)*hexd1[6];
283 }
284 for (i = 1; i <= ncell_sm; ++i) {
285 number = i+(j-1)*ncell_sm;
286 if(i > ncell_hole || j <= (ncell_sm - ncell_hole))
287 {
288 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
289 }
290 xb += (hexd1[6]*2.);
291 }
292 xrow = xrow+1;
293 yb += (hexd1[6]*TMath::Sqrt(3.));
294 }
295
296 // Place EHC1 and EAIR into ESM1; EHC2 and EAIR into ESM2
297
298 Float_t z_air1,z_air2,z_gas;
299
300 z_air1= -dpara_g10[2] + th_base + dpara_air[2];
301 gMC->Gspos("EAIR", 1, "ESM1", 0., 0., z_air1, 0, "ONLY");
302 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
303 gMC->Gspos("EHC1", 1, "ESM1", 0., 0., z_gas, 0, "ONLY");
304 z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
305 gMC->Gspos("EAIR", 2, "ESM1", 0., 0., z_air2, 0, "ONLY");
306
307 z_air1= -dpara_g10[2] + th_base + dpara_air[2];
308 gMC->Gspos("EAIR", 1, "ESM2", 0., 0., z_air1, 0, "ONLY");
309 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
310 gMC->Gspos("EHC2", 1, "ESM2", 0., 0., z_gas, 0, "ONLY");
311 z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
312 gMC->Gspos("EAIR", 2, "ESM2", 0., 0., z_air2, 0, "ONLY");
313
314}
315
316//_____________________________________________________________________________
317
318void AliPMDv3::CreatePMD()
319{
320 //
321 // Create final detector from supermodules
322 //
323 // -- Author : Y.P. VIYOGI, 07/05/1996.
324 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
325 // -- Modified: For New Geometry YPV, March 2001.
326
327
328 // Gaspmd, the dimension of TUBE mother volume of PMD,
329
330 Float_t gaspmd[3] = { 0.,150.,10.};
331
332 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
333 const Float_t pi = 3.14159;
334 Int_t i,j;
335
336 Float_t xp, yp, zp;
337
338 Int_t num_mod;
339 Int_t jhrot12,jhrot13, irotdm;
340
341 Int_t *idtmed = fIdtmed->GetArray()-599;
342
343 // VOLUMES Names : begining with D for all PMD volumes,
344 // The names of SIZE variables begin with S and have more meaningful
345 // characters as shown below.
346
347 // VOLUME SIZE MEDIUM : REMARKS
348 // ------ ----- ------ : ---------------------------
349
350 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
351
352 // *** Define the EPMD Volume and fill with air ***
353
354 gMC->Gsvolu("EPMD", "TUBE", idtmed[698], gaspmd, 3);
355 gMC->Gsatt("EPMD", "SEEN", 0);
356
357 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
358
359 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
360 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
361
362 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
363 // this is just a little more than the side of a supermodule.
364
365 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
366
367 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
368 dpara_emm1[0] = sm_length/2.;
369 dpara_emm1[1] = dpara_emm1[0] *root3_2;
370 dpara_emm1[2] = dm_thick/2.;
371
372 // EMM1 : normal volume as in old cases
373 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
374 gMC->Gsatt("EMM1", "SEEN", 1);
375
376 // EMM2 : special volume containing special supermodule
377 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm1, 6);
378 gMC->Gsatt("EMM2", "SEEN", 1);
379
380 //
381 // --- DEFINE MODules, iron, and lead voLUMES
382
383 //place ESM1 into EMM1 and ESM2 into EMM2 along with EMPB and EMFE
384
385 Float_t dx = sm_length;
386 Float_t dy = dx * root3_2;
387
388 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
389 -dx, 0., dx,
390 -3.*dx/2., -dx/2., dx/2.};
391
392 Float_t ysup[9] = {dy, dy, dy,
393 0., 0., 0.,
394 -dy, -dy, -dy};
395
396 //
397
398 // volume for SUPERMODULE
399
400 // Pb Convertor
401 Float_t dpara_pb[6] = {12.5,12.5,8.,30.,0.,0.};
402 dpara_pb[0] = sm_length/2.;
403 dpara_pb[1] = dpara_pb[0] * root3_2;
404 dpara_pb[2] = th_lead/2.;
405
406 gMC->Gsvolu("EMPB","PARA", idtmed[600], dpara_pb, 6);
407 gMC->Gsatt ("EMPB", "SEEN", 0);
408
409 // Fe Support
410 Float_t dpara_fe[6] = {12.5,12.5,8.,30.,0.,0.};
411 dpara_fe[0] = dpara_pb[0];
412 dpara_fe[1] = dpara_pb[1];
413 dpara_fe[2] = th_steel/2.;
414
415 gMC->Gsvolu("EMFE","PARA", idtmed[618], dpara_fe, 6);
416 gMC->Gsatt ("EMFE", "SEEN", 0);
417
418 // position supermodule ESM1 inside EMM1
419
420 Float_t z_ps,z_pb,z_fe,z_cv;
421
422 z_ps = - dpara_emm1[2] + sm_thick/2.;
423 gMC->Gspos("ESM1", 2, "EMM1", 0., 0., z_ps, irotdm, "ONLY");
424 z_pb=z_ps+sm_thick/2.+dpara_pb[2];
425 gMC->Gspos("EMPB", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
426 z_fe=z_pb+dpara_pb[2]+dpara_fe[2];
427 gMC->Gspos("EMFE", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
428 z_cv=z_fe+dpara_fe[2]+sm_thick/2.;
429 gMC->Gspos("ESM1", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
430
431 // position supermodule ESM2 inside EMM2
432
433 z_ps = - dpara_emm1[2] + sm_thick/2.;
434 gMC->Gspos("ESM2", 2, "EMM2", 0., 0., z_ps, irotdm, "ONLY");
435 z_pb = z_ps + sm_thick/2.+dpara_pb[2];
436 gMC->Gspos("EMPB", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
437 z_fe = z_pb + dpara_pb[2]+dpara_fe[2];
438 gMC->Gspos("EMFE", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
439 z_cv = z_fe + dpara_fe[2]+sm_thick/2.;
440 gMC->Gspos("ESM2", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
441 //
442
443 // EHOL is a tube structure made of air
444
445 Float_t d_hole[3];
446 d_hole[0] = 0.;
447 d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
448 d_hole[2] = dm_thick/2.;
449
450 gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
451 gMC->Gsatt("EHOL", "SEEN", 1);
452
453 //Al-rod as boundary of the supermodules
454
455 Float_t Al_rod[3] ;
456 Al_rod[0] = sm_length * 3/2.;
457 Al_rod[1] = boundary;
458 Al_rod[2] = dm_thick/2.;
459
460 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
461 gMC->Gsatt ("EALM", "SEEN", 1);
462 Float_t xalm[3];
463 xalm[0]=Al_rod[0];
464 xalm[1]=-xalm[0]/2.;
465 xalm[2]=xalm[1];
466
467 Float_t yalm[3];
468 yalm[0]=0.;
469 yalm[1]=xalm[0]*root3_2;
470 yalm[2]=-yalm[1];
471
472 // delx = full side of the supermodule
473 Float_t delx=sm_length * 3.;
474 Float_t x1= delx*root3_2 /2.;
475 Float_t x4=delx/4.;
476
477 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
478
479 Float_t xoff = boundary * TMath::Tan(pi/6.);
480 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
481 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
482 Float_t xpos[9], ypos[9];
483 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
484 Int_t irotate[3] = {0, jhrot12, jhrot13};
485
486 for (j=0; j<3; ++j)
487 {
488 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
489 for (i=0; i<9; ++i)
490 {
491 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
492 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
493
494 printf("%f %f \n", xpos[i], ypos[i]);
495
496 num_mod = i + 1 + j*9;
497
498 printf("\nNum_mod %d\n",num_mod);
499
500 if(i==0){
501 gMC->Gsposp("EMM2", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
502 }
503 else {
504 gMC->Gsposp("EMM1", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
505 }
506 }
507 }
508
509
510 // place EHOL in the centre of EPMD
511 gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
512
513 // --- Place the EPMD in ALICE
514 xp = 0.;
515 yp = 0.;
516 zp = zdist1;
517
518 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
519
520}
521
522
523//_____________________________________________________________________________
524void AliPMDv3::DrawModule()
525{
526 //
527 // Draw a shaded view of the Photon Multiplicity Detector
528 //
529
530 gMC->Gsatt("*", "seen", -1);
531 gMC->Gsatt("alic", "seen", 0);
532 //
533 // Set the visibility of the components
534 //
535 gMC->Gsatt("ECAR","seen",0);
536 gMC->Gsatt("ECCU","seen",1);
537 gMC->Gsatt("EHC1","seen",1);
538 gMC->Gsatt("EHC1","seen",1);
539 gMC->Gsatt("EHC2","seen",1);
540 gMC->Gsatt("EMM1","seen",1);
541 gMC->Gsatt("EHOL","seen",1);
542 gMC->Gsatt("EPMD","seen",0);
543 //
544 gMC->Gdopt("hide", "on");
545 gMC->Gdopt("shad", "on");
546 gMC->Gsatt("*", "fill", 7);
547 gMC->SetClipBox(".");
548 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
549 gMC->DefaultRange();
550 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
551 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
552
553 //gMC->Gdman(17, 5, "MAN");
554 gMC->Gdopt("hide", "off");
555}
556
557//_____________________________________________________________________________
558void AliPMDv3::CreateMaterials()
559{
560 //
561 // Create materials for the PMD
562 //
563 // ORIGIN : Y. P. VIYOGI
564 //
565
566 // --- The Argon- CO2 mixture ---
567 Float_t ag[2] = { 39.95 };
568 Float_t zg[2] = { 18. };
569 Float_t wg[2] = { .8,.2 };
570 Float_t dar = .001782; // --- Ar density in g/cm3 ---
571 // --- CO2 ---
572 Float_t ac[2] = { 12.,16. };
573 Float_t zc[2] = { 6.,8. };
574 Float_t wc[2] = { 1.,2. };
575 Float_t dc = .001977;
576 Float_t dco = .002; // --- CO2 density in g/cm3 ---
577
578 Float_t absl, radl, a, d, z;
579 Float_t dg;
580 Float_t x0ar;
581 //Float_t x0xe=2.4;
582 //Float_t dxe=0.005858;
583 Float_t buf[1];
584 Int_t nbuf;
585 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
586 Float_t zsteel[4] = { 26.,24.,28.,14. };
587 Float_t wsteel[4] = { .715,.18,.1,.005 };
588
589 Int_t *idtmed = fIdtmed->GetArray()-599;
590 Int_t isxfld = gAlice->Field()->Integ();
591 Float_t sxmgmx = gAlice->Field()->Max();
592
593 // --- Define the various materials for GEANT ---
594 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
595 x0ar = 19.55 / dar;
596 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
597 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
598 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
599 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
600 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
601 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
602 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
603 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
604 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
605 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
606 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
607 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
608 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
609
610 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
611 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
612 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
613 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
614
615 // define gas-mixtures
616
617 char namate[21];
618 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
619 ag[1] = a;
620 zg[1] = z;
621 dg = (dar * 4 + dco) / 5;
622 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
623
624 // Define tracking media
625 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
626 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
627 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
628 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
629 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
630 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
631 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
632 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
633 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
634 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
635 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
636 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
637 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
638 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
639 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
640
641 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
642 gMC->Gstpar(idtmed[600], "LOSS", 3.);
643 gMC->Gstpar(idtmed[600], "DRAY", 1.);
644
645 gMC->Gstpar(idtmed[603], "LOSS", 3.);
646 gMC->Gstpar(idtmed[603], "DRAY", 1.);
647
648 gMC->Gstpar(idtmed[604], "LOSS", 3.);
649 gMC->Gstpar(idtmed[604], "DRAY", 1.);
650
651 gMC->Gstpar(idtmed[605], "LOSS", 3.);
652 gMC->Gstpar(idtmed[605], "DRAY", 1.);
653
654 gMC->Gstpar(idtmed[606], "LOSS", 3.);
655 gMC->Gstpar(idtmed[606], "DRAY", 1.);
656
657 gMC->Gstpar(idtmed[607], "LOSS", 3.);
658 gMC->Gstpar(idtmed[607], "DRAY", 1.);
659
660 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
661 // --- without affecting the hit patterns ---
662 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
663 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
664 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
665 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
666 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
667 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
668 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
669 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
670 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
671 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
672 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
673 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
674 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
675 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
676 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
677 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
678 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
679 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
680 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
681 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
682
683 // --- Prevent particles stopping in the gas due to energy cut-off ---
684 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
685 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
686 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
687 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
688 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
689}
690
691//_____________________________________________________________________________
692void AliPMDv3::Init()
693{
694 //
695 // Initialises PMD detector after it has been built
696 //
697 Int_t i;
698 kdet=1;
699 //
700 printf("\n");
701 for(i=0;i<35;i++) printf("*");
702 printf(" PMD_INIT ");
703 for(i=0;i<35;i++) printf("*");
704 printf("\n");
705 printf(" PMD simulation package (v3) initialised\n");
706 printf(" parameters of pmd\n");
707 printf("%10.2f %10.2f %10.2f %10.2f\n", cell_radius,cell_wall,cell_depth,zdist1 );
708
709 for(i=0;i<80;i++) printf("*");
710 printf("\n");
711
712 Int_t *idtmed = fIdtmed->GetArray()-599;
713 fMedSens=idtmed[605-1];
714}
715
716//_____________________________________________________________________________
717void AliPMDv3::StepManager()
718{
719 //
720 // Called at each step in the PMD
721 //
722 Int_t copy;
723 Float_t hits[4], destep;
724 Float_t center[3] = {0,0,0};
725 Int_t vol[5];
726 //char *namep;
727
728 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
729
730 gMC->CurrentVolID(copy);
731
732 //namep=gMC->CurrentVolName();
733 //printf("Current vol is %s \n",namep);
734
735 vol[0]=copy;
736 gMC->CurrentVolOffID(1,copy);
737
738 //namep=gMC->CurrentVolOffName(1);
739 //printf("Current vol 11 is %s \n",namep);
740
741 vol[1]=copy;
742 gMC->CurrentVolOffID(2,copy);
743
744 //namep=gMC->CurrentVolOffName(2);
745 //printf("Current vol 22 is %s \n",namep);
746
747 vol[2]=copy;
748
749 // if(strncmp(namep,"EHC1",4))vol[2]=1;
750
751 gMC->CurrentVolOffID(3,copy);
752
753 //namep=gMC->CurrentVolOffName(3);
754 //printf("Current vol 33 is %s \n",namep);
755
756 vol[3]=copy;
757 gMC->CurrentVolOffID(4,copy);
758
759 //namep=gMC->CurrentVolOffName(4);
760 //printf("Current vol 44 is %s \n",namep);
761
762 vol[4]=copy;
763 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
764
765 gMC->Gdtom(center,hits,1);
766 hits[3] = destep*1e9; //Number in eV
767 AddHit(gAlice->CurrentTrack(), vol, hits);
768 }
769}
770
771
772//------------------------------------------------------------------------
773// Get parameters
774
775void AliPMDv3::GetParameters()
776{
777 Int_t ncell_um, num_um;
778 ncell_um=24;
779 num_um=3;
780 ncell_hole=12;
781 cell_radius=0.25;
782 cell_wall=0.02;
783 cell_depth=0.25 * 2.;
784 //
785 boundary=0.7;
786 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
787 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
788 //
789 th_base=0.3;
790 th_air=0.1;
791 th_pcb=0.16;
792 //
793 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
794 //
795 th_lead=1.5;
796 th_steel=0.5;
797 //
798 zdist1 = -370.;
799}
800
801
802
803
804
805
806
807
808
809
810
811
812